Sample records for genetically modified human

  1. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    PubMed

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  2. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Legal protection of public health through control over genetically modified food.

    PubMed

    Gutorova, Nataliya; Batyhina, Olena; Trotska, Maryna

    2018-01-01

    Introduction: Science is constantly being developed which leads to both positive and negative changes in public health and the environment. One of the results of scientific progress is introduction of food based on genetically modified organisms whose effects on human health, to date, remain scantily studied and are ambiguous. The aim: to determine how human health can be influenced by food production based on genetically modified organisms. Materials and methods: international acts, data of international organizations and conclusions of scientists have been examined and used in the study. The article also summarizes information from scientific journals and monographs from a medical and legal point of view with scientific methods. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. Conclusions: Genetically modified organisms are specific human-made organisms being a result of using modern biotechnology techniques. They have both positive and negative effects on human health and the environment. The main disadvantage is not sufficient study of them in various spheres of public life.

  4. Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?

    PubMed

    Bermúdez-Humarán, Luis G; Langella, Philippe

    2017-09-01

    Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

  5. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    PubMed

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  6. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  7. Genetically modified foods and allergy.

    PubMed

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  8. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    PubMed

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  9. [Consumer reaction to information on the labels of genetically modified food].

    PubMed

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-02-01

    To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.

  10. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates.

    PubMed

    Okano, Hideyuki; Kishi, Noriyuki

    2018-06-01

    Although mice have been the most frequently used experimental animals in many research fields due to well-established gene manipulation techniques, recent evidence has revealed that rodent models do not always recapitulate pathophysiology of human neurological and psychiatric diseases due to the differences between humans and rodents. The recent developments in gene manipulation of non-human primate have been attracting much attention in the biomedical research field, because non-human primates have more applicable brain structure and function than rodents. In this review, we summarize recent progress on genetically-modified non-human primates including transgenic and knockout animals using genome editing technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. KEY ISSUES FOR THE ASSESSMENT OF THE ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: BREAKOUT GROUP REPORTS

    EPA Science Inventory

    Abstract
    On the final afternoon of the Workshop, Assessment of the Allergenic Potential of Genetically Modified Foods, speakers and participants met in breakout groups to discuss specific questions in the areas of 1) Use of Human Clinical Data; 2) Animal Models to Assess Food ...

  12. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  13. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis.

    PubMed

    Riessland, Markus; Kaczmarek, Anna; Schneider, Svenja; Swoboda, Kathryn J; Löhr, Heiko; Bradler, Cathleen; Grysko, Vanessa; Dimitriadi, Maria; Hosseinibarkooie, Seyyedmohsen; Torres-Benito, Laura; Peters, Miriam; Upadhyay, Aaradhita; Biglari, Nasim; Kröber, Sandra; Hölker, Irmgard; Garbes, Lutz; Gilissen, Christian; Hoischen, Alexander; Nürnberg, Gudrun; Nürnberg, Peter; Walter, Michael; Rigo, Frank; Bennett, C Frank; Kye, Min Jeong; Hart, Anne C; Hammerschmidt, Matthias; Kloppenburg, Peter; Wirth, Brunhilde

    2017-02-02

    Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca 2+ -dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement

    PubMed Central

    Yuan, Yanfang; Xu, Wentao; He, Xiaoyun; Liu, Haiyan; Cao, Sishuo; Qi, Xiaozhe; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health. PMID:23752350

  15. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. Genetic engineering applied to agriculture has a long row to hoe.

    PubMed

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  17. Human niche construction in interdisciplinary focus

    PubMed Central

    Kendal, Jeremy; Tehrani, Jamshid J.; Odling-Smee, John

    2011-01-01

    Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene–culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue. PMID:21320894

  18. [Ethical challenges of genetic manipulation and research with animals].

    PubMed

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling.

  19. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    PubMed

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to illustrate how the fitness of extreme individuals can be low through generations may be warranted to increase the credibility of this stochastic epistasis model.

  20. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  1. Consumer reaction to information on the labels of genetically modified food

    PubMed Central

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-01-01

    OBJECTIVE To analyze consumer opinion on genetically modified foods and the information included on the label. METHODS A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline – via PubMed –, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors “organisms, genetically modified” and “food labeling”. The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. RESULTS Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. CONCLUSIONS Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modifiedproducts and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies. PMID:24789648

  2. Genetically engineered pigs as models for human disease

    PubMed Central

    Perleberg, Carolin; Kind, Alexander

    2018-01-01

    ABSTRACT Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. PMID:29419487

  3. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.

    PubMed

    Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan

    2013-02-15

    Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.

  4. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  5. A nursing theory-guided framework for genetic and epigenetic research.

    PubMed

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  6. In defense of the dignity of being human.

    PubMed

    Gaylin, W

    1984-08-01

    The concept of human dignity is examined in terms of the religious belief that man is created in God's image and from the Kantian viewpoint that man's autonomy gives special value to our species. The theory of psychic determinism and the prospect of genetic engineering of humans are seen as attacks on self determination. Five additional attributes that make humans "special" are explored: conceptual thought, the capacity for technology, our range of emotions, "Lamarckian" environmental genetics, and the freedom to change and modify ourselves.

  7. Genetically Modified Plants: Public and Scientific Perceptions

    PubMed Central

    2013-01-01

    The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed. PMID:25937981

  8. Genetically modified foods and social concerns.

    PubMed

    Maghari, Behrokh Mohajer; Ardekani, Ali M

    2011-07-01

    Biotechnology is providing us with a wide range of options for how we can use agricultural and commercial forestry lands. The cultivation of genetically modified (GM) crops on millions of hectares of lands and their injection into our food chain is a huge global genetic experiment involving all living beings. Considering the fast pace of new advances in production of genetically modified crops, consumers, farmers and policymakers worldwide are challenged to reach a consensus on a clear vision for the future of world food supply. The current food biotechnology debate illustrates the serious conflict between two groups: 1) Agri-biotech investors and their affiliated scientists who consider agricultural biotechnology as a solution to food shortage, the scarcity of environmental resources and weeds and pests infestations; and 2) independent scientists, environmentalists, farmers and consumers who warn that genetically modified food introduces new risks to food security, the environment and human health such as loss of biodiversity; the emergence of superweeds and superpests; the increase of antibiotic resistance, food allergies and other unintended effects. This article reviews major viewpoints which are currently debated in the food biotechnology sector in the world. It also lays the ground-work for deep debate on benefits and risks of Biotech-crops for human health, ecosystems and biodiversity. In this context, although some regulations exist, there is a need for continuous vigilance for all countries involved in producing genetically engineered food to follow the international scientific bio-safety testing guidelines containing reliable pre-release experiments and post-release track of transgenic plants to protect public health and avoid future environmental harm.

  9. Genetic modifiers of Velo- cardio- facial syndrome/DiGeorge syndrome

    PubMed Central

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2009-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T- box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies which may help identify genetic modifiers for VCFS/DGS. PMID:18636633

  10. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  11. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    PubMed

    Lee, Patrick C; Truong, Brian; Vega-Crespo, Agustin; Gilmore, W Blake; Hermann, Kip; Angarita, Stephanie Ak; Tang, Jonathan K; Chang, Katherine M; Wininger, Austin E; Lam, Alex K; Schoenberg, Benjamen E; Cederbaum, Stephen D; Pyle, April D; Byrne, James A; Lipshutz, Gerald S

    2016-11-29

    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.

  12. Readiness of adolescents to use genetically modified organisms according to their knowledge and emotional attitude towards GMOs.

    PubMed

    Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata

    2017-06-07

    Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.

  13. Aquaculture: Incorporating risk assessment and risk management into public policies on genetically modified finfish and shellfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallerman, E.M.; Kapuscinski, A.R.

    Genetically modified finfish and shellfish pose economic benefits to aquaculture, but also pose ecological and genetic risks to ecosystems receiving such organisms. Realization of benefits with minimization of risks posed by a new technology can be addressed through the processes of risk assessment and risk management. Public policies adopted by individual countries will reflect differences in the outocme of risk assessment and risk management processes resulting from differences among the receiving ecosystems and sets of human values at issue. A number of countries and international institutions have begun development of policies for oversight of genetically modified aquatic organisms. In themore » United States, a working group commissioned by the U.S. Department of Agriculture incorporated risk assessment and risk management principles into draft performance standards for safely conducting research with genetically modified finfish and shellfish. The performance standards address research with a broad range of aquatic GMO`s and compliance is intended to be voluntary. In contrast, the Canadian policy mandates adherence to specified guidelines for experiments with transgenic aquatic organisms; establishment as national policy is expended soon.« less

  14. [Genetically modified food--great unknown].

    PubMed

    Cichosz, G; Wiackowski, S K

    2012-08-01

    Genetically modified food (GMF) creates evident threat to consumers' health. In spite of assurances of biotechnologists, DNA of transgenic plants is instable, so, synthesis of foreign, allergenic proteins is possible. Due to high trypsin inhibitor content the GMF is digested much more slowly what, alike Bt toxin presence, increases probability of alimentary canal diseases. Next threats are bound to the presence of fitoestrogens and residues of Roundup pesticide, that can diminish reproductiveness; and even lead to cancerogenic transformation through disturbance of human hormonal metabolism. In spite of food producers and distributors assurances that food made of GMF raw materials is marked, de facto consumers have no choice. Moreover, along the food law products containing less than 0.9% of GMF protein are not included into genetically modified food.

  15. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  16. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect.

    PubMed

    Wegmann, Udo; Carvalho, Ana Lucia; Stocks, Martin; Carding, Simon R

    2017-05-23

    The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.

  17. Genetically engineered T cells to target EGFRvIII expressing glioblastoma.

    PubMed

    Bullain, Szofia S; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C; Carter, Bob S

    2009-09-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

  18. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations.

    PubMed

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called "the mental ecology" (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capable and entitled to decide what constitutes an evolutionary improvement for a species, 4) perception that the main source of creativity and problem solving in the biosphere is anthropogenic. Though there are some tensions between them, these effects tend to produce self-validating webs of ideas, actions, and environments, which may reinforce destructive habits of thought. Humans are unlikely to safely develop genetic technologies without confronting these escalating processes directly. Intervening in this mental ecology presents distinct challenges for educators, as will be discussed.

  19. The Human Microbiome: Our Second Genome*

    PubMed Central

    Grice, Elizabeth A.; Segre, Julia A.

    2012-01-01

    The human genome has been referred to as the blueprint of human biology. In this review we consider an essential but largely ignored overlay to that blueprint, the human microbiome, which is composed of those microbes that live in and on our bodies. The human microbiome is a source of genetic diversity, a modifier of disease, an essential component of immunity, and a functional entity that influences metabolism and modulates drug interactions. Characterization and analysis of the human microbiome have been greatly catalyzed by advances in genomic technologies. We discuss how these technologies have shaped this emerging field of study and advanced our understanding of the human microbiome. We also identify future challenges, many of which are common to human genetic studies, and predict that in the future, analyzing genetic variation and risk of human disease will sometimes necessitate the integration of human and microbial genomic data sets. PMID:22703178

  20. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation

    PubMed Central

    Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr

    2011-01-01

    Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949

  1. The evolution of modern agriculture and its future with biotechnology.

    PubMed

    Harlander, Susan K

    2002-06-01

    Since the dawn of agriculture, humans have been manipulating crops to enhance their quality and yield. Via conventional breeding, seed producers have developed the modern corn hybrids and wheat commonly grown today. Newer techniques, such as radiation breeding, enhanced the seed producers' ability to develop new traits in crops. Then in the 1980's-1990's, scientists began applying genetic engineering techniques to improve crop quality and yield. In contrast to earlier breeding methods, these techniques raised questions about their safety to consumers and the environment. This paper provides an overview of the kinds of genetically modified crops developed and marketed to date and the value they provide farmers and consumers. The safety assessment process required for these crops is contrasted with the lack of a formal process required for traditionally bred crops. While European consumers have expressed concern about foods and animal feeds containing ingredients from genetically modified crops, Americans have largely been unconcerned or unaware of the presence of genetically modified foods on the market. This difference in attitude is reflected in Europe's decision to label foods containing genetically modified ingredients while no such labeling is required in the U.S. In the future, genetic modification will produce a variety of new products with enhanced nutritional or quality attributes.

  2. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    PubMed

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  3. Innovations in human genetics education. Incorporation of genetics into a problem-based medical school curriculum.

    PubMed Central

    Swinford, A E; McKeag, D B

    1990-01-01

    There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816

  4. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone.

    PubMed

    Carpenter, Ryan S; Goodrich, Laurie R; Frisbie, David D; Kisiday, John D; Carbone, Beth; McIlwraith, C Wayne; Centeno, Christopher J; Hidaka, Chisa

    2010-10-01

    Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. Published by Wiley Periodicals, Inc. J Orthop Res 28:1330-1337, 2010.

  5. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants

    USDA-ARS?s Scientific Manuscript database

    Short sleep duration has been associated with greater risks of obesity, hypertension, diabetes, and cardiovascular disease. Also, common genetic variants in the human Circadian Locomotor Output Cycles Kaput (CLOCK) show associations with ghrelin and total energy intake. We examined associations betw...

  6. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    PubMed

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  7. Gone with the Wind: Conceiving of Moral Responsibility in the Case of GMO Contamination.

    PubMed

    Robaey, Zoë

    2016-06-01

    Genetically modified organisms are a technology now used with increasing frequency in agriculture. Genetically modified seeds have the special characteristic of being living artefacts that can reproduce and spread; thus it is difficult to control where they end up. In addition, genetically modified seeds may also bring about uncertainties for environmental and human health. Where they will go and what effect they will have is therefore very hard to predict: this creates a puzzle for regulators. In this paper, I use the problem of contamination to complicate my ascription of forward-looking moral responsibility to owners of genetically modified organisms. Indeed, how can owners act responsibly if they cannot know that contamination has occurred? Also, because contamination creates new and unintended ownership, it challenges the ascription of forward-looking moral responsibility based on ownership. From a broader perspective, the question this paper aims to answer is as follows: how can we ascribe forward-looking moral responsibility when the effects of the technologies in question are difficult to know or unknown? To solve this problem, I look at the epistemic conditions for moral responsibility and connect them to the normative notion of the social experiment. Indeed, examining conditions for morally responsible experimentation helps to define a range of actions and to establish the related epistemic virtues that owners should develop in order to act responsibly where genetically modified organisms are concerned.

  8. Genetic correction using engineered nucleases for gene therapy applications.

    PubMed

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  9. [The lack of information on genetically modified organisms in Brazil].

    PubMed

    Ribeiro, Isabelle Geoffroy; Marin, Victor Augustus

    2012-02-01

    This article presents a review about the labeling of products that have Genetically Modified Organisms (GMO), also called transgenic elements in their composition. It addresses the conventions, laws and regulations relating to such products currently governing the market, the adequacy of these existing standards and their acceptance by society. It also examines the importance of the cautionary principle when assessing the application of new technologies or technologies where little is known or where there is no relevant scientific knowledge about the potential risks to the environment, human health and society.

  10. Of mice and men: molecular genetics of congenital heart disease.

    PubMed

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-04-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.

  11. Genetic modifiers of Huntington's disease.

    PubMed

    Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min

    2014-09-15

    Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs. © 2014 International Parkinson and Movement Disorder Society.

  12. A comparison of protein and phenolic compounds in seed from GMO and non-GMO soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean protein is a valuable and important component in human and animal diets. Approximately 94% of the soybean planted in the US is genetically modified (GM) to enhance quality and productivity. Since value-added traits are continuously being developed by genetic modification, it is important t...

  13. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  14. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.

    PubMed

    Yumlu, Saniye; Stumm, Jürgen; Bashir, Sanum; Dreyer, Anne-Kathrin; Lisowski, Pawel; Danner, Eric; Kühn, Ralf

    2017-05-15

    Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The ethics of creating genetically modified children using genome editing.

    PubMed

    Ishii, Tetsuya

    2017-12-01

    To review the recent ethical, legal, and social issues surrounding human reproduction involving germline genome editing. Genome editing techniques, such as CRISPR/Cas9, have facilitated genetic modification in human embryos. The most likely purpose of germline genome editing is the prevention of serious genetic disease in offspring. However, complex issues still remain, including irremediable risks to fetuses and future generations, the role of women, the availability of alternatives, long-term follow-up, health insurance coverage, misuse for human enhancement, and the potential effects on adoption. Further discussions, a broad consensus, and appropriate regulations are required before human germline genome editing is introduced into the global society. Before germline genome editing is used for disease prevention, a broad consensus must be formed by carefully discussing its ethical, legal, and social issues.

  16. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.

    PubMed

    Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun

    2017-08-01

    As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO-1 that will be suitable for xenotransplantation by overcoming hyperacute, acute and anti-inflammatory rejection.

  17. Genetic modifications of pigs for medicine and agriculture

    PubMed Central

    Whyte, Jeffrey J.; Prather, Randall S.

    2011-01-01

    SUMMARY Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture. PMID:21671302

  18. Intervening in disease through genetically-modified bacteria.

    PubMed

    Ferreira, Adilson K; Mambelli, Lisley I; Pillai, Saravanan Y

    2017-12-01

    The comprehension of the molecular basis of different diseases is rapidly being dissected as a consequence of advancing technology. Consequently, proteins with potential therapeutic usefulness, including cytokines and signaling molecules have been identified in the last decades. However, their clinical use is hampered by disadvantageous functional and economic considerations. One of the most important of these considerations is targeted topical delivery and also the synthesis of such proteins, which for intravenous use requires rigorous purification whereas proteins often do not withstand digestive degradation and thus cannot be applied per os. Recently, the idea of using genetically modified bacteria has emerged as an attempt to evade these important barriers. Using such bacteria can deliver therapeutic proteins or other molecules at place of disease, especially when disease is at a mucosal surface. Further, whereas intravenously applied therapeutic proteins require expensive methodology in order to become endotoxin-free, this is not necessary for local application of therapeutic proteins in the intestine. In addition, once created further propagation of genetically modified bacteria is both cheap and requires relatively little in conditioning with respect to transport of the medication, making such organisms also suitable for combating disease in developing countries with poor infrastructure. Although first human trials with such bacteria were already performed more as a decade ago, the recent revolution in our understanding of the role of human gut microbiome in health and diseases has unleashed a revolution in this field resulting in a plethora of potential novel prophylactic and therapeutic intervention against disease onset and development employing such organisms. Today, the engineering of human microbiome for health benefits and related applications now chances many aspects of biology, nanotechnology and chemistry. Here, we review genetically modified bacteria methodology as possible carriers of drug delivering and provided the origin and inspirations for new drug delivery systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    PubMed Central

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  20. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  1. Genetically modified foods: safety, risks and public concerns-a review.

    PubMed

    Bawa, A S; Anilakumar, K R

    2013-12-01

    Genetic modification is a special set of gene technology that alters the genetic machinery of such living organisms as animals, plants or microorganisms. Combining genes from different organisms is known as recombinant DNA technology and the resulting organism is said to be 'Genetically modified (GM)', 'Genetically engineered' or 'Transgenic'. The principal transgenic crops grown commercially in field are herbicide and insecticide resistant soybeans, corn, cotton and canola. Other crops grown commercially and/or field-tested are sweet potato resistant to a virus that could destroy most of the African harvest, rice with increased iron and vitamins that may alleviate chronic malnutrition in Asian countries and a variety of plants that are able to survive weather extremes. There are bananas that produce human vaccines against infectious diseases such as hepatitis B, fish that mature more quickly, fruit and nut trees that yield years earlier and plants that produce new plastics with unique properties. Technologies for genetically modifying foods offer dramatic promise for meeting some areas of greatest challenge for the 21st century. Like all new technologies, they also pose some risks, both known and unknown. Controversies and public concern surrounding GM foods and crops commonly focus on human and environmental safety, labelling and consumer choice, intellectual property rights, ethics, food security, poverty reduction and environmental conservation. With this new technology on gene manipulation what are the risks of "tampering with Mother Nature"?, what effects will this have on the environment?, what are the health concerns that consumers should be aware of? and is recombinant technology really beneficial? This review will also address some major concerns about the safety, environmental and ecological risks and health hazards involved with GM foods and recombinant technology.

  2. The regulation of agricultural biotechnology: science shows a better way.

    PubMed

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Durable engraftment of genetically modified FVIII-secreting autologous bone marrow stromal cells in the intramedullary microenvironment.

    PubMed

    Lee, Sze Sing; Sivalingam, Jaichandran; Nirmal, Ajit J; Ng, Wai Har; Kee, Irene; Song, In Chin; Kiong, Chin Yong; Gales, Kristoffer A; Chua, Frederic; Pena, Edgar M; Ogden, Bryan E; Kon, Oi Lian

    2018-04-23

    Genetically modified FVIII-expressing autologous bone marrow-derived mesenchymal stromal cells (BMSCs) could cure haemophilia A. However, culture-expanded BMSCs engraft poorly in extramedullary sites. Here, we compared the intramedullary cavity, skeletal muscle, subcutaneous tissue and systemic circulation as tissue microenvironments that could support durable engraftment of FVIII-secreting BMSC in vivo. A zinc finger nuclease integrated human FVIII transgene into PPP1R12C (intron 1) of culture-expanded primary canine BMSCs. FVIII-secretory capacity of implanted BMSCs in each dog was expressed as an individualized therapy index (number of viable BMSCs implanted × FVIII activity secreted/million BMSCs/24 hours). Plasma samples before and after implantation were assayed for transgenic FVIII protein using an anti-human FVIII antibody having negligible cross-reactivity with canine FVIII. Plasma transgenic FVIII persisted for at least 48 weeks after implantation in the intramedullary cavity. Transgenic FVIII protein levels were low after intramuscular implantation and undetectable after both intravenous infusion and subcutaneous implantation. All plasma samples were negative for anti-human FVIII antibodies. Plasma concentrations and durability of transgenic FVIII secretion showed no correlation with the therapy index. Thus, the implantation site microenvironment is crucial. The intramedullary microenvironment, but not extramedullary tissues, supported durable engraftment of genetically modified autologous FVIII-secreting BMSCs. © 2018 National Cancer Centre of Singapore Pte Ltd. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study

    USDA-ARS?s Scientific Manuscript database

    Although apolipoprotein E (APOE) variants are associated with age related diseases, the underlying mechanism is unknown and DNA methylation may be a potential one. With methylation data, measured by the Infinium Human Methylation 450 array, from 993 participants (age ranging from 18 to 87 y) in the ...

  5. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes.

    PubMed

    Scott, Rosamund; Wilkinson, Stephen

    2017-12-01

    In a legal 'first', the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from 'germline genetic modification', which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as 'germline genetic modification', is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy.

  6. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    ERIC Educational Resources Information Center

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  7. Evidence of directional and stabilizing selection in contemporary humans.

    PubMed

    Sanjak, Jaleal S; Sidorenko, Julia; Robinson, Matthew R; Thornton, Kevin R; Visscher, Peter M

    2018-01-02

    Modern molecular genetic datasets, primarily collected to study the biology of human health and disease, can be used to directly measure the action of natural selection and reveal important features of contemporary human evolution. Here we leverage the UK Biobank data to test for the presence of linear and nonlinear natural selection in a contemporary population of the United Kingdom. We obtain phenotypic and genetic evidence consistent with the action of linear/directional selection. Phenotypic evidence suggests that stabilizing selection, which acts to reduce variance in the population without necessarily modifying the population mean, is widespread and relatively weak in comparison with estimates from other species.

  8. Endogenous allergens and compositional analysis in the allergenicity assessment of genetically modified plants.

    PubMed

    Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M

    2013-12-01

    Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. "It just goes against the grain." Public understandings of genetically modified (GM) food in the UK.

    PubMed

    Shaw, Alison

    2002-07-01

    This paper reports on one aspect of qualitative research on public understandings of food risks, focusing on lay understandings of genetically modified (GM) food in the UK context. A range of theoretical, conceptual, and empirical literature on food, risk, and the public understanding of science are reviewed. The fieldwork methods are outlined and empirical data from a range of lay groups are presented. Major themes include: varying "technical" knowledge of science, the relationship between knowledge and acceptance of genetic modification, the uncertainty of scientific knowledge, genetic modification as inappropriate scientific intervention in "nature", the acceptability of animal and human applications of genetic modification, the appropriate boundaries of scientific innovation, the necessity for GM foods, the uncertainty of risks in GM food, fatalism about avoiding risks, and trust in "experts" to manage potential risks in GM food. Key discussion points relating to a sociological understanding of public attitudes to GM food are raised and some policy implications are highlighted.

  10. Molecular Basis and Genetic Modifiers of Thalassemia.

    PubMed

    Mettananda, Sachith; Higgs, Douglas R

    2018-04-01

    Thalassemia is a disorder of hemoglobin characterized by reduced or absent production of one of the globin chains in human red blood cells with relative excess of the other. Impaired synthesis of β-globin results in β-thalassemia, whereas defective synthesis of α-globin leads to α-thalassemia. Despite being a monogenic disorder, thalassemia exhibits remarkable clinical heterogeneity that is directly related to the intracellular imbalance between α- and β-like globin chains. Novel insights into the genetic modifiers have contributed to the understanding of the correlation between genotype and phenotype and are being explored as therapeutic pathways to cure this life-limiting disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Multimodal Representation Contributes to the Complex Development of Science Literacy in a College Biology Class

    ERIC Educational Resources Information Center

    Bennett, William Drew

    2011-01-01

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century…

  12. Humanized mouse models: Application to human diseases.

    PubMed

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  13. Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique

    PubMed Central

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H.; Hu, Shijun; Han, Leng; Lee, Andrew S.; Karow, Marisa; Nguyen, Patricia K.; Nag, Divya; Calos, Michele P.; Robbins, Robert C.; Wu, Joseph C.

    2012-01-01

    Background Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. Methods and Results We employed the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells (hECs). Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared to unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging (BLI), and positron emission tomography (PET). Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function two weeks after cell delivery, as assessed by echocardiography (P = 0.002) and magnetic resonance imaging (P = 0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated hECs, which enhanced hindlimb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. Conclusions The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types. PMID:22965984

  14. Examining the Gap between Science and Public Opinion about Genetically Modified Food and Global Warming.

    PubMed

    McFadden, Brandon R

    2016-01-01

    There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community.

  15. Examining the Gap between Science and Public Opinion about Genetically Modified Food and Global Warming

    PubMed Central

    McFadden, Brandon R.

    2016-01-01

    There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community. PMID:27829008

  16. Is there an agrarian imperative?

    PubMed

    Cole, Henry P

    2010-04-01

    This paper examines the assertion that a genetically programmed instinct referred to as the agrarian imperative underlies a territorial drive that compels farmers and their biological heirs to hang on to their land at all costs while working hard, taking risks, enduring pain, and hardship. Research from multiple fields refutes the assumption. Basic physiologic instincts are not primary drivers of animal or human behavior. Their expression is greatly modified by the physical and social environments in which animals mature and learn. The human cerebral cortex with forethought and reflection greatly modifies basic instinctual drives. As a result, human behavior is to a large degree self-reflective and self-determined within the limits of the opportunities and resources available to individuals. The primary factors involved in continued successful farm operations across generations are not genetic, but rather farmers' access to economic, cultural, and social capital resources. These forms of capital and their distribution explain the evolution of human societies from preagricultural hunter-gather tribes to agrarian family kinship groups to complex nation states. Current highly mechanized, large-scale agricultural production focused on a few genetic strains of plants and animals provides abundant food at low cost, but is vulnerable to man-made and natural pandemics of human, animal, and plant pathogens as well as to disasters that can destroy the infrastructure required to support the system. A critical agrarian imperative is to ensure in perpetuity a pool of small farm operators capable of using simple farming technology for raising multiple cultivars and species of plants and animals.

  17. Xylan-regulated Delivery of Human Keratinocyte Growth Factor-2 to the Inflamed Colon by the Human Anaerobic Commensal Bacterium Bacteroides ovatus

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  18. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    PubMed

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  20. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    PubMed

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

  1. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes

    PubMed Central

    Scott, Rosamund; Wilkinson, Stephen

    2017-01-01

    Abstract In a legal ‘first’, the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from ‘germline genetic modification’, which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as ‘germline genetic modification’, is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy. PMID:29670305

  2. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  3. Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    PubMed Central

    Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.

    2010-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729

  4. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.

    PubMed

    Brunkwall, Louise; Orho-Melander, Marju

    2017-06-01

    The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics and microbial genetics, and the need for integration of human multi-omic data (such as genetics, transcriptomics, epigenetics, proteomics and metabolomics) with microbiome data (such as strain-level variation, transcriptomics, proteomics and metabolomics) to make personalised treatments a successful future reality are discussed.

  5. Modifications to the HIPAA Privacy, Security, Enforcement, and Breach Notification rules under the Health Information Technology for Economic and Clinical Health Act and the Genetic Information Nondiscrimination Act; other modifications to the HIPAA rules.

    PubMed

    2013-01-25

    The Department of Health and Human Services (HHS or ``the Department'') is issuing this final rule to: Modify the Health Insurance Portability and Accountability Act (HIPAA) Privacy, Security, and Enforcement Rules to implement statutory amendments under the Health Information Technology for Economic and Clinical Health Act (``the HITECH Act'' or ``the Act'') to strengthen the privacy and security protection for individuals' health information; modify the rule for Breach Notification for Unsecured Protected Health Information (Breach Notification Rule) under the HITECH Act to address public comment received on the interim final rule; modify the HIPAA Privacy Rule to strengthen the privacy protections for genetic information by implementing section 105 of Title I of the Genetic Information Nondiscrimination Act of 2008 (GINA); and make certain other modifications to the HIPAA Privacy, Security, Breach Notification, and Enforcement Rules (the HIPAA Rules) to improve their workability and effectiveness and to increase flexibility for and decrease burden on the regulated entities.

  6. Perspectives on Human Variation through the Lens of Diversity and Race

    PubMed Central

    Chakravarti, Aravinda

    2015-01-01

    Human populations, however defined, differ in the distribution and frequency of traits they display and diseases to which individuals are susceptible. These need to be understood with respect to three recent advances. First, these differences are multicausal and a result of not only genetic but also epigenetic and environmental factors. Second, the actions of genes, although crucial, turn out to be quite dynamic and modifiable, which contrasts with the classical view that they are inflexible machines. Third, the diverse human populations across the globe have spent too little time apart from our common origin 50,000 years ago to have developed many individually adapted traits. Human trait and disease differences by continental ancestry are thus as much the result of nongenetic as genetic forces. PMID:26330522

  7. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Hein, David W

    2017-07-01

    Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.

  8. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification

    PubMed Central

    Weisberg, Steven M.; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification. PMID:28589120

  9. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.

    PubMed

    Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  10. CONNECTIVITY OF ENVIRONMENT, HUMAN HEALTH AND SOCIOECONOMICS: IMPLICATIONS FOR SCIENCE AND POLICY

    EPA Science Inventory

    Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization of commerce, evolving patterns of land use, and technological advances in such areas as manufacturing and genetically modified food...

  11. THE EVOLUTION OF RESISTANCE TO PLANT INCORPORATED PROTECTANTS BY TARGETED INSECT PESTS

    EPA Science Inventory

    Genetically modified (GM) crops, also known as transgenic crops, offer potential economic, environmental, and human health benefits. Balanced against these potential benefits are several possible liabilities, one of which is environmental harm. The EPA must fulfill its mandate to...

  12. Complex Genetics and the Etiology of Human Congenital Heart Disease

    PubMed Central

    Gelb, Bruce D.; Chung, Wendy K.

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128

  13. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support.

    PubMed

    Marques, Mathew D; Critchley, Christine R; Walshe, Jarrod

    2015-07-01

    This research examined public opinion toward genetically modified plants and animals for food, and how trust in organizations and media coverage explained attitudes toward these organisms. Nationally representative samples (N=8821) over 10 years showed Australians were less positive toward genetically modified animals compared to genetically modified plants for food, especially in years where media coverage was high. Structural equation modeling found that positive attitudes toward different genetically modified organisms for food were significantly associated with higher trust in scientists and regulators (e.g. governments), and with lower trust in watchdogs (e.g. environmental movement). Public trust in scientists and watchdogs was a stronger predictor of attitudes toward the use of genetically modified plants for food than animals, but only when media coverage was low. Results are discussed regarding the moral acceptability of genetically modified organisms for food, the media's role in shaping public opinion, and the role public trust in organizations has on attitudes toward genetically modified organisms. © The Author(s) 2014.

  14. Farmers prevailing perception profiles regarding GM crops: A classification proposal.

    PubMed

    Almeida, Carla; Massarani, Luisa

    2018-04-01

    Genetically modified organisms have been at the centre of a major public controversy, involving different interests and actors. While much attention has been devoted to consumer views on genetically modified food, there have been few attempts to understand the perceptions of genetically modified technology among farmers. By investigating perceptions of genetically modified organisms among Brazilian farmers, we intend to contribute towards filling this gap and thereby add the views of this stakeholder group to the genetically modified debate. A comparative analysis of our data and data from other studies indicate there is a complex variety of views on genetically modified organisms among farmers. Despite this diversity, we found variations in such views occur within limited parameters, concerned principally with expectations or concrete experiences regarding the advantages of genetically modified crops, perceptions of risks associated with them, and ethical questions they raise. We then propose a classification of prevailing profiles to represent the spectrum of perceptions of genetically modified organisms among farmers.

  15. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    PubMed

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  16. Identification of prostate cancer modifier pathways using parental strain expression mapping

    PubMed Central

    Xu, Qing; Majumder, Pradip K.; Ross, Kenneth; Shim, Yeonju; Golub, Todd R.; Loda, Massimo; Sellers, William R.

    2007-01-01

    Inherited genetic risk factors play an important role in cancer. However, other than the Mendelian fashion cancer susceptibility genes found in familial cancer syndromes, little is known about risk modifiers that control individual susceptibility. Here we developed a strategy, parental strain expression mapping, that utilizes the homogeneity of inbred mice and genome-wide mRNA expression analyses to directly identify candidate germ-line modifier genes and pathways underlying phenotypic differences among murine strains exposed to transgenic activation of AKT1. We identified multiple candidate modifier pathways and, specifically, the glycolysis pathway as a candidate negative modulator of AKT1-induced proliferation. In keeping with the findings in the murine models, in multiple human prostate expression data set, we found that enrichment of glycolysis pathways in normal tissues was associated with decreased rates of cancer recurrence after prostatectomy. Together, these data suggest that parental strain expression mapping can directly identify germ-line modifier pathways of relevance to human disease. PMID:17978178

  17. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase

    PubMed Central

    Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.

    1999-01-01

    This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861

  18. Transient detection of beta-galactosidase activity in hematopoietic cells, following reinjection of retrovirally marked autologous blood progenitors in patients with breast or ovarian cancer receiving high-dose chemotherapy.

    PubMed

    Bagnis, Claude; Chabannon, Christian; Gravis, Gwenaelle; Imbert, Anne-Marie; Maroc, Christine; Bardin, Florence; Ladaique, Patrick; Viret, Frédéric; Genre, Dominique; Faucher, Catherine; Stoppa, Anne-Marie; Vey, Norbert; Blaise, Didier; Maraninchi, Dominique; Viens, Patrice; Mannoni, Patrice

    2002-02-01

    The aim of this report is to demonstrate the feasibility and safety of genetically modifying autologous human blood CD34(+) cells in vitro, with a retroviral vector that encodes a marker gene. The fate of genetically modified cells and their progeny was followed in vivo, after reinfusion in patients treated with high-dose chemotherapy for poor-prognosis breast or ovarian carcinomas. Six patients received genetically modified autologous peripheral blood progenitors, together with unmanipulated aphereses, following high-dose chemotherapy. CD34(+) cells were immunoselected from aphereses, and retrovirally transduced by coculture with the retroviral vector producing cell line, to express a nuclear localized version of E. coli beta-galactosidase, encoded by a defective Moloney-murine leukemia virus-derived retroviral vector. Cells were reinfused to the patients after myeloablation, without prior ex vivo selection. Five out of six patients showed the transient presence of low numbers of beta-galactosidase(+) cells, as detected with an immunocytochemical assay, in the peripheral blood, during the first month following infusion. One patient had beta-galactosidase(+) clonogenic progenitors in her marrow at two months after transplantation, including HPP-CFC; intriguingly, this patient had the lowest percentage of X-gal(+) cells in her graft. Patients experienced side effects that are often observed after high-dose chemotherapy. Feasibility and safety of genetic modification of human hematopoietic stem and progenitor cells are demonstrated by this study. Ex vivo or in vivo selection is not mandatory, even in clinical situations where transduced cells have no survival advantage over wild-type cells; however, significant improvements in gene transfer technology are needed to achieve potentially useful levels of expression in such clinical situations.

  19. GENETICALLY MODIFIED FOODS: TECHNOLOGICAL BREAKTHROUGH OR ECOLOGICAL NIGHMARE?

    EPA Science Inventory

    Fifty years ago, Wastson and Crick described the structure of DNA, setting the stage for the past decade's biotechnology revolution. Scientists have now broken the code of the entire human genome, and delineated the function of multiple genes; similar strides are being taken with...

  20. Rapid evolution of the human mutation spectrum

    PubMed Central

    Harris, Kelley; Pritchard, Jonathan K

    2017-01-01

    DNA is a remarkably precise medium for copying and storing biological information. This high fidelity results from the action of hundreds of genes involved in replication, proofreading, and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability to remove genetic variants that change mutation rates by small amounts or in specific sequence contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here that mutational spectra differ substantially among species, human continental groups and even some closely related populations. Close examination of one signal, an increased TCC→TTC mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2000 years ago, perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation rate. Our results suggest that mutation rates can evolve markedly over short evolutionary timescales and suggest the possibility of mapping mutational modifiers. DOI: http://dx.doi.org/10.7554/eLife.24284.001 PMID:28440220

  1. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    PubMed

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  2. Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection.

    PubMed

    Su, Feng; Wang, Yongsheng; Liu, Guanghui; Ru, Kun; Liu, Xin; Yu, Yuan; Liu, Jun; Wu, Yongyan; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-03-01

    Bovine tuberculosis results from infection with Mycobacterium bovis, a member of the Mycobacterium tuberculosis family. Worldwide, M. bovis infections result in economic losses in the livestock industry; cattle production is especially hard-hit by this disease. Generating M. bovis-resistant cattle may potentially mitigate the impact of this disease by reducing M. bovis infections. In this study, we used transgenic somatic cell nuclear transfer to generate cattle expressing the gene encoding human β-defensin 3 (HBD3), which confers resistance to mycobacteria in vitro. We first generated alveolar epithelial cells expressing HBD3 under the control of the bovine MUC1 promoter, and confirmed that these cells secreted HBD3 and possessed anti-mycobacterial capacity. We then generated and identified transgenic cattle by somatic cell nuclear transfer. The cleavage and blastocyst formation rates of genetically modified embryos provided evidence that monoclonal transgenic bovine fetal fibroblast cells have an integral reprogramming ability that is similar to that of normal cells. Five genetically modified cows were generated, and their anti-mycobacterial capacities were evaluated. Alveolar epithelial cells and macrophages from these cattle expressed higher levels of HBD3 protein compared with non-transgenic cells and possessed effective anti-mycobacterial capacity. These results suggest that the overall risk of M. bovis infection in transgenic cattle is efficiently reduced, and support the development of genetically modified animals as an effective tool to reduce M. bovis infection. © 2016 Federation of European Biochemical Societies.

  3. Contribution of European research to risk analysis.

    PubMed

    Boenke, A

    2001-12-01

    The European Commission's, Quality of Life Research Programme, Key Action 1-Health, Food & Nutrition is mission-oriented and aims, amongst other things, at providing a healthy, safe and high-quality food supply leading to reinforced consumer confidence in the safety, of European food. Its objectives also include the enhancing of the competitiveness of the European food supply. Key Action 1 is currently supporting a number of different types of European collaborative projects in the area of risk analysis. The objectives of these projects range from the development and validation of prevention strategies including the reduction of consumers risks; development and validation of new modelling approaches, harmonization of risk assessment principles methodologies and terminology; standardization of methods and systems used for the safety evaluation of transgenic food; providing of tools for the evaluation of human viral contamination of shellfish and quality control; new methodologies for assessing the potential of unintended effects of genetically modified (genetically modified) foods; development of a risk assessment model for Cryptosporidium parvum related to the food and water industries, to the development of a communication platform for genetically modified organism, producers, retailers, regulatory authorities and consumer groups to improve safety assessment procedures, risk management strategies and risk communication; development and validation of new methods for safety testing of transgenic food; evaluation of the safety and efficacy of iron supplementation in pregnant women, evaluation of the potential cancer-preventing activity of pro- and pre-biotic ('synbiotic') combinations in human volunteers. An overview of these projects is presented here.

  4. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice

    PubMed Central

    Nagase, Hiroki; Mao, Jian-Hua; Balmain, Allan

    1999-01-01

    Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans. PMID:10611333

  5. The epigenetic lorax: gene–environment interactions in human health

    PubMed Central

    Latham, Keith E; Sapienza, Carmen; Engel, Nora

    2012-01-01

    Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This ‘human genomics’ information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene–environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures. PMID:22920179

  6. Perspectives on Human Variation through the Lens of Diversity and Race.

    PubMed

    Chakravarti, Aravinda

    2015-09-01

    Human populations, however defined, differ in the distribution and frequency of traits they display and diseases to which individuals are susceptible. These need to be understood with respect to three recent advances. First, these differences are multicausal and a result of not only genetic but also epigenetic and environmental factors. Second, the actions of genes, although crucial, turn out to be quite dynamic and modifiable, which contrasts with the classical view that they are inflexible machines. Third, the diverse human populations across the globe have spent too little time apart from our common origin 50,000 years ago to have developed many individually adapted traits. Human trait and disease differences by continental ancestry are thus as much the result of nongenetic as genetic forces. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Acceptance of genetically modified foods: the relation between technology and evaluation.

    PubMed

    Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien

    2008-07-01

    This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.

  8. CDC42 inhibition suppresses progression of incipient intestinal tumors

    USDA-ARS?s Scientific Manuscript database

    Mutations in the APC or Beta-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer x...

  9. Investigating DNA Damage

    ERIC Educational Resources Information Center

    Bush, Stephen P.; Hart, Peter E.; Russell, Eric M.

    2006-01-01

    Advances in the field of molecular biology, powered by a technological revolution, have increased dramatically over the past decades. Notable developments such as the cloning of adult sheep, the sequencing of the human genome, and the production of genetically modified organisms capture the attention of biologists, their students, and the general…

  10. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency.

    PubMed

    Wang, W; Ma, Y; Li, J; Shi, H-S; Wang, L-Q; Guo, F-C; Zhang, J; Li, D; Mo, B-H; Wen, F; Liu, T; Liu, Y-T; Wang, Y-S; Wei, Y-Q

    2013-10-01

    Immunotherapy that is based on adoptive transfer of T lymphocytes, which are genetically modified to express chimeric antigen receptors (CARs) that recognize tumor-associated antigens, has been demonstrated to be an efficient cancer therapy. Vascular endothelial growth factor receptor-1 (VEGFR-1), a vital molecule involved in tumor growth and angiogenesis, has not been targeted by CAR-modified T lymphocytes. In this study, we generated CAR-modified T lymphocytes with human VEGFR-1 specificity (V-1 CAR) by electroporation. V-1 CAR-modified T lymphocytes were demonstrated to elicit lytic cytotoxicity to target cells in a VEGFR-1-dependent manner. The adoptive transfer of V-1 CAR T lymphocytes delayed tumor growth and formation and inhibited pulmonary metastasis in xenograft models and such efficacies were enhanced by cotransfer of T lymphocytes that expressed interleukin-15 (IL-15). Moreover, V-1 CAR-modified T lymphocytes lysed primary endothelial cells and impaired tube formation, in vitro. These data demonstrated the antitumor and anti-angiogenesis ability of V-1 CAR-modified T lymphocytes. Our study provides the rationale for the clinical translation of CAR-modified T lymphocytes with VEGFR-1 specificity.

  11. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  12. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. ©AlphaMed Press.

  13. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  14. [Epigenetics 2.0: The multiple faces of the genome].

    PubMed

    Rubinstein, Marcelo

    2016-09-01

    Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.

  15. Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice.

    PubMed

    Low, Benjamin E; Taft, Rob A; Wiles, Michael V

    2016-01-01

    Highly definable genetically, the humble mouse is the "reagent" mammal of choice with which to probe and begin to understand the human condition in all its complexities. With the recent advance in direct genome editing via targeted nucleases, e.g., TALEN and CRISPR/Cas9, the possibilities in using these sophisticated tools have increased substantially leading to a massive increase in the variety of strain numbers of genetically modified lines. With this increase comes a greater need to economically and creatively manage their numbers. Further, once characterized, lines may be of limited use but still need to be archived in a format allowing their rapid resurrection. Further, maintaining colonies on "the shelf" is financially draining and carries potential risks including natural disaster loss, disease, and strain contamination. Here we outline a simple and economic protocol to cryopreserve mouse sperm from many different genetic backgrounds, and outline its recovery via in vitro fertilization (IVF). The combined use of sperm cryopreservation and IVF now allows a freedom and versatility in mouse management facilitating rapid line close down with the option to later recover and rapidly expand as needed.

  16. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain.

    PubMed

    Sun, Yi; Tian, Yuke; Li, Haifeng; Zhang, Dengwen; Sun, Qiang

    2017-01-01

    Background . This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods . Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 10 6 ) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results . No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1 β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion . The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans.

  17. Climate change and Epichloë coenophiala association modify belowground fungal symbioses of tall fescue host

    USDA-ARS?s Scientific Manuscript database

    Human alteration of symbiont genetics among aboveground endophytic Epichloë coenophiala strains within tall fescue (Schedonorus arundinaceus) has led to widespread deployment of novel grass-endophyte combinations, yet little is known about their ecological consequences. In this study, clone pairs (e...

  18. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses.

    PubMed

    Choi, Eunsil; Michalski, Chad J; Choo, Seung Ho; Kim, Gyoung Nyoun; Banasikowska, Elizabeth; Lee, Sangkyun; Wu, Kunyu; An, Hwa-Yong; Mills, Anthony; Schneider, Stefan; Bredeek, U Fritz; Coulston, Daniel R; Ding, Shilei; Finzi, Andrés; Tian, Meijuan; Klein, Katja; Arts, Eric J; Mann, Jamie F S; Gao, Yong; Kang, C Yong

    2016-11-28

    Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1 NL4-3 ) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1 NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents HIV infection.

  19. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  20. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development.

    PubMed

    Casey, B J; Glatt, C E; Tottenham, N; Soliman, F; Bath, K; Amso, D; Altemus, M; Pattwell, S; Jones, R; Levita, L; McEwen, B; Magariños, A M; Gunnar, M; Thomas, K M; Mezey, J; Clark, A G; Hempstead, B L; Lee, F S

    2009-11-24

    There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders. Yet, it is rare that these studies consider how these interactions change over the course of development. In this paper, we describe research that focuses on the impact of a polymorphism in a brain-derived neurotrophic factor (BDNF) gene, known to be involved in learning and development. Specifically we present findings that assess the effects of genotypic and environmental loadings on neuroanatomic and behavioral phenotypes across development. The findings illustrate the use of a genetic mouse model that mimics the human polymorphism, to constrain the interpretation of gene-environment interactions across development in humans.

  1. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    PubMed Central

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443

  2. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  3. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19

    PubMed Central

    Singh, Harjeet; Huls, Helen; Cooper, Laurence JN

    2014-01-01

    Summary The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing approaches to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CAR) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase system improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR+ T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential. PMID:24329797

  5. Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin).

    PubMed

    Sheng, Yao; Qi, Xiaozhe; Liu, Yifei; Guo, Mingzhang; Chen, Siyuan; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2014-10-01

    Genetically modified (GM) crops that express pharmaceutical proteins have become an important focus of recent genetic engineering research. Food safety assessment is necessary for the commercial development of these crops. Subchronic toxicity study in vivo and allergenicity study in vitro were designed to evaluate the food safety of the rice variety expressing human serum albumin (HSA). Animals were fed rodent diets containing 12.5%, 25.0% and 50.0% GM or non-GM rice for 90 days. The composition analysis of the GM rice demonstrated several significant differences. However, most of the differences remained within the ranges reported in the literature. In the animal study, a range of indexes including clinical observation, feed efficiency, hematology, serum chemistry, organ weights and histopathology were examined. Random changes unrelated to the GM rice exposure, within the range of historical control values and not associated with any signs of illness were observed. The results of heat stability and in vitro digestion of HSA indicated no evidence of potential allergenicity of the protein. Overall, the results of these studies suggest that the GM rice appears to be safe as a dietary ingredient when it is used at up to 50% in the diet on a subchronic basis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  7. [Manipulation of the human genome: ethics and law].

    PubMed

    Goulart, Maria Carolina Vaz; Iano, Flávia Godoy; Silva, Paulo Maurício; Sales-Peres, Silvia Helena de Carvalho; Sales-Peres, Arsênio

    2010-06-01

    The molecular biology has provided the basic tool for geneticists deepening in the molecular mechanisms that influence different diseases. It should be noted the scientific and moral responsibility of the researchers, because the scientists should imagine the moral consequences of the commercial application of genetic tests, since this fact involves not only the individual and their families, but the entire population. Besides being also necessary to make a reflection on how this information from the human genome will be used, for good or bad. The objective of this review was to bring the light of knowledge, data on characteristics of the ethical application of molecular biology, linking it with the rights of human beings. After studying literature, it might be observed that the Human Genome Project has generated several possibilities, such as the identification of genes associated with diseases with synergistic properties, but sometimes modifying behavior to genetically intervene in humans, bringing benefits or social harm. The big challenge is to decide what humanity wants on this giant leap.

  8. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs.

    PubMed

    Feng, Wanyou; Dai, Yifan; Mou, Lisha; Cooper, David K C; Shi, Deshun; Cai, Zhiming

    2015-03-23

    Clinical organ allotransplantation is limited by the availability of deceased human donors. However, the transplantation of human organs produced in other species would provide an unlimited number of organs. The pig has been identified as the most suitable source of organs for humans as organs of any size would be available. Genome editing by RNA-guided endonucleases, also known as clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), in combination with induced pluripotent stem cells (iPSC), may have the potential to enable the creation of human organs from genetically-modified chimaeric pigs. These could potentially provide an unlimited supply of organs that would not be rejected by the recipient's immune system. However, substantial research is needed to prove that this approach will work. Genetic modification of chimaeric pigs could also provide useful models for developing therapies for various human diseases, especially in relation to drug development.

  9. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*

    PubMed Central

    Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416

  10. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella.

    PubMed

    Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide

    2007-10-01

    Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

  11. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    PubMed

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  12. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells - TREAT-ME-1 - a phase I, first in human, first in class trial.

    PubMed

    von Einem, Jobst C; Peter, Sylvia; Günther, Christine; Volk, Hans-Dieter; Grütz, Gerald; Salat, Christoph; Stoetzer, Oliver; Nelson, Peter J; Michl, Marlies; Modest, Dominik P; Holch, Julian W; Angele, Martin; Bruns, Christiane; Niess, Hanno; Heinemann, Volker

    2017-10-06

    This phase I, first in human, first in class clinical study aimed at evaluating the safety, tolerability and efficacy of treatment with genetically modified mesenchymal stromal cells (MSC) in combination with ganciclovir (GCV). MSC_apceth_101 are genetically modified autologous MSCs used as vehicles for a cell-based gene therapy in patients with advanced gastrointestinal adenocarcinoma. The study design consisted of a dose-escalation 3 + 3 design. All patients ( n = 6) were treated with up to three applications of MSC_apceth_101, followed by GCV infusions given on three consecutive days starting 48 hours after injection of MSC_apceth_101. Three of six patients received a total dose of 1.5 × 10 6 cells/kg. Two patients received three doses of 1 × 10 6 cells/kg, while one patient received only two doses of 1 × 10 6 cells/kg due to a SADR. Six patients received MSC_apceth_101. No IMP-related serious adverse events occurred. Adverse-events related to IMP-injection were increased creatinine, cough, fever, and night sweat. TNF, IL-6, IL-8, IL-10 and sE-Selectin, showed that repeated application is immunologically safe, but induces a switch of the functional properties of monocytes to an inflammatory phenotype. Treatment induced stable disease in 4/6 patients, and progressive disease in 2/6 patients. Treatment with MSC_apceth_101 in combination with GCV demonstrated acceptable safety and tolerability in patients with advanced gastrointestinal adenocarcinoma.

  13. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase.

    PubMed

    Kim, Eunhye; Zheng, Zhong; Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently.

  14. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells - TREAT-ME-1 - a phase I, first in human, first in class trial

    PubMed Central

    von Einem, Jobst C.; Peter, Sylvia; Günther, Christine; Volk, Hans-Dieter; Grütz, Gerald; Salat, Christoph; Stoetzer, Oliver; Nelson, Peter J.; Michl, Marlies; Modest, Dominik P.; Holch, Julian W.; Angele, Martin; Bruns, Christiane

    2017-01-01

    Purpose This phase I, first in human, first in class clinical study aimed at evaluating the safety, tolerability and efficacy of treatment with genetically modified mesenchymal stromal cells (MSC) in combination with ganciclovir (GCV). MSC_apceth_101 are genetically modified autologous MSCs used as vehicles for a cell-based gene therapy in patients with advanced gastrointestinal adenocarcinoma. Experimental design The study design consisted of a dose-escalation 3 + 3 design. All patients (n = 6) were treated with up to three applications of MSC_apceth_101, followed by GCV infusions given on three consecutive days starting 48 hours after injection of MSC_apceth_101. Three of six patients received a total dose of 1.5 × 106 cells/kg. Two patients received three doses of 1 × 106 cells/kg, while one patient received only two doses of 1 × 106 cells/kg due to a SADR. Results Six patients received MSC_apceth_101. No IMP-related serious adverse events occurred. Adverse-events related to IMP-injection were increased creatinine, cough, fever, and night sweat. TNF, IL-6, IL-8, IL-10 and sE-Selectin, showed that repeated application is immunologically safe, but induces a switch of the functional properties of monocytes to an inflammatory phenotype. Treatment induced stable disease in 4/6 patients, and progressive disease in 2/6 patients. Conclusion Treatment with MSC_apceth_101 in combination with GCV demonstrated acceptable safety and tolerability in patients with advanced gastrointestinal adenocarcinoma. PMID:29113291

  15. Removal of Heterologous Sequences from Plasmodium falciparum Mutants Using FLPe-Recombinase

    PubMed Central

    van Schaijk, Ben C. L.; Vos, Martijn W.; Janse, Chris J.; Sauerwein, Robert W.; Khan, Shahid M.

    2010-01-01

    Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines. PMID:21152048

  16. The impact of genetically modified crops on soil microbial communities.

    PubMed

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  17. Genetic Influence on the Expression of Hand Preferences in Chimpanzees (Pan Troglodytes): Evidence in Support of the Right-Shift Theory and Developmental Instability

    PubMed Central

    Hopkins, William D.; Dahl, Jeremy F.; Pilcher, Dawn

    2007-01-01

    Genetic mechanisms have been proposed to explain the pervasive representation of right-handedness in humans, whereas random, nongenetic factors have been posited to explain the lack of population-level right-handedness in nonhuman primates. We report evidence that hand preferences in chimpanzees are heritable, even among related individuals raised in different environments. Furthermore, we report that the degree of heritability is modified by factors associated with developmental instability, notably, offspring parity. The data are interpreted to reconcile both genetic models for handedness and hypotheses suggesting that developmental instability influences variation in handedness. PMID:11476096

  18. Methods for genetic transformation of filamentous fungi.

    PubMed

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  19. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b

  20. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.

  1. Identification and Use of the Putative Bacteroides ovatus Xylanase Promoter for the Inducible Production of Recombinant Human Proteins

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  2. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice

    PubMed Central

    Yang, Yange; Shi, Zhaopeng; Gao, Ming-Qing; Zhang, Yong

    2016-01-01

    This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health. PMID:27438026

  3. [Current status in the commercialization and application of genetically modified plants and their effects on human and livestock health and phytoremediation].

    PubMed

    Yoshimatsu, Kayo; Kawano, Noriaki; Kawahara, Nobuo; Akiyama, Hiroshi; Teshima, Reiko; Nishijima, Masahiro

    2012-01-01

    Developments in the use of genetically modified plants for human and livestock health and phytoremediation were surveyed using information retrieved from Entrez PubMed, Chemical Abstracts Service, Google, congress abstracts and proceedings of related scientific societies, scientific journals, etc. Information obtained was classified into 8 categories according to the research objective and the usage of the transgenic plants as 1: nutraceuticals (functional foods), 2: oral vaccines, 3: edible curatives, 4: vaccine antigens, 5: therapeutic antibodies, 6: curatives, 7: diagnostic agents and reagents, and 8: phytoremediation. In total, 405 cases were collected from 2006 to 2010. The numbers of cases were 120 for nutraceuticals, 65 for oral vaccines, 25 for edible curatives, 36 for vaccine antigens, 36 for therapeutic antibodies, 76 for curatives, 15 for diagnostic agents and reagents, and 40 for phytoremediation (sum of each cases was 413 because some reports were related to several categories). Nutraceuticals, oral vaccines and curatives were predominant. The most frequently used edible crop was rice (51 cases), and tomato (28 cases), lettuce (22 cases), potato (18 cases), corn (15 cases) followed.

  4. Analysis of flour and food samples for cry9C from bioengineered corn.

    PubMed

    Orlandi, Palmer A; Lampel, Keith A; South, Paul K; Assar, Samir K; Carter, Laurenda; Levy, Dan D

    2002-02-01

    StarLink corn is a variety of yellow corn that has been genetically modified by the insertion of an altered cry9C gene into the plant genome. resulting in expression of the insecticidal Cry9C protein. The U.S. Environmental Protection Agency has approved StarLink corn for use in animal feed but not in food intended for human consumption. Therefore, under the U.S. Food, Drug, and Cosmetic Act, any food intended for human consumption in which the presence of StarLink corn is indicated by the presence of either the Cry9C protein or the cry9C gene would be considered adulterated. Extraction and PCR-based methods were used to detect the presence of the cry9C DNA initially in corn flour and corn meal, and then these methods were extended to the analysis of processed corn products, including taco shells, cereals, baby foods, party snacks, and chips, for the presence of this modified genetic material. In a survey of 63 products, the cry9C transgene was detected in 4 taco shells.

  5. Cultural evolutionary theory: How culture evolves and why it matters

    PubMed Central

    Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W.

    2017-01-01

    Human cultural traits—behaviors, ideas, and technologies that can be learned from other individuals—can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene–culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment. PMID:28739941

  6. Cultural evolutionary theory: How culture evolves and why it matters.

    PubMed

    Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W

    2017-07-24

    Human cultural traits-behaviors, ideas, and technologies that can be learned from other individuals-can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene-culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment.

  7. Producing recombinant human milk proteins in the milk of livestock species.

    PubMed

    Bösze, Zsuzsanna; Baranyi, Mária; Whitelaw, C Bruce A

    2008-01-01

    Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.

  8. Lentiviral gene transduction of mouse and human hematopoietic stem cells.

    PubMed

    van Til, Niek P; Wagemaker, Gerard

    2014-01-01

    Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.

  9. A natural compromise: a moderate solution to the GMO & "natural" labeling disputes.

    PubMed

    Amaru, Stephanie

    2014-01-01

    In the United States, genetically modified (GM) foods are labeled no differently from their natural counterparts, leaving consumers with no mechanism for deciphering genetically modified food content. The Food and Drug Administration (FDA) has not formally defined the term "natural," which is frequently used on food labels despite consumer confusion as to what it means. The FDA should initiate a notice and comment rulemaking addressing the narrow issue of whether use of the word "natural" should be permitted oil GM food labels. Prohibition of the use of"natural" on genetically modified foods would mitigate consumer deception regarding genetically modified food content without significantly disadvantaging genetically modified food producers.

  10. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  11. Water Security: What Else Can We Do?

    DTIC Science & Technology

    2013-03-01

    lakes, 12.0% is in soil moisture , 9.5% is in the atmosphere, 8.5% is in wetlands, 1.5% is in rivers, and 1.0% is in vegetation. Humans primarily use...in standard of living for humans and other plant and animal species of the region. Meanwhile, developing countries, in order to achieve short-term...developing genetically modified (GM) plants which can produce larger crop yields. Technology has also produced monitoring techniques which allow for a

  12. Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs.

    PubMed

    Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai

    2016-01-01

    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.

  13. Monitoring the presence of genetically modified food on the market of the Republic of Croatia.

    PubMed

    Cattunar, Albert; Capak, Krunoslav; Novak, Jelena Zafran; Mićović, Vladimir; Doko-Jelinić, Jagoda; Malatestinić, Dulija

    2011-12-01

    From the beginning of the human race people have been applying different methods to change the genetic material of either plants or animals in order to increase their yield as well as to improve the quality and quantity of food. Genetically modified organism (GMO) means an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination. Analysing the presence of GMO in food is done by detecting the presence of either specific DNA sequences inserted in the genome of transgenic organism, or detecting proteins as a result of the expression of the inserted DNA. In this work food testing for the presence of genetically modified organisms was conducted during the period from 2004 to 2007 in the GMO laboratory of the Croatian National Institute of Public Health. According to the regulations, among the samples in which the presence of GMO was detected, all those which had more than 0.9% of GMO content were either rejected from the border or removed from the market, because such GM food has to be appropriately labelled. Among the food samples which were analysed in 2004: 127 (2.37%) of a total of 1226 samples contained more than 0.9% of GMOs; in 2005 there was only one in 512 (0.20%) samples in total; in 2006 there were 4 out of 404 samples (0.99%), and in 2007: 7 of a total of 655 samples (1.07%) had GMO content above the allowed threshold of 0.9%.

  14. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  16. Use of genetically modified crops and pesticides in Brazil: growing hazards.

    PubMed

    Almeida, Vicente Eduardo Soares de; Friedrich, Karen; Tygel, Alan Freihof; Melgarejo, Leonardo; Carneiro, Fernando Ferreira

    2017-10-01

    Genetically modified (GM) crops were officially authorized in Brazil in 2003. In this documentary study, we aimed to identify possible changes in the patterns of pesticide use after the adoption of this technology over a span of 13 years (2000 to 2012). The following variables were analyzed: Pesticide use (kg), Pesticide use per capita (kg/inhab), Pesticide and herbicide use per area (kg/ha) and productivity (kg/ha). Contrary to the initial expectations of decreasing pesticide use following the adoption of GM crops, overall pesticide use in Brazil increased 1.6-fold between the years 2000 and 2012. During the same period, pesticide use for soybean increased 3-fold. This study shows that the adoption of GM crops in Brazil has led to an increase in pesticide use with possible increases in environmental and human exposure and associated negative impacts.

  17. An animal welfare perspective on animal testing of GMO crops.

    PubMed

    Kolar, Roman; Rusche, Brigitte

    2008-01-01

    The public discussion on the introduction of agro-genetic engineering focuses mainly on economical, ecological and human health aspects. The fact is neglected that laboratory animals must suffer before either humans or the environment are affected. However, numerous animal experiments are conducted for toxicity testing and authorisation of genetically modified plants in the European Union. These are ethically questionable, because death and suffering of the animals for purely commercial purposes are accepted. Therefore, recent political initiatives to further increase animal testing for GMO crops must be regarded highly critically. Based on concrete examples this article demonstrates that animal experiments, on principle, cannot provide the expected protection of users and consumers despite all efforts to standardise, optimise or extend them.

  18. [Genetically modified plants and food safety. State of the art and discussion in the European Union].

    PubMed

    Schauzu, M

    2004-09-01

    Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.

  19. Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice

    PubMed Central

    Whittlesey, Rebecca L.; Andrews, Nancy C.

    2011-01-01

    The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe−/− mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6−/− mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe−/− mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder. PMID:21355094

  20. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series

    PubMed Central

    Webb, T. E. F.; Poulter, M.; Beck, J.; Uphill, J.; Adamson, G.; Campbell, T.; Linehan, J.; Powell, C.; Brandner, S.; Pal, S.; Siddique, D.; Wadsworth, J. D.; Joiner, S.; Alner, K.; Petersen, C.; Hampson, S.; Rhymes, C.; Treacy, C.; Storey, E.; Geschwind, M. D.; Nemeth, A. H.; Wroe, S.; Mead, S.

    2008-01-01

    The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the identification of two genetic modifiers. PMID:18757886

  1. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  2. Genetically modified plants and human health.

    PubMed

    Key, Suzie; Ma, Julian K-C; Drake, Pascal Mw

    2008-06-01

    Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.

  3. Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease

    PubMed Central

    Jones, Melanie A.; Amr, Sami; Ferebee, Aerial; Huynh, Phung; Rosenfeld, Jill A.; Miles, Michael F.; Davies, Andrew G.; Korey, Christopher A.; Warrick, John M.; Shiang, Rita; Elsea, Sarah H.; Girirajan, Santhosh; Grotewiel, Mike

    2014-01-01

    ABSTRACT Wolfram syndrome (WFS) is a progressive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. WFS1 and WFS2 are caused by recessive mutations in the genes Wolfram Syndrome 1 (WFS1) and CDGSH iron sulfur domain 2 (CISD2), respectively. To explore the function of CISD2, we performed genetic studies in flies with altered expression of its Drosophila orthologue, cisd2. Surprisingly, flies with strong ubiquitous RNAi-mediated knockdown of cisd2 had no obvious signs of altered life span, stress resistance, locomotor behavior or several other phenotypes. We subsequently found in a targeted genetic screen, however, that altered function of cisd2 modified the effects of overexpressing the fly orthologues of two lysosomal storage disease genes, palmitoyl-protein thioesterase 1 (PPT1 in humans, Ppt1 in flies) and ceroid-lipofuscinosis, neuronal 3 (CLN3 in humans, cln3 in flies), on eye morphology in flies. We also found that cln3 modified the effects of overexpressing Ppt1 in the eye and that overexpression of cln3 interacted with a loss of function mutation in cisd2 to disrupt locomotor ability in flies. Follow-up multi-species bioinformatic analyses suggested that a gene network centered on CISD2, PPT1 and CLN3 might impact disease through altered carbohydrate metabolism, protein folding and endopeptidase activity. Human genetic studies indicated that copy number variants (duplications and deletions) including CLN3, and possibly another gene in the CISD2/PPT1/CLN3 network, are over-represented in individuals with developmental delay. Our studies indicate that cisd2, Ppt1 and cln3 function in concert in flies, suggesting that CISD2, PPT1 and CLN3 might also function coordinately in humans. Further, our studies raise the possibility that WFS2 and some lysosomal storage disorders might be influenced by common mechanisms and that the underlying genes might have previously unappreciated effects on developmental delay. PMID:24705017

  4. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  5. History of safe use as applied to the safety assessment of novel foods and foods derived from genetically modified organisms.

    PubMed

    Constable, A; Jonas, D; Cockburn, A; Davi, A; Edwards, G; Hepburn, P; Herouet-Guicheney, C; Knowles, M; Moseley, B; Oberdörfer, R; Samuels, F

    2007-12-01

    Very few traditional foods that are consumed have been subjected to systematic toxicological and nutritional assessment, yet because of their long history and customary preparation and use and absence of evidence of harm, they are generally regarded as safe to eat. This 'history of safe use' of traditional foods forms the benchmark for the comparative safety assessment of novel foods, and of foods derived from genetically modified organisms. However, the concept is hard to define, since it relates to an existing body of information which describes the safety profile of a food, rather than a precise checklist of criteria. The term should be regarded as a working concept used to assist the safety assessment of a food product. Important factors in establishing a history of safe use include: the period over which the traditional food has been consumed; the way in which it has been prepared and used and at what intake levels; its composition and the results of animal studies and observations from human exposure. This paper is aimed to assist food safety professionals in the safety evaluation and regulation of novel foods and foods derived from genetically modified organisms, by describing the practical application and use of the concept of 'history of safe use'.

  6. Tyrosinase is the modifier of retinoschisis in mice.

    PubMed

    Johnson, Britt A; Cole, Brian S; Geisert, Eldon E; Ikeda, Sakae; Ikeda, Akihiro

    2010-12-01

    X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among family members with the same mutation. This variation suggests the existence of genetic modifiers that may contribute to disease severity. Previously, we reported the identification of a modifier locus, named Mor1, which affects severity of schisis in a mouse model of XLRS (the Rs1tmgc1 mouse). Homozygosity for the protective AKR allele of Mor1 restores cell adhesion in Rs1tmgc1 mice. Here, we report our study to identify the Mor1 gene. Through collecting recombinant mice followed by progeny testing, we have localized Mor1 to a 4.4-Mb region on chromosome 7. In this genetic region, the AKR strain is known to carry a mutation in the tyrosinase (Tyr) gene. We observed that the schisis phenotype caused by the Rs1 mutation is rescued by a Tyr mutation in the C57BL/6J genetic background, strongly suggesting that Tyr is the Mor1 gene.

  7. Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries

    DTIC Science & Technology

    2010-07-01

    TITLE: Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries PRINCIPAL INVESTIGATOR: David H. Sachs, M.D...4. TITLE AND SUBTITLE Genetically Modified Porcine Skin Grafts for Treatment of 5a. CONTRACT NUMBER Severe Burn Injuries 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Burns, skin grafts , genetic

  8. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    NASA Astrophysics Data System (ADS)

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-04-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  9. Detection of genetically modified DNA in fresh and processed foods sold in Kuwait.

    PubMed

    Al-Salameen, Fadila; Kumar, Vinod; Al-Aqeel, Hamed; Al-Hashash, Hanadi; Hejji, Ahmed Bin

    2012-01-01

    Developments in genetic engineering technology have led to an increase in number of food products that contain genetically engineered crops in the global market. However, due to lack of scientific studies, the presence of genetically modified organisms (GMOs) in the Kuwaiti food market is currently ambiguous. Foods both for human and animal consumption are being imported from countries that are known to produce GM food. Therefore, an attempt has been made to screen foods sold in the Kuwaiti market to detect GMOs in the food. For this purpose, samples collected from various markets in Kuwait have been screened by SYBR green-based real time polymerase chain reaction (RT-PCR) method. Further confirmation and GMO quantification was performed by TaqMan-based RT-PCR. Results indicated that a significant number of food commodities sold in Kuwait were tested positive for the presence of GMO. Interestingly, certain processed foods were tested positive for more than one transgenic events showing complex nature of GMOs in food samples. Results of this study clearly indicate the need for well-defined legislations and regulations on the marketing of approved GM food and its labeling to protect consumer's rights.

  10. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes.

    PubMed

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A; Cheng, Shuk Han; Sun, Dong

    2016-04-12

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  11. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further evolution of the CES, the use of the advantages offered by genetically modified organisms produced by modern biotechnology can be regarded as aromorphosis. If the genetic program of biosyntheses performed by plants in-cludes the new genes that will program the synthesis of all molecules necessary for humans, the plants, both unicellular and higher, will produce the whole range of food substances perfectly corresponding to the requirements of the human body. This is a long way, but the investment of resources and time will be justified not only by the creation of an LSS for long-distance space missions and colonization of planets that will contain as many closed loops as possible and be energy efficient. This will also be a convenient and safest instrument to study and justify the wide use of products of genetically modified plants on Earth. Today, humanity is extremely wary of this idea because of its novelty. As experimental human life support ecosystems are closed systems, they provide the most reliable and safest instrument for studying issues related to GMO and preparing scientifically based suggestions for their practical use. The report will contain data on the spectra of mismatches between vegetable foods produced in BIOS-3 and human requirements, and the objectives of correcting the biosynthesis programs in the CES.

  12. The Case of the "Tainted" Taco Shells: A Case Study on Genetically Modified Foods

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2004-01-01

    This case study introduces students to the use of genetically modified foods. Students learn how genetically modified plants are made, and then they read primary literature papers to evaluate the environmental, economic, and health issues. (Contains 2 figures.)

  13. Overview of the current status of genetically modified plants in Europe as compared to the USA.

    PubMed

    Brandt, Peter

    2003-07-01

    Genetically modified crops have been tested in 1,726 experimental releases in the EU member states and in 7,815 experimental releases in the USA. The global commercial cultivation area of genetically modified crops is likely to reach 50 million hectares in 2001, however, the commercial production of genetically modified crops in the EU amounts to only a few thousand hectares and accounts for only some 0.03% of the world production. A significant gap exists between the more than fifty genetically modified crop species already permitted to be cultivated and to be placed on the market in the USA, Canada and other countries and the five genetically modified crop species permitted for the same use in the EU member states, which are still pending inclusion in the Common Catalogue of agricultural plant species. The further development of the "green gene technology" in the EU will be a matter of public acceptance and administrative legislation.

  14. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  15. Genetically engineered mouse models and human osteosarcoma

    PubMed Central

    2012-01-01

    Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics. PMID:23036272

  16. Ethical issues in field trials of genetically modified disease-resistant mosquitoes.

    PubMed

    Resnik, David B

    2014-04-01

    Mosquito-borne diseases take a tremendous toll on human populations, especially in developing nations. In the last decade, scientists have developed mosquitoes that have been genetically modified to prevent transmission of mosquito-borne diseases, and field trials have been conducted. Some mosquitoes have been rendered infertile, some have been equipped with a vaccine they transmit to humans, and some have been designed to resist diseases. This article focuses on ethical issues raised by field trials of disease-resistant, genetically modified mosquitoes. Some of these issues include: protecting the public and the environment from harm, balancing benefits and risks, collaborating with the local community, avoiding exploitation, and safeguarding the rights and welfare of research subjects. One of the most difficult problems involves protecting the welfare of community members who will be impacted by the release of mosquitoes but who are not enrolled in the study as research subjects. To address this concern, field trials should take place only when the targeted disease is a significant public health problem in an isolated area, the benefits of the trial for the community are likely to outweigh the risks, community leaders approve of the trial, and there are measures in place to protect the welfare of un-enrolled community members, such as informing the community about the study and offering free treatment to people who contract mosquito-borne diseases. Since the justification of any field trial depends on a careful examination of the scientific and ethical issues, proposed studies should be evaluated on a case-by-case basis. Published 2012. This article is a US Government work and is in the public domain in the USA.

  17. Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines.

    PubMed

    Kang, C Yong; Gao, Yong

    2017-09-12

    The development of an efficient prophylactic HIV vaccine has been one of the major challenges in infectious disease research during the last three decades. Here, we present a mini review on strategies employed for the development of HIV vaccines with an emphasis on a well-established vaccine technology, the killed whole-virus vaccine approach. Recently, we reported an evaluation of the safety and the immunogenicity of a genetically modified and killed whole-HIV-1 vaccine designated as SAV001 [1]. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence of the Env signal peptide with that of honeybee melittin to produce an avirulent and replication efficient HIV-1. This genetically modified virus (gmHIV-1 NL4-3 ) was propagated in a human T cell line followed by virus purification and inactivation by aldrithiol-2 and γ-irradiation. We found that SAV001 was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific polymerase chain reaction showed no evidence of vaccine virus replication in participants receiving SAV001 and in human T cells infected in vitro. Furthermore, SAV001 with an adjuvant significantly increased the antibody response to HIV-1 structural proteins. Moreover, antibodies in the plasma from these vaccinations neutralized tier I and tier II of HIV-1 B, A, and D subtypes. These results indicated that the killed whole-HIV vaccine is safe and may trigger appropriate immune responses to prevent HIV infection. Utilization of this killed whole-HIV vaccine strategy may pave the way to develop an effective HIV vaccine.

  18. Application of Advanced Technologies for Improvement of Hardwood Forests

    Treesearch

    Charles H. Michler

    1999-01-01

    Hardwood tree improvement in Indiana is on the brink of entering the 21st century with the recent initiation of the Hardwood Tree Improvement and Regeneration Center (HTIRC) at Purdue University. At a time when midwestern agriculture has enthusiastically embraced genetically modified insect and herbicide resistant corn and soybean crops and all the human genes are...

  19. Genetically modified Medicago truncatula lacking calcium oxalate has increased calcium bioavailability and partially rescues vitamin D receptor knockout mice phenotypes

    USDA-ARS?s Scientific Manuscript database

    How the distribution and sequestered form of plant macro/micro-nutrients influence their bioavailability, and ultimately impact human health, is poorly understood. The legume Medicago truncatula has a portion of its tissue calcium sequestered in the form of the calcium oxalate crystal, which reduces...

  20. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  1. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  2. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  3. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  4. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  5. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  6. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  9. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  10. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  11. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  12. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  13. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  14. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  15. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  16. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  17. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  18. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  19. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  20. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  1. 21 CFR 872.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  2. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  3. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  4. 21 CFR 872.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  5. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  6. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  9. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  10. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

    USDA-ARS?s Scientific Manuscript database

    Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in p...

  11. Aurora-A as a Modifier of Breast Cancer Risk in BRCA 1/2 Mutation Carriers

    DTIC Science & Technology

    2007-06-01

    Dieter Schaefer, Institute of Human Genetics, University of Frankfurt, Frankfurt, Germany; Norbert Arnold, University of Schleswig- Holstein , Campus...Intron 2 Opossum Mouse Rat Cow Dog Intron 1 Figure 3 | The FGFR2 locus. a, Map of the whole FGFR2 gene, viewed relative to common SNPs on HapMap

  12. Studies of the Interaction of Human Malaria Parasites with the Metabolism of the Host Red Cell.

    DTIC Science & Technology

    1977-06-15

    thalassemia trait have significantly lower levels of ATP per red cell than individuals who do not have thalassemia trait. We confirmed this in Sardinia and...it raises the interesting possibility that the protective effect of thalassemia may be due to a major genetic modifying influence on levels of ATP. C

  13. Regulating genetically modified food. Policy trajectories, political culture, and risk perceptions in the U.S., Canada, and EU.

    PubMed

    Wohlers, Anton E

    2010-09-01

    This paper examines whether national differences in political culture add an explanatory dimension to the formulation of policy in the area of biotechnology, especially with respect to genetically modified food. The analysis links the formulation of protective regulatory policies governing genetically modified food to both country and region-specific differences in uncertainty tolerance levels and risk perceptions in the United States, Canada, and European Union. Based on polling data and document analysis, the findings illustrate that these differences matter. Following a mostly opportunistic risk perception within an environment of high tolerance for uncertainty, policymakers in the United States and Canada modified existing regulatory frameworks that govern genetically modified food in their respective countries. In contrast, the mostly cautious perception of new food technologies and low tolerance for uncertainty among European Union member states has contributed to the creation of elaborate and stringent regulatory policies governing genetically modified food.

  14. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  15. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  16. Evaluating Risks of Insertional Mutagenesis by DNA Transposons in Gene Therapy

    PubMed Central

    Hackett, Perry B.; Largaespada, David A.; Switzer, Kirsten C.; Cooper, Laurence J.N.

    2013-01-01

    Investigational therapy can be successfully undertaken using viral- and non-viral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity. We discuss the context in which the SB system can be harnessed for gene therapy and describe the human application of SB-modified CAR+ T cells. We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease. PMID:23313630

  17. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    PubMed Central

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  18. 77 FR 7172 - Sequoyah National Wildlife Refuge, Sequoyah, Muskogee, and Haskell Counties, OK; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    .... Scoping for the environmental assessment (EA) on use of specified genetically modified crops in... of genetically modified crops in association with the cooperative farming program was released on... assessment of using specified genetically modified crops into the CCP and determined that an environmental...

  19. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  20. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    EPA Science Inventory

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  1. Human cancer xenografts in outbred nude mice can be confounded by polymorphisms in a modifier of tumorigenesis.

    PubMed

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R; Parelkar, Nikhil K; Jokar, Iman; Vielhauer, George A; Neufeld, Kristi L

    2014-08-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies. Copyright © 2014 by the Genetics Society of America.

  2. Genetic variants and cognitive aging: destiny or a nudge?

    PubMed

    Raz, Naftali; Lustig, Cindy

    2014-06-01

    One would be hard-pressed to find a human trait that is not heritable at least to some extent, and genetics have played an important role in behavioral science for more than half a century. With the advent of high-throughput molecular methods and the increasing availability of genomic analyses, genetics have acquired a firm foothold in public discourse. However, although the proliferation of genetic association studies and ever-expanding library of single-nucleotide polymorphisms have generated some fascinating results, they have thus far fallen short of delivering the anticipated dramatic breakthroughs. In this collection of eight articles, we present a spectrum of efforts aimed at finding more nuanced and meaningful ways of integrating genomic findings into the study of cognitive aging. The articles present examples of Mendelian randomization in the service of investigating difficult-to-manipulate biochemical properties of human participants. Furthermore, in an important step forward, they acknowledge the interactive effects of genes and physiological risk factors on age-related difference and change in cognitive performance, as well as the possibility of modifying the negative effect of genetic variants by lifestyle changes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. HSP90 Shapes the Consequences of Human Genetic Variation.

    PubMed

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Risks from GMOs due to horizontal gene transfer.

    PubMed

    Keese, Paul

    2008-01-01

    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  5. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  6. Position-effect variegation revisited: HUSHing up heterochromatin in human cells.

    PubMed

    Timms, Richard T; Tchasovnikarova, Iva A; Lehner, Paul J

    2016-04-01

    Much of what we understand about heterochromatin formation in mammals has been extrapolated from forward genetic screens for modifiers of position-effect variegation (PEV) in the fruit fly Drosophila melanogaster. The recent identification of the HUSH (Human Silencing Hub) complex suggests that more recent evolutionary developments contribute to the mechanisms underlying PEV in human cells. Although HUSH-mediated repression also involves heterochromatin spreading through the reading and writing of the repressive H3K9me3 histone modification, clear orthologues of HUSH subunits are not found in Drosophila but are conserved in vertebrates. Here we compare the insights into the mechanisms of PEV derived from genetic screens in the fly, the mouse and in human cells, review what is currently known about the HUSH complex and discuss the implications of HUSH-mediated silencing for viral latency. Future studies will provide mechanistic insight into HUSH complex function and reveal the relationship between HUSH and other epigenetic silencing complexes. © 2016 WILEY Periodicals, Inc.

  7. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    PubMed

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. Copyright © 2015, American Association for the Advancement of Science.

  8. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  9. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  10. The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers.

    PubMed

    Tippett, Lynette J; Waldvogel, Henry J; Snell, Russell G; Vonsattel, Jean-Paul; Young, Anne B; Faull, Richard L M

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.

  11. A novel intranuclear RNA vector system for long-term stem cell modification

    PubMed Central

    Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo

    2015-01-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  12. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  13. Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses.

    PubMed

    Ezzelarab, Mohamed; Ezzelarab, Corin; Wilhite, Tyler; Kumar, Goutham; Hara, Hidetaka; Ayares, David; Cooper, David K C

    2011-01-01

    Mesenchymal stromal cells (MSC) are being investigated as immunomodulatory therapy in the field of transplantation, particularly islet transplantation. While MSC can regenerate across species barriers, the immunoregulatory influence of genetically modified pig MSC (pMSC) on the human and non-human primate T-cell responses has not been studied. Mesenchymal stromal cells from wild-type (WT), α1,3-galactosyltransferase gene knockout (GTKO) and GTKO pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46) were isolated and tested for differentiation. Antibody binding and T-cell responses to WT and GTKO pMSC in comparison with GTKO pig aortic endothelial cells (pAEC) were investigated. The expression of swine leukocyte antigen (SLA) class II (SLA II) was tested. Costimulatory molecules CD80 and CD86 mRNA levels were measured. Human T-cell proliferation and the production of pro-inflammatory cytokines in response to GTKO and GTKO/CD46 pMSC in comparison with human MSC (hMSC) were evaluated. α1,3-galactosyltransferase gene knockout and GTKO/CD46 pMSC isolation and differentiation were achieved in vitro. Binding of human antibodies and T-cell responses were lower to GTKO than those to WT pMSC. Human and baboon (naïve and sensitized) antibody binding were significantly lower to GTKO pMSC than to GTKO pAEC. Before activation, <1% of GTKO pMSC expressed SLA II, compared with 2.5% of GTKO pAEC. After pig interferon-gamma (pIFN-γ) activation, 99% of GTKO pAEC upregulated SLA II expression, compared with 49% of GTKO pMSC. Only 3% of GTKO pMSC expressed CD80 compared with 80% of GTKO pAEC without activation. After pIFN-γ activation, GTKO pAEC upregulated CD86 mRNA level stronger than GTKO pMSC. The human CD4(+) T-cell response to GTKO pMSC was significantly weaker than that to GTKO pAEC, even after pIFN-γ activation. More than 99% of GTKO/CD46 pMSC expressed hCD46. Human peripheral blood mononuclear cells and CD4(+) T-cell responses to GTKO and GTKO/CD46 pMSC were comparable with those to hMSC, and all were significantly lower than to GTKO pAEC. GTKO/CD46 pMSC downregulated human T-cell proliferation as efficiently as hMSC. The level of proinflammatory cytokines IL-2, IFN-γ, TNF-α, and sCD40L correlated with the downregulation of T-cell proliferation by all types of MSC. Genetically modified pMSC is significantly less immunogenic than WT pMSC. GTKO/CD46 pMSC downregulates the human T-cell responses to pig antigens as efficiently as human MSC, which can be advantageous for therapeutic cell xenotransplantation. © 2011 John Wiley & Sons A/S.

  14. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    PubMed

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  15. Generation of an immortalized mouse embryonic palatal mesenchyme cell line

    PubMed Central

    Soriano, Philippe

    2017-01-01

    Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture. PMID:28582446

  16. Erosion of Brassica incana Genetic Resources: Causes and Effects

    NASA Astrophysics Data System (ADS)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  17. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  18. The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM)

    PubMed Central

    Landstrom, Michelle; Luu, Alice; Hayes, K. C.

    2018-01-01

    Type II diabetes mellitus (T2DM) is a multifactorial disease involving complex genetic and environmental interactions. No single animal model has so far mirrored all the characteristics or complications of diabetes in humans. Since this disease represents a chronic nutritional insult based on a diet bearing a high glycemic load, the ideal model should recapitulate the underlying dietary issues. Most rodent models have three shortcomings: (1) they are genetically or chemically modified to produce diabetes; (2) unlike humans, most require high-fat feeding; (3) and they take too long to develop diabetes. By contrast, Nile rats develop diabetes rapidly (8–10 weeks) with high-carbohydrate (hiCHO) diets, similar to humans, and are protected by high fat (with low glycemic load) intake. This review describes diabetes progression in the Nile rat, including various aspects of breeding, feeding, and handling for best experimental outcomes. The diabetes is characterized by a striking genetic permissiveness influencing hyperphagia and hyperinsulinemia; random blood glucose is the best index of disease progression; and kidney failure with chronic morbidity and death are outcomes, all of which mimic uncontrolled T2DM in humans. Non-alcoholic fatty liver disease (NAFLD), also described in diabetic humans, results from hepatic triglyceride and cholesterol accumulation associated with rising blood glucose. Protection is afforded by low glycemic load diets rich in certain fibers or polyphenols. Accordingly, the Nile rat provides a unique opportunity to identify the nutritional factors and underlying genetic and molecular mechanisms that characterize human T2DM. PMID:29463026

  19. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  20. Perspectives provided by leopard and other cat genomes: how diet determined the evolutionary history of carnivores, omnivores, and herbivores

    PubMed Central

    Kim, Soonok; Cho, Yun Sung; Bhak, Jong; O’Brian, Stephen J.; Yeo, Joo-Hong

    2017-01-01

    Recent advances in genome sequencing technologies have enabled humans to generate and investigate the genomes of wild species. This includes the big cat family, such as tigers, lions, and leopards. Adding the first high quality leopard genome, we have performed an in-depth comparative analysis to identify the genomic signatures in the evolution of felid to become the top predators on land. Our study focused on how the carnivore genomes, as compared to the omnivore or herbivore genomes, shared evolutionary adaptations in genes associated with nutrient metabolism, muscle strength, agility, and other traits responsible for hunting and meat digestion. We found genetic evidence that genomes represent what animals eat through modifying genes. Highly conserved genetically relevant regions were discovered in genomes at the family level. Also, the Felidae family genomes exhibited low levels of genetic diversity associated with decreased population sizes, presumably because of their strict diet, suggesting their vulnerability and critical conservation status. Our findings can be used for human health enhancement, since we share the same genes as cats with some variation. This is an example how wildlife genomes can be a critical resource for human evolution, providing key genetic marker information for disease treatment. PMID:28042784

  1. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.

    PubMed

    González, Federico

    2016-07-01

    Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Monitoring the agricultural landscape for insect resistance

    NASA Astrophysics Data System (ADS)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural landscape to ensure resistance is not developing. USEPA is teaming with NASA to perform this monitoring using models and NASA earth observation imagery from airborne and satellite platforms. Using multiple spatial, temporal and spectral resolutions, the project is monitoring the entire Midwestern "Corn Belt". By applying these methods, the project has successfully delineated insect infestations in genetically modified corn fields. Insect resistance development is expected to present itself as infestations thus indicating potential identification of resistance if it develops in genetically modified crops. The USEPA and NASA are currently considering the development of plans to potentially extend this aircraft research to other crops and develop a micro-satellite application.

  3. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency

    PubMed Central

    Kohn, Donald B.; Weinberg, Kenneth I.; Nolta, Jan A.; Heiss, Linda N.; Lenarsky, Carl; Crooks, Gay M.; Hanley, Mary E.; Annett, Geralyn; Brooks, Judith S.; El-Khoureiy, Anthony; Lawrence, Kim; Wells, Susie; Moen, Robert C.; Bastian, John; Williams-Herman, Debora E.; Elder, Melissa; Wara, Diane; Bowen, Thomas; Hershfield, Michael S.; Mullen, Craig A.; Blaese, R. Michael; Parkman, Robertson

    2010-01-01

    Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of inborn errors of metabolism. Three neonates with severe combined immunodeficiency were treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood with a normal human adenosine deaminase complementary DNA followed by autologous transplantation. The continued presence and expression of the introduced gene in leukocytes from bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy. PMID:7489356

  4. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  5. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  6. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  9. Genetic Modifiers of the Physical Malformations in Velo-Cardio-Facial Syndrome/DiGeorge Syndrome

    ERIC Educational Resources Information Center

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2008-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that "Tbx1", a…

  10. Testing the limits of the 'joint account' model of genetic information: a legal thought experiment.

    PubMed

    Foster, Charles; Herring, Jonathan; Boyd, Magnus

    2015-05-01

    We examine the likely reception in the courtroom of the 'joint account' model of genetic confidentiality. We conclude that the model, as modified by Gilbar and others, is workable and reflects, better than more conventional legal approaches, both the biological and psychological realities and the obligations owed under Articles 8 and 10 of the European Convention on Human Rights (ECHR). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  13. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    PubMed

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  14. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    PubMed

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  15. Genetically modified plants and human health

    PubMed Central

    Key, Suzie; Ma, Julian K-C; Drake, Pascal MW

    2008-01-01

    Summary Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt ‘health campaigns’, the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly – through applications targeted at nutrition and enhancement of recombinant medicine production – but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion. PMID:18515776

  16. Detection and traceability of genetically modified organisms in the food production chain.

    PubMed

    Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J

    2004-07-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation. Copryright 2004 Elsevier Ltd.

  17. [Assessment of allergenicity of genetically modified food crops].

    PubMed

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  18. Human diets drive range expansion of megafauna-dispersed fruit species.

    PubMed

    van Zonneveld, Maarten; Larranaga, Nerea; Blonder, Benjamin; Coradin, Lidio; Hormaza, José I; Hunter, Danny

    2018-03-27

    Neotropical fruit species once dispersed by Pleistocene megafauna have regained relevance in diversifying human diets to address malnutrition. Little is known about the historic interactions between humans and these fruit species. We quantified the human role in modifying geographic and environmental ranges of Neotropical fruit species by comparing the distribution of megafauna-dispersed fruit species that have been part of both human and megafauna diets with fruit species that were exclusively part of megafauna diets. Three quarters of the fruit species that were once dispersed by megafauna later became part of human diets. Our results suggest that, because of extensive dispersal and management, humans have expanded the geographic and environmental ranges of species that would otherwise have suffered range contraction after extinction of megafauna. Our results suggest that humans have been the principal dispersal agent for a large proportion of Neotropical fruit species between Central and South America. Our analyses help to identify range segments that may hold key genetic diversity resulting from historic interactions between humans and these fruit species. These genetic resources are a fundamental source to improve and diversify contemporary food systems and to maintain critical ecosystem functions. Public, private, and societal initiatives that stimulate dietary diversity could expand the food usage of these megafauna-dispersed fruit species to enhance human nutrition in combination with biodiversity conservation.

  19. Evaluating maturation and genetic modification of human dendritic cells in a new polyolefin cell culture bag system.

    PubMed

    Macke, Lars; Garritsen, Henk S P; Meyring, Wilhelm; Hannig, Horst; Pägelow, Ute; Wörmann, Bernhard; Piechaczek, Christoph; Geffers, Robert; Rohde, Manfred; Lindenmaier, Werner; Dittmar, Kurt E J

    2010-04-01

    Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks. Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays. Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs. The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.

  20. Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases

    PubMed Central

    Hudson, Gavin; Gomez-Duran, Aurora; Wilson, Ian J.; Chinnery, Patrick F.

    2014-01-01

    Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases. PMID:24852434

  1. When new human-modified habitats favour the expansion of an amphibian pioneer species: Evolutionary history of the natterjack toad (Bufo calamita) in a coal basin.

    PubMed

    Faucher, Leslie; Hénocq, Laura; Vanappelghem, Cédric; Rondel, Stéphanie; Quevillart, Robin; Gallina, Sophie; Godé, Cécile; Jaquiéry, Julie; Arnaud, Jean-François

    2017-09-01

    Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration-drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short-range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation-by-distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human-mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries. © 2017 John Wiley & Sons Ltd.

  2. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  3. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications.

    PubMed

    Zetterberg, Henrik

    2004-02-17

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  4. A protocol to study ex vivo mouse working heart at human-like heart rate.

    PubMed

    Feng, Han-Zhong; Jin, Jian-Ping

    2018-01-01

    Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. GM Risk Assessment

    NASA Astrophysics Data System (ADS)

    Sparrow, Penny A. C.

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.

  6. Genetic modification of the human germ line: The reasons why this project has no future.

    PubMed

    Morange, Michel

    2015-01-01

    Modification of the human germ line has remained a distant but valuable objective for most biologists since the emergence of genetics (and even before). To study the historical transformations of this project, I have selected three periods - the 1930s, at the pinnacle of eugenics, around 1974 when molecular biology triumphed, and today - and have adopted three criteria to estimate the feasibility of this project: the state of scientific knowledge, the existence of suitable tools, and societal demands. Although the long-awaited techniques to modify the germ line are now available, I will show that most of the expectations behind this project have disappeared, or are considered as being reachable by highly different strategies. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis.

    PubMed

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-06-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB.

  8. Therapeutic Potential of Intracerebroventricular Replacement of Modified Human β-Hexosaminidase B for GM2 Gangliosidosis

    PubMed Central

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-01-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB. PMID:21487393

  9. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  10. Germline genome-editing research and its socioethical implications.

    PubMed

    Ishii, Tetsuya

    2015-08-01

    Genetically modifying eggs, sperm, and zygotes ('germline' modification) can impact on the entire body of the resulting individual and on subsequent generations. With the advent of genome-editing technology, human germline gene modification is no longer theoretical. Owing to increasing concerns about human germline gene modification, a voluntary moratorium on human genome-editing research and/or the clinical application of human germline genome editing has recently been called for. However, whether such research should be suspended or encouraged warrants careful consideration. The present article reviews recent research on mammalian germline genome editing, discusses the importance of public dialogue on the socioethical implications of human germline genome-editing research, and considers the relevant guidelines and legislation in different countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  12. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    PubMed

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  13. Safety and Efficacy of OXB-202, a Genetically Engineered Tissue Therapy for the Prevention of Rejection in High-Risk Corneal Transplant Patients.

    PubMed

    Fouladi, Naghmeh; Parker, Maria; Kennedy, Vicky; Binley, Katie; McCloskey, Laura; Loader, Julie; Kelleher, Michelle; Mitrophanous, Kyriacos A; Stout, J Timothy; Ellis, Scott

    2018-06-01

    Due to both the avascularity of the cornea and the relatively immune-privileged status of the eye, corneal transplantation is one of the most successful clinical transplant procedures. However, in high-risk patients, which account for >20% of the 180,000 transplants carried out worldwide each year, the rejection rate is high due to vascularization of the recipient cornea. The main reason for graft failure is irreversible immunological rejection, and it is therefore unsurprising that neovascularization (NV; both pre and post grafting) is a significant risk factor for subsequent graft failure. NV is thus an attractive target to prevent corneal graft rejection. OXB-202 (previously known as EncorStat ® ) is a donor cornea modified prior to transplant by ex vivo genetic modification with genes encoding secretable forms of the angiostatic human proteins, endostatin and angiostatin. This is achieved using a lentiviral vector derived from the equine infectious anemia virus called pONYK1EiA, which subsequently prevents rejection by suppressing NV. Previously, it has been shown that rabbit donor corneas treated with pONYK1EiA substantially suppress corneal NV, opacity, and subsequent rejection in an aggressive rabbit model of cornea graft rejection. Here, efficacy data are presented in a second rabbit model, which more closely mirrors the clinical setting for high-risk corneal transplant patients, and safety data from a 3-month good laboratory practice toxicology and biodistribution study of pONYK1EiA-modified rabbit corneas in a rabbit corneal transplant model. It is shown that pONYK1EiA-modified rabbit corneas (OXB-202) significantly reduce corneal NV and the rate of corneal rejection in a dose-dependent fashion, and are tolerated with no adverse toxicological findings or significant biodistribution up to 13 weeks post surgery in these rabbit studies. In conclusion, angiogenesis is a valid target to prevent corneal graft rejection in a high-risk setting, and transplanted genetically modified corneas are safe and well-tolerated in an animal model. These data support the evaluation of OXB-202 in a first-in-human trial.

  14. Avoiding genetically modified foods in GMO Ground Zero: A reflective self-narrative.

    PubMed

    Edwards, Sachi

    2015-05-01

    I engage in a reflective self-narrative of my experience attempting to maintain a diet free of genetically modified organisms. Social tension over the genetically modified organism industry in Hawai'i, United States, has led to public debates over jobs and social identities. Drawing on local media sources, grassroots organizations, and blog posts, I describe the way this tension has shaped my experience with food, eating, and being with others as a genetically modified organism avoider. I utilize discursive positioning to make sense of my experiences by locating them within the ongoing public conversations that give structure to the daily lives of Hawai'i's residents. © The Author(s) 2015.

  15. Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent, tuco-tuco (Ctenomys lami).

    PubMed

    Lopes, Carla M; de Freitas, Thales R O

    2012-01-01

    Isolated or semi-isolated small populations are commonly found among species, due to a naturally patchy occupancy of suitable habitats or also as a result of habitat alterations. These populations are subject to an increased risk of local extinction because they are more vulnerable to demographic, genetic, and environmental stochasticity. Considering that natural areas have been becoming progressively more fragmented and smaller, understanding the genetic structure and evolutionary dynamics of small populations is critical. Ctenomys lami has 26 karyotypes distributed in a small area (936 km(2)) continually modified by human actions. We assessed the genetic geographical structure of this species, examining 178 specimens sampled on a fine scale, using information from chromosomal variability, mitochondrial DNA control region and cytochrome c oxidase subunit I sequences, and 14 microsatellite loci. The observed isolation-by-distance pattern and a clinal genetic variation suggest a stepping-stone population model. The results did not indicate genetic structuring associated with distinct karyotypes. However, mitochondrial and nuclear molecular markers demonstrated the existence of 2 demes, which are not completely isolated but are probably reinforced by a geographical barrier. The vulnerability of C. lami is greater than previously supposed, and our data support the designation of one Evolutionary Significant Unit and one Management Unit, and also the inclusion of this species' conservation status as vulnerable.

  16. Evolutionary medicine.

    PubMed

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  17. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.

    PubMed

    Winter, Jean M; Curry, Natasha L; Gildea, Derek M; Williams, Kendra A; Lee, Minnkyong; Hu, Ying; Crawford, Nigel P S

    2018-06-11

    It is well known that development of prostate cancer (PC) can be attributed to somatic mutations of the genome, acquired within proto-oncogenes or tumor-suppressor genes. What is less well understood is how germline variation contributes to disease aggressiveness in PC patients. To map germline modifiers of aggressive neuroendocrine PC, we generated a genetically diverse F2 intercross population using the transgenic TRAMP mouse model and the wild-derived WSB/EiJ (WSB) strain. The relevance of germline modifiers of aggressive PC identified in these mice was extensively correlated in human PC datasets and functionally validated in cell lines. Aggressive PC traits were quantified in a population of 30 week old (TRAMP x WSB) F2 mice (n = 307). Correlation of germline genotype with aggressive disease phenotype revealed seven modifier loci that were significantly associated with aggressive disease. RNA-seq were analyzed using cis-eQTL and trait correlation analyses to identify candidate genes within each of these loci. Analysis of 92 (TRAMP x WSB) F2 prostates revealed 25 candidate genes that harbored both a significant cis-eQTL and mRNA expression correlations with an aggressive PC trait. We further delineated these candidate genes based on their clinical relevance, by interrogating human PC GWAS and PC tumor gene expression datasets. We identified four genes (CCDC115, DNAJC10, RNF149, and STYXL1), which encompassed all of the following characteristics: 1) one or more germline variants associated with aggressive PC traits; 2) differential mRNA levels associated with aggressive PC traits; and 3) differential mRNA expression between normal and tumor tissue. Functional validation studies of these four genes using the human LNCaP prostate adenocarcinoma cell line revealed ectopic overexpression of CCDC115 can significantly impede cell growth in vitro and tumor growth in vivo. Furthermore, CCDC115 human prostate tumor expression was associated with better survival outcomes. We have demonstrated how modifier locus mapping in mouse models of PC, coupled with in silico analyses of human PC datasets, can reveal novel germline modifier genes of aggressive PC. We have also characterized CCDC115 as being associated with less aggressive PC in humans, placing it as a potential prognostic marker of aggressive PC.

  18. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations.

    PubMed

    Nishida, Naoshi; Kudo, Masatoshi

    Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment. © 2016 S. Karger AG, Basel.

  19. How scary! An analysis of visual communication concerning genetically modified organisms in Italy.

    PubMed

    Ventura, Vera; Frisio, Dario G; Ferrazzi, Giovanni; Siletti, Elena

    2017-07-01

    Several studies provide evidence of the role of written communication in influencing public perception towards genetically modified organisms, whereas visual communication has been sparsely investigated. This article aims to evaluate the exposure of the Italian population to scary genetically modified organism-related images. A set of 517 images collected through Google are classified considering fearful attributes, and an index that accounts for the scary impact of these images is built. Then, through an ordinary least-squares regression, we estimate the relationship between the Scary Impact Index and a set of variables that describes the context in which the images appear. The results reveal that the first (and most viewed) Google result images contain the most frightful contents. In addition, the agri-food sector in Italy is strongly oriented towards offering a negative representation of genetically modified organisms. Exposure to scary images could be a factor that affects the negative perception of genetically modified organisms in Italy.

  20. Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: cross-sectional study.

    PubMed

    Budnik, Lygia T; Scheer, Edwin; Burge, P Sherwood; Baur, Xaver

    2017-01-01

    The use of genetically engineered enzymes in the synthesis of flavourings, fragrances and other applications has increased tremendously. There is, however, a paucity of data on sensitisation and/or allergy to the finished products. We aimed to review the use of genetically modified enzymes and the enormous challenges in human biomonitoring studies with suitable assays of specific IgE to a variety of modified enzyme proteins in occupational settings and measure specific IgE to modified enzymes in exposed workers. Specific IgE antibodies against workplace-specific individual enzymes were measured by the specific fluorescence enzyme-labelled immunoassay in 813 exposed workers seen in cross-sectional surveys. Twenty-three per cent of all exposed workers showed type I sensitisation with IgE antibodies directed against respective workplace-specific enzymes. The highest sensitisation frequencies observed were for workers exposed enzymes derived from α-amylase (44%), followed by stainzyme (41%), pancreatinin (35%), savinase (31%), papain (31%), ovozyme (28%), phytase (16%), trypsin (15%) and lipase (4%). The highest individual antibody levels (up to 110 kU/L) were detected in workers exposed to phytase, xylanase and glucanase. In a subgroup comprising 134 workers, detailed clinical diagnostics confirmed work-related symptoms. There was a strong correlation (r=0.75, p<0.0001) between the symptoms and antibody levels. Workers with work-related respiratory symptoms showed a higher prevalence for the presence of specific IgE antibodies against workplace-specific enzymes than asymptomatic exposed workers (likelihood ratio 2.32, sensitivity 0.92, specificity 0.6). Our data confirm the previous findings showing that genetically engineered enzymes are potent allergens eliciting immediate-type sensitisation. Owing to lack of commercial diagnostic tests, few of those exposed receive regular surveillance including biomonitoring with relevant specific IgE assays. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Determining causes of genetic isolation in a large carnivore (Ursus americanus) population to direct contemporary conservation measures

    PubMed Central

    Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.

    2017-01-01

    The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement. PMID:28235066

  2. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants

    PubMed Central

    Pilling, Luke C.; Atkins, Janice L.; Bowman, Kirsty; Jones, Samuel E.; Tyrrell, Jessica; Beaumont, Robin N.; Ruth, Katherine S.; Tuke, Marcus A.; Yaghootkar, Hanieh; Wood, Andrew R.; Freathy, Rachel M.; Murray, Anna; Weedon, Michael N.; Xue, Luting; Lunetta, Kathryn; Murabito, Joanne M.; Harries, Lorna W.; Robine, Jean-Marie; Brayne, Carol; Kuchel, George A.; Ferrucci, Luigi; Frayling, Timothy M.; Melzer, David

    2016-01-01

    Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus (CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7×10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable. PMID:27015805

  3. Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy

    NASA Astrophysics Data System (ADS)

    Amiji, Mansoor M.

    2016-05-01

    Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.

  4. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review.

    PubMed

    Heitmann, Mareile; Zannini, Emanuele; Arendt, Elke

    2018-05-03

    Although bread making with the use of Baker's yeast has a long tradition in human history, little attention has been paid to the connection between yeast addition and the final bread quality. Nowadays, bakers mainly use different flour additives such as enzymes (amylases, hemicellulases, and proteases) to change and improve dough properties and/or bread quality. Another strategy is the use of modified industrial Baker's yeast. To date, there is no yeast strain used in the baking industry, which is genetically modified, despite some studies demonstrating that the application of recombinant DNA technology is a possibility for improved strains suitable for baking. However, due to the fact that the majority of consumers in Europe highly reject the use of genetically modified microorganisms in the production of food, other strategies to improve bread quality must be investigated. Such a strategy would be a reconsideration of the selection of yeast strains used for the baking process. Next to the common criteria, the requirement for adequate gas production, more attention should be paid on how yeast impacts flavor, shelf life, color, and the nutritional value of baked products, in a similar way to which yeast strains are selected in the wine and brewing industries.

  5. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  6. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    PubMed Central

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo FI; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-01-01

    Background Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. Results First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. Conclusion In this study, we demonstrate that genetically modified hMSC lines can survive in healthy rat spinal cord over at least 3 weeks by using adequate immune suppression and can serve as vehicles for transgene expression. However, before genetically modified hMSC can potentially be used in a clinical setting to treat spinal cord injuries, more research on standardisation of hMSC culture and genetic modification needs to be done in order to prevent tumour formation and transgene silencing in vivo. PMID:18078525

  7. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord.

    PubMed

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo Fi; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-12-14

    Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. In this study, we demonstrate that genetically modified hMSC lines can survive in healthy rat spinal cord over at least 3 weeks by using adequate immune suppression and can serve as vehicles for transgene expression. However, before genetically modified hMSC can potentially be used in a clinical setting to treat spinal cord injuries, more research on standardisation of hMSC culture and genetic modification needs to be done in order to prevent tumour formation and transgene silencing in vivo.

  8. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  9. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting.

    PubMed

    Zhao, Wei; Ware, Erin B; He, Zihuai; Kardia, Sharon L R; Faul, Jessica D; Smith, Jennifer A

    2017-09-29

    Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) ( p = 0.07).

  10. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting

    PubMed Central

    Zhao, Wei; He, Zihuai; Kardia, Sharon L. R.; Faul, Jessica D.

    2017-01-01

    Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) (p = 0.07). PMID:28961216

  11. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  12. Effect of hyperbaric oxygen on BDNF-release and neuroprotection: Investigations with human mesenchymal stem cells and genetically modified NIH3T3 fibroblasts as putative cell therapeutics.

    PubMed

    Schulze, Jennifer; Kaiser, Odett; Paasche, Gerrit; Lamm, Hans; Pich, Andreas; Hoffmann, Andrea; Lenarz, Thomas; Warnecke, Athanasia

    2017-01-01

    Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)-native and genetically modified) and MSCs were repeatedly (3 x - 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.

  13. EFSA's scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead.

    PubMed

    Devos, Yann; Aguilera, Jaime; Diveki, Zoltán; Gomes, Ana; Liu, Yi; Paoletti, Claudia; du Jardin, Patrick; Herman, Lieve; Perry, Joe N; Waigmann, Elisabeth

    2014-02-01

    Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.

  14. 40 CFR 172.45 - Requirement for a notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXPERIMENTAL USE PERMITS Notification for Certain Genetically Modified Microbial Pesticides § 172.45... modified. (2) Nonindigenous microbial pesticides that have not been acted upon by the U.S. Department of... introduction of genetic material that has been deliberately modified. (ii) [Reserved] (2) Testing conducted in...

  15. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    PubMed

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.

  16. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  17. Health risks of genetically modified foods.

    PubMed

    Dona, Artemis; Arvanitoyannis, Ioannis S

    2009-02-01

    As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.

  18. Proteomic evaluation of genetically modified crops: current status and challenges

    PubMed Central

    Gong, Chun Yan; Wang, Tai

    2013-01-01

    Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. “Omics” techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques. PMID:23471542

  19. Do genetically modified crops affect animal reproduction? A review of the ongoing debate.

    PubMed

    Zhang, W; Shi, F

    2011-05-01

    In the past few years, genetically modified (GM) crops aimed at producing food/feed that became part of the regular agriculture in many areas of the world. However, we are uncertain whether GM food and feed can exert potential adverse effects on humans or animals. Of importance, the reproductive toxicology of GM crops has been studied using a number of methods, and by feeding GM crops to a number species of animals to ensure the safety assessment of GM food and feed. It appears that there are no adverse effects of GM crops on many species of animals in acute and short-term feeding studies, but serious debates of effects of long-term and multigenerational feeding studies remain. The aims of this review are to focus on the latest (last 3 to 4 years) findings and debates on reproduction of male and female animals after feeding daily diets containing the GM crops, and to present the possible mechanism(s) to explain their influences.

  20. Prevalence of porcine endogenous retroviruses in domestic, minature, and genetically modified pigs in Japan.

    PubMed

    Fujimura, T; Miyagawa, S; Takahagi, Y; Shigehisa, T; Murakami, H

    2008-03-01

    The present study examined the prevalence of porcine endogenous retroviruses (PERV) in pigs available in Japan using polymerase chain reaction (PCR) with primers specific for PERV-A, PERV-B, and PERV-C and for the full-length 5' to 3' long terminal repeat and using PCR-Southern blotting with env A-, env B-, env C-, and pol/pro-specific probes. All 376 pigs tested--Berkshire (B), Landrace (L), Duroc (D), Large White (W), miniature, and genetically modified triple-cross breed (LWD)--harbored both PERV-A and PERV-B genes. However, the prevalence of PERV-C differed among pigs: LWD, miniature, B, D, W, and L pigs were 100% (36/36), 83% (5/6), 68% (129/191), 52% (26/50), 21% (9/43), and 16% (8/50), respectively. These results show that W and L pigs may be preferable as xenotransplantation donors, because they may not produce human-tropic replication-competent hybrids of PERV-A and PERV-C.

  1. Proteomic evaluation of genetically modified crops: current status and challenges.

    PubMed

    Gong, Chun Yan; Wang, Tai

    2013-01-01

    Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.

  2. Toxoplasmosis in Caribbean islands: Seroprevalence in pregnant women in ten countries, and isolation and report of new genetic types of Toxoplasma gondii from dogs from St. Kitts, West Indies

    USDA-ARS?s Scientific Manuscript database

    Little is known of clinical toxoplasmosis in humans and animals in the Caribbean countries. We investigated the prevalence of IgG and IgMantibodies in 437 pregnant women from 10 English speaking Caribbean countries. Antibodies (IgG) to T. gondii (modified agglutination test, MAT, cut-off 1:6) were f...

  3. Genetic basis, nutritional challenges and adaptive responses in the prenatal origin of obesity and type-2 diabetes.

    PubMed

    Gonzalez-Bulnes, Antonio; Ovilo, Cristina

    2012-03-01

    Obesity and type-2 diabetes are currently considered global pandemics. A large set of epidemiological evidences are addressing both the importance of a genetic predisposition -starting with the thrifty genotype hypothesis- and the determinant role of the maternal nutrition during pregnancy -starting with longitudinal studies of individuals born during the Dutch famine- on the adult onset of the disease. Compelling evidences suggest that both over- and undernutrition may modify the intrauterine environment of the conceptus and may alter the expression of its genome, predisposing to disease in the adult life. However, the most recent data indicate that the consequences of this phenomenon, termed as prenatal programming, are influenced both by timing, degree and duration of the challenge and by the adaptive response of the mother and the conceptus; thus, the information acquired by interventional studies modifying these parameters is becoming increasingly important. Obviously, interventional research in human beings is limited by ethical issues; hence, investigations need to be conducted on animal models, either rodents or large animals. This review summarizes the results of epidemiological human studies and translational animal research in unraveling the interaction between genome, nutritional status and adaptive response on the establishment of postnatal obesity, insulin resistance and type-2 diabetes. © 2012 Bentham Science Publishers

  4. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    PubMed Central

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N.; Moyes, Judy S.; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J.; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A.; Lee, Dean A.; Hackett, Perry B.; Champlin, Richard E.; Cooper, Laurence J.N.

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details. PMID:27482888

  5. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.

    PubMed

    Kebriaei, Partow; Singh, Harjeet; Huls, M Helen; Figliola, Matthew J; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J; Kumaresan, Pappanaicken R; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N; Moyes, Judy S; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A; Lee, Dean A; Hackett, Perry B; Champlin, Richard E; Cooper, Laurence J N

    2016-09-01

    T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.

  6. Network analyses reveal novel aspects of ALS pathogenesis.

    PubMed

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa

    2015-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.

  7. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  8. The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum) is a potential source of many bioactive components that can be found in its oil and fibers, but also in the seedcake, which is rich in antioxidants. To increase the levels of medically beneficial compounds, a genetically modified flax type (named GT) with an elevated level of phenylopropanoids and their glycoside derivatives was generated. In this study, we investigated the influence of GT seedcake extract preparations on human fibroblast proliferation and migration, and looked at the effect on a human skin model. Moreover, we verified its activity against bacteria of clinical relevance. Methods The GT flax used in this study is characterized by overexpression of the glucosyltransferase gene derived from Solanum sogarandinum. Five GT seedcake preparations were generated. Their composition was assessed using ultra pressure liquid chromatography and confirmed using the UPLC-QTOF method. For the in vitro evaluation, the influence of the GT seedcake preparations on normal human dermal fibroblast proliferation was assessed using the MTT test and the wound scratch assay. A human skin model was used to evaluate the potential for skin irritation. To assess the antimicrobial properties of GT preparations, the percentage of inhibition of bacterial growth was calculated. Results The GT seedcake extract had elevated levels of phenylopropanoid compounds in comparison to the control, non-transformed plants. Significant increases in the content of ferulic acid, p-coumaric acid and caffeic acid, and their glucoside derivatives, kaempferol, quercitin and secoisolariciresinol diglucoside (SDG) were observed in the seeds of the modified plants. The GT seedcake preparations were shown to promote the proliferation of normal human dermal fibroblasts and the migration of fibroblasts in the wound scratch assay. The superior effect of GT seedcake extract on fibroblast migration was observed after a 24-hour treatment. The skin irritation test indicated that GT seedcake preparations have no harmful effect on human skin. Moreover, GT seedcake preparations exhibited inhibitory properties toward two bacterial strains: Staphylococcus aureus and Escherichia coli. Conclusions We suggest that preparations derived from the new GT flax are an effective source of phenylopropanoids and that their glycoside derivatives and might be promising natural products with both healing and bacteriostatic effects. This flax-derived product is a good candidate for application in the repair and regeneration of human skin and might also be an alternative to antibiotic therapy for infected wounds. PMID:23228136

  9. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    USDA-ARS?s Scientific Manuscript database

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  10. Genetic variation in the functional ENG allele inherited from the non-affected parent associates with presence of pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia 1 (HHT1) and may influence expression of PTPN14.

    PubMed

    Letteboer, Tom G W; Benzinou, Michael; Merrick, Christopher B; Quigley, David A; Zhau, Kechen; Kim, Il-Jin; To, Minh D; Jablons, David M; van Amstel, Johannes K P; Westermann, Cornelius J J; Giraud, Sophie; Dupuis-Girod, Sophie; Lesca, Gaetan; Berg, Jonathan H; Balmain, Allan; Akhurst, Rosemary J

    2015-01-01

    HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.

  11. Runaway cultural niche construction

    PubMed Central

    Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.

    2011-01-01

    Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897

  12. Social Regulation of Human Gene Expression: Mechanisms and Implications for Public Health

    PubMed Central

    2013-01-01

    Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific “social programs” to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health. PMID:23927506

  13. Identification of Associations Between Genetic Factors and Asthma that are Modified by Obesity

    DTIC Science & Technology

    2016-06-01

    AFRL-SA-WP-TR-2016-0010 Identification of Associations Between Genetic Factors and Asthma That Are Modified by Obesity Andrew T...Between Genetic Factors and Asthma That Are Modified by Obesity 5a. CONTRACT NUMBER FA8650-13-2-6371 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...among African American women in the Women’s Health Initiative study. 15. SUBJECT TERMS Body mass index, SNP, asthma, obesity , genome, genes 16

  14. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  15. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However,more » 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.« less

  16. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice

    DOE PAGES

    Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong; ...

    2015-11-09

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However,more » 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.« less

  17. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    PubMed

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Human Cancer Xenografts in Outbred Nude Mice Can Be Confounded by Polymorphisms in a Modifier of Tumorigenesis

    PubMed Central

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R.; Parelkar, Nikhil K.; Jokar, Iman; Vielhauer, George A.; Neufeld, Kristi L.

    2014-01-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies. PMID:24913681

  19. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA.

    PubMed

    Yang, Chen-Cheng; Chuang, Chih-Shien; Lin, Chia-I; Wang, Chao-Ling; Huang, Yung-Cheng; Chuang, Hung-Yi

    Lead in blood can stimulate lipid oxidation in phosphatidylcholine and increase peroxidation in lipids. Metallothionein (MT) is a cysteine-rich protein that can influence the detoxification of heavy metals and scavenge oxidative stress for free radicals. One of the most expressive functional genes in humans is the MT2A gene. This study aims to determine if the association of the blood lead level and lipid biomarkers was influenced by MT2A polymorphisms. We recruited 677 participants after informed consent was obtained. All the samples collected were analyzed for lipid biomarkers and blood lead levels and were genotyped for MT2A polymorphisms by reverse transcription polymerase chain reaction. A short questionnaire collected the medical history and alcohol and cigarette consumption information. The data were used for descriptive analyses and linear regression models. The investigation revealed that lead elevated concentration increased low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol (HDL-C) by multiple linear models. The carriers of the rs10636 GC-rs28366003 AA genetic combination may be less susceptive to lead elevated concentration on HDL-C than other types. In conclusion, the association of the blood lead level and HDL-C may be modified by the MT2A genetic combination: the rs10636 GC-rs28366003 AA genotype could play a protective role in lead elevated concentration on HDL-C in humans. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  20. RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans

    PubMed Central

    Puca, Annibale; Solovieff, Nadia; Kojima, Toshio; Wang, Meng C.; Melista, Efthymia; Meltzer, Micah; Fischer, Sylvia E. J.; Andersen, Stacy; Hartley, Stephen H.; Sedgewick, Amanda; Arai, Yasumichi; Bergman, Aviv; Barzilai, Nir; Terry, Dellara F.; Riva, Alberto; Anselmi, Chiara Viviani; Malovini, Alberto; Kitamoto, Aya; Sawabe, Motoji; Arai, Tomio; Gondo, Yasuyuki; Steinberg, Martin H.; Hirose, Nobuyoshi; Atzmon, Gil; Ruvkun, Gary; Baldwin, Clinton T.; Perls, Thomas T.

    2009-01-01

    Background The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered. Methodology/Principal Findings Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function. Conclusions/Significance Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan. PMID:20011587

  1. [Impacts of genetically modified soybean leaf residues on Folsomia candida.

    PubMed

    Zhou, Lin; Wang, Bai Feng; Liu, Xin Ying; Jiang, Ying; Wang, Da Ming; Feng, Shu Dan; Song, Xin Yuan

    2016-09-01

    When the genetically modified soybean is planted in the field, the expression product of exogenous gene could be exposed in the soil ecosystem and bring potential risk to the soil fauna, with the form of leaves and other debris. A few of genetically modified soybeans developed by China independently were used in our study as materials. They were Phytophthora-resistant soybean harboring hrpZm gene (B4J8049), leaf-feeding insect-resistant soybean harboring Cry1C gene (A2A8001) and Leguminivora glycinivorella-resistant soybean harboring Cry1Iem gene (C802). By feeding Folsomia candida with the three genetically modified soybeans for continuous 60 days, the surviving rate, reproductive rate and changes on the body length of F. candida were studied. The results showed that all the three genetically modified soybeans of B4J8049, A2A8001 and C802 had no significant adverse effects on the growth of F. candida, as an environmental indicator organism. It was initially inferred that they were environmentally safe under short-term exposure, which provided basic data of ecological safety for their wide cultivation.

  2. Genetic basis and detection of unintended effects in genetically modified crop plants

    USDA-ARS?s Scientific Manuscript database

    In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 s...

  3. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...

  4. Genetic mouse models of brain ageing and Alzheimer's disease.

    PubMed

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    PubMed Central

    Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.

    2016-01-01

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  6. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  7. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  8. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  10. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    PubMed

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  11. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  12. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    PubMed

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  13. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  14. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods

    ERIC Educational Resources Information Center

    Heddy, Benjamin C.; Danielson, Robert W.; Sinatra, Gale M.; Graham, Jesse

    2017-01-01

    The purpose of this study was to explore whether conceptual change predicted emotional and attitudinal change while learning about genetically modified foods (GMFs). Participants were 322 college students; half read a refutation text designed to shift conceptual knowledge, emotions, and attitudes, while the other half served as a control group.…

  15. Modifier genes in Mendelian disorders: the example of cystic fibrosis

    PubMed Central

    Cutting, Garry R.

    2011-01-01

    In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention. PMID:21175684

  16. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    EPA Science Inventory

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  17. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. 'Knock, and it shall be opened': knocking out and knocking in to reveal mechanisms of disease and novel therapies.

    PubMed

    Hacking, Douglas F

    2008-12-01

    Recent significant advances in molecular biology have generated genetically modified bacteria, yeast, nematodes, fruit flies, and fish. However, it is the genetic modification of mammalian model organisms, particularly the mouse, that has the greatest potential to shed light on human development, physiology and pathology in ways that have significant implications for neonatal and paediatric clinical practice. Here, we review some of the techniques for knocking out (inactivating), mutating and knocking in (inserting) selected genes that are important to neonatology and show how this research will lead both to a better understanding of disease and to novel therapies for infants and children.

  19. A review of standardized metabolic phenotyping of animal models.

    PubMed

    Rozman, Jan; Klingenspor, Martin; Hrabě de Angelis, Martin

    2014-10-01

    Metabolic phenotyping of genetically modified animals aims to detect new candidate genes and related metabolic pathways that result in dysfunctional energy balance regulation and predispose for diseases such as obesity or type 2 diabetes mellitus. In this review, we provide a comprehensive overview on the technologies available to monitor energy flux (food uptake, bomb calorimetry of feces and food, and indirect calorimetry) and body composition (qNMR, DXA, and MRI) in animal models for human diseases with a special focus on phenotyping methods established in genetically engineered mice. We use an energy flux model to illustrate the principles of energy allocation, describe methodological aspects how to monitor energy balance, and introduce strategies for data analysis and presentation.

  20. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    PubMed Central

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  1. 40 CFR 158.2100 - Microbial pesticides definition and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to which the organism has been genetically modified. (4) Pest control organisms such as insect... and supported by data required in this subpart. (3) Genetically modified microbial pesticides may be...

  2. Genetic screens in human cells using the CRISPR-Cas9 system.

    PubMed

    Wang, Tim; Wei, Jenny J; Sabatini, David M; Lander, Eric S

    2014-01-03

    The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

  3. [Genetically modified food and allergies - an update].

    PubMed

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  4. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-07-14

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results from the tests of interest.

  5. Many human accelerated regions are developmental enhancers

    PubMed Central

    Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.

    2013-01-01

    The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637

  6. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency.

    PubMed

    Montalbano, Antonino; Juergensen, Lonny; Roeth, Ralph; Weiss, Birgit; Fukami, Maki; Fricke-Otto, Susanne; Binder, Gerhard; Ogata, Tsutomu; Decker, Eva; Nuernberg, Gudrun; Hassel, David; Rappold, Gudrun A

    2016-12-01

    Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    PubMed

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  8. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating

    USDA-ARS?s Scientific Manuscript database

    Cottonseed meal (CSM) proteins from genetically-improved (glandless) seed (GI-CSM, 52.1% crude protein, CP), genetically-modified low-gossypol seed (GMO-CSM, 56.0% CP) and from an untreated regular (glanded) seed (R-CSM 49.9% CP) were evaluated to replace fish meal (FM) protein (59.5% CP) in juvenil...

  9. Novel whole blood assay for phenotyping platelet reactivity in mice identifies ICAM-1 as a mediator of platelet-monocyte interaction

    PubMed Central

    Kirkby, Nicholas S.; Chan, Melissa V.; Finsterbusch, Michaela; Hogg, Nancy; Nourshargh, Sussan; Warner, Timothy D.

    2015-01-01

    Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area. To address this problem, we have developed a miniaturized whole blood aggregometry assay, based on a readily accessible 96-well plate format coupled with quantification of single platelet depletion by flow cytometric analysis. Using this approach, we observed a concentration-dependent loss of single platelets in blood exposed to arachidonic acid, collagen, U46619 or protease activated receptor 4 activating peptide. This loss was sensitive to well-established antiplatelet agents and genetic manipulation of platelet activation pathways. Observations were more deeply analyzed by flow cytometric imaging, confocal imaging, and measurement of platelet releasates. Phenotypic analysis of the reactivity of platelets taken from mice lacking intercellular adhesion molecule (ICAM)-1 identified a marked decrease in fibrinogen-dependent platelet-monocyte interactions, especially under inflammatory conditions. Such findings exemplify the value of screening platelet phenotypes of genetically modified mice and shed further light upon the roles and interactions of platelets in inflammation. PMID:26215112

  10. [Nutritional genomics: an approach to the genome-environment interaction].

    PubMed

    Xacur-García, Fiona; Castillo-Quan, Jorge I; Hernández-Escalante, Víctor M; Laviada-Molina, Hugo

    2008-11-01

    Nutritional genomics forms part of the genomic sciences and addresses the interaction between genes and the human diet, its influence on metabolism and subsequent susceptibility to develop common diseases. It encompasses both nutrigenomics, which explores the effects of nutrients on the genome, proteome and metabolome; and nutrigenetics, that explores the effects of genetic variations on the diet/disease interaction. A number of mechanisms drive the gene/diet interaction: elements in the diet can act as links for transcription factor receptors and after intermediary concentrations, thereby modifying chromatin and impacting genetic regulation; affect signal pathways, regulating phosphorylation of tyrosine in receptors; decrease signaling through the inositol pathway; and act through epigenetic mechanisms, silencing DNA fragments by methylation of cytosine. The signals generated by polyunsaturated fatty acids are so powerful that they can even bypass insulin mediated lipogenesis, stimulated by carbohydrates. Some fatty acids modify the expression of genes that participate in fatty acid transport by lipoproteins. Nutritional genomics has myriad possible therapeutic and preventive applications: in patients with enzymatic deficiencies; in those with a genetic predisposition to complex diseases such as dyslipidemia, diabetes and cancer; in those that already suffer these diseases; in those with altered mood or memory; during the aging process; in pregnant women; and as a preventive measure in the healthy population.

  11. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  12. Systematic Analysis of the Genetic Variability That Impacts SUMO Conjugation and Their Involvement in Human Diseases

    NASA Astrophysics Data System (ADS)

    Xu, Hao-Dong; Shi, Shao-Ping; Chen, Xiang; Qiu, Jian-Ding

    2015-07-01

    Protein function has been observed to rely on select essential sites instead of requiring all sites to be indispensable. Small ubiquitin-related modifier (SUMO) conjugation or sumoylation, which is a highly dynamic reversible process and its outcomes are extremely diverse, ranging from changes in localization to altered activity and, in some cases, stability of the modified, has shown to be especially valuable in cellular biology. Motivated by the significance of SUMO conjugation in biological processes, we report here on the first exploratory assessment whether sumoylation related genetic variability impacts protein functions as well as the occurrence of diseases related to SUMO. Here, we defined the SUMOAMVR as sumoylation related amino acid variations that affect sumoylation sites or enzymes involved in the process of connectivity, and categorized four types of potential SUMOAMVRs. We detected that 17.13% of amino acid variations are potential SUMOAMVRs and 4.83% of disease mutations could lead to SUMOAMVR with our system. More interestingly, the statistical analysis demonstrates that the amino acid variations that directly create new potential lysine sumoylation sites are more likely to cause diseases. It can be anticipated that our method can provide more instructive guidance to identify the mechanisms of genetic diseases.

  13. Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype

    PubMed Central

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165

  14. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  15. Genetically Modified Crops and Nuisance: Exploring the Role of Precaution in Private Law

    ERIC Educational Resources Information Center

    Craik, Neil; Culver, Keith; Siebrasse, Norman

    2007-01-01

    This article critically considers calls for the precautionary principle to inform judicial decision making in a private law context in light of the Hoffman litigation, where it is alleged that the potential for genetic contamination from genetically modified (GM) crops causes an unreasonable interference with the rights of organic farmers to use…

  16. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  17. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  20. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  1. The Intestinal Microbiome and Health

    PubMed Central

    Tuddenham, Susan; Sears, Cynthia L.

    2015-01-01

    Purpose of Review A diverse array of microbes colonizes the human intestine. In this review we seek to outline the current state of knowledge on what characterizes a “healthy” or “normal” intestinal microbiome, what factors modify the intestinal microbiome in the healthy state and how the intestinal microbiome affects normal host physiology Recent Findings What constitutes a “normal” or “healthy” intestinal microbiome is an area of active research, but key characteristics may include diversity, richness and a microbial community’s resilience and ability to resist change. A number of factors, including age, the host immune system, host genetics, diet and antibiotic use appear to modify the intestinal microbiome in the normal state. New research shows that the microbiome likely plays a critical role in the healthy human immune system and metabolism. Summary It is clear that there is a complicated bi-directional relationship between the intestinal microbiota and host which is vital to health. An enhanced understanding of this relationship will be critical not only to maximize and maintain human health but also to shape our understanding of disease and to foster new therapeutic approaches. PMID:26237547

  2. The Effect of PCDH15 Gene Variations on the Risk of Noise-induced Hearing Loss in a Chinese Population.

    PubMed

    Xu, Xiang Rong; Wang, Jing Jing; Yang, Qiu Yue; Jiao, Jie; He, Li Hua; Yu, Shan Fa; Gu, Gui Zhen; Chen, Guo Shun; Zhou, Wen Hui; Wu, Hui; Li, Yan Hong; Zhang, Huan Ling; Zhang, Zeng Rui; Jin, Xian Ning

    2017-02-01

    Noise-induced hearing loss (NIHL) is a complex disease caused by interactions between environmental and genetic factors. This study investigated whether genetic variability in protocadherin related 15 (PCDH15) underlies an increased susceptibility to the development of NIHL in a Chinese population. The results showed that compared with the TT genotype of rs11004085, CT/CC genotypes were associated with an increased risk of NIHL [adjusted odds ratio (OR) = 2.64; 95% confidence interval (CI): 1.14-6.11, P = 0.024]. Additionally, significant interactions between the rs11004085 and rs978842 genetic variations and noise exposure were observed in the high-level exposure groups (P < 0.05). Furthermore, the risk haplotype TAGCC was observed when combined with higher levels of noise exposure (P < 0.05). Thus, our study confirms that genetic variations in PCDH15 modify the susceptibility to NIHL development in humans. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Generation of improved humanized mouse models for human infectious diseases

    PubMed Central

    Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.

    2014-01-01

    The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

  4. Biosafety management and commercial use of genetically modified crops in China.

    PubMed

    Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming

    2014-04-01

    As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.

  5. Regulated Apoptosis of Genetically-Modified Hematopoietic Stem and Progenitor Cells via an Inducible Caspase-9 Suicide Gene in Rhesus Macaques

    PubMed Central

    Barese, Cecilia N.; Felizardo, Tania C.; Sellers, Stephanie E.; Keyvanfar, Keyvan; Di Stasi, Antonio; Metzger, Mark E.; Krouse, Allen E.; Donahue, Robert E.; Spencer, David M.; Dunbar, Cynthia E.

    2014-01-01

    The high risk of insertional oncogenesis reported in clinical trials utilizing integrating retroviral vectors to genetically-modify hematopoietic stem and progenitor cells (HSPC) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of “suicide genes” in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the “inducible Caspase-9” (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75–94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches utilizing iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development. PMID:25330775

  6. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy.

    PubMed

    Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian

    2002-11-01

    Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.

  7. Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation.

    PubMed

    Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel

    2015-12-01

    It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.

  8. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  9. Human genetic susceptibility and infection with Leishmania peruviana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, M.A.; Davis, C.R.; Collins, A.

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less

  10. USEPA Resistance Management Research

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  12. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  13. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  14. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  15. Histone Code Modulation by Oncogenic PWWP-domain Protein in Breast Cancers

    DTIC Science & Technology

    2012-06-01

    imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 2000; 156: 645-663. [10] Zeng J, Ge Z, Wang...in breast cancer patients. Earlier, we used genomic analysis of copy number and gene expression to perform a detailed analysis of the 8p11-12...1 Figure 1. Representative view of ChIP-seq peak of a histone modifying factor at the UBR2V2 genomic locus in the

  16. Targeting One-Carbon Metabolism in Breast Cancer

    DTIC Science & Technology

    2014-04-01

    14.42 - α-lactose 8.63 both sorbitol 6-phosphate 16.90 both α-mannose 1-phosphate 10.98 - succinate 16.20 - taurine 14.85 - threonine 14.26 both 10...OGT) as a donor substrate to modify proteins via covalent attachment of GlcNAc to serine and/or threonine residues (Ma and Vosseller, 2013). Of...gene and association studies with diabetes and diabetic nephropathy. Mol Genet Metab 82, 321–328. Elenbaas, B. (2001). Human breast cancer cells

  17. Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study.

    PubMed

    Chen, Xin; Gao, Ming-Qing; Liang, Dong; Yin, Songna; Yao, Kezhen; Zhang, Yong

    2017-02-01

    In recent years, transgenic technology has been widely applied in many fields. There is concern about the safety of genetically modified (GM) products with the increased prevalence of GM products. In order to prevent mastitis in dairy cows, our group produced transgenic cattle expressing human beta-defensin-3 (HBD3) in their mammary glands, which confers resistance to the bacteria that cause mastitis. The milk derived from these transgenic cattle thus contained HBD3. The objective of the present study was to analyze the nutritional composition of HBD3 milk and conduct a 90-day feeding study on rats. Rats were divided into 5 groups which consumed either an AIN93G diet (growth purified diet for rodents recommended by the American Institute of Nutrition) with the addition of 10% or 30% HBD3 milk, an AIN93G diet with the addition of 10% or 30% conventional milk, or an AIN93G diet alone. The results showed that there was no difference in the nutritional composition of HBD3 and conventional milk. Furthermore, body weight, food consumption, blood biochemistry, relative organ weight, and histopathology were normal in those rats that consumed diets containing HBD3. No adverse effects were observed between groups that could be attributed to varying diets or gender. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model.

    PubMed

    Mirzaei, Hamed; Salehi, Hossein; Oskuee, Reza Kazemi; Mohammadpour, Ali; Mirzaei, Hamid Reza; Sharifi, Mohammad Reza; Salarinia, Reza; Darani, Hossein Yousofi; Mokhtari, Mojgan; Masoudifar, Aria; Sahebkar, Amirhossein; Salehi, Rasoul; Jaafari, Mahmoud Reza

    2018-04-10

    Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseva, Daria; Hannover Medical School, Hannover; Rizvanov, Albert A.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignantmore » transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.« less

  20. A chimeric switch-receptor targeting PD1 augments the efficacy of second generation CAR T-Cells in advanced solid tumors

    PubMed Central

    Liu, Xiaojun; Ranganathan, Raghuveer; Jiang, Shuguang; Fang, Chongyun; Sun, Jing; Kim, Soyeon; Newick, Kheng; Lo, Albert; June, Carl H.; Zhao, Yangbing; Moon, Edmund K.

    2015-01-01

    Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy (ATC) has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally-occurring and genetically-modified tumor infiltrating lymphocytes (TILs) by inhibitory receptors (IRs), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T cell activity against solid tumors. To address this possibility, we introduced a genetically-engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T-cells. We tested the effect of this supplement, “PD1CD28”, on human CAR T-cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T-cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared to treatments with CAR T-cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality. PMID:26979791

  1. Are good ideas enough? The impact of socio-economic and regulatory factors on GMO commercialisation.

    PubMed

    Vàzquez-Salat, Núria

    2013-01-01

    In recent years scientific literature has seen an increase in publications describing new transgenic applications. Although technically-sound, these promising developments might not necessarily translate into products available to the consumer. This article highlights the impact of external factors on the commercial viability of Genetically Modified (GM) animals in the pharmaceutical and food sectors. Through the division of the production chain into three Policy Domains -Science, Market and Public- I present an overview of the broad range of regulatory and socio-economic components that impacts on the path towards commercialisation of GM animals. To further illustrate the unique combination of forces that influence each application, I provide an in-depth analysis of two real cases: GM rabbits producing human polyclonal antibodies (pharmaceutical case study) and GM cows producing recombinant human lactoferrin (food case study). The inability to generalise over the commercial success of a given transgenic application should encourage researchers to perform these type of exercises early in the R & D process. Furthermore, through the analysis of these case studies we can observe a change in the biopolitics of Genetically Modified Organisms (GMOs). Contrary to the GM plant biopolitical landscape, developing states such as China and Argentina are placing themselves as global leaders in GM animals. The pro-GM attitude of these states is likely to cause a shift in the political evolution of global GMO governance.

  2. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  3. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    PubMed

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  4. [Plant genetic engineering in Monsanto company: from the first laboratory experiments to worldwide practical use].

    PubMed

    Konov, A L; Velchev, M; Parcel, D

    2005-01-01

    The history of modern biotechnology of agricultural plants is briefly considered in the article. Methods of genetic transformation and regeneration of transgenic plants as well as the mechanisms of resistance of genetically modified plants to herbicides and pests are discussed. By the example of genetically modified varieties and hybrids there are shown the ways of solving the problem of weeds and pests. The questions of biosafety legislation in different countries are considered.

  5. Germline modification of domestic animals

    PubMed Central

    Tang, L.; González, R.; Dobrinski, I.

    2016-01-01

    Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591

  6. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  7. Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors

    PubMed Central

    Douin, Victorine; Bornes, Stephanie; Creancier, Laurent; Rochaix, Philippe; Favre, Gilles; Prats, Anne-Catherine; Couderc, Bettina

    2004-01-01

    Background Polycistronic retroviral vectors that contain several therapeutic genes linked via internal ribosome entry sites (IRES), provide new and effective tools for the co-expression of exogenous cDNAs in clinical gene therapy protocols. For example, tricistronic retroviral vectors could be used to genetically modify antigen presenting cells, enabling them to express different co-stimulatory molecules known to enhance tumor cell immunogenicity. Results We have constructed and compared different retroviral vectors containing two co-stimulatory molecules (CD70, CD80) and selectable marker genes linked to different IRES sequences (IRES from EMCV, c-myc, FGF-2 and HTLV-1). The tricistronic recombinant amphotropic viruses containing the IRES from EMCV, FGF-2 or HTLV-1 were equally efficient in inducing the expression of an exogenous gene in the transduced murine or human cells, without displaying any cell type specificity. The simultaneous presence of several IRESes on the same mRNA, however, can induce the differential expression of the various cistrons. Here we show that the IRESes of HTLV-1 and EMCV interfere with the translation induced by other IRESes in mouse melanoma cells. The IRES from FGF-2 did however induce the expression of exogenous cDNA in human melanoma cells without any positive or negative regulation from the other IRESs present within the vectors. Tumor cells that were genetically modified with the tricistronic retroviral vectors, were able to induce an in vivo anti-tumor immune response in murine models. Conclusion Translation of the exogenous gene is directed by the IRES and its high level of expression not only depends on the type of cell that is transduced but also on the presence of other genetic elements within the vector. PMID:15279677

  8. Exploring the relationship between α-actinin-3 deficiency and obesity in mice and humans.

    PubMed

    Houweling, P J; Berman, Y D; Turner, N; Quinlan, K G R; Seto, J T; Yang, N; Lek, M; Macarthur, D G; Cooney, G; North, K N

    2017-07-01

    Obesity is a worldwide health crisis, and the identification of genetic modifiers of weight gain is crucial in understanding this complex disorder. A common null polymorphism in the fast fiber-specific gene ACTN3 (R577X) is known to influence skeletal muscle function and metabolism. α-Actinin-3 deficiency occurs in an estimated 1.5 billion people worldwide, and results in reduced muscle strength and a shift towards a more efficient oxidative metabolism. The X-allele has undergone strong positive selection during recent human evolution, and in this study, we sought to determine whether ACTN3 genotype influences weight gain and obesity in mice and humans. An Actn3 KO mouse has been generated on two genetic backgrounds (129X1/SvJ and C57BL/6J) and fed a high-fat diet (HFD, 45% calories from fat). Anthropomorphic features (including body weight) were examined and show that Actn3 KO 129X1/SvJ mice gained less weight compared to WT. In addition, six independent human cohorts were genotyped for ACTN3 R577X (Rs1815739) and body mass index (BMI), waist-to-hip ratio-adjusted BMI (WHRadjBMI) and obesity-related traits were assessed. In humans, ACTN3 genotype alone does not contribute to alterations in BMI or obesity.

  9. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  10. Disrupted dispersal and its genetic consequences: Comparing protected and threatened baboon populations (Papio papio) in West Africa.

    PubMed

    Ferreira da Silva, Maria Joana; Kopp, Gisela H; Casanova, Catarina; Godinho, Raquel; Minhós, Tânia; Sá, Rui; Zinner, Dietmar; Bruford, Michael W

    2018-01-01

    Dispersal is a demographic process that can potentially counterbalance the negative impacts of anthropogenic habitat fragmentation. However, mechanisms of dispersal may become modified in populations living in human-dominated habitats. Here, we investigated dispersal in Guinea baboons (Papio papio) in areas with contrasting levels of anthropogenic fragmentation, as a case study. Using molecular data, we compared the direction and extent of sex-biased gene flow in two baboon populations: from Guinea-Bissau (GB, fragmented distribution, human-dominated habitat) and Senegal (SEN, continuous distribution, protected area). Individual-based Bayesian clustering, spatial autocorrelation, assignment tests and migrant identification suggested female-mediated gene flow at a large spatial scale for GB with evidence of contact between genetically differentiated males at one locality, which could be interpreted as male-mediated gene flow in southern GB. Gene flow was also found to be female-biased in SEN for a smaller scale. However, in the southwest coastal part of GB, at the same geographic scale as SEN, no sex-biased dispersal was detected and a modest or recent restriction in GB female dispersal seems to have occurred. This population-specific variation in dispersal is attributed to behavioural responses to human activity in GB. Our study highlights the importance of considering the genetic consequences of disrupted dispersal patterns as an additional impact of anthropogenic habitat fragmentation and is potentially relevant to the conservation of many species inhabiting human-dominated environments.

  11. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  12. Biodiversity and emerging diseases.

    PubMed

    Maillard, Jean-Charles; Gonzalez, Jean-Paul

    2006-10-01

    First we remind general considerations concerning biodiversity on earth and particularly the loss of genetic biodiversity that seems irreversible whether its origin is directly or indirectly linked to human activities. Urgent and considerable efforts must be made from now on to cataloge, understand, preserve, and enhance the value of biodiversity while ensuring food safety and human and animal health. Ambitious integrated and multifield research programs must be implemented in order to understand the causes and anticipate the consequences of loss of biodiversity. Such losses are a serious threat to sustainable development and to the quality of life of future generations. They have an influence on the natural balance of global biodiversity in particularly in reducing the capability of species to adapt rapidly by genetic mutations to survive in modified ecosystems. Usually, the natural immune systems of mammals (both human and animal), are highly polymorphic and able to adapt rapidly to new situations. We more specifically discuss the fact that if the genetic diversity of the affected populations is low the invading microorganisms, will suddenly expand and create epidemic outbreaks with risks of pandemic. So biodiversity appears to function as an important barrier (buffer), especially against disease-causing organisms, which can function in different ways. Finally, we discuss the importance of preserving biodiversity mainly in the wildlife ecosystems as an integrated and sustainable approach among others in order to prevent and control the emergence or reemergence of diseases in animals and humans (zoonosis). Although plants are also part of this paradigm, they fall outside our field of study.

  13. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.

    PubMed

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-08-22

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

  14. The production of multi-transgenic pigs: update and perspectives for xenotransplantation.

    PubMed

    Niemann, Heiner; Petersen, Bjoern

    2016-06-01

    The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.

  15. Resistance Management Research for PIP Crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  16. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2010-10-01

    selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic

  17. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood.

    PubMed

    Huls, M Helen; Figliola, Matthew J; Dawson, Margaret J; Olivares, Simon; Kebriaei, Partow; Shpall, Elizabeth J; Champlin, Richard E; Singh, Harjeet; Cooper, Laurence J N

    2013-02-01

    The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR(1-3). This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10(th) the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application(4-8). Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2(nd) generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats(9-11). To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)(12). In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR(+) T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-21(13). Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.

  18. Driving CAR-Based T-Cell Therapy to Success

    PubMed Central

    Jena, Bipulendu; Moyes, Judy S; Huls, Helen; Cooper, Laurence JN

    2014-01-01

    T-cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T-cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR+ T-cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR+ T-cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T-cells. This review focusses on recent advances regarding the human application of C19-specific CAR+ T-cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies. PMID:24488441

  19. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    PubMed

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Population and allelic variation of A-to-I RNA editing in human transcriptomes.

    PubMed

    Park, Eddie; Guo, Jiguang; Shen, Shihao; Demirdjian, Levon; Wu, Ying Nian; Lin, Lan; Xing, Yi

    2017-07-28

    A-to-I RNA editing is an important step in RNA processing in which specific adenosines in some RNA molecules are post-transcriptionally modified to inosines. RNA editing has emerged as a widespread mechanism for generating transcriptome diversity. However, there remain significant knowledge gaps about the variation and function of RNA editing. In order to determine the influence of genetic variation on A-to-I RNA editing, we integrate genomic and transcriptomic data from 445 human lymphoblastoid cell lines by combining an RNA editing QTL (edQTL) analysis with an allele-specific RNA editing (ASED) analysis. We identify 1054 RNA editing events associated with cis genetic polymorphisms. Additionally, we find that a subset of these polymorphisms is linked to genome-wide association study signals of complex traits or diseases. Finally, compared to random cis polymorphisms, polymorphisms associated with RNA editing variation are located closer spatially to their respective editing sites and have a more pronounced impact on RNA secondary structure. Our study reveals widespread cis variation in RNA editing among genetically distinct individuals and sheds light on possible phenotypic consequences of such variation on complex traits and diseases.

  1. Variable continental distribution of polymorphisms in the coding regions of DNA-repair genes.

    PubMed

    Mathonnet, Géraldine; Labuda, Damian; Meloche, Caroline; Wambach, Tina; Krajinovic, Maja; Sinnett, Daniel

    2003-01-01

    DNA-repair pathways are critical for maintaining the integrity of the genetic material by protecting against mutations due to exposure-induced damages or replication errors. Polymorphisms in the corresponding genes may be relevant in genetic epidemiology by modifying individual cancer susceptibility or therapeutic response. We report data on the population distribution of potentially functional variants in XRCC1, APEX1, ERCC2, ERCC4, hMLH1, and hMSH3 genes among groups representing individuals of European, Middle Eastern, African, Southeast Asian and North American descent. The data indicate little interpopulation differentiation in some of these polymorphisms and typical FST values ranging from 10 to 17% at others. Low FST was observed in APEX1 and hMSH3 exon 23 in spite of their relatively high minor allele frequencies, which could suggest the effect of balancing selection. In XRCC1, hMSH3 exon 21 and hMLH1 Africa clusters either with Middle East and Europe or with Southeast Asia, which could be related to the demographic history of human populations, whereby human migrations and genetic drift rather than selection would account for the observed differences.

  2. Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators.

    PubMed

    Jamsai, Duangporn; O'Bryan, Moira K

    2010-06-01

    The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.

  3. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy.

    PubMed

    Yu, Hong-Hao; Zhao, Heng; Qing, Yu-Bo; Pan, Wei-Rong; Jia, Bao-Yu; Zhao, Hong-Ye; Huang, Xing-Xu; Wei, Hong-Jiang

    2016-10-09

    Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD . Two piglets were obtained after embryo transfer, one of piglets was identified as DMD -modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD -modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD -modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.

  4. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  5. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  6. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  7. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes

    PubMed Central

    Froese, D. Sean; Gravel, Roy A.

    2010-01-01

    Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891

  8. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.

    PubMed

    Podevin, Nancy; Davies, Howard V; Hartung, Frank; Nogué, Fabien; Casacuberta, Josep M

    2013-06-01

    Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  10. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  11. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  12. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury

    PubMed Central

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C.; Warner, James L.; Vo, Andy H.; Hadhazy, Michele; Demonbreun, Alexis R.; Spencer, Melissa J.; McNally, Elizabeth M.

    2017-01-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy. PMID:29065150

  13. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

    PubMed

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C; Warner, James L; Vo, Andy H; Earley, Judy U; Hadhazy, Michele; Demonbreun, Alexis R; Spencer, Melissa J; McNally, Elizabeth M

    2017-10-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

  14. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis.

    PubMed

    Alberts, Rudi; de Vries, Elisabeth M G; Goode, Elizabeth C; Jiang, Xiaojun; Sampaziotis, Fotis; Rombouts, Krista; Böttcher, Katrin; Folseraas, Trine; Weismüller, Tobias J; Mason, Andrew L; Wang, Weiwei; Alexander, Graeme; Alvaro, Domenico; Bergquist, Annika; Björkström, Niklas K; Beuers, Ulrich; Björnsson, Einar; Boberg, Kirsten Muri; Bowlus, Christopher L; Bragazzi, Maria C; Carbone, Marco; Chazouillères, Olivier; Cheung, Angela; Dalekos, Georgios; Eaton, John; Eksteen, Bertus; Ellinghaus, David; Färkkilä, Martti; Festen, Eleonora A M; Floreani, Annarosa; Franceschet, Irene; Gotthardt, Daniel Nils; Hirschfield, Gideon M; Hoek, Bart van; Holm, Kristian; Hohenester, Simon; Hov, Johannes Roksund; Imhann, Floris; Invernizzi, Pietro; Juran, Brian D; Lenzen, Henrike; Lieb, Wolfgang; Liu, Jimmy Z; Marschall, Hanns-Ulrich; Marzioni, Marco; Melum, Espen; Milkiewicz, Piotr; Müller, Tobias; Pares, Albert; Rupp, Christian; Rust, Christian; Sandford, Richard N; Schramm, Christoph; Schreiber, Stefan; Schrumpf, Erik; Silverberg, Mark S; Srivastava, Brijesh; Sterneck, Martina; Teufel, Andreas; Vallier, Ludovic; Verheij, Joanne; Vila, Arnau Vich; Vries, Boudewijn de; Zachou, Kalliopi; Chapman, Roger W; Manns, Michael P; Pinzani, Massimo; Rushbrook, Simon M; Lazaridis, Konstantinos N; Franke, Andre; Anderson, Carl A; Karlsen, Tom H; Ponsioen, Cyriel Y; Weersma, Rinse K

    2017-08-04

    Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9 ). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3 , we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  16. Drosophila as a screening tool to study human neurodegenerative diseases.

    PubMed

    Lenz, Sarah; Karsten, Peter; Schulz, Jörg B; Voigt, Aaron

    2013-11-01

    In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large-scale and genome-wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases. © 2013 International Society for Neurochemistry.

  17. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Yvon, Eric; Louis, Chrystal U; Perlaky, Laszlo; Wels, Winfried S; Dishop, Meghan K; Kleinerman, Eugenie E; Pule, Martin; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2009-10-01

    Human epidermal growth factor receptor 2 (HER2) is expressed by the majority of human osteosarcomas and is a risk factor for poor outcome. Unlike breast cancer, osteosarcoma cells express HER2 at too low, a level for patients to benefit from HER2 monoclonal antibodies. We reasoned that this limitation might be overcome by genetically modifying T cells with HER2-specific chimeric antigen receptors (CARs), because even a low frequency of receptor engagement could be sufficient to induce effector cell killing of the tumor. HER2-specific T cells were generated by retroviral transduction with a HER2-specific CAR containing a CD28.zeta signaling domain. HER2-specific T cells recognized HER2-positive osteosarcoma cells as judged by their ability to proliferate, produce immunostimulatory T helper 1 cytokines, and kill HER2-positive osteosarcoma cell lines in vitro. The adoptive transfer of HER2-specific T cells caused regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models. In contrast, delivery of nontransduced (NT) T cells did not change the tumor growth pattern. Genetic modification of T cells with CARs specific for target antigens, expressed at too low a level to be effectively recognized by monoclonal antibodies, may allow immunotherapy to be more broadly applicable for human cancer therapy.

  18. Origins of the Human Genome Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information ismore » embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.« less

  19. Should the Bt brinjal controversy concern healthcare professionals and bioethicists?

    PubMed

    Seetharam, Sridevi

    2010-01-01

    The Genetic Engineering Approval Committee's approval of Bt brinjal, the first genetically modified crop for human consumption in India, has sparked off protests across the country. This article questions the so-called benefits of GM crops and highlights some major concerns. These include: inadequately addressed health and environmental risks, inadequate safety guidelines, a lack of transparency in sharing test data, the implications to seed sovereignty of farmers and the lack of informed choice for consumers. Some concerns about field testing by Mahyco, the developer of Bt-brinjal, and the process of evaluation by GEAC remain unresolved. With inadequate information about the crop's long-term safety, a precautionary approach is advocated before national policy allows commercial release of the seeds. A fair process is also needed in the public consultations being proposed by the minister of state for environment and forests. In addition to issues of procedural justice, a basic ethical question remains: do humans have a right to dominate the land and make expendable those creatures that they deem "undesirable"?

  20. Origins of the Human Genome Project

    DOE R&D Accomplishments Database

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  1. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation

    PubMed Central

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-01-01

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805

  2. Production and characterization of genetically modified human IL-11 variants.

    PubMed

    Sano, Emiko; Takei, Toshiaki; Ueda, Takuya; Tsumoto, Kouhei

    2017-02-01

    Interleukin-11 (IL-11) has been expected as a drug on severe thrombocytopenia caused by myelo-suppressive chemotherapy. Whereas, development of IL-11 inhibitor is also expected for a treatment against IL-11 related cancer progression. Here, we will demonstrate the creation of various kinds of genetically modified hIL-11s. Modified vectors were constructed by introducing N- or O-glycosylation site on the region of hIL-11 that does not belong to the core α-helical motif based on the predicted secondary structure. N-terminal (N: between 22 to 23 aa), the first loop (M1:70 to 71 aa), the second loop (M2:114-115 aa), the third loop (M3:160-161 aa) and C-terminal (C: 200- aa) were selected for modification. A large scale production system was established and the characteristics of modified hIL-11s were evaluated. The structure was analyzed by amino acid sequence and composition analysis and CD-spectra. Glycan was assessed by monosaccharide composition analysis. Growth promoting activity and biological stability were analyzed by proliferation of T1165 cells. N-terminal modified proteins were well glycosylated and produced. Growth activity of 3NN with NASNASNAS sequence on N-terminal was about tenfold higher than wild type (WT). Structural and biological stabilities of 3NN were also better than WT and residence time in mouse blood was longer than WT. M1 variants lacked growth activity though they are well glycosylated and secondary structure is very stable. Both of 3NN and OM1 with AAATPAPG on M1 associated with hIL-11R strongly. These results indicate N-terminal and M1 variants will be expected for practical use as potent agonists or antagonists of hIL-11. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Completion of the swine genome will simplify the production of swine as a large animal biomedical model

    PubMed Central

    2012-01-01

    Background Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease. Methods Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine. Results Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed. Conclusions The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions. PMID:23151353

  4. Epigenetic Regulation in Plants

    PubMed Central

    Pikaard, Craig S.; Mittelsten Scheid, Ortrun

    2014-01-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. PMID:25452385

  5. Science spin: iPS cell research in the news.

    PubMed

    Caulfield, T; Rachul, C

    2011-05-01

    Big scientific developments have always been spun to meet particular social agendas. We have seen it in the context of global warming, nuclear power, and genetically modified organisms. But few stories illustrate the phenomenon of spin as well as the reaction, and concomitant media coverage, that surrounded the November 2007 announcement regarding the reprogramming of skin cells to produce cells with qualities comparable to those of human embryonic stem cells (hESCs) known as induced pluripotent stem (iPS) cells.

  6. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myoribers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postmitotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  7. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  8. Relative Contribution of Genetic and Non-genetic Modifiers to Intestinal Obstruction in Cystic Fibrosis

    PubMed Central

    Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R

    2006-01-01

    Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173

  9. Dog-Owner Attachment Is Associated With Oxytocin Receptor Gene Polymorphisms in Both Parties. A Comparative Study on Austrian and Hungarian Border Collies.

    PubMed

    Kovács, Krisztina; Virányi, Zsófia; Kis, Anna; Turcsán, Borbála; Hudecz, Ágnes; Marmota, Maria T; Koller, Dóra; Rónai, Zsolt; Gácsi, Márta; Topál, József

    2018-01-01

    Variations in human infants' attachment behavior are associated with single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene, suggesting a genetic component to infant-mother attachment. However, due to the genetic relatedness of infants and their mothers, it is difficult to separate the genetic effects of infants' OXTR genotype from the environmental effects of mothers' genotype possibly affecting their parental behavior. The apparent functional analogy between child-parent and dog-owner relationship, however, offers a way to disentangle the effects of these factors because pet dogs are not genetically related to their caregivers. In the present study we investigated whether single nucleotide polymorphisms of pet dogs' OXTR gene (-213AG,-94TC,-74CG) and their owners' OXTR gene (rs53576, rs1042778, rs2254298) are associated with components of dog-owner attachment. In order to investigate whether social-environmental effects modulate the potential genetic influence on attachment, dogs and their owners from two different countries (Austria and Hungary, N = 135 in total) were tested in a modified version of the Ainsworth Strange Situation Test (SST) and questionnaires were also used to collect information about owner personality and attachment style. We coded variables related to three components of attachment behavior in dogs: their sensitivity to the separation from and interaction with the owner (Attachment), stress caused by the unfamiliar environment (Anxiety), and their responsiveness to the stranger (Acceptance). We found that (1) dogs' behavior was significantly associated with polymorphisms in both dogs' and owners' OXTR gene, (2) SNPs in dogs' and owners' OXTR gene interactively influenced dog-human relationship, (3) dogs' attachment behavior was affected by the country of origin, and (4) it was related to their owners' personality as well as attachment style. Thus, the present study provides evidence, for the first time, that both genetic variation in the OXTR gene and various aspects of pet dogs' environmental background are associated with their attachment to their human caregivers.

  10. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  11. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food

    PubMed Central

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-01-01

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China’s major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans. PMID:26380899

  12. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  13. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    PubMed

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  14. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction.

    PubMed

    Paul, Arghya; Nayan, Madhur; Khan, Afshan Afsar; Shum-Tim, Dominique; Prakash, Satya

    2012-01-01

    The objective of this study was to develop angiopoietin-1 (Ang1)-expressing genetically modified human adipose tissue derived stem cells (hASCs) for myocardial therapy. For this, an efficient gene delivery system using recombinant baculovirus complexed with cell penetrating transactivating transcriptional activator TAT peptide/deoxyribonucleic acid nanoparticles (Bac-NP), through ionic interactions, was used. It was hypothesized that the hybrid Bac- NP(Ang1) system can efficiently transduce hASCs and induces favorable therapeutic effects when transplanted in vivo. To evaluate this hypothesis, a rat model with acute myocardial infarction and intramyocardially transplanted Ang1-expressing hASCs (hASC-Ang1), genetically modified by Bac-NP(Ang1), was used. Ang1 is a crucial pro-angiogenic factor for vascular maturation and neovasculogenesis. The released hAng1 from hASC-Ang1 demonstrated profound mitotic and anti-apoptotic activities on endothelial cells and cardiomyocytes. The transplanted hASC-Ang1 group showed higher cell retention compared to hASC and control groups. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with hASC-Ang1 treatment compared to infarcted hearts treated with hASC or the untreated group. Furthermore, the hASC-Ang1 group showed significantly higher cardiac performance in echocardiography (ejection fraction 46.28% ± 6.3%, P < 0.001 versus control, n = 8) than the hASC group (36.35% ± 5.7%, P < 0.01, n = 8), 28 days post-infarction. The study identified Bac-NP complex as an advanced gene delivery vehicle for stem cells and demonstrated its potential to treat ischemic heart disease with high therapeutic index for combined stem cell-gene therapy strategy.

  15. Assessment of the safety of foods derived from genetically modified (GM) crops.

    PubMed

    König, A; Cockburn, A; Crevel, R W R; Debruyne, E; Grafstroem, R; Hammerling, U; Kimber, I; Knudsen, I; Kuiper, H A; Peijnenburg, A A C M; Penninks, A H; Poulsen, M; Schauzu, M; Wal, J M

    2004-07-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex modifications. First, the paper reviews test methods developed for the risk assessment of chemicals, including food additives and pesticides, discussing which of these methods are suitable for the assessment of recombinant proteins and whole foods. Second, the paper presents a systematic approach to combine test methods for the safety assessment of foods derived from a specific GM crop. Third, the paper provides an overview on developments in this area that may prove of use in the safety assessment of GM crops, and recommendations for research priorities. It is concluded that the combination of existing test methods provides a sound test-regime to assess the safety of GM crops. Advances in our understanding of molecular biology, biochemistry, and nutrition may in future allow further improvement of test methods that will over time render the safety assessment of foods even more effective and informative. Copryright 2004 Elsevier Ltd.

  16. Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection.

    PubMed

    Yang, Litao; Quan, Sheng; Zhang, Dabing

    2017-01-01

    Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.

  17. Resistance Management Monitoring for the US Corn Crop to the Illinois Corn Growers Association

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  18. TRACKING GENE FLOW FROM A GENETICALLY MODIFIED CREEPING BENTGRASS -- METHODS, MEASURES AND LESSONS LEARNED

    EPA Science Inventory

    Creeping bentgrass (CBG) expressing an engineered gene for resistance to glyphosate herbicide is one of the first genetically modified (GM) perennial crops to undergo regulatory review for commercial release by the US Department of Agriculture Animal Plant Health and Inspection S...

  19. 40 CFR 172.48 - Data requirements for a notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS EXPERIMENTAL USE PERMITS Notification for Certain Genetically Modified Microbial Pesticides § 172... methods used to genetically modify the microbial pesticide. (h) The identity and location of the gene... organisms. (d) Information on survival and the ability of the microbial pesticide to increase in numbers...

  20. Electrotransformation and clonal isolation of Rickettsia species

    PubMed Central

    Riley, Sean P; Macaluso, Kevin R; Martinez, Juan J

    2015-01-01

    Genetic manipulation of obligate intracellular bacteria of the genus Rickettsia is currently undergoing a rapid period of change. The development of viable genetic tools, including replicative plasmids, transposons, homologous recombination, fluorescent protein-encoding genes, and antibiotic selectable markers has provided the impetus for future research development. This unit is designed to coalesce the basic methods pertaining to creation of genetically modified Rickettsia. The unit describes a series of methods, from inserting exogenous DNA into Rickettsia to the final isolation of genetically modified bacterial clones. Researchers working towards genetic manipulation of Rickettsia or similar obligate intracellular bacteria will find these protocols to be a valuable reference. PMID:26528784

  1. Environmental biosafety and transgenic potato in a centre of diversity for this crop.

    PubMed

    Celis, Carolina; Scurrah, Maria; Cowgill, Sue; Chumbiauca, Susana; Green, Jayne; Franco, Javier; Main, Gladys; Kiezebrink, Daan; Visser, Richard G F; Atkinson, Howard J

    2004-11-11

    The Nuffield Council on Bioethics suggests that introgression of genetic material into related species in centres of crop biodiversity is an insufficient justification to bar the use of genetically modified crops in the developing world. They consider that a precautionary approach to forgo the possible benefits invokes the fallacy of thinking that doing nothing is itself without risk to the poor. Here we report findings relevant to this and other aspects of environmental biosafety for genetically modified potato in its main centre of biodiversity, the central Andes. We studied genetically modified potato clones that provide resistance to nematodes, principal pests of Andean potato crops. We show that there is no harm to many non-target organisms, but gene flow occurs to wild relatives growing near potato crops. If stable introgression were to result, the fitness of these wild species could be altered. We therefore transformed the male sterile cultivar Revolucion to provide a genetically modified nematode-resistant potato to evaluate the benefits that this provides until the possibility of stable introgression to wild relatives is determined. Thus, scientific progress is possible without compromise to the precautionary principle.

  2. Transgenes for tea?

    PubMed

    Heritage, John

    2005-01-01

    So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.

  3. The impact of ex vivo clinical grade activation protocols on human T-cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy.

    PubMed

    Tumeh, Paul C; Koya, Richard C; Chodon, Thinle; Graham, Nicholas A; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2010-10-01

    Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy may lead to protocols that maximize their in vivo function. We analyzed the effects of 4 clinical grade activation and expansion protocols over 3 weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells showed a larger size, maximal uptake of metabolic substrates, and the highest level of proximal T-cell receptor signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared with the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T-cell surface markers that define T-cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for adoptive cell therapy demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity, and zeta-chain-associated protein-70 activation.

  4. The impact of ex vivo clinical grade activation protocols on human T cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy

    PubMed Central

    Tumeh, Paul C.; Koya, Richard C.; Chodon, Thinle; Graham, Nicholas A.; Graeber, Thomas G.; Comin-Anduix, Begoña; Ribas, Antoni

    2011-01-01

    Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy (ACT) may lead to protocols that maximize their in vivo function. We analyzed the effects of four clinical grade activation and expansion protocols over three weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells demonstrated a larger size, maximal uptake of metabolic substrates, and the highest level of proximal TCR signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared to the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T cell surface markers that define T cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for ACT demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity and ZAP-70 activation. PMID:20842061

  5. The use of genetic engineering techniques to improve the lipid composition in meat, milk and fish products: a review.

    PubMed

    Świątkiewicz, S; Świątkiewicz, M; Arczewska-Włosek, A; Józefiak, D

    2015-04-01

    The health-promoting properties of dietary long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFAs) for humans are well-known. Products of animal-origin enriched with n-3 LCPUFAs can be a good example of functional food, that is food that besides traditionally understood nutritional value may have a beneficial influence on the metabolism and health of consumers, thus reducing the risk of various lifestyle diseases such as atherosclerosis and coronary artery disease. The traditional method of enriching meat, milk or eggs with n-3 LCPUFA is the manipulation of the composition of animal diets. Huge progress in the development of genetic engineering techniques, for example transgenesis, has enabled the generation of many kinds of genetically modified animals. In recent years, one of the aims of animal transgenesis has been the modification of the lipid composition of meat and milk in order to improve the dietetic value of animal-origin products. This article reviews and discusses the data in the literature concerning studies where techniques of genetic engineering were used to create animal-origin products modified to contain health-promoting lipids. These studies are still at the laboratory stage, but their results have demonstrated that the transgenesis of pigs, cows, goats and fishes can be used in the future as efficient methods of production of healthy animal-origin food of high dietetic value. However, due to high costs and a low level of public acceptance, the introduction of this technology to commercial animal production and markets seems to be a distant prospect.

  6. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    PubMed

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  7. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3.

    PubMed

    Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H

    1999-10-15

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.

  8. Using population genetic analyses to understand seed dispersal patterns

    NASA Astrophysics Data System (ADS)

    Hamrick, J. L.; Trapnell, Dorset W.

    2011-11-01

    Neutral genetic markers have been employed in several ways to understand seed dispersal patterns in natural and human modified landscapes. Genetic differentiation among spatially separated populations, using biparentally and maternally inherited genetic markers, allows determination of the relative historical effectiveness of pollen and seed dispersal. Genetic relatedness among individuals, estimated as a function of spatial separation between pairs of individuals, has also been used to indirectly infer seed dispersal distances. Patterns of genetic relatedness among plants in recently colonized populations provide insights into the role of seed dispersal in population colonization and expansion. High genetic relatedness within expanding populations indicates original colonization by a few individuals and population expansion by the recruitment of the original colonists' progeny; low relatedness should occur if population growth results primarily from continuous seed immigration from multiple sources. Parentage analysis procedures can identify maternal parents of dispersed fruits, seeds, or seedlings providing detailed descriptions of contemporary seed dispersal patterns. With standard parent-pair analyses of seeds or seedlings, problems can arise in distinguishing the maternal parent. However, the use of maternal DNA from dispersed fruits or seed coats allows direct identification of maternal individuals and, as a consequence, the distance and patterns of seed dispersal and deposition. Application of combinations of these approaches provides additional insights into the role seed dispersal plays in the genetic connectivity between populations in natural and disturbed landscapes.

  9. [Adverse birth outcomes of maternal smoking during pregnancy and genetic polymorphisms: exploiting gene-environment interaction].

    PubMed

    Sasaki, Seiko; Kishi, Reiko

    2009-09-01

    It has been recognized that metabolic enzymes mediating genetic susceptibility to environmental chemicals such as polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls might be related to adverse human health. Recent studies, including the Hokkaido Study of Environmental and Children's Health, have shown that metabolic enzymes mediating genetic susceptibility to environmental chemicals including tobacco smoke might be related to adverse birth outcomes. Certain maternal genetic polymorphisms in the polycyclic aromatic hydrocarbons (PAHs)-metabolizing enzymes have been shown to enhance the association between maternal smoking and infant birth weight in both Caucasians and Japanese. For maternal genetic polymorphisms encoding the N-nitrosamine-metabolizing enzymes, we found that infant birth weight, birth length and birth head circumference were significantly smaller among infants of smokers than among those of nonsmokers and quitters. The adverse effects of maternal smoking on infant birth size may be modified by maternal genetic polymorphisms. Further study is required to clarify the potential association between genetic polymorphisms and cognitive function in childhood, becauae it has been reported that a small birth length or a small head circumference at birth might affect neurobehavioral development during early childhood. It is necessary to elucidate additive impacts of genetic factors on adverse effects of various chemicals commonly encountered in our daily lives, follow up the development of children, and carry out longitudinal observation.

  10. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes.

    PubMed

    Christie, Mark R; Knowles, L Lacey

    2015-06-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.

  11. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

    PubMed Central

    Christie, Mark R; Knowles, L Lacey

    2015-01-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes. PMID:26029259

  12. Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy.

    PubMed

    Riet, Tobias; Holzinger, Astrid; Dörrie, Jan; Schaft, Niels; Schuler, Gerold; Abken, Hinrich

    2013-01-01

    Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy.

  13. Polygenic risk predicts obesity in both white and black young adults.

    PubMed

    Domingue, Benjamin W; Belsky, Daniel W; Harris, Kathleen Mullan; Smolen, Andrew; McQueen, Matthew B; Boardman, Jason D

    2014-01-01

    To test transethnic replication of a genetic risk score for obesity in white and black young adults using a national sample with longitudinal data. A prospective longitudinal study using the National Longitudinal Study of Adolescent Health Sibling Pairs (n = 1,303). Obesity phenotypes were measured from anthropometric assessments when study members were aged 18-26 and again when they were 24-32. Genetic risk scores were computed based on published genome-wide association study discoveries for obesity. Analyses tested genetic associations with body-mass index (BMI), waist-height ratio, obesity, and change in BMI over time. White and black young adults with higher genetic risk scores had higher BMI and waist-height ratio and were more likely to be obese compared to lower genetic risk age-peers. Sibling analyses revealed that the genetic risk score was predictive of BMI net of risk factors shared by siblings. In white young adults only, higher genetic risk predicted increased risk of becoming obese during the study period. In black young adults, genetic risk scores constructed using loci identified in European and African American samples had similar predictive power. Cumulative information across the human genome can be used to characterize individual level risk for obesity. Measured genetic risk accounts for only a small amount of total variation in BMI among white and black young adults. Future research is needed to identify modifiable environmental exposures that amplify or mitigate genetic risk for elevated BMI.

  14. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  15. A modifier of Huntington's disease onset at the MLH1 locus.

    PubMed

    Lee, Jong-Min; Chao, Michael J; Harold, Denise; Abu Elneel, Kawther; Gillis, Tammy; Holmans, Peter; Jones, Lesley; Orth, Michael; Myers, Richard H; Kwak, Seung; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F

    2017-10-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Gene targeting and cloning in pigs using fetal liver derived cells.

    PubMed

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. ASSESSMENT OF ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: AN AGENDA FOR FUTURE RESEARCH

    EPA Science Inventory

    Abstract
    Speakers and participants in the Workshop Assessment of the Allergenic Potential of Genetically Modified Foods met in breakout groups to discuss a number of issues including needs for future research. There was agreement that research should move forward quickly in t...

  18. 78 FR 25297 - Programmatic Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... environmental assessment (PEA) to evaluate the effects of the cultivation and use of genetically modified crops... genetically modified crops (GMCs) on our Refuge System lands. Our PEA will concentrate on the refuges in our... lands are those that have been evaluated and deregulated by the Animal and Plant Health Inspection...

  19. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    EPA Science Inventory

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  20. Evidence for the establishment and persistence of genetically modified canola populations in the U.S.

    EPA Science Inventory

    Background/Questions/Methods Concerns surrounding the commercial release of genetically modified crops include the risks of escape from cultivation, naturalization, and the transfer of beneficial traits to native and weedy species. Among the crops commonly grown in the U.S., a l...

  1. Use of spectral imaging for insect resistance monitoring: EPA research on stewardship of Bt crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future growing seasons. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to increase. As part of the FIFRA regist...

  2. Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects.

    PubMed

    Gallego, Xavier; Molas, Susanna; Amador-Arjona, Alejandro; Marks, Michael J; Robles, Noemí; Murtra, Patricia; Armengol, Lluís; Fernández-Montes, Rubén D; Gratacòs, Mònica; Pumarola, Martí; Cabrera, Roberto; Maldonado, Rafael; Sabrià, Josefa; Estivill, Xavier; Dierssen, Mara

    2012-08-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric ion channels that account for the effects of nicotine. Recent genetic studies have highlighted the importance of variants of the CHRNA5/A3/B4 genomic cluster in human nicotine dependence. Among these genetic variants those found in non-coding segments of the cluster may contribute to the pathophysiology of tobacco use through alterations in the expression of these genes. To discern the in vivo effects of the cluster, we generated a transgenic mouse overexpressing the human CHRNA5/A3/B4 cluster using a bacterial artificial chromosome. Transgenic mice showed increased functional α3β4-nAChRs in brain regions where these subunits are highly expressed under normal physiological conditions. Moreover, they exhibited increased sensitivity to the pharmacological effects of nicotine along with higher activation of the medial habenula and reduced activation of dopaminergic neurons in the ventral tegmental area after acute nicotine administration. Importantly, transgenic mice showed increased acquisition of nicotine self-administration (0.015 mg/kg per infusion) and a differential response in the progressive ratio test. Our study provides the first in vivo evidence of the involvement of the CHRNA5/A3/B4 genomic cluster in nicotine addiction through modifying the activity of brain regions responsible for the balance between the rewarding and the aversive properties of this drug.

  3. CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice.

    PubMed

    Meca-Cortés, Oscar; Guerra-Rebollo, Marta; Garrido, Cristina; Borrós, Salvador; Rubio, Nuria; Blanco, Jeronimo

    2017-09-15

    The use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs), using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker) and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene), under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. A cognitive characterization of dyscalculia in Turner syndrome.

    PubMed

    Bruandet, Marie; Molko, Nicolas; Cohen, Laurent; Dehaene, Stanislas

    2004-01-01

    Current theories of number processing postulate that the human abilities for arithmetic are based on cerebral circuits that are partially laid down under genetic control and later modified by schooling and education. This view predicts the existence of genetic diseases that interfere specifically with components of the number system. Here, we investigate whether Turner syndrome (TS) corresponds to this definition. TS is a genetic disorder which affects one woman in 2500 and is characterized by partial or complete absence of one X chromosome. In addition to well-characterized physical and hormonal dysfunction, TS patients exhibit cognitive deficits including dyscalculia. We tested 12 women with Turner syndrome and 13 control subjects on a cognitive battery including arithmetical tests (addition, subtraction, multiplication, division) as well as tests of the understanding of numerosity and quantity (cognitive estimation, estimation, comparison, bisection, subitizing/counting). Impairments were observed in cognitive estimation, subitizing, and calculation. We examine whether these deficits can be attributed to a single source, and discuss the possible implications of hormonal and genetic factors in the neuropsychological profile of TS patients.

  5. Genome Engineering for Personalized Arthritis Therapeutics.

    PubMed

    Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid

    2017-10-01

    Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  7. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States.

    PubMed

    Scott, Sydney E; Inbar, Yoel; Rozin, Paul

    2016-05-01

    Public opposition to genetic modification (GM) technology in the food domain is widespread (Frewer et al., 2013). In a survey of U.S. residents representative of the population on gender, age, and income, 64% opposed GM, and 71% of GM opponents (45% of the entire sample) were "absolutely" opposed-that is, they agreed that GM should be prohibited no matter the risks and benefits. "Absolutist" opponents were more disgust sensitive in general and more disgusted by the consumption of genetically modified food than were non-absolutist opponents or supporters. Furthermore, disgust predicted support for legal restrictions on genetically modified foods, even after controlling for explicit risk-benefit assessments. This research suggests that many opponents are evidence insensitive and will not be influenced by arguments about risks and benefits. © The Author(s) 2016.

  8. Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Reid, Duncan T.; Ashton, Kyle G.; Zamudio, Kelly R.

    2009-01-01

    Populations rarely show immediate genetic responses to habitat fragmentation, even in taxa that possess suites of traits known to increase their vulnerability to extinction. Thus conservation geneticists must consider the time scale over which contemporary evolutionary processes operate to accurately portray the effects of habitat isolation. Here, we examine the genetic impacts of fragmentation on the Florida sand skink Plestiodon reynoldsi, a sand swimming lizard that is highly adapted to the upland scrub habitat of central Florida. We studied fragments located on the southern Lake Wales Ridge, where human activity in the latter half of the 20th century has modified the natural patchiness of the landscape. Based on a relaxed molecular clock method, we estimate that sand skinks have persisted in this region for approximately 1.5 million years and that the time frame of human disturbance is equivalent to fewer than 30 skink generations. Using genotypes from eight microsatellite loci, we screened for molecular signatures of this disturbance by assessing congruence between population structure, as inferred from spatially-informed Bayesian assignment tests, and the current geography of scrub fragments. We also tested for potential intrapopulation genetic effects of inbreeding in isolated populations by comparing the average pairwise relatedness of individuals within fragments of different areas and isolation. Our results indicate that although some patches show a higher degree of relatedness than expected under random mating, the genetic effects of recent isolation are not evident in this part of the species’ range. We argue that this result is an artefact of a time-lag in the response to disturbance, and that species-typical demographic features may explain the genetic inertia observed in these populations.

  9. A Novel Method to Generate and Expand Clinical-Grade, Genetically Modified, Tumor-Infiltrating Lymphocytes

    PubMed Central

    Forget, Marie-Andrée; Tavera, René J.; Haymaker, Cara; Ramachandran, Renjith; Malu, Shuti; Zhang, Minying; Wardell, Seth; Fulbright, Orenthial J.; Toth, Chistopher Leroy; Gonzalez, Audrey M.; Thorsen, Shawne T.; Flores, Esteban; Wahl, Arely; Peng, Weiyi; Amaria, Rodabe N.; Hwu, Patrick; Bernatchez, Chantale

    2017-01-01

    Following the clinical success achieved with the first generation of adoptive cell therapy (ACT) utilizing in vitro expanded tumor-infiltrating lymphocytes (TILs), the second and third generations of TIL ACT are evolving toward the use of genetically modified TIL. TIL therapy generally involves the transfer of a high number of TIL, ranging from 109 to 1011 cells. One of the technical difficulties in genetically modifying TIL, using a retroviral vector, is the ability to achieve large expansion of transduced TIL, while keeping the technique suitable to a Good Manufacturing Practices (GMP) environment. Consequently, we developed and optimized a novel method for the efficient production of large numbers of GMP-grade, gene-modified TIL for the treatment of patients with ACT. The chemokine receptor CXCR2 was used as the gene of interest for methodology development. The optimized procedure is currently used in the production of gene-modified TIL for two clinical trials for the treatment of metastatic melanoma at MD Anderson Cancer Center. PMID:28824634

  10. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  11. Defining Genetic Risk for GVHD and Mortality Following Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hansen, John A; Chien, Jason W; Warren, Edus H; Zhao, Lue Ping; Martin, Paul J

    2011-01-01

    Purpose of review To explore what is known about the genetics of hematopoietic stem cell transplantation (HCT) and how genetic polymorphism affects risk of graft-versus-host disease (GVHD) and mortality. Recent findings Genetic variation found across the human genome can impact HCT outcome by 1) causing genetic disparity between patient and donor, and 2) modifying gene function. Single nucleotide polymorphisms (SNP) and structural variation can result in mismatching for cellular peptides known as histocompatibility antigens (HA). At least 25 to 30 polymorphic genes are known to encode functional HA in mismatched individuals, but their individual contribution to clinical GVHD is unclear. HCT outcome may also be affected by polymorphism in donor or recipient. Association studies have implicated several genes with GVHD and mortality, however results have been inconsistent most likely due to limited sample size, and differences in racial diversity and clinical covariates. New technologies using DNA arrays genotyping for a million or more SNPs promise genome-wide discovery of HCT associated genes, however adequate statistical power requires study populations of several thousand patient-donor pairs. Summary Available data offers strong preliminary support for the impact that genetic variation has on risk of GVHD and mortality following HCT. Definitive results however await future genome-wide studies of large multi-center HCT cohorts. PMID:20827186

  12. Compositions and methods for increased ethanol titer from biomass

    DOEpatents

    Jessen, Holly J.; Yi, Jian

    2016-11-15

    The present application discloses the identification of novel I. orientalis ADH1, ADHa, and ADHb genes, and the production and characterization of genetically modified yeast cells in which these genes were altered. Provided herein are isolated I. orientalis ADH1, ADHa, and ADHb polynucleotides and polypeptides, genetically modified yeast cells that overexpress I. orientalis ADH1 and/or contain deletions or disruptions of ADHa and/or ADHb, and methods of using culturing these modified cells to produce ethanol.

  13. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction.

    PubMed

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-10-08

    When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.

  14. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  15. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction

    PubMed Central

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-01-01

    Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792

  16. African origins and chronic kidney disease susceptibility in the human immunodeficiency virus era

    PubMed Central

    Kasembeli, Alex N; Duarte, Raquel; Ramsay, Michèle; Naicker, Saraladevi

    2015-01-01

    Chronic kidney disease (CKD) is a major public health problem worldwide with the estimated incidence growing by approximately 6% annually. There are striking ethnic differences in the prevalence of CKD such that, in the United States, African Americans have the highest prevalence of CKD, four times the incidence of end stage renal disease when compared to Americans of European ancestry suggestive of genetic predisposition. Diabetes mellitus, hypertension and human immunodeficiency virus (HIV) infection are the major causes of CKD. HIV-associated nephropathy (HIVAN) is an irreversible form of CKD with considerable morbidity and mortality and is present predominantly in people of African ancestry. The APOL1 G1 and G2 alleles were more strongly associated with the risk for CKD than the previously examined MYH9 E1 risk haplotype in individuals of African ancestry. A strong association was reported in HIVAN, suggesting that 50% of African Americans with two APOL1 risk alleles, if untreated, would develop HIVAN. However these two variants are not enough to cause disease. The prevailing belief is that modifying factors or second hits (including genetic hits) underlie the pathogenesis of kidney disease. This work reviews the history of genetic susceptibility of CKD and outlines current theories regarding the role for APOL1 in CKD in the HIV era. PMID:25949944

  17. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  18. The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects.

    PubMed

    Hosseini, Seyedeh Hanieh; Sadighi Gilani, Mohammad Ali; Meybodi, Anahita Mohseni; Sabbaghian, Marjan

    2017-04-01

    Male infertility is a multifactorial disorder with impressively genetic basis; besides, sperm abnormalities are the cause of numerous cases of male infertility. In this study, we evaluated the genetic variants in exons 4 and 5 and their intron-exon boundaries in RABL2B gene in infertile men with oligoasthenoteratozoospermia (OAT) and immotile short tail sperm (ISTS) defects to define if there is any association between these variants and human male infertility. To this purpose, DNA was extracted from peripheral blood and after PCR reaction and sequencing, the results of sequenced segments were analyzed. In the present study, 30 infertile men with ISTS defect and 30 oligoasthenoteratozoospermic infertile men were recruited. All men were of Iranian origin and it took 3 years to collect patient's samples with ISTS defect. As a result, the 50776482 delC intronic variant (rs144944885) was identified in five patients with oligoasthenoteratozoospermia defect and one patient with ISTS defect in heterozygote form. This variant was not identified in controls. The allelic frequency of the 50776482 delC variant was significantly statistically higher in oligoasthenoteratozoospermic infertile men (p < 0.05). Bioinformatics studies suggested that the 50776482 delC allele would modify the splicing of RABL2B pre-mRNA. In addition, we identified a new genetic variant in RABL2B gene. According to the present study, 50776482 delC allele in the RABL2B gene could be a risk factor in Iranian infertile men with oligoasthenoteratozoospermia defect, but more genetic studies are required to understand the accurate role of this variant in pathogenesis of human male infertility.

  19. Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I

    PubMed Central

    Bondy-Chorney, Emma; Crawford Parks, Tara E.; Ravel-Chapuis, Aymeric; Jasmin, Bernard J.; Côté, Jocelyn

    2016-01-01

    ABSTRACT In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies. PMID:27695661

  20. Generation of an allelic series of knock-in mice using recombinase-mediated cassette exchange (RMCE).

    PubMed

    Roebroek, Anton J M; Van Gool, Bart

    2014-01-01

    Molecular genetic strategies applying embryonic stem cell (ES cell) technologies to study the function of a gene in mice or to generate a mouse model for a human disease are continuously under development. Next to (conditional) inactivation of genes the application and importance of approaches to generate knock-in mutations are increasing. In this chapter the principle and application of recombinase-mediated cassette exchange (RMCE) are discussed as being a new emerging knock-in strategy, which enables easy generation of a series of different knock-in mutations within one gene. An RMCE protocol, which was used to generate a series of different knock-in mutations in the Lrp1 gene of ES cells, is described in detail as an example of how RMCE can be used to generate highly efficiently an allelic series of differently modified ES cell clones from a parental modified ES cell clone. Subsequently the differently modified ES cell clones can be used to generate an allelic series of mutant knock-in mice.

  1. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  2. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy.

    PubMed

    Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael

    2017-06-01

    Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.

  3. DEVELOPMENT OF A MULTI-TIERED INSECT RESISTANCE MANAGEMENT PROGRAM FOR GENETICALLY MODIFIED CORN HYBRIDS EXPRESSING THE PLANT INCORPORATED PROTECTANT, BACILLUS THURINGIENSIS

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for the 2007 growing season with future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with ma...

  4. L-malate production by metabolically engineered escherichia coli

    DOEpatents

    Zhang, Xueli; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-11-17

    A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.

  5. Pulmonary arterial hypertension associated to systemic erythematous lupus: molecular characterization of 3 cases.

    PubMed

    Pousada, Guillermo; Lago-Docampo, Mauro; Baloira, Adolfo; Valverde, Diana

    2018-03-08

    Pulmonary arterial hypertension associated with systemic lupus erythematosus (PAH-SLE) is a rare disease with a low incidence rate. In this study, PAH related genes and genetic modifiers were characterised molecularly in patients with PAH-SLE. Three patients diagnosed with PAH-SLE and 100 control individuals were analysed after signing an informed consent. Two out of the three analysed patients with PAH-SLE were carriers of pathogenic mutations in the genes BMPR2 and ENG. After an in silico analysis, pathogenic mutations were searched for in control individuals and different databases, with negative results, and they were thus functionally analysed. The third patients only showed polymorphisms in the genes BMPR2, ACVRL1 and ENG. Several genetic variants and genetic modifiers were identified in the three analysed patients. These modifiers, along with the pathogenic mutations, could lead to a more severe clinical course in patients with PAH. We present, for the first time, patients with PAH-SLE carrying pathogenic mutations in the main genes related to PAH and alterations in the genetic modifiers. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  6. Knowlege of, attitudes toward, and acceptance of genetically modified organisms among prospective teachers of biology, home economics, and grade school in Slovenia.

    PubMed

    Sorgo, Andrej; Ambrožič-Dolinšek, Jana

    2010-05-01

    The objective of this study was to investigate knowledge, opinions, and attitudes toward, as well as readiness to accept genetically modified organisms (GMOs) among prospective primary and secondary Slovene teachers. Our findings are that prospective teachers want to take an active role in rejecting or supporting individual GMOs and are aware of the importance of education about genetically modified organism (GMO) items and their potential significance for society. Through cluster analysis, we recognized four clusters of GMOs, separated by degree of genetically modified acceptability. GM plants and microorganisms which are recognized as useful are accepted. They are undecided about organisms used in research or medicine and reject organisms used for food consumption and for fun. There are only weak correlations between knowledge and attitudes and knowledge and acceptance of GMOs, and a strong correlation between attitudes and acceptance. The appropriate strategies and actions for improving university courses in biotechnology are discussed. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  7. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    PubMed

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe

    PubMed Central

    Spicer, Andrew

    2018-01-01

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe. PMID:29509719

  9. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe.

    PubMed

    Spicer, Andrew; Molnar, Attila

    2018-03-06

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe.

  10. An overview of genetically modified crop governance, issues and challenges in Malaysia.

    PubMed

    Andrew, Johnny; Ismail, Normaz Wana; Djama, Marcel

    2018-01-01

    The application of agricultural biotechnology attracts the interest of many stakeholders. Genetically modified (GM) crops, for example, have been rapidly increasing in production for the last 20 years. Despite their known benefits, GM crops also pose many concerns not only to human and animal health but also to the environment. Malaysia, in general, allows the use of GM technology applications but it has to come with precautionary and safety measures consistent with the international obligations and domestic legal frameworks. This paper provides an overview of GM crop technology from international and national context and explores the governance and issues surrounding this technology application in Malaysia. Basically, GM research activities in Malaysia are still at an early stage of research and development and most of the GM crops approved for release are limited for food, feed and processing purposes. Even though Malaysia has not planted any GM crops commercially, actions toward such a direction seem promising. Several issues concerning GM crops as discussed in this paper will become more complex as the number of GM crops and varieties commercialised globally increase and Malaysia starts to plant GM crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. [Genetically modified crops: promises and good intentions are not enough (refutation to Espinoza et aL 2004, Rev. Biol. Trop. 52 (3): 727-732)].

    PubMed

    García, Jaime E G

    2007-06-01

    The arguments presented by Espinoza et al. in their paper "Relationship of genetically modified crops with the environment and health of the Costa Rican human population" published in this journal (Rev. Biol. Trop. 52: 727-732, 2004) are questioned and refuted. The arguments are confronted with evidence offered by scientists and national and international independent organizations around the world (e.g. World Health Organization, Consumers International, Physicians and Scientists for Responsible Application of Science and Technology, International Union for Conservation of Nature and Natural Resources, the Council of the University of Costa Rica, and the Independent Science Panel) showing the current uncertainty and limitations of science in this area, as well as those of proposed and applied biosafety approaches. Environment, biodiversity and food security are so important and basic matters, that there is need of serious testing, particularly when promises seem to be based on environmentally dangerous ideas promoted half a century ago by the so called "green revolution". Debate should continue, based on a holistic analysis of facts and with ethical reasoning, avoiding emotional positions that can confuse virtual reality with reality.

  12. Linking brain imaging and genomics in the study of Alzheimer's disease and aging.

    PubMed

    Reiman, Eric M

    2007-02-01

    My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.

  13. RNAi-mediated resistance to viruses in genetically engineered plants.

    PubMed

    Ibrahim, Abdulrazak B; Aragão, Francisco J L

    2015-01-01

    RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals.

  14. Genetics of SCID

    PubMed Central

    2010-01-01

    Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning). Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms. This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238. PMID:21078154

  15. Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1-mediated efflux activity and nitrosoureas.

    PubMed

    Baum, C; Peinert, S; Carpinteiro, A; Eckert, H G; Fairbairn, L J

    2000-05-01

    Genetic transfer and expression of drug-resistance functions into haematopoietic stem and progenitor cells is a promising means to overcome both the acute and longterm side-effects of cytotoxic drugs in bone marrow. Here, we describe a functional analysis of a retroviral vector that co-expresses human cDNAs for multidrug resistance 1/P-glycoprotein (MDR1) and a double mutant of O(6)-alkylguanine-alkyltransferase (hATPA/GA) to high levels. The hATPA/GA protein contains two amino acid substitutions that render it resistant to compounds such as O(6)-benzylguanine that inhibit the wild-type protein which is often overexpressed in resistant tumour cells. Evidence for simultaneous drug resistance of genetically modified primary murine progenitor cells to colchicine or the podophyllotoxin etoposide, both covered by MDR1-mediated efflux activity, and the nitrosourea BCNU, which is counteracted by hATPA/GA, is presented using in vitro colony assays.

  16. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  17. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA.

    PubMed

    Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex

    2015-05-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.

  18. Genomic diversity is similar between Atlantic Forest restorations and natural remnants for the native tree Casearia sylvestris Sw.

    PubMed

    Gomes Viana, João Paulo; Bohrer Monteiro Siqueira, Marcos Vinícius; Araujo, Fabiano Lucas; Grando, Carolina; Sanae Sujii, Patricia; Silvestre, Ellida de Aguiar; Novello, Mariana; Pinheiro, José Baldin; Cavallari, Marcelo Mattos; Brancalion, Pedro H S; Rodrigues, Ricardo Ribeiro; Pereira de Souza, Anete; Catchen, Julian; Zucchi, Maria I

    2018-01-01

    The primary focus of tropical forest restoration has been the recovery of forest structure and tree taxonomic diversity, with limited attention given to genetic conservation. Populations reintroduced through restoration plantings may have low genetic diversity and be genetically structured due to founder effects and genetic drift, which limit the potential of restoration to recover ecologically resilient plant communities. Here, we studied the genetic diversity, genetic structure and differentiation using single nucleotide polymorphisms (SNP) markers between restored and natural populations of the native tree Casearia sylvestris in the Atlantic Forest of Brazil. We sampled leaves from approximately 24 adult individuals in each of the study sites: two restoration plantations (27 and 62 years old) and two forest remnants. We prepared and sequenced a genotyping-by-sequencing library, SNP markers were identified de novo using Stacks pipeline, and genetic parameters and structure analyses were then estimated for populations. The sequencing step was successful for 80 sampled individuals. Neutral genetic diversity was similar among restored and natural populations (AR = 1.72 ± 0.005; HO = 0.135 ± 0.005; HE = 0.167 ± 0.005; FIS = 0.16 ± 0.022), which were not genetically structured by population subdivision. In spite of this absence of genetic structure by population we found genetic structure within populations but even so there is not spatial genetic structure in any population studied. Less than 1% of the neutral alleles were exclusive to a population. In general, contrary to our expectations, restoration plantations were then effective for conserving tree genetic diversity in human-modified tropical landscapes. Furthermore, we demonstrate that genotyping-by-sequencing can be a useful tool in restoration genetics.

  19. Attitudes towards genetically modified and organic foods.

    PubMed

    Saher, Marieke; Lindeman, Marjaana; Hursti, Ulla-Kaisa Koivisto

    2006-05-01

    Finnish students (N=3261) filled out a questionnaire on attitudes towards genetically modified and organic food, plus the rational-experiential inventory, the magical thinking about food and health scale, Schwartz's value survey and the behavioural inhibition scale. In addition, they reported their eating of meat. Structural equation modelling of these measures had greater explanatory power for attitudes towards genetically modified (GM) foods than for attitudes towards organic foods (OF). GM attitudes were best predicted by natural science education and magical food and health beliefs, which mediated the influence of thinking styles. Positive attitudes towards organic food, on the other hand, were more directly related to such individual differences as thinking styles and set of values. The results of the study indicate that OF attitudes are rooted in more fundamental personal attributes than GM attitudes, which are embedded in a more complex but also in a more modifiable network of characteristics.

  20. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity

    PubMed Central

    Fretham, Stephanie JB; Caito, Samuel; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity. PMID:27795823

Top