Tufto, Jarle
2015-08-01
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Elimination of a genetic correlation between the sexes via artificial correlational selection.
Delph, Lynda F; Steven, Janet C; Anderson, Ingrid A; Herlihy, Christopher R; Brodie, Edmund D
2011-10-01
Genetic correlations between the sexes can constrain the evolution of sexual dimorphism and be difficult to alter, because traits common to both sexes share the same genetic underpinnings. We tested whether artificial correlational selection favoring specific combinations of male and female traits within families could change the strength of a very high between-sex genetic correlation for flower size in the dioecious plant Silene latifolia. This novel selection dramatically reduced the correlation in two of three selection lines in fewer than five generations. Subsequent selection only on females in a line characterized by a lower between-sex genetic correlation led to a significantly lower correlated response in males, confirming the potential evolutionary impact of the reduced correlation. Although between-sex genetic correlations can potentially constrain the evolution of sexual dimorphism, our findings reveal that these constraints come not from a simple conflict between an inflexible genetic architecture and a pattern of selection working in opposition to it, but rather a complex relationship between a changeable correlation and a form of selection that promotes it. In other words, the form of selection on males and females that leads to sexual dimorphism may also promote the genetic phenomenon that limits sexual dimorphism. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
The evolution of phenotypic integration: How directional selection reshapes covariation in mice.
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-10-01
Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Austen, Emily J.; Weis, Arthur E.
2016-01-01
Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957
2017-01-01
ABSTRACT RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid). IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes. PMID:28592544
Quantitative genetic versions of Hamilton's rule with empirical applications
McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.
2014-01-01
Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930
The evolution of phenotypic integration: How directional selection reshapes covariation in mice
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-01-01
Abstract Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. PMID:28685813
Interaction-based evolution: how natural selection and nonrandom mutation work together.
Livnat, Adi
2013-10-18
The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.
Wise, Michael J; Rausher, Mark D
2013-06-01
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Artificial selection reveals sex differences in the genetic basis of sexual attractiveness.
Gosden, Thomas P; Reddiex, Adam J; Chenoweth, Stephen F
2018-05-07
Mutual mate choice occurs when males and females base mating decisions on shared traits. Despite increased awareness, the extent to which mutual choice drives phenotypic change remains poorly understood. When preferences in both sexes target the same traits, it is unclear how evolution will proceed and whether responses to sexual selection from male choice will match or oppose responses to female choice. Answering this question is challenging, as it requires understanding, genetic relationships between the traits targeted by choice, mating success, and, ultimately, fitness for both sexes. Addressing this, we applied artificial selection to the cuticular hydrocarbons of the fly Drosophila serrata that are targeted by mutual choice and tracked evolutionary changes in males and females alongside changes in mating success. After 10 generations, significant trait evolution occurred in both sexes, but intriguingly there were major sex differences in the associated fitness consequences. Sexually selected trait evolution in males led to a genetically based increase in male mating success. By contrast, although trait evolution also occurred in females, there was no change in mating success. Our results suggest that phenotypic sexual selection on females from male choice is environmentally, rather than genetically, generated. Thus, compared with female choice, male choice is at best a weak driver of signal trait evolution in this species. Instead, the evolution of apparent female ornamentation seems more likely due to a correlated response to sexual selection on males and possibly other forms of natural selection.
Sztepanacz, Jacqueline L; Rundle, Howard D
2012-10-01
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low- compared to high-fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high- and low-fitness individuals and was greater among the low-fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne
2017-06-01
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore
2013-11-01
Replicated selection experiments provide a powerful way to study how "multiple adaptive solutions" may lead to differences in the quantitative-genetic architecture of selected traits and whether this may translate into differences in the timing at which evolutionary limits are reached. We analyze data from 31 generations (n=17,988) of selection on voluntary wheel running in house mice. The rate of initial response, timing of selection limit, and height of the plateau varied significantly between sexes and among the four selected lines. Analyses of litter size and realized selection differentials seem to rule out counterposing natural selection as a cause of the selection limits. Animal-model analyses showed that although the additive genetic variance was significantly lower in selected than control lines, both before and after the limits, the decrease was not sufficient to explain the limits. Moreover, directional selection promoted a negative covariance between additive and maternal genetic variance over the first 10 generations. These results stress the importance of replication in selection studies of higher-level traits and highlight the fact that long-term predictions of response to selection are not necessarily expected to be linear because of the variable effects of selection on additive genetic variance and maternal effects. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Recent advances in understanding the role of nutrition in human genome evolution.
Ye, Kaixiong; Gu, Zhenglong
2011-11-01
Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics.
Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W
2010-01-01
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.
Interaction-based evolution: how natural selection and nonrandom mutation work together
2013-01-01
Background The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Presentation of the hypothesis Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation—while not Lamarckian, or “directed” to increase fitness—is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination’s fitness. Testing and implications of the hypothesis This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. Reviewers This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle. PMID:24139515
Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.
Rubin, Ilan N; Doebeli, Michael
2017-12-21
Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution in plant populations as a driver of ecological changes in arthropod communities
Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.
2009-01-01
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution. PMID:19414473
Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W
2010-06-01
Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.
Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.
Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild
2013-10-01
We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D
2016-01-01
A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.
Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World.
Reznick, David
2016-01-01
The modern synthesis of evolutionary biology unified Darwin's natural selection with Mendelian genetics, but at the same time it created the dilemma of genetic load. Lewontin and Hubby's (1966) and Harris's (1966) characterization of genetic variation in natural populations increased the apparent burden of this load. Neutrality or near neutrality of genetic variation was one mechanism proposed for the revealed excessive genetic variation. Bruce Wallace coined the term "soft selection" to describe an alternative way for natural selection to operate that was consistent with observed variation. He envisioned nature as presenting ecological vacancies that could be filled by diverse genotypes. Survival and successful reproduction was a combined function of population density, genotype, and genotype frequencies, rather than a fixed value of the relative fitness of each genotype. My goal in this review is to explore the importance of soft selection in the real world. My motive and that of my colleagues as described here is not to explain what maintains genetic variation in natural populations, but rather to understand the factors that shape how organisms adapt to natural environments. We characterize how feedbacks between ecology and evolution shape both evolution and ecology. These feedbacks are mediated by density- and frequency-dependent selection, the mechanisms that underlie soft selection. Here, I report on our progress in characterizing these types of selection with a combination of a consideration of the published literature and the results from my collaborators' and my research on natural populations of guppies. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A test of the hypothesis that correlational selection generates genetic correlations.
Roff, Derek A; Fairbairn, Daphne J
2012-09-01
Theory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits. Our results are consistent with both predictions and hence support the underlying hypothesis that correlational selection generates a genetic correlation between the two traits and hence orients the bivariate G matrix. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Experimental evolution of slowed cognitive aging in Drosophila melanogaster.
Zwoinska, Martyna K; Maklakov, Alexei A; Kawecki, Tadeusz J; Hollis, Brian
2017-03-01
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Skinner, Michael K
2015-04-26
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.
Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C
2011-08-01
Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Puentes, A; Johnson, M T J
2016-01-01
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Franks, Steven J; Kane, Nolan C; O'Hara, Niamh B; Tittes, Silas; Rest, Joshua S
2016-08-01
There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome-wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late-season drought in California. These ancestor-descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome-wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Spatial heterogeneity and the evolution of sex in diploids.
Agrawal, Aneil F
2009-07-01
Much of the theoretical work on the evolution of sex has focused on the effects of recombination. In diploids, segregation also occurs during sexual reproduction. Segregation breaks down some types of genetic associations that are not affected by recombination and thus influences the evolution of sex in ways that are not apparent from studying the evolution of recombination as a surrogate for sex. Here I examine the evolution of sex in diploids experiencing spatially heterogeneous selection. If divergent selection causes genetic differentiation, then migration can be a powerful force generating genetic associations that may not be favored by selection. An advantage to sex can arise from breaking down these associations. By examining modifiers of both sex and recombination, the model allows for a direct comparison of the forces acting on these related but different processes, illuminating the role of segregation. The model also includes inbreeding, which has been shown to be important for both segregation and recombination. I find that inbreeding affects the evolution of sex through segregation, not recombination. Several suggestions for empirical experiments are given.
Johnson, M T J; Agrawal, A A; Maron, J L; Salminen, J-P
2009-06-01
This study explored genetic variation and co-variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life-history traits and secondary chemistry together explained a large proportion of variation in herbivory (r(2) = 0.73). At the same time, selection acted on lifetime biomass, life-history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant-herbivore interactions.
Limits of neutral drift: lessons from the in vitro evolution of two ribozymes.
Petrie, Katherine L; Joyce, Gerald F
2014-10-01
The relative contributions of adaptive selection and neutral drift to genetic change are unknown but likely depend on the inherent abundance of functional genotypes in sequence space and how accessible those genotypes are to one another. To better understand the relative roles of selection and drift in evolution, local fitness landscapes for two different RNA ligase ribozymes were examined using a continuous in vitro evolution system under conditions that foster the capacity for neutral drift to mediate genetic change. The exploration of sequence space was accelerated by increasing the mutation rate using mutagenic nucleotide analogs. Drift was encouraged by carrying out evolution within millions of separate compartments to exploit the founder effect. Deep sequencing of individuals from the evolved populations revealed that the distribution of genotypes did not escape the starting local fitness peak, remaining clustered around the sequence used to initiate evolution. This is consistent with a fitness landscape where high-fitness genotypes are sparse and well isolated, and suggests, at least in this context, that neutral drift alone is not a primary driver of genetic change. Neutral drift does, however, provide a repository of genetic variation upon which adaptive selection can act.
Genetic variability, individuality and the evolution of the mammalian brain.
Lipp, H P
1995-12-01
The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.
Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection.
Edwards, C T T; Holmes, E C; Pybus, O G; Wilson, D J; Viscidi, R P; Abrams, E J; Phillips, R E; Drummond, A J
2006-11-01
The evolution of the human immunodeficiency virus (HIV-1) during chronic infection involves the rapid, continuous turnover of genetic diversity. However, the role of natural selection, relative to random genetic drift, in governing this process is unclear. We tested a stochastic model of genetic drift using partial envelope sequences sampled longitudinally in 28 infected children. In each case the Bayesian posterior (empirical) distribution of coalescent genealogies was estimated using Markov chain Monte Carlo methods. Posterior predictive simulation was then used to generate a null distribution of genealogies assuming neutrality, with the null and empirical distributions compared using four genealogy-based summary statistics sensitive to nonneutral evolution. Because both null and empirical distributions were generated within a coalescent framework, we were able to explicitly account for the confounding influence of demography. From the distribution of corrected P-values across patients, we conclude that empirical genealogies are more asymmetric than expected if evolution is driven by mutation and genetic drift only, with an excess of low-frequency polymorphisms in the population. This indicates that although drift may still play an important role, natural selection has a strong influence on the evolution of HIV-1 envelope. A negative relationship between effective population size and substitution rate indicates that as the efficacy of selection increases, a smaller proportion of mutations approach fixation in the population. This suggests the presence of deleterious mutations. We therefore conclude that intrahost HIV-1 evolution in envelope is dominated by purifying selection against low-frequency deleterious mutations that do not reach fixation.
Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M
2018-02-01
Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.
The evolution of sexes: A specific test of the disruptive selection theory.
da Silva, Jack
2018-01-01
The disruptive selection theory of the evolution of anisogamy posits that the evolution of a larger body or greater organismal complexity selects for a larger zygote, which in turn selects for larger gametes. This may provide the opportunity for one mating type to produce more numerous, small gametes, forcing the other mating type to produce fewer, large gametes. Predictions common to this and related theories have been partially upheld. Here, a prediction specific to the disruptive selection theory is derived from a previously published game-theoretic model that represents the most complete description of the theory. The prediction, that the ratio of macrogamete to microgamete size should be above three for anisogamous species, is supported for the volvocine algae. A fully population genetic implementation of the model, involving mutation, genetic drift, and selection, is used to verify the game-theoretic approach and accurately simulates the evolution of gamete sizes in anisogamous species. This model was extended to include a locus for gamete motility and shows that oogamy should evolve whenever there is costly motility. The classic twofold cost of sex may be derived from the fitness functions of these models, showing that this cost is ultimately due to genetic conflict.
Constrained evolution of the sex comb in Drosophila simulans.
Maraqa, M S; Griffin, R; Sharma, M D; Wilson, A J; Hunt, J; Hosken, D J; House, C M
2017-02-01
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post-copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post-copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre- and post-copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima. © 2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
The sources of adaptive variation
2017-01-01
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis. Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. PMID:28566483
The sources of adaptive variation.
Charlesworth, Deborah; Barton, Nicholas H; Charlesworth, Brian
2017-05-31
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. © 2017 The Author(s).
Evolutionary rates for multivariate traits: the role of selection and genetic variation
Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-01-01
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697
Travers, L M; Simmons, L W; Garcia-Gonzalez, F
2016-05-01
Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
ERIC Educational Resources Information Center
Murphy, P. J.
Three examples of genetics and evolution simulation concerning Mendelian inheritance, genetic mapping, and natural selection are used to illustrate the use of simulations in modeling scientific/natural processes. First described is the HERED series, which illustrates such phenomena as incomplete dominance, multiple alleles, lethal alleles,…
Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution
2017-01-01
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929
Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.
Mesoudi, Alex
2017-07-24
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.
Relaxation of selection, niche construction, and the Baldwin effect in language evolution.
Yamauchi, Hajime; Hashimoto, Takashi
2010-01-01
Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.
Cancer heterogeneity: converting a limitation into a source of biologic information.
Rübben, Albert; Araujo, Arturo
2017-09-08
Analysis of spatial and temporal genetic heterogeneity in human cancers has revealed that somatic cancer evolution in most cancers is not a simple linear process composed of a few sequential steps of mutation acquisitions and clonal expansions. Parallel evolution has been observed in many early human cancers resulting in genetic heterogeneity as well as multilineage progression. Moreover, aneuploidy as well as structural chromosomal aberrations seems to be acquired in a non-linear, punctuated mode where most aberrations occur at early stages of somatic cancer evolution. At later stages, the cancer genomes seem to get stabilized and acquire only few additional rearrangements. While parallel evolution suggests positive selection of driver mutations at early stages of somatic cancer evolution, stabilization of structural aberrations at later stages suggests that negative selection takes effect when cancer cells progressively lose their tolerance towards additional mutation acquisition. Mixing of genetically heterogeneous subclones in cancer samples reduces sensitivity of mutation detection. Moreover, driver mutations present only in a fraction of cancer cells are more likely to be mistaken for passenger mutations. Therefore, genetic heterogeneity may be considered a limitation negatively affecting detection sensitivity of driver mutations. On the other hand, identification of subclones and subclone lineages in human cancers may lead to a more profound understanding of the selective forces which shape somatic cancer evolution in human cancers. Identification of parallel evolution by analyzing spatial heterogeneity may hint to driver mutations which might represent additional therapeutic targets besides driver mutations present in a monoclonal state. Likewise, stabilization of cancer genomes which can be identified by analyzing temporal genetic heterogeneity might hint to genes and pathways which have become essential for survival of cancer cell lineages at later stages of cancer evolution. These genes and pathways might also constitute patient specific therapeutic targets.
Evolutionary response when selection and genetic variation covary across environments.
Wood, Corlett W; Brodie, Edmund D
2016-10-01
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.
Human niche construction in interdisciplinary focus
Kendal, Jeremy; Tehrani, Jamshid J.; Odling-Smee, John
2011-01-01
Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene–culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue. PMID:21320894
ERIC Educational Resources Information Center
Heil, Caiti S. S.; Manzano-Winkler, Brenda; Hunter, Mika J.; Noor, Juliet K. F.; Noor, Mohamed A. F.
2013-01-01
We present a laboratory exercise that leverages student interest in genetics to observe and understand evolution by natural selection. Students begin with white-eyed fruit fly populations, to which they introduce a single advantageous variant (one male with red eyes). The superior health and vision associated with having the red-eye-color allele…
Caste load and the evolution of reproductive skew.
Holman, Luke
2014-01-01
Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.
ERIC Educational Resources Information Center
Miller, Geoffrey F.; Penke, Lars
2007-01-01
Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…
Reed, Thomas E; Gienapp, Phillip; Visser, Marcel E
2016-10-01
Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Remington, David L
2015-12-01
Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Pervasive genetic integration directs the evolution of human skull shape.
Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter
2012-04-01
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Evolutionary rates for multivariate traits: the role of selection and genetic variation.
Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-08-19
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Welch, Allison M; Smith, Michael J; Gerhardt, H Carl
2014-06-01
Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Culture rather than genes provides greater scope for the evolution of large-scale human prosociality
Bell, Adrian V.; Richerson, Peter J.; McElreath, Richard
2009-01-01
Whether competition among large groups played an important role in human social evolution is dependent on how variation, whether cultural or genetic, is maintained between groups. Comparisons between genetic and cultural differentiation between neighboring groups show how natural selection on large groups is more plausible on cultural rather than genetic variation. PMID:19822753
Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I
2015-11-24
The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.
Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I
2015-01-01
The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581
Rapid independent trait evolution despite a strong pleiotropic genetic correlation.
Conner, Jeffrey K; Karoly, Keith; Stewart, Christy; Koelling, Vanessa A; Sahli, Heather F; Shaw, Frank H
2011-10-01
Genetic correlations are the most commonly studied of all potential constraints on adaptive evolution. We present a comprehensive test of constraints caused by genetic correlation, comparing empirical results to predictions from theory. The additive genetic correlation between the filament and the corolla tube in wild radish flowers is very high in magnitude, is estimated with good precision (0.85 ± 0.06), and is caused by pleiotropy. Thus, evolutionary changes in the relative lengths of these two traits should be constrained. Still, artificial selection produced rapid evolution of these traits in opposite directions, so that in one replicate relative to controls, the difference between them increased by six standard deviations in only nine generations. This would result in a 54% increase in relative fitness on the basis of a previous estimate of natural selection in this population, and it would produce the phenotypes found in the most extreme species in the family Brassicaceae in less than 100 generations. These responses were within theoretical expectations and were much slower than if the genetic correlation was zero; thus, there was evidence for constraint. These results, coupled with comparable results from other species, show that evolution can be rapid despite the constraints caused by genetic correlations.
Sexual selection and mate choice.
Andersson, Malte; Simmons, Leigh W
2006-06-01
The past two decades have seen extensive growth of sexual selection research. Theoretical and empirical work has clarified many components of pre- and postcopulatory sexual selection, such as aggressive competition, mate choice, sperm utilization and sexual conflict. Genetic mechanisms of mate choice evolution have been less amenable to empirical testing, but molecular genetic analyses can now be used for incisive experimentation. Here, we highlight some of the currently debated areas in pre- and postcopulatory sexual selection. We identify where new techniques can help estimate the relative roles of the various selection mechanisms that might work together in the evolution of mating preferences and attractive traits, and in sperm-egg interactions.
Biomimicry as a basis for drug discovery.
Kolb, V M
1998-01-01
Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term "natural product" is often used synonymously with "secondary metabolite." Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed "inventive evolution." It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products ("unnatural natural products"), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.
Between-Region Genetic Divergence Reflects the Mode and Tempo of Tumor Evolution
Sun, Ruping; Hu, Zheng; Sottoriva, Andrea; Graham, Trevor A.; Harpak, Arbel; Ma, Zhicheng; Fischer, Jared M.; Shibata, Darryl; Curtis, Christina
2017-01-01
Given the implications of tumor dynamics for precision medicine, there is a need to systematically characterize the mode of evolution across diverse solid tumor types. In particular, methods to infer the role of natural selection within established human tumors are lacking. By simulating spatial tumor growth under different evolutionary modes and examining patterns of between-region subclonal genetic divergence from multi-region sequencing (MRS) data, we demonstrate that it is feasible to distinguish tumors driven by strong positive subclonal selection from those evolving neutrally or under weak selection, as the latter fail to dramatically alter subclonal composition. We developed a classifier based on measures of between-region subclonal genetic divergence and projected patient data into model space, revealing different modes of evolution both within and between solid tumor types. Our findings have broad implications for how human tumors progress, accumulate intra-tumor heterogeneity, and ultimately how they may be more effectively treated. PMID:28581503
Unified reduction principle for the evolution of mutation, migration, and recombination
Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.
2017-01-01
Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103
Archer, C R; Zajitschek, F; Sakaluk, S K; Royle, N J; Hunt, J
2012-10-01
Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age-dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life-history strategies were underpinned by a positive genetic correlation between early-life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life-history schedules, age-dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Simmons, Leigh W.; Kotiaho, Janne S.
2007-01-01
Sperm show patterns of rapid and divergent evolution that are characteristic of sexual selection. Sperm competition has been proposed as an important selective agent in the evolution of sperm morphology. However, several comparative analyses have revealed evolutionary associations between sperm length and female reproductive tract morphology that suggest patterns of male–female coevolution. In the dung beetle Onthophagus taurus, males with short sperm have a fertilization advantage that depends on the size of the female's sperm storage organ, the spermatheca; large spermathecae select for short sperm. Sperm length is heritable and is genetically correlated with male condition. Here we report significant additive genetic variation and heritability for spermatheca size and genetic covariance between spermatheca size and sperm length predicted by both the “good-sperm” and “sexy-sperm” models of postcopulatory female preference. Our data thus provide quantitative genetic support for the role of a sexually selected sperm process in the evolutionary divergence of sperm morphology, in much the same manner as precopulatory female preferences drive the evolutionary divergence of male secondary sexual traits. PMID:17921254
Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae
Rubio, Luis; Guerri, José; Moreno, Pedro
2013-01-01
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process. PMID:23805130
Evans, Jonathan P; Simmons, Leigh W
2008-09-01
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
The evolution of trade-offs under directional and correlational selection.
Roff, Derek A; Fairbairn, Daphne J
2012-08-01
Using quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value. Such selection induces both directional and correlational selection on the component traits. Theory predicts that selection on an index value will also change the intercept but not the slope of the trade-off function but because of correlational selection, the direction of change in component traits may be in the same or opposite directions. We test these predictions using artificial selection on the well-established trade-off between fecundity and flight capability in the cricket, Gryllus firmus and compare the empirical results with a priori predictions made using genetic parameters from a separate half-sibling experiment. Our results support the predictions and illustrate the complexity of trade-off evolution when component traits are subject to both directional and correlational selection. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Speciation: more likely through a genetic or through a learned habitat preference?
Beltman, J.B; Metz, J.A.J
2005-01-01
A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920
Bocedi, Greta; Reid, Jane M
2015-01-01
Explaining the evolution and maintenance of polyandry remains a key challenge in evolutionary ecology. One appealing explanation is the sexually selected sperm (SSS) hypothesis, which proposes that polyandry evolves due to indirect selection stemming from positive genetic covariance with male fertilization efficiency, and hence with a male's success in postcopulatory competition for paternity. However, the SSS hypothesis relies on verbal analogy with “sexy-son” models explaining coevolution of female preferences for male displays, and explicit models that validate the basic SSS principle are surprisingly lacking. We developed analogous genetically explicit individual-based models describing the SSS and “sexy-son” processes. We show that the analogy between the two is only partly valid, such that the genetic correlation arising between polyandry and fertilization efficiency is generally smaller than that arising between preference and display, resulting in less reliable coevolution. Importantly, indirect selection was too weak to cause polyandry to evolve in the presence of negative direct selection. Negatively biased mutations on fertilization efficiency did not generally rescue runaway evolution of polyandry unless realized fertilization was highly skewed toward a single male, and coevolution was even weaker given random mating order effects on fertilization. Our models suggest that the SSS process is, on its own, unlikely to generally explain the evolution of polyandry. PMID:25330405
The evolutionary stability of cross-sex, cross-trait genetic covariances.
Gosden, Thomas P; Chenoweth, Stephen F
2014-06-01
Although knowledge of the selective agents behind the evolution of sexual dimorphism has advanced considerably in recent years, we still lack a clear understanding of the evolutionary durability of cross-sex genetic covariances that often constrain its evolution. We tested the relative stability of cross-sex genetic covariances for a suite of homologous contact pheromones of the fruit fly Drosophila serrata, along a latitudinal gradient where these traits have diverged in mean. Using a Bayesian framework, which allowed us to account for uncertainty in all parameter estimates, we compared divergence in the total amount and orientation of genetic variance across populations, finding divergence in orientation but not total variance. We then statistically compared orientation divergence of within-sex (G) to cross-sex (B) covariance matrices. In line with a previous theoretical prediction, we find that the cross-sex covariance matrix, B, is more variable than either within-sex G matrix. Decomposition of B matrices into their symmetrical and nonsymmetrical components revealed that instability is linked to the degree of asymmetry. We also find that the degree of asymmetry correlates with latitude suggesting a role for spatially varying natural selection in shaping genetic constraints on the evolution of sexual dimorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach
Harrison, Peter W.; Montgomery, Stephen H.
2017-01-01
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440
Acevedo-Rocha, Carlos G; Agudo, Ruben; Reetz, Manfred T
2014-12-10
Directed evolution of stereoselective enzymes provides a means to generate useful biocatalysts for asymmetric transformations in organic chemistry and biotechnology. Almost all of the numerous examples reported in the literature utilize high-throughput screening systems based on suitable analytical techniques. Since the screening step is the bottleneck of the overall procedure, researchers have considered the use of genetic selection systems as an alternative to screening. In principle, selection would be the most elegant and efficient approach because it is based on growth advantage of host cells harboring stereoselective mutants, but devising such selection systems is very challenging. They must be designed so that the host organism profits from the presence of an enantioselective variant. Progress in this intriguing research area is summarized in this review, which also includes some examples of display systems designed for enantioselectivity as assayed by fluorescence-activated cell sorting (FACS). Although the combination of display systems and FACS is a powerful approach, we also envision innovative ideas combining metabolic engineering and genetic selection systems with protein directed evolution for the development of highly selective and efficient biocatalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
The genomics of selection in dogs and the parallel evolution between dogs and humans.
Wang, Guo-dong; Zhai, Weiwei; Yang, He-chuan; Fan, Ruo-xi; Cao, Xue; Zhong, Li; Wang, Lu; Liu, Fei; Wu, Hong; Cheng, Lu-guang; Poyarkov, Andrei D; Poyarkov, Nikolai A; Tang, Shu-sheng; Zhao, Wen-ming; Gao, Yun; Lv, Xue-mei; Irwin, David M; Savolainen, Peter; Wu, Chung-I; Zhang, Ya-ping
2013-01-01
The genetic bases of demographic changes and artificial selection underlying domestication are of great interest in evolutionary biology. Here we perform whole-genome sequencing of multiple grey wolves, Chinese indigenous dogs and dogs of diverse breeds. Demographic analysis show that the split between wolves and Chinese indigenous dogs occurred 32,000 years ago and that the subsequent bottlenecks were mild. Therefore, dogs may have been under human selection over a much longer time than previously concluded, based on molecular data, perhaps by initially scavenging with humans. Population genetic analysis identifies a list of genes under positive selection during domestication, which overlaps extensively with the corresponding list of positively selected genes in humans. Parallel evolution is most apparent in genes for digestion and metabolism, neurological process and cancer. Our study, for the first time, draws together humans and dogs in their recent genomic evolution.
Testing for a genetic response to sexual selection in a wild Drosophila population.
Gosden, T P; Thomson, J R; Blows, M W; Schaul, A; Chenoweth, S F
2016-06-01
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)-5,9-C27 : 2 . Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Synthetic genetic polymers capable of heredity and evolution.
Pinheiro, Vitor B; Taylor, Alexander I; Cozens, Christopher; Abramov, Mikhail; Renders, Marleen; Zhang, Su; Chaput, John C; Wengel, Jesper; Peak-Chew, Sew-Yeu; McLaughlin, Stephen H; Herdewijn, Piet; Holliger, Philipp
2012-04-20
Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.
Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.
Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B
2014-07-01
Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia)
Reid, Jane M.; Arcese, Peter; Sardell, Rebecca J.; Keller, Lukas F.
2011-01-01
The forces driving the evolution of extra-pair reproduction in socially monogamous animals remain widely debated and unresolved. One key hypothesis is that female extra-pair reproduction evolves through indirect genetic benefits, reflecting increased additive genetic value of extra-pair offspring. Such evolution requires that a female's propensity to produce offspring that are sired by an extra-pair male is heritable. However, additive genetic variance and heritability in female extra-pair paternity (EPP) rate have not been quantified, precluding accurate estimation of the force of indirect selection. Sixteen years of comprehensive paternity and pedigree data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) showed significant additive genetic variance and heritability in the proportion of a female's offspring that was sired by an extra-pair male, constituting major components of the genetic architecture required for extra-pair reproduction to evolve through indirect additive genetic benefits. However, estimated heritabilities were moderately small (0.12 and 0.18 on the observed and underlying latent scales, respectively). The force of selection on extra-pair reproduction through indirect additive genetic benefits may consequently be relatively weak. However, the additive genetic variance and non-zero heritability observed in female EPP rate allow for multiple further genetic mechanisms to drive and constrain mating system evolution. PMID:20980302
Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae
Chaguza, Chrispin; Cornick, Jennifer E.; Everett, Dean B.
2015-01-01
Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus. PMID:25904996
Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae.
Chaguza, Chrispin; Cornick, Jennifer E; Everett, Dean B
2015-01-01
Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.
Similar traits, different genes? Examining convergent evolution in related weedy rice populations.
Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L
2013-02-01
Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. © 2012 Blackwell Publishing Ltd.
The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
van Doorn, G Sander; Dieckmann, Ulf
2006-11-01
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.
Hong, Jungeui; Gresham, David
2014-01-01
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution.
Rübben, Albert; Nordhoff, Ole
2013-01-01
Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients. PMID:23336076
Investigating yellow dung fly body size evolution in the field: Response to climate change?
Blanckenhorn, Wolf U
2015-08-01
Uncovering genetic responses to selection in wild populations typically requires tracking individuals over generations and use of animal models. Our group monitored the body size of one Swiss Yellow Dung Fly (Scathophaga stercoraria; Diptera: Scathophagidae) field population over 15 years, including intermittent common-garden rearing in the laboratory to assess body size with minimized environmental and maximized genetic variation. Contrary to expectations based on repeated heritability and phenotypic selection assessments over the years (reported elsewhere), field body sizes declined by >10% and common-garden laboratory sizes by >5% from 1993 to 2009. Our results confirm the temperature-size rule (smaller when warmer) and, albeit entirely correlational, could be mediated by climate change, as over this period mean temperature at the site increased by 0.5°C, although alternative systematic environmental changes cannot be entirely excluded. Monitoring genetic responses to selection in wild invertebrate populations is thus possible, though indirect, and wild populations may evolve in directions not consistent with strongly positive directional selection favoring large body size. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke
2017-04-01
Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.
Rooted tRNAomes and evolution of the genetic code
Pak, Daewoo; Du, Nan; Kim, Yunsoo; Sun, Yanni
2018-01-01
ABSTRACT We advocate for a tRNA- rather than an mRNA-centric model for evolution of the genetic code. The mechanism for evolution of cloverleaf tRNA provides a root sequence for radiation of tRNAs and suggests a simplified understanding of code evolution. To analyze code sectoring, rooted tRNAomes were compared for several archaeal and one bacterial species. Rooting of tRNAome trees reveals conserved structures, indicating how the code was shaped during evolution and suggesting a model for evolution of a LUCA tRNAome tree. We propose the polyglycine hypothesis that the initial product of the genetic code may have been short chain polyglycine to stabilize protocells. In order to describe how anticodons were allotted in evolution, the sectoring-degeneracy hypothesis is proposed. Based on sectoring, a simple stepwise model is developed, in which the code sectors from a 1→4→8→∼16 letter code. At initial stages of code evolution, we posit strong positive selection for wobble base ambiguity, supporting convergence to 4-codon sectors and ∼16 letters. In a later stage, ∼5–6 letters, including stops, were added through innovating at the anticodon wobble position. In archaea and bacteria, tRNA wobble adenine is negatively selected, shrinking the maximum size of the primordial genetic code to 48 anticodons. Because 64 codons are recognized in mRNA, tRNA-mRNA coevolution requires tRNA wobble position ambiguity leading to degeneracy of the code. PMID:29372672
Mullon, Charles; Pomiankowski, Andrew; Reuter, Max
2012-12-01
Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Whitacre, James M.; Lin, Joseph; Harding, Angus
2011-01-01
Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338
Polly, P David
2015-05-01
Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.
Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis.
Kariñho-Betancourt, Eunice; Núñez-Farfán, Juan
2015-01-01
Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off) between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits. Methodology/Principal Findings. We experimentally assessed (1) the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2) the extent of natural selection acting on plant defenses, and (3) the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control) or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies. Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained.
Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis
Kariñho-Betancourt, Eunice
2015-01-01
Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off) between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits. Methodology/Principal Findings. We experimentally assessed (1) the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2) the extent of natural selection acting on plant defenses, and (3) the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control) or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies. Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained. PMID:25780756
The evolution of costly mate choice against segregation distorters.
Manser, Andri; Lindholm, Anna K; Weissing, Franz J
2017-12-01
The evolution of female preference for male genetic quality remains a controversial topic in sexual selection research. One well-known problem, known as the lek paradox, lies in understanding how variation in genetic quality is maintained in spite of natural selection and sexual selection against low-quality alleles. Here, we theoretically investigate a scenario where females pay a direct fitness cost to avoid males carrying an autosomal segregation distorter. We show that preference evolution is greatly facilitated under such circumstances. Because the distorter is transmitted in a non-Mendelian fashion, it can be maintained in the population despite directional sexual selection. The preference helps females avoid fitness costs associated with the distorter. Interestingly, we find that preference evolution is limited if the choice allele induces a very strong preference or if distortion is very strong. Moreover, the preference can only persist in the presence of a signal that reliably indicates a male's distorter genotype. Hence, even in a system where the lek paradox does not play a major role, costly preferences can only spread under specific circumstances. We discuss the importance of distorter systems for the evolution of costly female choice and potential implications for the use of artificial distorters in pest control. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Hallsson, L R; Björklund, M
2012-08-01
Temperature changes in the environment, which realistically include environmental fluctuations, can create both plastic and evolutionary responses of traits. Sexes might differ in either or both of these responses for homologous traits, which in turn has consequences for sexual dimorphism and its evolution. Here, we investigate both immediate changes in and the evolution of sexual dimorphism in response to a changing environment (with and without fluctuations) using the seed beetle Callosobruchus maculatus. We investigate sex differences in plasticity and also the genetic architecture of body mass and developmental time dimorphism to test two existing hypotheses on sex differences in plasticity (adaptive canalization hypothesis and condition dependence hypothesis). We found a decreased sexual size dimorphism in higher temperature and that females responded more plastically than males, supporting the condition dependence hypothesis. However, selection in a fluctuating environment altered sex-specific patterns of genetic and environmental variation, indicating support for the adaptive canalization hypothesis. Genetic correlations between sexes (r(MF) ) were affected by fluctuating selection, suggesting facilitated independent evolution of the sexes. Thus, the selective past of a population is highly important for the understanding of the evolutionary dynamics of sexual dimorphism. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy
Bacigalupe, Leonardo D.; Moore, Allen J.; Nespolo, Roberto F.; Rezende, Enrico L.; Bozinovic, Francisco
2017-01-01
There are two heuristic explanations proposed for the evolution of endothermy in vertebrates: a correlated response to selection for stable body temperatures, or as a correlated response to increased activity. Parental care has been suggested as a major driving force in this context given its impact on the parents' activity levels and energy budgets, and in the offspring's growth rates due to food provisioning and controlled incubation temperature. This results in a complex scenario involving multiple traits and transgenerational fitness benefits that can be hard to disentangle, quantify and ultimately test. Here we demonstrate how standard quantitative genetic models of maternal effects can be applied to study the evolution of endothermy, focusing on the interplay between daily energy expenditure (DEE) of the mother and growth rates of the offspring. Our model shows that maternal effects can dramatically exacerbate evolutionary responses to selection in comparison to regular univariate models (breeder's equation). This effect would emerge from indirect selection mediated by maternal effects concomitantly with a positive genetic covariance between DEE and growth rates. The multivariate nature of selection, which could favor a higher DEE, higher growth rates or both, might partly explain how high turnover rates were continuously favored in a self-reinforcing process. Overall, our quantitative genetic analysis provides support for the parental care hypothesis for the evolution of endothermy. We contend that much has to be gained from quantifying maternal and developmental effects on metabolic and thermoregulatory variation during adulthood. PMID:29311952
Connallon, Tim; Clark, Andrew G
2010-12-01
Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection
Chen, Bor-Sen; Ho, Shih-Ju
2014-01-01
In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296
Uncovering the genetic signature of quantitative trait evolution with replicated time series data.
Franssen, S U; Kofler, R; Schlötterer, C
2017-01-01
The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.
"DNA Re-EvolutioN": A Game for Learning Molecular Genetics and Evolution
ERIC Educational Resources Information Center
Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva
2013-01-01
Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game "DNA Re-EvolutioN" as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular…
Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes.
Henning, Frederico; Machado-Schiaffino, Gonzalo; Baumgarten, Lukas; Meyer, Axel
2017-05-01
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Genetic correlations and sex-specific adaptation in changing environments.
Connallon, Tim; Hall, Matthew D
2016-10-01
Females and males have conflicting evolutionary interests. Selection favors the evolution of different phenotypes within each sex, yet divergence between the sexes is constrained by the shared genetic basis of female and male traits. Current theory predicts that such "sexual antagonism" should be common: manifesting rapidly during the process of adaptation, and slow in its resolution. However, these predictions apply in temporally stable environments. Environmental change has been shown empirically to realign the direction of selection acting on shared traits and thereby alleviate signals of sexually antagonistic selection. Yet there remains no theory for how common sexual antagonism should be in changing environments. Here, we analyze models of sex-specific evolutionary divergence under directional and cyclic environmental change, and consider the impact of genetic correlations on long-run patterns of sex-specific adaptation. We find that environmental change often aligns directional selection between the sexes, even when they have divergent phenotypic optima. Nevertheless, some forms of environmental change generate persistent sexually antagonistic selection that is difficult to resolve. Our results reinforce recent empirical observations that changing environmental conditions alleviate conflict between males and females. They also generate new predictions regarding the scope for sexually antagonistic selection and its resolution in changing environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies
Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne
2014-01-01
Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111
ERIC Educational Resources Information Center
Fabian, Carole Ann
2004-01-01
A university in Buffalo introduced its students to evolution by providing them with information on evidence of evolution, mechanisms for evolution, principles of genetics, selection, adaptation, evolution and sociobiology. This method of teaching with technology enabled students to improve and expand their learning opportunities.
Duthie, A Bradley; Reid, Jane M
2016-12-01
While extensive population genetic theory predicts conditions favoring evolution of self-fertilization versus outcrossing, there is no analogous theory that predicts conditions favoring evolution of inbreeding avoidance or inbreeding preference enacted through mate choice given obligate biparental reproduction. Multiple interacting processes complicate the dynamics of alleles underlying such inbreeding strategies, including sexual conflict, distributions of kinship, genetic drift, purging of mutation load, direct costs, and restricted kin discrimination. We incorporated these processes into an individual-based model to predict conditions where selection should increase or decrease frequencies of alleles causing inbreeding avoidance or inbreeding preference when females or males controlled mating. Selection for inbreeding avoidance occurred given strong inbreeding depression when either sex chose mates, while selection for inbreeding preference occurred given very weak inbreeding depression when females chose but never occurred when males chose. Selection for both strategies was constrained by direct costs and restricted kin discrimination. Purging was negligible, but allele frequencies were strongly affected by drift in small populations, while selection for inbreeding avoidance was weak in larger populations because inbreeding risk decreased. Therefore, while selection sometimes favored alleles underlying inbreeding avoidance or preference, evolution of such strategies may be much more restricted and stochastic than is commonly presumed.
Multivariate selection and intersexual genetic constraints in a wild bird population.
Poissant, J; Morrissey, M B; Gosler, A G; Slate, J; Sheldon, B C
2016-10-01
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra- and intersex additive genetic (co)variances and sex-specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex-specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex-specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex-specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Monitoring adaptive genetic responses to environmental change
Michael M. Hansen; Isabelle Olivieri; Donald M. Waller; Einar E. Nielsen; F. W. Allendorf; M. K. Schwartz; C. S. Baker; D. P. Gregovich; J. A. Jackson; K. C. Kendall; L. Laikre; K. McKelvey; M. C. Neel; N. Ryman; R. Short Bull; J. B. Stetz; D. A. Tallmon; C. D. Vojta; R. S. Waples
2012-01-01
Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis...
Engineering microbes for efficient production of chemicals
Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers
2015-04-28
This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna
2013-03-01
Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Kingwell, Callum J.; Wcislo, William T.; Robinson, Gene E.
2017-01-01
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. PMID:28053060
Jones, Beryl M; Kingwell, Callum J; Wcislo, William T; Robinson, Gene E
2017-01-11
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. © 2017 The Author(s).
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Ahuja, Abha; Singh, Rama S
2008-05-01
We investigated the genetic architecture of variation in male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila. Twenty-four generations of divergent artificial selection for sex comb bristle number in a heterogeneous population of Drosophila melanogaster resulted in a significant response that was more pronounced in the direction of low bristle numbers. We observed a strong positive correlated response to selection in the corresponding female transverse bristle row. The correlated response in male abdominal and sternopleural bristle numbers, on the other hand, did not follow the same pattern as sex comb bristle number differences between selection lines. Relaxation-of-selection experiments along with mate choice and fecundity assays using the selection lines developed demonstrated the action of stabilizing selection on sex comb bristle number. Our results show (1) substantial genetic variation underlying sex comb bristle number variation; (2) a weak relationship between the sex comb and developmentally related, non-sex bristle systems; and (3) that sexual selection may be a driving force in sex comb evolution, indicating the potential of sex combs to diversify rapidly during population differentiation and speciation. We discuss the implications of these results for theories of genetic variation in display and nondisplay male sex traits.
The genetical theory of social behaviour
Lehmann, Laurent; Rousset, François
2014-01-01
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1–16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments. PMID:24686929
The genetical theory of social behaviour.
Lehmann, Laurent; Rousset, François
2014-05-19
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
El Mouden, C; André, J-B; Morin, O; Nettle, D
2014-02-01
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Kimmel, Charles B.; Cresko, William A.; Phillips, Patrick C.; Ullmann, Bonnie; Currey, Mark; von Hippel, Frank; Kristjánsson, Bjarni K.; Gelmond, Ofer; McGuigan, Katrina
2014-01-01
Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance– covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture. PMID:22276538
How sexual selection can drive the evolution of costly sperm ornamentation
NASA Astrophysics Data System (ADS)
Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott
2016-05-01
Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
The concurrent evolution of cooperation and the population structures that support it.
Powers, Simon T; Penn, Alexandra S; Watson, Richard A
2011-06-01
The evolution of cooperation often depends upon population structure, yet nearly all models of cooperation implicitly assume that this structure remains static. This is a simplifying assumption, because most organisms possess genetic traits that affect their population structure to some degree. These traits, such as a group size preference, affect the relatedness of interacting individuals and hence the opportunity for kin or group selection. We argue that models that do not explicitly consider their evolution cannot provide a satisfactory account of the origin of cooperation, because they cannot explain how the prerequisite population structures arise. Here, we consider the concurrent evolution of genetic traits that affect population structure, with those that affect social behavior. We show that not only does population structure drive social evolution, as in previous models, but that the opportunity for cooperation can in turn drive the creation of population structures that support it. This occurs through the generation of linkage disequilibrium between socio-behavioral and population-structuring traits, such that direct kin selection on social behavior creates indirect selection pressure on population structure. We illustrate our argument with a model of the concurrent evolution of group size preference and social behavior. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Regressive Evolution in the Mexican Cave Tetra, Astyanax mexicanus
Protas, Meredith; Conrad, Melissa; Gross, Joshua B.; Tabin, Clifford; Borowsky, Richard
2007-01-01
Summary Cave adapted animals generally have reduced pigmentation and eyes, but the evolutionary forces driving the reductions are unknown; Darwin famously questioned the role of natural selection in eye loss in cave fishes; “As it is difficult to imagine that eyes, although useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse” [1]. We studied the genetic basis of this phenomenon in the Mexican cave tetra, Astyanax mexicanus, by mapping the quantitative trait loci (QTL) determining differences in eye/lens sizes and melanophore number between cave and surface fish. In addition, we mapped QTL for the putatively constructive traits of jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation regressed through different mechanisms. Cave alleles at each eye/lens QTL we detected caused size reductions. This uniform negative polarity is consistent with evolution by natural selection and inconsistent with evolution by drift. In contrast, QTL polarities for melanophore number were mixed, consistent with evolution by genetic drift or indirect selection through pleiotropy. Past arguments against a role for selection in regression of cave fish eyes cited the insignificant cost of their development [2, 3], but we argue that the energetic cost of their maintenance is sufficiently high for eyes to be detrimental in the cave environment. Regression, a ubiquitous aspect of all evolutionary change, can be caused either by selection or genetic drift/pleiotropy. PMID:17306543
Green, Kristina Karlsson; Svensson, Erik I; Bergsten, Johannes; Härdling, Roger; Hansson, Bengt
2014-07-01
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Novel population genetics in ciliates due to life cycle and nuclear dimorphism.
Morgens, David W; Stutz, Timothy C; Cavalcanti, Andre R O
2014-08-01
Our understanding of population genetics comes primarily from studies of organisms with canonical life cycles and nuclear organization, either haploid or diploid, sexual, or asexual. Although this template yields satisfactory results for the study of animals and plants, the wide variety of genomic organizations and life cycles of unicellular eukaryotes can make these organisms behave differently in response to mutation, selection, and drift than predicted by traditional population genetic models. In this study, we show how each of these unique features of ciliates affects their evolutionary parameters in mutation-selection, selection-drift, and mutation-selection-drift situations. In general, ciliates are less efficient in eliminating deleterious mutations-these mutations linger longer and at higher frequencies in ciliate populations than in sexual populations--and more efficient in selecting beneficial mutations. Approaching this problem via analytical techniques and simulation allows us to make specific predictions about the nature of ciliate evolution, and we discuss the implications of these results with respect to the high levels of polymorphism and high rate of protein evolution reported for ciliates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Convergent evolution and divergent selection: lizards at the White Sands ecotone.
Rosenblum, Erica Bree
2006-01-01
Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent adaptation of blanched coloration on the gypsum dunes of White Sands National Monument. I investigate the role of gene flow in modulating phenotypic response to selection by quantifying color variation and genetic variation across the ecotone. I find species differences in degree of background matching and in genetic connectivity of populations across the ecotone. Differences among species in phenotypic response to selection scale precisely to levels of genetic isolation. Species with higher levels of gene flow across the ecotone exhibit less dramatic responses to selection. Results also reveal a strong signal of ecologically mediated divergence for White Sands lizards. For all species, phenotypic variation is better explained by habitat similarity than genetic similarity. Convergent evolution of blanched coloration at White Sands clearly reflects the action of strong divergent selection; however, adaptive response appears to be modulated by gene flow and demographic history and can be predicted by divergence-with-gene-flow models.
The early stages of duplicate gene evolution
Moore, Richard C.; Purugganan, Michael D.
2003-01-01
Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323
Optimality models in the age of experimental evolution and genomics.
Bull, J J; Wang, I-N
2010-09-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Social evolution and genetic interactions in the short and long term.
Van Cleve, Jeremy
2015-08-01
The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetics of climate change adaptation.
Franks, Steven J; Hoffmann, Ary A
2012-01-01
The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.
Orr, H A
1998-01-01
Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061
Rueppell, Olav
2014-01-01
Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous “behavioral” syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection. PMID:25506100
Rueppell, Olav
2014-05-01
Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.
Colautti, Robert I; Lau, Jennifer A
2015-05-01
Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.
Stabilizing selection on sperm number revealed by artificial selection and experimental evolution.
Cattelan, Silvia; Di Nisio, Andrea; Pilastro, Andrea
2018-03-01
Sperm competition is taxonomically widespread in animals and is usually associated with large sperm production, being the number of sperm in the competing pool the prime predictor of fertilization success. Despite the strong postcopulatory selection acting directionally on sperm production, its genetic variance is often very high. This can be explained by trade-offs between sperm production and traits associated with mate acquisition or survival, that may contribute to generate an overall stabilizing selection. To investigate this hypothesis, we first artificially selected male guppies (Poecilia reticulata) for high and low sperm production for three generations, while simultaneously removing sexual selection. Then, we interrupted artificial selection and restored sexual selection. Sperm production responded to divergent selection in one generation, and when we restored sexual selection, both high and low lines converged back to the mean sperm production of the original population within two generations, indicating that sperm number is subject to strong stabilizing total sexual selection (i.e., selection acting simultaneously on all traits associated with reproductive success). We discuss the possible mechanisms responsible for the maintenance of high genetic variability in sperm production despite strong selection acting on it. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
The fine-scale genetic structure and evolution of the Japanese population.
Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro
2017-01-01
The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.
Adaptation and colonization history affect the evolution of clines in two introduced species.
Keller, Stephen R; Sowell, Dexter R; Neiman, Maurine; Wolfe, Lorne M; Taylor, Douglas R
2009-08-01
Phenotypic and genetic clines have long been synonymous with adaptive evolution. However, other processes (for example, migration, range expansion, invasion) may generate clines in traits or loci across geographical and environmental gradients. It is therefore important to distinguish between clines that represent adaptive evolution and those that result from selectively neutral demographic or genetic processes. We tested for the differentiation of phenotypic traits along environmental gradients using two species in the genus Silene, whilst statistically controlling for colonization history and founder effects. We sampled seed families from across the native and introduced ranges, genotyped individuals and estimated phenotypic differentiation in replicated common gardens. The results suggest that post-glacial expansion of S. vulgaris and S. latifolia involved both neutral and adaptive genetic differentiation (clines) of life history traits along major axes of environmental variation in Europe and North America. Phenotypic clines generally persisted when tested against the neutral expectation, although some clines disappeared (and one cline emerged) when the effects of genetic ancestry were statistically removed. Colonization history, estimated using genetic markers, is a useful null model for tests of adaptive trait divergence, especially during range expansion and invasion when selection and gene flow may not have reached equilibrium.
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Experimental Evolution as a High-Throughput Screen for Genetic Adaptations.
Cooper, Vaughn S
2018-06-27
Experimental evolution is a method in which populations of organisms, often microbes, are founded by one or more ancestors of known genotype and then propagated under controlled conditions to study the evolutionary process. These evolving populations are influenced by all population genetic forces, including selection, mutation, drift, and recombination, and the relative contributions of these forces may be seen as mysterious. Here, I describe why the outcomes of experimental evolution should be viewed with greater certainty because the force of selection typically dominates. Importantly, any mutant rising rapidly to high frequency in large populations must have acquired adaptive traits in the selective environment. Sequencing the genomes of these mutants can identify genes or pathways that contribute to an adaptation. I review the logic and simple mathematics why this evolve-and-resequence approach is a powerful way to find the mutations or mutation combinations that best increase fitness in any new environment. Copyright © 2018 Cooper.
The role of experiments in understanding fishery-induced evolution
Conover, David O; Baumann, Hannes
2009-01-01
Evidence of fishery-induced evolution has been accumulating rapidly from various avenues of investigation. Here we review the knowledge gained from experimental approaches. The strength of experiments is in their ability to disentangle genetic from environmental differences. Common garden experiments have provided direct evidence of adaptive divergence in the wild and therefore the evolvability of various traits that influence production in numerous species. Most of these cases involve countergradient variation in physiological, life history, and behavioral traits. Selection experiments have provided examples of rapid life history evolution and, more importantly, that fishery-induced selection pressures cause simultaneous divergence of not one but a cluster of genetically and phenotypically correlated traits that include physiology, behavior, reproduction, and other life history characters. The drawbacks of experiments are uncertainties in the scale-up from small, simple environments to larger and more complex systems; the concern that taxons with short life cycles used for experimental research are atypical of those of harvested species; and the difficulty of adequately simulating selection due to fishing. Despite these limitations, experiments have contributed greatly to our understanding of fishery-induced evolution on both empirical and theoretical levels. Future advances will depend on integrating knowledge from experiments with those from modeling, field studies, and molecular genetic approaches. PMID:25567880
What Use Is Population Genetics?
Charlesworth, Brian
2015-07-01
The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.
Y chromosome diversity, human expansion, drift, and cultural evolution
Chiaroni, Jacques; Underhill, Peter A.; Cavalli-Sforza, Luca L.
2009-01-01
The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent “Out of Africa” expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production. PMID:19920170
Y chromosome diversity, human expansion, drift, and cultural evolution.
Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L
2009-12-01
The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.
Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.
2015-01-01
Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537
Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D.; Bodrossy, Levente; Hobday, Alistair J.
2017-01-01
Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. PMID:28148831
ERIC Educational Resources Information Center
Gregg, Thomas G.; Janssen, Gary R.; Bhattacharjee, J.K.
2003-01-01
Evolution is considered by virtually all biologists to be the central unifying principle of biology, yet its fundamental concepts are not widely understood or widely disseminated. Teaching evolution--defined as descent with modification from a common ancestor as a result of natural selection acting on genetic variation--has traditionally been a…
The Quiet Revolution: A New Synthesis of Biological Knowledge
ERIC Educational Resources Information Center
Dyer, K. F.
1971-01-01
Reviews evidence from molecular genetics and biochemistry, which supports the idea of some evolution, due to chance and selectively neutral mutations, occurring independently of natural selection. (AL)
Wheelwright, Nathaniel T; Keller, Lukas F; Postma, Erik
2014-11-01
The heritability (h(2) ) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential ("evolvability"). Recent studies suggest that the low h(2) of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA ) but by greater environmental or nonadditive genetic variance (VR ). We examined the relationship between h(2) and variance-standardized selection intensities (i or βσ ), and between evolvability (IA :VA divided by squared phenotypic trait mean) and mean-standardized selection gradients (βμ ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h(2) declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life-history), h(2) , IA , and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.
The effects of stress and sex on selection, genetic covariance, and the evolutionary response.
Holman, L; Jacomb, F
2017-10-01
The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
The contribution of the mitochondrial genome to sex-specific fitness variance.
Smith, Shane R T; Connallon, Tim
2017-05-01
Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex-biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations-including the correlation of mutant fitness effects between the sexes-on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model
Bank, Claudia; Bürger, Reinhard; Hermisson, Joachim
2012-01-01
How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability. PMID:22542972
Bernatchez, L
2016-12-01
The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some circumstances. Although more empirical support is needed, several recent studies suggest that epigenetic variation could account for this apparent paradox. Therefore, epigenetic variation should be fully integrated with considerations pertaining to role of soft sweeps, polygenic and balancing selection, as well as repeated adaptation involving different genetic basis towards improving models predicting the evolutionary potential of species to cope with a changing world. © 2016 The Fisheries Society of the British Isles.
Experimental evolution of a sexually selected display in yeast
Rogers, David W.; Greig, Duncan
2008-01-01
The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection. PMID:18842545
A formulation of the foundations of genetics and evolution.
Bahr, Brian Edward
2016-05-01
This paper proposes a formulation of theories of the foundations of genetics and evolution that can be used to mathematically simulate phenotype expression, reproduction, mutation, and natural selection. It will be shown that Mendelian inheritance can be mathematically simulated with expressions involving matrices and that these expressions can also simulate phenomena that are modifications to Mendel's basic principles, like alleles that give rise to quantitative effects and traits that are the expression of multiple alleles and/or multiple genetic loci. Copyright © 2016 Elsevier Inc. All rights reserved.
Diversifying mechanisms in the on-farm evolution of crop mixtures.
Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle
2015-06-01
While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.
Valenzuela, Carlos Y
2013-01-01
The Neutral Theory of Evolution (NTE) proposes mutation and random genetic drift as the most important evolutionary factors. The most conspicuous feature of evolution is the genomic stability during paleontological eras and lack of variation among taxa; 98% or more of nucleotide sites are monomorphic within a species. NTE explains this homology by random fixation of neutral bases and negative selection (purifying selection) that does not contribute either to evolution or polymorphisms. Purifying selection is insufficient to account for this evolutionary feature and the Nearly-Neutral Theory of Evolution (N-NTE) included negative selection with coefficients as low as mutation rate. These NTE and N-NTE propositions are thermodynamically (tendency to random distributions, second law), biotically (recurrent mutation), logically and mathematically (resilient equilibria instead of fixation by drift) untenable. Recurrent forward and backward mutation and random fluctuations of base frequencies alone in a site make life organization and fixations impossible. Drift is not a directional evolutionary factor, but a directional tendency of matter-energy processes (second law) which threatens the biotic organization. Drift cannot drive evolution. In a site, the mutation rates among bases and selection coefficients determine the resilient equilibrium frequency of bases that genetic drift cannot change. The expected neutral random interaction among nucleotides is zero; however, huge interactions and periodicities were found between bases of dinucleotides separated by 1, 2... and more than 1,000 sites. Every base is co-adapted with the whole genome. Neutralists found that neutral evolution is independent of population size (N); thus neutral evolution should be independent of drift, because drift effect is dependent upon N. Also, chromosome size and shape as well as protein size are far from random.
Cultural evolutionary theory: How culture evolves and why it matters
Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W.
2017-01-01
Human cultural traits—behaviors, ideas, and technologies that can be learned from other individuals—can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene–culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment. PMID:28739941
Cultural evolutionary theory: How culture evolves and why it matters.
Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W
2017-07-24
Human cultural traits-behaviors, ideas, and technologies that can be learned from other individuals-can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene-culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment.
High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.
Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas
2011-10-01
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Evolution of sex: Using experimental genomics to select among competing theories.
Sharp, Nathaniel P; Otto, Sarah P
2016-08-01
Few topics have intrigued biologists as much as the evolution of sex. Understanding why sex persists despite its costs requires not just rigorous theoretical study, but also empirical data on related fundamental issues, including the nature of genetic variance for fitness, patterns of genetic interactions, and the dynamics of adaptation. The increasing feasibility of examining genomes in an experimental context is now shedding new light on these problems. Using this approach, McDonald et al. recently demonstrated that sex uncouples beneficial and deleterious mutations, allowing selection to proceed more effectively with sex than without. Here we discuss the insights provided by this study, along with other recent empirical work, in the context of the major theoretical models for the evolution of sex. © 2016 WILEY Periodicals, Inc.
Correlated evolution of personality, morphology and performance
Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian
2018-01-01
Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712
Pangenesis as a source of new genetic information. The history of a now disproven theory.
Bergman, Gerald
2006-01-01
Evolution is based on natural selection of existing biological phenotypic traits. Natural selection can only eliminate traits. It cannot create new ones, requiring a theory to explain the origin of new genetic information. The theory of pangenesis was a major attempt to explain the source of new genetic information required to produce phenotypic variety. This theory, advocated by Darwin as the main source of genetic variety, has now been empirically disproved. It is currently a theory mainly of interest to science historians.
Sermon, Karen
2017-01-01
Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.
DNA Re-EvolutioN: a game for learning molecular genetics and evolution.
Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva
2013-01-01
Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.
Pick, J L; Hutter, P; Tschirren, B
2016-06-01
Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness.
Pick, J L; Hutter, P; Tschirren, B
2016-01-01
Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness. PMID:26956564
Selection on skewed characters and the paradox of stasis.
Bonamour, Suzanne; Teplitsky, Céline; Charmantier, Anne; Crochet, Pierre-André; Chevin, Luis-Miguel
2017-11-01
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date - repeatedly described as more evolutionarily stable than expected - so this skewness should be accounted for when investigating evolutionary dynamics in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Berger, David; You, Tao; Minano, Maravillas R; Grieshop, Karl; Lind, Martin I; Arnqvist, Göran; Maklakov, Alexei A
2016-05-13
Intralocus sexual conflict, arising from selection for different alleles at the same locus in males and females, imposes a constraint on sex-specific adaptation. Intralocus sexual conflict can be alleviated by the evolution of sex-limited genetic architectures and phenotypic expression, but pleiotropic constraints may hinder this process. Here, we explored putative intralocus sexual conflict and genetic (co)variance in a poorly understood behavior with near male-limited expression. Same-sex sexual behaviors (SSBs) generally do not conform to classic evolutionary models of adaptation but are common in male animals and have been hypothesized to result from perception errors and selection for high male mating rates. However, perspectives incorporating sex-specific selection on genes shared by males and females to explain the expression and evolution of SSBs have largely been neglected. We performed two parallel sex-limited artificial selection experiments on SSB in male and female seed beetles, followed by sex-specific assays of locomotor activity and male sex recognition (two traits hypothesized to be functionally related to SSB) and adult reproductive success (allowing us to assess fitness consequences of genetic variance in SSB and its correlated components). Our experiments reveal both shared and sex-limited genetic variance for SSB. Strikingly, genetically correlated responses in locomotor activity and male sex-recognition were associated with sexually antagonistic fitness effects, but these effects differed qualitatively between male and female selection lines, implicating intralocus sexual conflict at both male- and female-specific genetic components underlying SSB. Our study provides experimental support for the hypothesis that widespread pleiotropy generates pervasive intralocus sexual conflict governing the expression of SSBs, suggesting that SSB in one sex can occur due to the expression of genes that carry benefits in the other sex.
Pathogen-driven selection in the human genome.
Cagliani, Rachele; Sironi, Manuela
2013-01-01
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth
NASA Astrophysics Data System (ADS)
Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love
2016-05-01
According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.
A behavioral perspective on fishing-induced evolution.
Uusi-Heikkilä, Silva; Wolter, Christian; Klefoth, Thomas; Arlinghaus, Robert
2008-08-01
The potential for excessive and/or selective fishing to act as an evolutionary force has been emphasized recently. However, most studies have focused on evolution of life-history traits in response to size-selective harvesting. Here we draw attention to fishing-induced evolution of behavioral and underlying physiological traits. We contend that fishing-induced selection directly acting on behavioral rather than on life-history traits per se can be expected in all fisheries that operate with passive gears such as trapping, angling and gill-netting. Recent artificial selection experiments in the nest-guarding largemouth bass Micropterus salmoides suggest that fishing-induced evolution of behavioral traits that reduce exposure to fishing gear might be maladaptive, potentially reducing natural recruitment. To improve understanding and management of fisheries-induced evolution, we encourage greater application of methods from behavioral ecology, physiological ecology and behavioral genetics.
Hopkins, Robin; Levin, Donald A; Rausher, Mark D
2012-02-01
Character displacement, which arises when species diverge in sympatry to decrease competition for resources or reproductive interference, has been observed in a wide variety of plants and animals. A classic example of reproductive character displacement, presumed to be caused by reinforcing selection, is flower-color variation in the native Texas wildflower Phlox drummondii. Here, we use population genetic analyses to investigate molecular signatures of selection on flower-color variation in this species. First, we quantify patterns of neutral genetic variation across the range of P. drummondii to demonstrate that restricted gene flow and genetic drift cannot explain the pattern of flower-color divergence in this species. There is evidence of extensive gene flow across populations with different flower colors, suggesting selection caused flower-color divergence. Second, analysis of sequence variation in the genes underlying this divergence reveals a signature of a selective sweep in one of the two genes, further indicating selection is responsible for divergence in sympatry. The lack of a signature of selection at the second locus does not necessarily indicate a lack of selection on this locus but instead brings attention to the uncertainty in depending on molecular signatures to identify selection. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
The fine-scale genetic structure and evolution of the Japanese population
Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua
2017-01-01
The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727
EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE
Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.
2015-01-01
Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168
Charlesworth, Brian; Charlesworth, Deborah
2009-01-01
Darwin's theory of natural selection lacked an adequate account of inheritance, making it logically incomplete. We review the interaction between evolution and genetics, showing how, unlike Mendel, Darwin's lack of a model of the mechanism of inheritance left him unable to interpret his own data that showed Mendelian ratios, even though he shared with Mendel a more mathematical and probabilistic outlook than most biologists of his time. Darwin's own “pangenesis” model provided a mechanism for generating ample variability on which selection could act. It involved, however, the inheritance of characters acquired during an organism's life, which Darwin himself knew could not explain some evolutionary situations. Once the particulate basis of genetics was understood, it was seen to allow variation to be passed intact to new generations, and evolution could then be understood as a process of changes in the frequencies of stable variants. Evolutionary genetics subsequently developed as a central part of biology. Darwinian principles now play a greater role in biology than ever before, which we illustrate with some examples of studies of natural selection that use DNA sequence data and with some recent advances in answering questions first asked by Darwin. PMID:19933231
Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.
Satomura, Kazuhiro; Tamura, Koichiro
2016-02-01
Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bradshaw, W E; Emerson, K J; Holzapfel, C M
2012-01-01
The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda–Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection. PMID:22072069
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-01-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253
Natural selection and inheritance of breeding time and clutch size in the collared flycatcher.
Sheldon, B C; Kruuk, L E B; Merilä, J
2003-02-01
Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on laying date is partially constrained by underlying life-history trade-offs, and illustrate the difficulties in using purely phenotypic measures and incomplete fitness estimates to assess evolution of life-history trade-offs. We discuss some of the difficulties associated with understanding the evolution of laying date and clutch size in natural populations.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Population genetics and demography unite ecology and evolution
Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.
2017-01-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.
Tracking footprints of artificial selection in the dog genome.
Akey, Joshua M; Ruhe, Alison L; Akey, Dayna T; Wong, Aaron K; Connelly, Caitlin F; Madeoy, Jennifer; Nicholas, Thomas J; Neff, Mark W
2010-01-19
The size, shape, and behavior of the modern domesticated dog has been sculpted by artificial selection for at least 14,000 years. The genetic substrates of selective breeding, however, remain largely unknown. Here, we describe a genome-wide scan for selection in 275 dogs from 10 phenotypically diverse breeds that were genotyped for over 21,000 autosomal SNPs. We identified 155 genomic regions that possess strong signatures of recent selection and contain candidate genes for phenotypes that vary most conspicuously among breeds, including size, coat color and texture, behavior, skeletal morphology, and physiology. In addition, we demonstrate a significant association between HAS2 and skin wrinkling in the Shar-Pei, and provide evidence that regulatory evolution has played a prominent role in the phenotypic diversification of modern dog breeds. Our results provide a first-generation map of selection in the dog, illustrate how such maps can rapidly inform the genetic basis of canine phenotypic variation, and provide a framework for delineating the mechanistic basis of how artificial selection promotes rapid and pronounced phenotypic evolution.
Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto
2015-08-01
In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
The evolution of genetic and conditional alternative reproductive tactics
2016-01-01
Frequency-dependent selection may drive adaptive diversification within species. It is yet unclear why the occurrence of alternative reproductive tactics (ARTs) is highly divergent between major animal taxa. Here we aim to clarify the environmental and social conditions favouring the evolution of intra-population variance of male reproductive phenotypes. Our results suggest that genetically determined ARTs that are fixed for life evolve when there is strong selection on body size due to size-dependent competitiveness, in combination with environmental factors reducing size benefits. The latter may result from growth costs or, more generally, from age-dependent but size-independent mortality causes. This generates disruptive selection on growth trajectories underlying tactic choice. In many parameter settings, the model also predicts ARTs to evolve that are flexible and responsive to current conditions. Interestingly, the conditions favouring the evolution of flexible tactics diverge considerably from those favouring genetic variability. Nevertheless, in a restricted but relevant parameter space, our model predicts the simultaneous emergence and maintenance of a mixture of multiple tactics, both genetically and conditionally determined. Important conditions for the emergence of ARTs include size variation of competitors, which is inherently greater in species with indeterminate growth than in taxa reproducing only after reaching their terminal body size. This is probably the reason why ARTs are more common in fishes than in other major taxa. PMID:26911960
Identifying artificial selection signals in the chicken genome.
Ma, Yunlong; Gu, Lantao; Yang, Liubin; Sun, Chenghao; Xie, Shengsong; Fang, Chengchi; Gong, Yangzhang; Li, Shijun
2018-01-01
Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH), Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.
Genetic adaptations of the plateau zokor in high-elevation burrows.
Shao, Yong; Li, Jin-Xiu; Ge, Ri-Li; Zhong, Li; Irwin, David M; Murphy, Robert W; Zhang, Ya-Ping
2015-11-25
The plateau zokor (Myospalax baileyi) spends its entire life underground in sealed burrows. Confronting limited oxygen and high carbon dioxide concentrations, and complete darkness, they epitomize a successful physiological adaptation. Here, we employ transcriptome sequencing to explore the genetic underpinnings of their adaptations to this unique habitat. Compared to Rattus norvegicus, genes belonging to GO categories related to energy metabolism (e.g. mitochondrion and fatty acid beta-oxidation) underwent accelerated evolution in the plateau zokor. Furthermore, the numbers of positively selected genes were significantly enriched in the gene categories involved in ATPase activity, blood vessel development and respiratory gaseous exchange, functional categories that are relevant to adaptation to high altitudes. Among the 787 genes with evidence of parallel evolution, and thus identified as candidate genes, several GO categories (e.g. response to hypoxia, oxygen homeostasis and erythrocyte homeostasis) are significantly enriched, are two genes, EPAS1 and AJUBA, involved in the response to hypoxia, where the parallel evolved sites are at positions that are highly conserved in sequence alignments from multiple species. Thus, accelerated evolution of GO categories, positive selection and parallel evolution at the molecular level provide evidences to parse the genetic adaptations of the plateau zokor for living in high-elevation burrows.
The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process.
Wu, Chung-I; Wang, Hurng-Yi; Ling, Shaoping; Lu, Xuemei
2016-11-23
Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.
Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D; Bodrossy, Levente; Hobday, Alistair J
2017-02-01
Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO 2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. © 2017 The Author(s).
Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving
Tian, Ran; Wang, Zhengfei; Niu, Xu; Zhou, Kaiya; Xu, Shixia; Yang, Guang
2016-01-01
Hypoxia was a major challenge faced by cetaceans during the course of secondary aquatic adaptation. Although physiological traits of hypoxia tolerance in cetaceans have been well characterized, the underlying molecular mechanisms remain unknown. We investigated the sequences of 17 hypoxia-tolerance-related genes in representative cetaceans to provide a comprehensive insight into the genetic basis of hypoxia tolerance in these animals. Genes involved in carrying and transporting oxygen in the blood and muscle (hemoglobin-α and β, myoglobin), and genes involved in the regulation of vasoconstriction (endothelin-1, -2, and -3; endothelin receptor type A and B; adrenergic receptor α-1D; and arginine vasopressin) appear to have undergone adaptive evolution, evidence for positive selection on their particular sites, and radical physiochemical property changes of selected condons. Interestingly, “long-diving” cetaceans had relatively higher ω (dN/dS) values than “short-diving” cetaceans for the hemoglobin β gene, indicating divergent selective pressure presented in cetacean lineages with different diving abilities. Additionally, parallel positive selection or amino acid changes (ADRA1D: P50A, A53G, AVPR1B: I/V270T) among animals exposed to different hypoxia habitats reflect functional convergence or similar genetic mechanisms of hypoxia tolerance. In summary, positive selection, divergent selective pressures, and parallel evolution at the molecular level provided some new insights into the genetic adaptation of hypoxia tolerance. PMID:26912402
Sobel Leonard, Ashley; McClain, Micah T; Smith, Gavin J D; Wentworth, David E; Halpin, Rebecca A; Lin, Xudong; Ransier, Amy; Stockwell, Timothy B; Das, Suman R; Gilbert, Anthony S; Lambkin-Williams, Robert; Ginsburg, Geoffrey S; Woods, Christopher W; Koelle, Katia
2016-12-15
Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects' viral populations differ genetically from the viral stock, with subjects' viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections. Copyright © 2016 Sobel Leonard et al.
New frontiers in the study of human cultural and genetic evolution.
Ross, Cody T; Richerson, Peter J
2014-12-01
In this review, we discuss the dynamic linkages between culture and the genetic evolution of the human species. We begin by briefly describing the framework of gene-culture coevolutionary (or dual-inheritance) models for human evolutionary change. Until recently, the literature on gene-culture coevolution was composed primarily of mathematical models and formalized theory describing the complex dynamics underlying human behavior, adaptation, and technological evolution, but had little empirical support concerning genetics. The rapid progress in the fields of molecular genetics and genomics, however, is now providing the kinds of data needed to produce rich empirical support for gene-culture coevolutionary models. We briefly outline how theoretical and methodological progress in genome sciences has provided ways for the strength of selection on genes to be evaluated, and then outline how evidence of selection on several key genes can be directly linked to human cultural practices. We then describe some exciting new directions in the empirical study of gene-culture coevolution, and conclude with a discussion of the role of gene-culture evolutionary models in the future integration of medical, biological, and social sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms
2016-01-01
A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053
Cryptic genetic variation, evolution's hidden substrate
Paaby, Annalise B.; Rockman, Matthew V.
2016-01-01
Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309
Genetic constraints predict evolutionary divergence in Dalechampia blossoms.
Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott
2014-08-19
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Runaway sexual selection leads to good genes.
Chandler, Christopher H; Ofria, Charles; Dworkin, Ian
2013-01-01
Mate choice and sexual displays are widespread in nature, but their evolutionary benefits remain controversial. Theory predicts these traits can be favored by runaway sexual selection, in which preference and display reinforce one another due to genetic correlation; or by good genes benefits, in which mate choice is advantageous because extreme displays indicate a well-adapted genotype. However, these hypotheses are not mutually exclusive, and the adaptive benefits underlying mate choice can themselves evolve. In particular, examining how and why sexual displays become indicators of good genes is challenging in natural systems. Here, we use experimental evolution in "digital organisms" to demonstrate the origins of condition-dependent indicator displays following their spread due to a runaway process. Surprisingly, handicap-like costs are not necessary for displays to become indicators of male viability. Instead, a pleiotropic genetic architecture underlies both displays and viability. Runaway sexual selection and good genes benefits should thus be viewed as interacting mechanisms that reinforce one another. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits
Nolfi, Stefano
2016-01-01
We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults. PMID:27409589
When ideas have sex: the role of exchange in cultural evolution.
Ridley, M W
2009-01-01
Human economic and technological progress has been dominated for the last 100,000 years by natural selection among variants of cultures, rather than among variants of genes. Evidence suggests that cultural evolution depends on exchange and trade to bring together ideas in much the same way that genetic evolution depends on sex to spread genetic mutations, or in the case of bacteria, on horizontal gene transfer. When starved of access to a large "collective brain" by isolation from trade and exchange, people may experience not just less innovation, but even regress. The capacity for ideas to have sex on the Internet is likely to accelerate cultural evolution still further.
Evolution and inheritance of early embryonic patterning in Drosophila simulans and D. sechellia.
Lott, Susan E; Ludwig, Michael Z; Kreitman, Martin
2011-05-01
Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation that selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth "stripe allometry") in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species Drosophila simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the "margin of error" for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Edward, Dominic A; Fricke, Claudia; Chapman, Tracey
2010-08-27
Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.
The impact of using old germplasm on genetic merit and diversity-A cattle breed case study.
Eynard, Sonia E; Windig, Jack J; Hulsegge, Ina; Hiemstra, Sipke-Joost; Calus, Mario P L
2018-05-29
Artificial selection and high genetic gains in livestock breeds led to a loss of genetic diversity. Current genetic diversity conservation actions focus on long-term maintenance of breeds under selection. Gene banks play a role in such actions by storing genetic materials for future use and the recent development of genomic information is facilitating characterization of gene bank material for better use. Using the Meuse-Rhine-Issel Dutch cattle breed as a case study, we inferred the potential role of germplasm of old individuals for genetic diversity conservation of the current population. First, we described the evolution of genetic merit and diversity over time and then we applied the optimal contribution (OC) strategy to select individuals for maximizing genetic diversity, or maximizing genetic merit while constraining loss of genetic diversity. In the past decades, genetic merit increased while genetic diversity decreased. Genetic merit and diversity were both higher in an OC scenario restricting the rate of inbreeding when old individuals were considered for selection, compared to considering only animals from the current population. Thus, our study shows that gene bank material, in the form of old individuals, has the potential to support long-term maintenance and selection of breeds. © 2018 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.
Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E
2014-01-01
Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847
Pascoal, Sonia; Mendrok, Magdalena; Wilson, Alastair J; Hunt, John; Bailey, Nathan W
2017-06-01
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among-population (genetic) variance-covariance matrix, D, for all 15 traits, and D max explained nearly two-thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among-population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Fluctuating Selection in the Moran.
Dean, Antony M; Lehman, Clarence; Yi, Xiao
2017-03-01
Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises d n / d s ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the d n / d s ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. Copyright © 2017 by the Genetics Society of America.
Hypocretin underlies the evolution of sleep loss in the Mexican cavefish
Jaggard, James B; Stahl, Bethany A; Lloyd, Evan; Prober, David A; Duboue, Erik R
2018-01-01
The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation. PMID:29405117
Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain
2014-08-01
Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Sheehan, Michael J; Nachman, Michael W
2014-09-16
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Oppenheim, Sara J; Gould, Fred; Hopper, Keith R
2018-03-01
Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.
Population Genetics and Demography Unite Ecology and Evolution.
Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W
2017-02-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genomic Signature of Kin Selection in an Ant with Obligately Sterile Workers
Warner, Michael R.; Mikheyev, Alexander S.
2017-01-01
Abstract Kin selection is thought to drive the evolution of cooperation and conflict, but the specific genes and genome-wide patterns shaped by kin selection are unknown. We identified thousands of genes associated with the sterile ant worker caste, the archetype of an altruistic phenotype shaped by kin selection, and then used population and comparative genomic approaches to study patterns of molecular evolution at these genes. Consistent with population genetic theoretical predictions, worker-upregulated genes experienced reduced selection compared with genes upregulated in reproductive castes. Worker-upregulated genes included more taxonomically restricted genes, indicating that the worker caste has recruited more novel genes, yet these genes also experienced reduced selection. Our study identifies a putative genomic signature of kin selection and helps to integrate emerging sociogenomic data with longstanding social evolution theory. PMID:28419349
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-02-13
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-01-01
SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less
Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers.
Forsman, Anders; Karlsson, Magnus; Wennersten, Lena; Johansson, Jenny; Karpestam, Einat
2011-09-01
Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes. © 2011 The Author(s).
Evolution of the Genetic and Neural Architecture for Vertebrate Odor Perception
Bear, Daniel M.; Lassance, Jean-Marc; Hoekstra, Hopi E.; Datta, Sandeep Robert
2016-01-01
Evolution sculpts the olfactory nervous system in response to the unique sensory challenges facing each species. In vertebrates, dramatic and diverse adaptations to the chemical environment are possible because of the hierarchical structure of the olfactory receptor (OR) gene superfamily: rapid growth or pruning across the OR gene tree accompany major changes in habitat and lifestyle; independent selection on OR subfamilies can permit local adaptation or conserved chemical communication; and genetic variation in single OR genes among thousands can alter odor percepts and behaviors driven by precise chemical cues. However, this genetic flexibility contrasts with the relatively fixed neural architecture of the vertebrate olfactory system, whose slower rate of divergence mandates that new olfactory receptors integrate into segregated and functionally-distinct neural pathways. This organization allows evolution to couple critical chemical signals with selectively advantageous responses, but also constrains relationships between olfactory receptors and behavior. The coevolution of the OR repertoire and the structure of the olfactory system therefore reveals general principles of how the brain solves specific sensory problems and how it adapts to new ones. PMID:27780046
Santangelo, James S; Johnson, Marc T J; Ness, Rob W
2018-05-16
Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover ( Trifolium repens ) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation. © 2018 The Author(s).
McGlothlin, Joel W; Parker, Patricia G; Nolan, Val; Ketterson, Ellen D
2005-03-01
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or "tail white") are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Genetic-evolution-based optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.
1990-01-01
This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.
Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.
Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G
2006-02-01
The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.
The diversification of Heliconius butterflies: what have we learned in 150 years?
Merrill, R M; Dasmahapatra, K K; Davey, J W; Dell'Aglio, D D; Hanly, J J; Huber, B; Jiggins, C D; Joron, M; Kozak, K M; Llaurens, V; Martin, S H; Montgomery, S H; Morris, J; Nadeau, N J; Pinharanda, A L; Rosser, N; Thompson, M J; Vanjari, S; Wallbank, R W R; Yu, Q
2015-08-01
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Clonal evolution models of tumor heterogeneity.
Shlush, Liran I; Hershkovitz, Dov
2015-01-01
Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.
Genetics of Rapid and Extreme Size Evolution in Island Mice.
Gray, Melissa M; Parmenter, Michelle D; Hogan, Caley A; Ford, Irene; Cuthbert, Richard J; Ryan, Peter G; Broman, Karl W; Payseur, Bret A
2015-09-01
Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015 by the Genetics Society of America.
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-09-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Genetic constraints predict evolutionary divergence in Dalechampia blossoms
Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott
2014-01-01
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700
Genealogical evidence for epidemics of selfish genes.
Ingvarsson, Par K; Taylor, Douglas R
2002-08-20
Some genetic elements spread infectiously in populations by increasing their rate of genetic transmission at the expense of other genes in the genome. These so-called selfish genetic elements comprise a substantial portion of eukaryotic genomes and have long been viewed as a potent evolutionary force. Despite this view, little is known about the evolutionary history of selfish genetic elements in natural populations, or their genetic effects on other portions of the genome. Here we use nuclear and chloroplast gene genealogies in two species of Silene to show the historical pattern of selection on a well known selfish genetic element, cytoplasmic male sterility. We provide evidence that evolution of cytoplasmic male sterility has been characterized by frequent turnovers of mutations in natural populations, thus supporting an epidemic model for the evolution of selfish genes, where new mutations repeatedly arise and rapidly sweep through populations.
Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael
2013-09-01
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Solving TSP problem with improved genetic algorithm
NASA Astrophysics Data System (ADS)
Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying
2018-05-01
The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.
Gaut, Brandon S
2015-07-01
In this commentary, I make inferences about the level of repeatability and constraint in the evolutionary process, based on two sets of replicated experiments. The first experiment is crop domestication, which has been replicated across many different species. I focus on results of whole-genome scans for genes selected during domestication and ask whether genes are, in fact, selected in parallel across different domestication events. If genes are selected in parallel, it implies that the number of genetic solutions to the challenge of domestication is constrained. However, I find no evidence for parallel selection events either between species (maize vs. rice) or within species (two domestication events within beans). These results suggest that there are few constraints on genetic adaptation, but conclusions must be tempered by several complicating factors, particularly the lack of explicit design standards for selection screens. The second experiment involves the evolution of Escherichia coli to thermal stress. Unlike domestication, this highly replicated experiment detected a limited set of genes that appear prone to modification during adaptation to thermal stress. However, the number of potentially beneficial mutations within these genes is large, such that adaptation is constrained at the genic level but much less so at the nucleotide level. Based on these two experiments, I make the general conclusion that evolution is remarkably flexible, despite the presence of epistatic interactions that constrain evolutionary trajectories. I also posit that evolution is so rapid that we should establish a Speciation Prize, to be awarded to the first researcher who demonstrates speciation with a sexual organism in the laboratory. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders
NASA Astrophysics Data System (ADS)
Turk, Eva; Kuntner, Matjaž; Kralj-Fišer, Simona
2018-02-01
Males and females are often subjected to different selection pressures for homologous traits, resulting in sex-specific optima. Because organismal attributes usually share their genetic architectures, sex-specific selection may lead to intralocus sexual conflict. Evolution of sexual dimorphism may resolve this conflict, depending on the degree of cross-sex genetic correlation ( r MF) and the strength of sex-specific selection. In theory, high r MF implies that sexes largely share the genetic base for a given trait and are consequently sexually monomorphic, while low r MF indicates a sex-specific genetic base and sexual dimorphism. Here, we broadly test this hypothesis on three spider species with varying degrees of female-biased sexual size dimorphism, Larinioides sclopetarius (sexual dimorphism index, SDI = 0.85), Nuctenea umbratica (SDI = 0.60), and Zygiella x-notata (SDI = 0.46). We assess r MF via same-sex and opposite-sex heritability estimates. We find moderate body mass heritability but no obvious patterns in sex-specific heritability. Against the prediction, the degree of sexual size dimorphism is unrelated to the relative strength of same-sex versus opposite-sex heritability. Our results do not support the hypothesis that sexual size dimorphism is negatively associated with r MF. We conclude that sex-specific genetic architecture may not be necessary for the evolution of a sexually dimorphic trait.
Parra, Fabiola; Casas, Alejandro; Peñaloza-Ramírez, Juan Manuel; Cortés-Palomec, Aurea C.; Rocha-Ramírez, Víctor; González-Rodríguez, Antonio
2010-01-01
Background and Aims The Tehuacán Valley in Mexico is a principal area of plant domestication in Mesoamerica. There, artificial selection is currently practised on nearly 120 native plant species with coexisting wild, silvicultural and cultivated populations, providing an excellent setting for studying ongoing mechanisms of evolution under domestication. One of these species is the columnar cactus Stenocereus pruinosus, in which we studied how artificial selection is operating through traditional management and whether it has determined morphological and genetic divergence between wild and managed populations. Methods Semi-structured interviews were conducted with 83 households of three villages to investigate motives and mechanisms of artificial selection. Management effects were studied by comparing variation patterns of 14 morphological characters and population genetics (four microsatellite loci) of 264 plants from nine wild, silvicultural and cultivated populations. Key Results Variation in fruit characters was recognized by most people, and was the principal target of artificial selection directed to favour larger and sweeter fruits with thinner or thicker peel, fewer spines and pulp colours others than red. Artificial selection operates in agroforestry systems favouring abundance (through not felling plants and planting branches) of the preferred phenotypes, and acts more intensely in household gardens. Significant morphological divergence between wild and managed populations was observed in fruit characters and plant vigour. On average, genetic diversity in silvicultural populations (HE = 0·743) was higher than in wild (HE = 0·726) and cultivated (HE = 0·700) populations. Most of the genetic variation (90·58 %) occurred within populations. High gene flow (NmFST > 2) was identified among almost all populations studied, but was slightly limited by mountains among wild populations, and by artificial selection among wild and managed populations. Conclusions Traditional management of S. pruinosus involves artificial selection, which, despite the high levels of gene flow, has promoted morphological divergence and moderate genetic structure between wild and managed populations, while conserving genetic diversity. PMID:20729372
Parra, Fabiola; Casas, Alejandro; Peñaloza-Ramírez, Juan Manuel; Cortés-Palomec, Aurea C; Rocha-Ramírez, Víctor; González-Rodríguez, Antonio
2010-09-01
The Tehuacán Valley in Mexico is a principal area of plant domestication in Mesoamerica. There, artificial selection is currently practised on nearly 120 native plant species with coexisting wild, silvicultural and cultivated populations, providing an excellent setting for studying ongoing mechanisms of evolution under domestication. One of these species is the columnar cactus Stenocereus pruinosus, in which we studied how artificial selection is operating through traditional management and whether it has determined morphological and genetic divergence between wild and managed populations. Semi-structured interviews were conducted with 83 households of three villages to investigate motives and mechanisms of artificial selection. Management effects were studied by comparing variation patterns of 14 morphological characters and population genetics (four microsatellite loci) of 264 plants from nine wild, silvicultural and cultivated populations. Variation in fruit characters was recognized by most people, and was the principal target of artificial selection directed to favour larger and sweeter fruits with thinner or thicker peel, fewer spines and pulp colours other than red. Artificial selection operates in agroforestry systems favouring abundance (through not felling plants and planting branches) of the preferred phenotypes, and acts more intensely in household gardens. Significant morphological divergence between wild and managed populations was observed in fruit characters and plant vigour. On average, genetic diversity in silvicultural populations (H(E) = 0.743) was higher than in wild (H(E) = 0.726) and cultivated (H(E) = 0.700) populations. Most of the genetic variation (90.58 %) occurred within populations. High gene flow (Nm(FST) > 2) was identified among almost all populations studied, but was slightly limited by mountains among wild populations, and by artificial selection among wild and managed populations. Traditional management of S. pruinosus involves artificial selection, which, despite the high levels of gene flow, has promoted morphological divergence and moderate genetic structure between wild and managed populations, while conserving genetic diversity.
Mazer, Susan J; Delesalle, Véronique A; Paz, Horacio
2007-01-01
Sex allocation theory has assumed that hermaphroditic species exhibit strong genetically based trade-offs between investment in male and female function. The potential effects of mating system on the evolution of this genetic covariance, however, have not been explored. We have challenged the assumption of a ubiquitous trade-off between male and female investment by arguing that in highly self-fertilizing species, stabilizing natural selection should favor highly efficient ratios of male to female gametes. In flowering plants, the result of such selection would be similar pollen:ovule (P:O) ratios across selfing genotypes, precluding a negative genetic correlation (r(g)) between pollen and ovule production per flower. Moreover, if selfing genotypes with similar P:O ratios differ in total gametic investment per flower, a positive r(g) between pollen and ovule production would be observed. In outcrossers, by contrast, male- and female-biased flowers and genotypes may have equal fitness and coexist at evolutionary equilibrium. In the absence of strong stabilizing selection on the P:O ratio, selection on this trait will be relaxed, resulting in independence or resource-based trade-offs between male and female investment. To test this prediction, we conducted artificial selection on pollen and ovule production per flower in two sister species with contrasting mating systems. The predominantly self-fertilizing species (Clarkia exilis) consistently exhibited a significant positive r(g) between pollen and ovule production while the outcrossing species (C. unguiculata) exhibited either a trade-off or independence between these traits. Clarkia exilis also exhibited much more highly canalized gender expression than C. unguiculata. Selection on pollen and ovule production resulted in little correlated change in the P:O ratio in the selfing exilis, while dramatic changes in the P:O ratio were observed in unguiculata. To test the common prediction that floral attractiveness should be positively genetically correlated with investment in male function, we examined the response of petal area to selection on pollen and ovule production and found that petal area was not consistently genetically correlated with gender expression in either species. Our results suggest that the joint evolutionary trajectory of primary sexual traits in hermaphroditic species will be affected by their mating systems; this should be taken into account in future theoretical and comparative empirical investigations.
Evolution of advertisement calls in African clawed frogs
Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.
2014-01-01
Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737
Worden, R P
1995-09-07
An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change.
Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R
2008-04-01
Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.
Physiology is rocking the foundations of evolutionary biology.
Noble, Denis
2013-08-01
The 'Modern Synthesis' (Neo-Darwinism) is a mid-20th century gene-centric view of evolution, based on random mutations accumulating to produce gradual change through natural selection. Any role of physiological function in influencing genetic inheritance was excluded. The organism became a mere carrier of the real objects of selection, its genes. We now know that genetic change is far from random and often not gradual. Molecular genetics and genome sequencing have deconstructed this unnecessarily restrictive view of evolution in a way that reintroduces physiological function and interactions with the environment as factors influencing the speed and nature of inherited change. Acquired characteristics can be inherited, and in a few but growing number of cases that inheritance has now been shown to be robust for many generations. The 21st century can look forward to a new synthesis that will reintegrate physiology with evolutionary biology.
Cryptic genetic variation: evolution's hidden substrate.
Paaby, Annalise B; Rockman, Matthew V
2014-04-01
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Gary J. Hawley; Donald H. DeHayes; John C. Brissette
2000-01-01
Loss of populations and individuals within species to human-induced selective forces can result in loss of specific genes and overall genetic diversity upon which productivity, ecosystem stability, long-term survival, and evolution depend. This is particularly true for long-lived organisms, such as forest trees, because genetic diversity confers adaptability necessary...
Gay, L; Brown, E; Tregenza, T; Pincheira-Donoso, D; Eady, P E; Vasudev, R; Hunt, J; Hosken, D J
2011-02-01
Males harm females during mating in a range of species. This harm is thought to evolve because it is directly or indirectly beneficial to the male, despite being costly to his mate. The resulting sexually antagonistic selection can cause sexual arms races. For sexually antagonistic co-evolution to occur, there must be genetic variation for traits involved in female harming and susceptibility to harm, but even then intersexual genetic correlations could facilitate or impede sexual co-evolution. Male Callosobruchus maculatus harm their mates during copulation by damaging the female's reproductive tract. However, there have been no investigations of the genetic variation in damage or in female susceptibility to damage, nor has the genetic covariance between these characters been assessed. Here, we use a full-sib/half-sib breeding design to show that male damage is heritable, whereas female susceptibility to damage is much less so. There is also a substantial positive genetic correlation between the two, suggesting that selection favouring damaging males will increase the prevalence of susceptible females. We also provide evidence consistent with intralocus sexual conflict in this species. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
Páez, David James; Bernatchez, Louis; Dodson, Julian J
2011-07-22
Alternative reproductive tactics are ubiquitous in many species. Tactic expression often depends on whether an individual's condition surpasses thresholds that are responsible for activating particular developmental pathways. Two central goals in understanding the evolution of reproductive tactics are quantifying the extent to which thresholds are explained by additive genetic effects, and describing their covariation with condition-related traits. We monitored the development of early sexual maturation that leads to the sneaker reproductive tactic in Atlantic salmon (Salmo salar L.). We found evidence for additive genetic variance in the timing of sexual maturity (which is a measure of the surpassing of threshold values) and body-size traits. This suggests that selection can affect the patterns of sexual development by changing the timing of this event and/or body size. Significant levels of covariation between these traits also occurred, implying a potential for correlated responses to selection. Closer examination of genetic covariances suggests that the detected genetic variation is distributed along at least five directions of phenotypic variation. Our results show that the potential for evolution of the life-history traits constituting this reproductive phenotype is greatly influenced by their patterns of genetic covariance.
Páez, David James; Bernatchez, Louis; Dodson, Julian J.
2011-01-01
Alternative reproductive tactics are ubiquitous in many species. Tactic expression often depends on whether an individual's condition surpasses thresholds that are responsible for activating particular developmental pathways. Two central goals in understanding the evolution of reproductive tactics are quantifying the extent to which thresholds are explained by additive genetic effects, and describing their covariation with condition-related traits. We monitored the development of early sexual maturation that leads to the sneaker reproductive tactic in Atlantic salmon (Salmo salar L.). We found evidence for additive genetic variance in the timing of sexual maturity (which is a measure of the surpassing of threshold values) and body-size traits. This suggests that selection can affect the patterns of sexual development by changing the timing of this event and/or body size. Significant levels of covariation between these traits also occurred, implying a potential for correlated responses to selection. Closer examination of genetic covariances suggests that the detected genetic variation is distributed along at least five directions of phenotypic variation. Our results show that the potential for evolution of the life-history traits constituting this reproductive phenotype is greatly influenced by their patterns of genetic covariance. PMID:21177685
The reality and importance of founder speciation in evolution.
Templeton, Alan R
2008-05-01
A founder event occurs when a new population is established from a small number of individuals drawn from a large ancestral population. Mayr proposed that genetic drift in an isolated founder population could alter the selective forces in an epistatic system, an observation supported by recent studies. Carson argued that a period of relaxed selection could occur when a founder population is in an open ecological niche, allowing rapid population growth after the founder event. Selectable genetic variation can actually increase during this founder-flush phase due to recombination, enhanced survival of advantageous mutations, and the conversion of non-additive genetic variance into additive variance in an epistatic system, another empirically confirmed prediction. Templeton combined the theories of Mayr and Carson with population genetic models to predict the conditions under which founder events can contribute to speciation, and these predictions are strongly confirmed by the empirical literature. Much of the criticism of founder speciation is based upon equating founder speciation to an adaptive peak shift opposed by selection. However, Mayr, Carson and Templeton all modeled a positive interaction of selection and drift, and Templeton showed that founder speciation is incompatible with peak-shift conditions. Although rare, founder speciation can have a disproportionate importance in adaptive innovation and radiation, and examples are given to show that "rare" does not mean "unimportant" in evolution. Founder speciation also interacts with other speciation mechanisms such that a speciation event is not a one-dimensional process due to either selection alone or drift alone. (c) 2008 Wiley Periodicals, Inc.
Dhole, Sumit; Stern, Caitlin A; Servedio, Maria R
2018-04-01
The evolution of mating displays as indicators of male quality has been the subject of extensive theoretical and empirical research for over four decades. Research has also addressed the evolution of female mate choice favoring such indicators. Yet, much debate still exists about whether displays can evolve through the indirect benefits of female mate choice. Here, we use a population genetic model to investigate how the extent to which females can directly detect male quality influences the evolution of female choosiness and male displays. We use a continuum framework that incorporates indicator mechanisms that are traditionally modeled separately. Counter to intuition, we find that intermediate levels of direct detection of male quality can facilitate, rather than impede, the evolution of female choosiness and male displays in broad regions of this continuum. We examine how this evolution is driven by selective forces on genetic quality and on the display, and find that direct detection of male quality results in stronger indirect selection favoring female choosiness. Our results imply that displays maybe more likely to evolve when female choosiness has already evolved to discriminate perceptible forms of male quality. They also highlight the importance of considering general female choosiness, as well as preference, in studies of "good genes." © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Genetic approaches in comparative and evolutionary physiology
Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore
2015-01-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111
Genetic approaches in comparative and evolutionary physiology.
Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore
2015-08-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.
Zueva, Ksenia J.; Lumme, Jaakko; Veselov, Alexey E.; Kent, Matthew P.; Lien, Sigbjørn; Primmer, Craig R.
2014-01-01
Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved. PMID:24670947
Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Lien, Sigbjørn; Primmer, Craig R
2014-01-01
Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.
Jones, A G; Avise, J C
2001-01-01
In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.
Remigereau, Marie-Stanislas; Lakis, Ghayas; Rekima, Samah; Leveugle, Magalie; Fontaine, Michaël C; Langin, Thierry; Sarr, Aboubakry; Robert, Thierry
2011-01-01
During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize.
Remigereau, Marie-Stanislas; Lakis, Ghayas; Rekima, Samah; Leveugle, Magalie; Fontaine, Michaël C.; Langin, Thierry; Sarr, Aboubakry; Robert, Thierry
2011-01-01
Background During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. Methodology/Principal Findings Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. Conclusions/Significance Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize. PMID:21799845
A Lab Exercise Explaining Hardy-Weinberg Equilibrium and Evolution Effectively.
ERIC Educational Resources Information Center
Winterer, Juliette
2001-01-01
Presents a set of six activities in population genetics for a college-level biology course that helps students understand the Hardy-Weinberg principle. Activities focus on characterizing a population, Hardy-Weinberg proportions, genetic drift, mutation and selection, population size and divergence, and secondary contact. The only materials…
2013-01-01
Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon recombination in DENV and suggests that within codons, genetic recombination has a significant role in maintaining extensive purifying selection of DENV in natural populations. Our study also suggests that fixation of beneficial mutations may lead to virus evolution via translational selection of specific sites in the DENV genome. PMID:23410119
Orsini, Luisa; Spanier, Katina I; DE Meester, Luc
2012-05-01
Natural populations are confronted with multiple selection pressures resulting in a mosaic of environmental stressors at the landscape level. Identifying the genetic underpinning of adaptation to these complex selection environments and assigning causes of natural selection within multidimensional selection regimes in the wild is challenging. The water flea Daphnia is a renowned ecological model system with its well-documented ecology, the possibility to analyse subfossil dormant egg banks and the short generation time allowing an experimental evolution approach. Capitalizing on the strengths of this model system, we here link candidate genome regions to three selection pressures, known to induce micro-evolutionary responses in Daphnia magna: fish predation, parasitism and land use. Using a genome scan approach in space, time and experimental evolution trials, we provide solid evidence of selection at the genome level under well-characterized environmental gradients in the wild and identify candidate genes linked to the three environmental stressors. Our study reveals differential selection at the genome level in Daphnia populations and provides evidence for repeatable patterns of local adaptation in a geographic mosaic of environmental stressors fuelled by standing genetic variation. Our results imply high evolutionary potential of local populations, which is relevant to understand the dynamics of trait changes in natural populations and their impact on community and ecosystem responses through eco-evolutionary feedbacks. © 2012 Blackwell Publishing Ltd.
Griswold, Cortland K
2015-12-21
Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecological genomics of natural plant populations: the Israeli perspective.
Nevo, Eviatar
2009-01-01
The genomic era revolutionized evolutionary population biology. The ecological genomics of the wild progenitors of wheat and barley reviewed here was central in the research program of the Institute of Evolution, University of Haifa, since 1975 ( http://evolution.haifa.ac.il ). We explored the following questions: (1) How much of the genomic and phenomic diversity of wild progenitors of cultivars (wild emmer wheat, Triticum dicoccoides, the progenitor of most wheat, plus wild relatives of the Aegilops species; wild barley, Hordeum spontaneum, the progenitor of cultivated barley; wild oat, Avena sterilis, the progenitor of cultivated oats; and wild lettuce species, Lactuca, the progenitor and relatives of cultivated lettuce) are adaptive and processed by natural selection at both coding and noncoding genomic regions? (2) What is the origin and evolution of genomic adaptation and speciation processes and their regulation by mutation, recombination, and transposons under spatiotemporal variables and stressful macrogeographic and microgeographic environments? (3) How much genetic resources are harbored in the wild progenitors for crop improvement? We advanced ecological genetics into ecological genomics and analyzed (regionally across Israel and the entire Near East Fertile Crescent and locally at microsites, focusing on the "Evolution Canyon" model) hundreds of populations and thousands of genotypes for protein (allozyme) and deoxyribonucleic acid (DNA) (coding and noncoding) diversity, partly combined with phenotypic diversity. The environmental stresses analyzed included abiotic (climatic and microclimatic, edaphic) and biotic (pathogens, demographic) stresses. Recently, we introduced genetic maps, cloning, and transformation of candidate genes. Our results indicate abundant genotypic and phenotypic diversity in natural plant populations. The organization and evolution of molecular and organismal diversity in plant populations, at all genomic regions and geographical scales, are nonrandom and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection including diversifying, balancing, cyclical, and purifying selection regimes interacting with, but, ultimately, overriding the effects of mutation, migration, and stochasticity. The progenitors of cultivated plants harbor rich genetic resources and are the best hope for crop improvement by both classical and modern biotechnological methods. Future studies should focus on the interplay between structural and functional genome organization focusing on gene regulation.
Genetic architecture and the evolution of sex.
Lohaus, Rolf; Burch, Christina L; Azevedo, Ricardo B R
2010-01-01
Theoretical investigations of the advantages of sex have tended to treat the genetic architecture of organisms as static and have not considered that genetic architecture might coevolve with reproductive mode. As a result, some potential advantages of sex may have been missed. Using a gene network model, we recently showed that recombination imposes selection for robustness to mutation and that negative epistasis can evolve as a by-product of this selection. These results motivated a detailed exploration of the mutational deterministic hypothesis, a hypothesis in which the advantage of sex depends critically on epistasis. We found that sexual populations do evolve higher mean fitness and lower genetic load than asexual populations at equilibrium, and, under moderate stabilizing selection and large population size, these equilibrium sexual populations resist invasion by asexuals. However, we found no evidence that these long- and short-term advantages to sex were explained by the negative epistasis that evolved in our experiments. The long-term advantage of sex was that sexual populations evolved a lower deleterious mutation rate, but this property was not sufficient to account for the ability of sexual populations to resist invasion by asexuals. The ability to resist asexual invasion was acquired simultaneously with an increase in recombinational robustness that minimized the cost of sex. These observations provide the first direct evidence that sexual reproduction does indeed select for conditions that favor its own maintenance. Furthermore, our results highlight the importance of considering a dynamic view of the genetic architecture to understand the evolution of sex and recombination.
Ensslin, Andreas; Fischer, Markus
2015-08-01
• Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.
Genetics of Rapid and Extreme Size Evolution in Island Mice
Gray, Melissa M.; Parmenter, Michelle D.; Hogan, Caley A.; Ford, Irene; Cuthbert, Richard J.; Ryan, Peter G.; Broman, Karl W.; Payseur, Bret A.
2015-01-01
Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F2 intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. PMID:26199233
Thomson, Caroline E; Bayer, Florian; Crouch, Nicholas; Farrell, Samantha; Heap, Elizabeth; Mittell, Elizabeth; Zurita-Cassinello, Mar; Hadfield, Jarrod D
2017-03-01
There is abundant evidence in many taxa for positive directional selection on body size, and yet little evidence for microevolutionary change. In many species, variation in body size is partly determined by the actions of parents, so a proposed explanation for stasis is the presence of a negative genetic correlation between direct and parental effects. Consequently, selecting genes for increased body size would result in a correlated decline in parental effects, reducing body size in the following generation. We show that these arguments implicitly assume that parental care is cost free, and that including a cost alters the predicted genetic architectures needed to explain stasis. Using a large cross-fostered population of blue tits, we estimate direct selection on parental effects for body mass, and show it is negative. Negative selection is consistent with a cost to parental care, mainly acting through a reduction in current fecundity rather than survival. Under these conditions, evolutionary stasis is possible for moderately negative genetic correlations between direct and parental effects. This is in contrast to the implausibly extreme correlations needed when care is assumed to be cost-free. Thus, we highlight the importance of accounting correctly for complete selection acting on traits across generations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Kijima, T E; Innan, Hideki
2013-11-01
A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.
Genomic signatures of selection at linked sites: unifying the disparity among species
Cutter, Asher D.; Payseur, Bret A.
2014-01-01
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive variation in linked selection among species, including roles for selective sweeps being ‘hard’ or ‘soft’, and concealing by demography and genomic confounds. We advocate targeted studies of close relatives to unify our understanding of how selection and linkage interact to shape genome evolution. PMID:23478346
Evidence of directional and stabilizing selection in contemporary humans.
Sanjak, Jaleal S; Sidorenko, Julia; Robinson, Matthew R; Thornton, Kevin R; Visscher, Peter M
2018-01-02
Modern molecular genetic datasets, primarily collected to study the biology of human health and disease, can be used to directly measure the action of natural selection and reveal important features of contemporary human evolution. Here we leverage the UK Biobank data to test for the presence of linear and nonlinear natural selection in a contemporary population of the United Kingdom. We obtain phenotypic and genetic evidence consistent with the action of linear/directional selection. Phenotypic evidence suggests that stabilizing selection, which acts to reduce variance in the population without necessarily modifying the population mean, is widespread and relatively weak in comparison with estimates from other species.
Cao-Lormeau, Van-Mai; Lambrechts, Louis
2017-01-01
Abstract Like other pathogens with high mutation and replication rates, within-host dengue virus (DENV) populations evolve during infection of their main mosquito vector, Aedes aegypti. Within-host DENV evolution during transmission provides opportunities for adaptation and emergence of novel virus variants. Recent studies of DENV genetic diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues such as midgut and salivary glands, suggesting that convergent positive selection is not a major driver of within-host DENV evolution in the vector. However, it is unknown whether this conclusion extends to the transmitted viral subpopulation because it is technically difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual Ae. aegypti mosquitoes previously infected with one of two DENV-1 genotypes. We compared the transmitted viral subpopulations found in the pooled saliva samples collected in time series with the input viral population present in the infectious blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of the input viral population was unchanged. Although the pooling strategy prevents analysis of individual saliva samples, our results demonstrate the lack of strong convergent positive selection during a single round of DENV transmission by Ae. aegypti. This finding reinforces the idea that genetic drift and purifying selection are the dominant evolutionary forces shaping within-host DENV genetic diversity during transmission by mosquitoes. PMID:29497564
Vikram E. Chhatre; Om P. Rajora
2014-01-01
Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations...
Borowsky, Richard
2013-07-11
The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.
Faria, Vítor G; Martins, Nelson E; Paulo, Tânia; Teixeira, Luís; Sucena, Élio; Magalhães, Sara
2015-11-01
Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Connallon, Tim; Clark, Andrew G
2012-04-01
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.
Zinser, Erik R; Schneider, Dominique; Blot, Michel; Kolter, Roberto
2003-01-01
The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection. PMID:12930738
Spatio-temporal variation in fitness responses to contrasting environments in Arabidopsis thaliana.
Exposito-Alonso, Moises; Brennan, Adrian C; Alonso-Blanco, Carlos; Picó, F Xavier
2018-06-27
The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness-related traits can be heterogeneous over time. We estimated selection of life-history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north-western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north-western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north-western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Modelling the co-evolution of indirect genetic effects and inherited variability.
Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter
2018-03-28
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.
Implications of sex-specific selection for the genetic basis of disease.
Morrow, Edward H; Connallon, Tim
2013-12-01
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
Greaves, Mel; Maley, Carlo C.
2012-01-01
Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609
Connallon, Tim; Clark, Andrew G.
2012-01-01
Antagonistic selection—where alleles at a locus have opposing effects on male and female fitness (“sexual antagonism”) or between components of fitness (“antagonistic pleiotropy”)—might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range—a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The “efficacy” of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (Nes >> 1, where Ne is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. PMID:22298707
Lande, Russell
2009-07-01
Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
Environmental effects on the structure of the G-matrix.
Wood, Corlett W; Brodie, Edmund D
2015-11-01
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Colour ornamentation in the blue tit: quantitative genetic (co)variances across sexes
Charmantier, A; Wolak, M E; Grégoire, A; Fargevieille, A; Doutrelant, C
2017-01-01
Although secondary sexual traits are commonly more developed in males than females, in many animal species females also display elaborate ornaments or weaponry. Indirect selection on correlated traits in males and/or direct sexual or social selection in females are hypothesized to drive the evolution and maintenance of female ornaments. Yet, the relative roles of these evolutionary processes remain unidentified, because little is known about the genetic correlation that might exist between the ornaments of both sexes, and few estimates of sex-specific autosomal or sex-linked genetic variances are available. In this study, we used two wild blue tit populations with 9 years of measurements on two colour ornaments: one structurally based (blue crown) and one carotenoid based (yellow chest). We found significant autosomal heritability for the chromatic part of the structurally based colouration in both sexes, whereas carotenoid chroma was heritable only in males, and the achromatic part of both colour patches was mostly non heritable. Power limitations, which are probably common among most data sets collected so far in wild populations, prevented estimation of sex-linked genetic variance. Bivariate analyses revealed very strong cross-sex genetic correlations in all heritable traits, although the strength of these correlations was not related to the level of sexual dimorphism. In total, our results suggest that males and females share a majority of their genetic variation underlying colour ornamentation, and hence the evolution of these sex-specific traits may depend greatly on correlated responses to selection in the opposite sex. PMID:27577691
Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh
2015-11-01
Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Selection by consequences, behavioral evolution, and the price equation.
Baum, William M
2017-05-01
Price's equation describes evolution across time in simple mathematical terms. Although it is not a theory, but a derived identity, it is useful as an analytical tool. It affords lucid descriptions of genetic evolution, cultural evolution, and behavioral evolution (often called "selection by consequences") at different levels (e.g., individual vs. group) and at different time scales (local and extended). The importance of the Price equation for behavior analysis lies in its ability to precisely restate selection by consequences, thereby restating, or even replacing, the law of effect. Beyond this, the equation may be useful whenever one regards ontogenetic behavioral change as evolutionary change, because it describes evolutionary change in abstract, general terms. As an analytical tool, the behavioral Price equation is an excellent aid in understanding how behavior changes within organisms' lifetimes. For example, it illuminates evolution of response rate, analyses of choice in concurrent schedules, negative contingencies, and dilemmas of self-control. © 2017 Society for the Experimental Analysis of Behavior.
Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.
Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E
2015-03-01
Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.
In silico evolution of biochemical networks
NASA Astrophysics Data System (ADS)
Francois, Paul
2010-03-01
We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.
Feinberg, Andrew P; Irizarry, Rafael A
2010-01-26
Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.
Bono, Jeremy M.; Matzkin, Luciano M.; Castrezana, Sergio; Markow, Therese A.
2009-01-01
Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly upregulated following exposure to rotting senita tissue while Cyp4D10 was highly upregulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, though this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation. PMID:18510584
Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.
2006-01-01
Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935
Weinreich, D M; Rand, D M
2000-01-01
We report that patterns of nonneutral DNA sequence evolution among published nuclear and mitochondrially encoded protein-coding loci differ significantly in animals. Whereas an apparent excess of amino acid polymorphism is seen in most (25/31) mitochondrial genes, this pattern is seen in fewer than half (15/36) of the nuclear data sets. This differentiation is even greater among data sets with significant departures from neutrality (14/15 vs. 1/6). Using forward simulations, we examined patterns of nonneutral evolution using parameters chosen to mimic the differences between mitochondrial and nuclear genetics (we varied recombination rate, population size, mutation rate, selective dominance, and intensity of germ line bottleneck). Patterns of evolution were correlated only with effective population size and strength of selection, and no single genetic factor explains the empirical contrast in patterns. We further report that in Arabidopsis thaliana, a highly self-fertilizing plant with effectively low recombination, five of six published nuclear data sets also exhibit an excess of amino acid polymorphism. We suggest that the contrast between nuclear and mitochondrial nonneutrality in animals stems from differences in rates of recombination in conjunction with a distribution of selective effects. If the majority of mutations segregating in populations are deleterious, high linkage may hinder the spread of the occasional beneficial mutation. PMID:10978302
Signal trait sexual dimorphism and mutual sexual selection in Drosophila serrata.
Chenoweth, Stephen F; Blows, Mark W
2003-10-01
The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata. There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.
Promiscuity resolves constraints on social mate choice imposed by population viscosity.
While, Geoffrey M; Uller, Tobias; Bordogna, Genevieve; Wapstra, Erik
2014-02-01
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine-scale genetic structure constrains social mate choice in a pair-bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution. © 2013 John Wiley & Sons Ltd.
A Population Genetics Model of Marker-Assisted Selection
Luo, Z. W.; Thompson, R.; Woolliams, J. A.
1997-01-01
A deterministic two-loci model was developed to predict genetic response to marker-assisted selection (MAS) in one generation and in multiple generations. Formulas were derived to relate linkage disequilibrium in a population to the proportion of additive genetic variance used by MAS, and in turn to an extra improvement in genetic response over phenotypic selection. Predictions of the response were compared to those predicted by using an infinite-loci model and the factors affecting efficiency of MAS were examined. Theoretical analyses of the present study revealed the nonlinearity between the selection intensity and genetic response in MAS. In addition to the heritability of the trait and the proportion of the marker-associated genetic variance, the frequencies of the selectively favorable alleles at the two loci, one marker and one quantitative trait locus, were found to play an important role in determining both the short- and long-term efficiencies of MAS. The evolution of linkage disequilibrium and thus the genetic response over several generations were predicted theoretically and examined by simulation. MAS dissipated the disequilibrium more quickly than drift alone. In some cases studied, the rate of dissipation was as large as that to be expected in the circumstance where the true recombination fraction was increased by three times and selection was absent. PMID:9215918
Ruden, Douglas M.; Cingolani, Pablo E.; Sen, Arko; Qu, Wen; Wang, Luan; Senut, Marie-Claude; Garfinkel, Mark D.; Sollars, Vincent E.; Lu, Xiangyi
2015-01-01
In a recent perspective in this journal, Herb (2014) discussed how epigenetics is a possible mechanism to circumvent Charles Darwin’s “special difficulty” in using natural selection to explain the existence of the sterile-fertile dimorphism in eusocial insects. Darwin’s classic book “On the Origin of Species by Means of Natural Selection” explains how natural selection of the fittest individuals in a population can allow a species to adapt to a novel or changing environment. However, in bees and other eusocial insects, such as ants and termites, there exist two or more castes of genetically similar females, from fertile queens to multiple sub-castes of sterile workers, with vastly different phenotypes, lifespans, and behaviors. This necessitates the selection of groups (or kin) rather than individuals in the evolution of honeybee hives, but group and kin selection theories of evolution are controversial and mechanistically uncertain. Also, group selection would seem to be prohibitively inefficient because the effective population size of a colony is reduced from thousands to a single breeding queen. In this follow-up perspective, we elaborate on possible mechanisms for how a combination of both epigenetics, specifically, the selection of metastable epialleles, and genetics, the selection of mutations generated by the selected metastable epialleles, allows for a combined means for selection amongst the fertile members of a species to increase colony fitness. This “intra-caste evolution” hypothesis is a variation of the epigenetic directed genetic error hypothesis, which proposes that selected metastable epialleles increase genetic variability by directing mutations specifically to the epialleles. Natural selection of random metastable epialleles followed by a second round of natural selection of random mutations generated by the metastable epialleles would allow a way around the small effective population size of eusocial insects. PMID:25759717
Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster.
Collet, Julie M; Fuentes, Sara; Hesketh, Jack; Hill, Mark S; Innocenti, Paolo; Morrow, Edward H; Fowler, Kevin; Reuter, Max
2016-04-01
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex-specific phenotypes. Despite its importance for sex-specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the "LHM " population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Genetic diversity and trait genomic prediction in a pea diversity panel.
Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard
2015-02-21
Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.
Worley, A C; Barrett, S C
2000-10-01
Trade-offs between flower size and number seem likely to influence the evolution of floral display and are an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). Differences in nectar, pollen, and ovule production between S+ and S- lines supported an overall divergence in investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These results likely reflect the combined effects of variation in genes controlling the resources available for flowering and genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral display is not necessarily constrained by trade-offs between flower size and number, as is often assumed.
Laland, Kevin N
2008-11-12
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Morgan N.; Arkin, Adam P.
Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (N e) by orders of magnitude. For example, for a well-mixed population with 10 12 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that N e is<10 7. An argument for high N e values for bacteria has been the high genetic diversity withinmore » many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N e correctly. Given an estimate ofN e, standard population genetics models imply that selection should be sufficient to drive evolution if N e ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10 -7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10 -9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. In conclusion, we used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10 -7are effectively neutral.« less
Price, Morgan N.; Arkin, Adam P.
2015-12-15
Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (N e) by orders of magnitude. For example, for a well-mixed population with 10 12 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that N e is<10 7. An argument for high N e values for bacteria has been the high genetic diversity withinmore » many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N e correctly. Given an estimate ofN e, standard population genetics models imply that selection should be sufficient to drive evolution if N e ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10 -7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10 -9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. In conclusion, we used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10 -7are effectively neutral.« less
Bocedi, Greta; Reid, Jane M
2017-12-01
Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed-back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed-backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed-backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population-wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex-specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease
USDA-ARS?s Scientific Manuscript database
Pathogens can exert a large influence on the evolution of hosts via selection for alleles or genotypes that moderate pathogen virulence. Inconsistent interactions between parasites and the host genome, such as those resulting from genetic linkages and environmental stochasticity, have largely preven...
Signatures of adaptation in the weedy rice genome.
Li, Lin-Feng; Li, Ya-Ling; Jia, Yulin; Caicedo, Ana L; Olsen, Kenneth M
2017-05-01
Crop domestication provided the calories that fueled the rise of civilization. For many crop species, domestication was accompanied by the evolution of weedy crop relatives, which aggressively outcompete crops and reduce harvests. Understanding the genetic mechanisms that underlie the evolution of weedy crop relatives is critical for agricultural weed management and food security. Here we use whole-genome sequences to examine the origin and adaptation of the two major strains of weedy rice found in the United States. We find that de-domestication from cultivated ancestors has had a major role in their evolution, with relatively few genetic changes required for the emergence of weediness traits. Weed strains likely evolved both early and late in the history of rice cultivation and represent an under-recognized component of the domestication process. Genomic regions identified here that show evidence of selection can be considered candidates for future genetic and functional analyses for rice improvement.
When does social learning become cultural learning?
Heyes, Cecilia
2017-03-01
Developmental research on selective social learning, or 'social learning strategies', is currently a rich source of information about when children copy behaviour, and who they prefer to copy. It also has the potential to tell us when and how human social learning becomes cultural learning; i.e. mediated by psychological mechanisms that are specialized, genetically or culturally, to promote cultural inheritance. However, this review article argues that, to realize its potential, research on the development of selective social learning needs more clearly to distinguish functional from mechanistic explanation; to achieve integration with research on attention and learning in adult humans and 'dumb' animals; and to recognize that psychological mechanisms can be specialized, not only by genetic evolution, but also by associative learning and cultural evolution. © 2015 John Wiley & Sons Ltd.
Similarity selection and the evolution of sex: revisiting the red queen.
Agrawal, Aneil F
2006-08-01
For over 25 years, many evolutionary ecologists have believed that sexual reproduction occurs because it allows hosts to change genotypes each generation and thereby evade their coevolving parasites. However, recent influential theoretical analyses suggest that, though parasites can select for sex under some conditions, they often select against it. These models assume that encounters between hosts and parasites are completely random. Because of this assumption, the fitness of a host depends only on its own genotype ("genotypic selection"). If a host is even slightly more likely to encounter a parasite transmitted by its mother than expected by random chance, then the fitness of a host also depends on its genetic similarity to its mother ("similarity selection"). A population genetic model is presented here that includes both genotypic and similarity selection, allowing them to be directly compared in the same framework. It is shown that similarity selection is a much more potent force with respect to the evolution of sex than is genotypic selection. Consequently, similarity selection can drive the evolution of sex even if it is much weaker than genotypic selection with respect to fitness. Examination of explicit coevolutionary models reveals that even a small degree of mother-offspring parasite transmission can cause parasites to favor sex rather than oppose it. In contrast to previous predictions, the model shows that weakly virulent parasites are more likely to favor sex than are highly virulent ones. Parasites have figured prominently in discussions of the evolution of sex, but recent models suggest that parasites often select against sex rather than for it. With the inclusion of small and realistic exposure biases, parasites are much more likely to favor sex. Though parasites alone may not provide a complete explanation for sex, the results presented here expand the potential for parasites to contribute to the maintenance of sex rather than act against it.
Genetic diversity in the interference selection limit.
Good, Benjamin H; Walczak, Aleksandra M; Neher, Richard A; Desai, Michael M
2014-03-01
Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a "linkage block"). We exploit this insensitivity in a new "coarse-grained" coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability.
Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
A long standing question in evolutionary biology concerns the maintenance of adaptive combinations of traits in the presence of recombination. This problem may be solved if positive epistasis selects for reducing the rate of recombination between such traits, but this requires sufficiently strong epistasis. Here we use a model that we developed previously to analyze a frequency-dependent strategy game in asexual populations, to study how adaptive combinations of traits may be maintained in the presence of recombination when epistasis is too weak to select for genetic linkage. Previously, in the asexual case, our model demonstrated the evolution of adaptive associations between social foraging strategies and learning rules. We verify that these adaptive associations, which are represented by different two-locus haplotypes, can easily be broken by genetic recombination. We also confirm that a modifier allele that reduces the rate of recombination fails to evolve (due to weak epistasis). However, we find that under the same conditions of weak epistasis, there is an alternative mechanism that allows association between traits to evolve. This is based on a genetic switch that responds to the presence of one social foraging allele by activating one of two alternative learning alleles that are carried by all individuals. We suggest that such coordinated phenotypic expression by genetic switches offers a general and robust mechanism for the evolution of adaptive combinations of traits in the presence of recombination. PMID:21945887
Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.
Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge
2016-12-01
Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Symbiosis and development: the hologenome concept.
Rosenberg, Eugene; Zilber-Rosenberg, Ilana
2011-03-01
All animals and plants establish symbiotic relationships with microorganisms; often the combined genetic information of the diverse microbiota exceeds that of the host. How the genetic wealth of the microbiota affects all aspects of the holobiont's (host plus all of its associated microorganisms) fitness (adaptation, survival, development, growth and reproduction) and evolution is reviewed, using selected coral, insect, squid, plant, and human/mouse published experimental results. The data are discussed within the framework of the hologenome theory of evolution, which demonstrates that changes in environmental parameters, for example, diet, can cause rapid changes in the diverse microbiota, which not only can benefit the holobiont in the short term but also can be transmitted to offspring and lead to long lasting cooperations. As acquired characteristics (microbes) are heritable, consideration of the holobiont as a unit of selection in evolution leads to neo-Lamarckian principles within a Darwinian framework. The potential application of these principles can be seen in the growing fields of prebiotics and probiotics. Copyright © 2011 Wiley-Liss, Inc.
2010-01-01
Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421
Hunt, Tam
2012-01-01
This essay provides a critical review of two recent books on evolution: Richard Dawkins’ The Greatest Show on Earth, and Jerry Coyne’s Why Evolution is True, as well as a critique of mainstream evolutionary theory and of natural selection. I also suggest a generalization of sexual selection theory that acknowledges mind as pervasive in nature. Natural selection, as the primary theory of how biological change occurs, must be carefully framed to avoid the long-standing “tautology problem” and must also be modified to more explicitly include the role of mind in evolution. A propensity approach to natural selection, in which “expected fitness” is utilized rather than “fitness,” can save natural selection from tautology. But to be a productive theory, natural selection theory should be placed alongside sexual selection – which is explicitly agentic/intentional – as a twin force, but also placed alongside purely endogenous factors such as genetic drift. This framing is contrary to the normal convention that often groups all of these factors under the rubric of “natural selection.” I suggest some approaches for improving modern evolutionary theory, including a “generalized sexual selection,” a panpsychist extension of Darwin’s theory of sexual selection that explicitly recognizes the role of mind at all levels of nature and which may play the part of a general theory of evolution better than natural selection theory. PMID:23181154
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Nadelson, Louis S.; Southerland, Sherry A.
2010-01-01
The challenges in teaching and learning of biological evolution continue to be documented (NAS, 2008). Developers of science standards continue their work to increase emphasis on evolution. Although gains have been made, many K-12 science curricula focus on microevolution (i.e., natural selection, genetic drift), and a more limited effort is in…
McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.
Ivy, T M
2007-03-01
Genetic benefits can enhance the fitness of polyandrous females through the high intrinsic genetic quality of females' mates or through the interaction between female and male genes. I used a full diallel cross, a quantitative genetics design that involves all possible crosses among a set of genetically homogeneous lines, to determine the mechanism through which polyandrous female decorated crickets (Gryllodes sigillatus) obtain genetic benefits. I measured several traits related to fitness and partitioned the phenotypic variance into components representing the contribution of additive genetic variance ('good genes'), nonadditive genetic variance (genetic compatibility), as well as maternal and paternal effects. The results reveal a significant variance attributable to both nonadditive and additive sources in the measured traits, and their influence depended on which trait was considered. The lack of congruence in sources of phenotypic variance among these fitness-related traits suggests that the evolution and maintenance of polyandry are unlikely to have resulted from one selective influence, but rather are the result of the collective effects of a number of factors.
Selfish genetic elements and the gene’s-eye view of evolution
2016-01-01
During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953
Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-01-01
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439
Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-11-05
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.
Chen, H-Y; Spagopoulou, F; Maklakov, A A
2016-04-01
Classic theories of ageing evolution predict that increased extrinsic mortality due to an environmental hazard selects for increased early reproduction, rapid ageing and short intrinsic lifespan. Conversely, emerging theory maintains that when ageing increases susceptibility to an environmental hazard, increased mortality due to this hazard can select against ageing in physiological condition and prolong intrinsic lifespan. However, evolution of slow ageing under high-condition-dependent mortality is expected to result from reallocation of resources to different traits and such reallocation may be hampered by sex-specific trade-offs. Because same life-history trait values often have different fitness consequences in males and females, sexually antagonistic selection can preserve genetic variance for lifespan and ageing. We previously showed that increased condition-dependent mortality caused by heat shock leads to evolution of long-life, decelerated late-life mortality in both sexes and increased female fecundity in the nematode, Caenorhabditis remanei. Here, we used these cryopreserved lines to show that males evolving under heat shock suffered from reduced early-life and net reproduction, while mortality rate had no effect. Our results suggest that heat-shock resistance and associated long-life trade-off with male, but not female, reproduction and therefore sexually antagonistic selection contributes to maintenance of genetic variation for lifespan and fitness in this population. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity
2014-01-01
Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments. PMID:24674227
Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.
Odendaal, Lizelle J; Jacobs, David S; Bishop, Jacqueline M
2014-03-27
Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of 'adaptive differentiation with minimal gene flow' in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments.
Evolution of a predator-induced, nonlinear reaction norm.
Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P
2017-08-30
Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.
Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution.
Garrigan, Daniel; Kingan, Sarah B; Geneva, Anthony J; Vedanayagam, Jeffrey P; Presgraves, Daven C
2014-09-04
Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural selection on the X chromosome have shaped the molecular evolutionary history of D. mauritiana, refining our understanding of the possible causes of the large X-effect in speciation. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.
Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin
2016-07-01
The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.
Evidence for strong intralocus sexual conflict in the Indian meal moth, Plodia interpunctella.
Lewis, Zenobia; Wedell, Nina; Hunt, John
2011-07-01
Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70°. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Island Rule, quantitative genetics and brain–body size evolution in Homo floresiensis
2017-01-01
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis, a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60–90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus, which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. PMID:28637851
Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.
Diniz-Filho, José Alexandre Felizola; Raia, Pasquale
2017-06-28
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).
Jiang, Pan-Pan; Bedhomme, Stephanie; Prasad, N G; Chippindale, Adam
2011-09-01
Earlier research by W.R. Rice showed that experimentally limiting gene expression to males in Drosophila melanogaster leads to the rapid evolution of higher fitness. Using a similar male-limited (ML) selection protocol, we confirmed that result and showed that eliminating intralocus sexual conflict results in a comprehensive remodeling of the sexually dimorphic phenotype. However, despite starting from laboratory-evolved descendants of the same founder population used in earlier work, we found no evidence for the increased performance in sperm competition or increased postmating harm to females previously demonstrated. We employed females with both ancestral population genotypes and those of the special "clone generator" females used in ML selection. Despite strong differences in sperm storage or usage patterns between these females, there was no detectable adaptation by males to the specific female stock used in the selection protocol. The lack of evolution of postcopulatory traits suggests either that requisite genetic variation was eliminated by long-term domestication of the base population, or that complex male-by-male-by-female interactions made these traits unavailable to selection. The different evolutionary outcomes produced by two very similar experiments done at different time points underscores the potential for cryptic adaptation in the laboratory to qualitatively affect inferences made using quantitative genetic methodologies. © 2011 The Author(s).
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.
Ferrer-Admetlla, Anna; Leuenberger, Christoph; Jensen, Jeffrey D; Wegmann, Daniel
2016-06-01
The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported. Copyright © 2016 by the Genetics Society of America.
Parasite transmission among relatives halts Red Queen dynamics.
Greenspoon, Philip B; Mideo, Nicole
2017-03-01
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Bocedi, Greta; Reid, Jane M.
2017-01-01
Abstract Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed‐back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed‐backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed‐backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population‐wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex‐specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding. PMID:28895138
Selfish evolution of cytonuclear hybrid incompatibility in Mimulus
Finseth, Findley R.; Barr, Camille M.; Fishman, Lila
2016-01-01
Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus. In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS). Unlike neutral models for the evolution of hybrid incompatibility loci, selfish evolution predicts that the Rf alleles experienced strong selection in the presence of IM-CMS. Using whole-genome sequences, we compared patterns of population-genetic variation in Rf at IM to a neighbouring population that lacks IM-CMS. Consistent with local selection in the presence of IM-CMS, the Rf region shows elevated FST, high local linkage disequilibrium and a distinct haplotype structure at IM, but not at Cone Peak (CP), suggesting a recent sweep in the presence of IM-CMS. In both populations, Rf2 exhibited lower polymorphism than other regions, but the low-diversity outliers were different between CP and IM. Our results confirm theoretical predictions of ubiquitous cytonuclear conflict in plants and provide a population-genetic mechanism for the evolution of a common form of hybrid incompatibility. PMID:27629037
Selfish evolution of cytonuclear hybrid incompatibility in Mimulus.
Case, Andrea L; Finseth, Findley R; Barr, Camille M; Fishman, Lila
2016-09-14
Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS). Unlike neutral models for the evolution of hybrid incompatibility loci, selfish evolution predicts that the Rf alleles experienced strong selection in the presence of IM-CMS. Using whole-genome sequences, we compared patterns of population-genetic variation in Rf at IM to a neighbouring population that lacks IM-CMS. Consistent with local selection in the presence of IM-CMS, the Rf region shows elevated FST, high local linkage disequilibrium and a distinct haplotype structure at IM, but not at Cone Peak (CP), suggesting a recent sweep in the presence of IM-CMS. In both populations, Rf2 exhibited lower polymorphism than other regions, but the low-diversity outliers were different between CP and IM. Our results confirm theoretical predictions of ubiquitous cytonuclear conflict in plants and provide a population-genetic mechanism for the evolution of a common form of hybrid incompatibility. © 2016 The Author(s).
Applying Quantitative Genetic Methods to Primate Social Behavior
Brent, Lauren J. N.
2013-01-01
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839
The evolution of phenotypes and genetic parameters under preferential mating
Roff, Derek A; Fairbairn, Daphne J
2014-01-01
This article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual-based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (rG), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox. The Kirkpatrick–Barton approximation for rG proved to be biased downward, but the realized genetic correlations were also low, generally <0.2. Such low values of rG indicate that coevolution of the preference and preferred trait is likely to be very slow and subject to significant stochastic variation. Lande's model accurately predicted the incidence of runaway selection in the simulations, except where preferences were relative and the preferred trait was subject to natural selection. In these cases, runaways were over- or underestimated, depending on the number of males sampled. We conclude that rapid coevolution of preferences and preferred traits is unlikely in natural populations, but that the parameter combinations most conducive to it are most likely to occur in lekking species. PMID:25077025
Hohenbrink, Philipp; Mundy, Nicholas I; Radespiel, Ute
2017-01-21
A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic.
Vincent, Bourret; Dionne, Mélanie; Kent, Matthew P; Lien, Sigbjørn; Bernatchez, Louis
2013-12-01
A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome-wide single nucleotide polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of both genetic and environmental structures. We found an enrichment of growth-related functions among outlier markers. Climate (temperature-precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon. Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes of Atlantic salmon wild populations. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies.
Huber, B; Whibley, A; Poul, Y L; Navarro, N; Martin, A; Baxter, S; Shah, A; Gilles, B; Wirth, T; McMillan, W O; Joron, M
2015-05-01
Understanding the genetic architecture of adaptive traits has been at the centre of modern evolutionary biology since Fisher; however, evaluating how the genetic architecture of ecologically important traits influences their diversification has been hampered by the scarcity of empirical data. Now, high-throughput genomics facilitates the detailed exploration of variation in the genome-to-phenotype map among closely related taxa. Here, we investigate the evolution of wing pattern diversity in Heliconius, a clade of neotropical butterflies that have undergone an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes. Using crosses between natural wing-pattern variants, we used genome-wide restriction site-associated DNA (RAD) genotyping, traditional linkage mapping and multivariate image analysis to study the evolution of the architecture of adaptive variation in two closely related species: Heliconius hecale and H. ismenius. We implemented a new morphometric procedure for the analysis of whole-wing pattern variation, which allows visualising spatial heatmaps of genotype-to-phenotype association for each quantitative trait locus separately. We used the H. melpomene reference genome to fine-map variation for each major wing-patterning region uncovered, evaluated the role of candidate genes and compared genetic architectures across the genus. Our results show that, although the loci responding to mimicry selection are highly conserved between species, their effect size and phenotypic action vary throughout the clade. Multilocus architecture is ancestral and maintained across species under directional selection, whereas the single-locus (supergene) inheritance controlling polymorphism in H. numata appears to have evolved only once. Nevertheless, the conservatism in the wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic evolution towards local adaptive optima.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Quantifying selection in evolving populations using time-resolved genetic data
NASA Astrophysics Data System (ADS)
Illingworth, Christopher J. R.; Mustonen, Ville
2013-01-01
Methods which uncover the molecular basis of the adaptive evolution of a population address some important biological questions. For example, the problem of identifying genetic variants which underlie drug resistance, a question of importance for the treatment of pathogens, and of cancer, can be understood as a matter of inferring selection. One difficulty in the inference of variants under positive selection is the potential complexity of the underlying evolutionary dynamics, which may involve an interplay between several contributing processes, including mutation, recombination and genetic drift. A source of progress may be found in modern sequencing technologies, which confer an increasing ability to gather information about evolving populations, granting a window into these complex processes. One particularly interesting development is the ability to follow evolution as it happens, by whole-genome sequencing of an evolving population at multiple time points. We here discuss how to use time-resolved sequence data to draw inferences about the evolutionary dynamics of a population under study. We begin by reviewing our earlier analysis of a yeast selection experiment, in which we used a deterministic evolutionary framework to identify alleles under selection for heat tolerance, and to quantify the selection acting upon them. Considering further the use of advanced intercross lines to measure selection, we here extend this framework to cover scenarios of simultaneous recombination and selection, and of two driver alleles with multiple linked neutral, or passenger, alleles, where the driver pair evolves under an epistatic fitness landscape. We conclude by discussing the limitations of the approach presented and outlining future challenges for such methodologies.
DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.
Tanaka, Yoshinari
1996-10-01
A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.
Evolution of Analog Circuits on Field Programmable Transistor Arrays
NASA Technical Reports Server (NTRS)
Stoica, A.; Keymeulen, D.; Zebulum, R.; Thakoor, A.; Daud, T.; Klimeck, G.; Jin, Y.; Tawel, R.; Duong, V.
2000-01-01
Evolvable Hardware (EHW) refers to HW design and self-reconfiguration using evolutionary/genetic mechanisms. The paper presents an overview of some key concepts of EHW, describing also a set of selected applications.
USDA-ARS?s Scientific Manuscript database
Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...
Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua
2009-03-07
We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.
Selection platforms for directed evolution in synthetic biology
Tizei, Pedro A.G.; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B.
2016-01-01
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules–gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function–be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. PMID:27528765
Selection platforms for directed evolution in synthetic biology.
Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B
2016-08-15
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. © 2016 The Author(s).
Drift-driven evolution of electric signals in a Neotropical knifefish.
Picq, Sophie; Alda, Fernando; Bermingham, Eldredge; Krahe, Rüdiger
2016-09-01
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Predicting the evolution of sex on complex fitness landscapes.
Misevic, Dusan; Kouyos, Roger D; Bonhoeffer, Sebastian
2009-09-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, Delta Var(HD), also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. Delta Var(HD) is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.
Predicting the Evolution of Sex on Complex Fitness Landscapes
Misevic, Dusan; Kouyos, Roger D.; Bonhoeffer, Sebastian
2009-01-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction. PMID:19763171
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus
Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-01-01
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health. PMID:29652824
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus.
Faye, Martin; Faye, Oumar; Diagne, Moussa Moise; Fall, Gamou; Weidmann, Manfred; Sembene, Mbacke; Sall, Amadou Alpha; Faye, Ousmane
2018-04-13
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Choisy, Marc; de Roode, Jacobus C
2014-08-01
Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.
GENETIC VARIATION IN BABOON CRANIOFACIAL SEXUAL DIMORPHISM
Willmore, Katherine E.; Roseman, Charles C.; Rogers, Jeffrey; Richtsmeier, Joan T.; Cheverud, James M.
2010-01-01
Sexual dimorphism is a widespread phenomenon and contributes greatly to intraspecies variation. Despite a long history of active research, the genetic basis of dimorphism for complex traits remains unknown. Understanding the sex-specific differences in genetic architecture for cranial traits in a highly dimorphic species could identify possible mechanisms through which selection acts to produce dimorphism. Using distances calculated from three-dimensional landmark data from CT scans of 402 baboon skulls from a known genealogy, we estimated genetic variance parameters in both sexes to determine the presence of gene-by-sex (G × S) interactions and X-linked heritability. We hypothesize that traits exhibiting the greatest degree of sexual dimorphism (facial traits in baboons) will demonstrate either stronger G × S interactions or X-linked effects. We found G × S interactions and X-linked effects for a few measures that span the areas connecting the face to the neurocranium but for no traits restricted to the face. This finding suggests that facial traits will have a limited response to selection for further evolution of dimorphism in this population. We discuss the implications of our results with respect to the origins of cranial sexual dimorphism in this baboon sample, and how the genetic architecture of these traits affects their potential for future evolution. PMID:19210535
Genetic and developmental basis for parallel evolution and its significance for hominoid evolution.
Reno, Philip L
2014-01-01
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.(1-4) However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan-Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo-devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution. © 2014 Wiley Periodicals, Inc.
Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.
2015-01-01
We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173
Neutral null models for diversity in serial transfer evolution experiments.
Harpak, Arbel; Sella, Guy
2014-09-01
Evolution experiments with microorganisms coupled with genome-wide sequencing now allow for the systematic study of population genetic processes under a wide range of conditions. In learning about these processes in natural, sexual populations, neutral models that describe the behavior of diversity and divergence summaries have played a pivotal role. It is therefore natural to ask whether neutral models, suitably modified, could be useful in the context of evolution experiments. Here, we introduce coalescent models for polymorphism and divergence under the most common experimental evolution assay, a serial transfer experiment. This relatively simple setting allows us to address several issues that could affect diversity patterns in evolution experiments, whether selection is operating or not: the transient behavior of neutral polymorphism in an experiment beginning from a single clone, the effects of randomness in the timing of cell division and noisiness in population size in the dilution stage. In our analyses and discussion, we emphasize the implications for experiments aimed at measuring diversity patterns and making inferences about population genetic processes based on these measurements. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Prospects for the Study of Evolution in the Deep Biosphere
Biddle, Jennifer F.; Sylvan, Jason B.; Brazelton, William J.; Tully, Benjamin J.; Edwards, Katrina J.; Moyer, Craig L.; Heidelberg, John F.; Nelson, William C.
2012-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org). PMID:22319515
Prospects for the study of evolution in the deep biosphere.
Biddle, Jennifer F; Sylvan, Jason B; Brazelton, William J; Tully, Benjamin J; Edwards, Katrina J; Moyer, Craig L; Heidelberg, John F; Nelson, William C
2011-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org).
Birth, death, and replacement of karyopherins in Drosophila.
Phadnis, Nitin; Hsieh, Emily; Malik, Harmit S
2012-05-01
Nucleocytoplasmic transport is a broadly conserved process across eukaryotes. Despite its essential function and conserved mechanism, components of the nuclear transport apparatus have been implicated in genetic conflicts in Drosophila, especially in the male germ line. The best understood case is represented by a truncated RanGAP gene duplication that is part of the segregation distorter system in Drosophila melanogaster. Consistent with the hypothesis that the nuclear transport pathway is at the heart of mediating genetic conflicts, both nucleoporins and directionality imposing components of nuclear transport have previously been shown to evolve under positive selection. Here, we present a comprehensive phylogenomic analysis of importins (karyopherins) in Drosophila evolution. Importins are adaptor molecules that physically mediate the transport of cargo molecules and comprise the third component of the nuclear transport apparatus. We find that importins have been repeatedly gained and lost throughout various stages of Drosophila evolution, including two intriguing examples of an apparently coincident loss and gain of nonorthologous and noncanonical importin-α. Although there are a few signatures of episodic positive selection, genetic innovation in importin evolution is more evident in patterns of recurrent gene birth and loss specifically for function in Drosophila testes, which is consistent with their role in supporting host genomes defense against segregation distortion.
Rapid recent human evolution and the accumulation of balanced genetic polymorphisms.
Wills, Christopher
2011-01-01
All evolutionary change can be traced to alterations in allele frequencies in populations over time. DNA sequencing on a massive scale now permits us to follow the genetic consequences as our species has diverged from our close relatives and as we have colonized different parts of the world and adapted to them. But it has been difficult to disentangle natural selection from many other factors that alter frequencies. These factors include mutation and intragenic reciprocal recombination, gene conversion, segregation distortion, random drift, and gene flow between populations (these last two are greatly influenced by splits and coalescences of populations over time). The first part of this review examines recent studies that have had some success in dissecting out the role of natural selection, especially in humans and Drosophila. Among many examples, these studies include those that have followed the rapid evolution of traits that may permit adaptation to high altitude in Tibetan and Andean populations. In some cases, directional selection has been so strong that it may have swept alleles close to fixation in the span of a few thousand years, a rapidity of change that is also sometimes encountered in other organisms. The second part of the review summarizes data showing that remarkably few alleles have been carried completely to fixation during our recent evolution. Some of the alleles that have not reached fixation may be approaching new internal equilibria, which would indicate polymorphisms that are maintained by balancing selection. Finally, the review briefly examines why genetic polymorphisms, particularly those that are maintained by negative frequency dependence, are likely to have played an important role in the evolution of our species. A method is suggested for measuring the contribution of these polymorphisms to our gene pool. Such polymorphisms may add to the ability of our species to adapt to our increasingly complex and challenging environment. © Mary Ann Liebert, Inc.
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
ERIC Educational Resources Information Center
Malone, Molly
2012-01-01
Most middle school students comprehend that organisms have adaptations that enable their survival and that successful adaptations prevail in a population over time. Yet they often miss that those bird beaks, moth-wing colors, or whatever traits are the result of random, normal genetic variations that just happen to confer a negative, neutral, or…
Population genetic structure of Bromus tectorum in the mountains of western North America
Spencer Arnesen; Craig E. Coleman; Susan E. Meyer
2017-01-01
PREMISE OF THE STUDY: Invasive species are often initially restricted to a narrow range and may then expand through any of multiple mechanisms including phenotypic plasticity, in situ evolution, or selection on traits preadapted for new habitats. Our study used population genetics to explore possible processes by which the highly selfing invasive annual grass Bromus...
USDA-ARS?s Scientific Manuscript database
Although some studies have investigated how insect behavior could influence resistance evolution to transgenic plants, none have determined if behavioral traits respond to selection pressure and how they may be inherited. We investigated plant establishment and plant abandonment traits for the Euro...
Animal evolution during domestication: the domesticated fox as a model.
Trut, Lyudmila; Oskina, Irina; Kharlamova, Anastasiya
2009-03-01
We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris), for illustration, we describe the evolutionary peculiarities during the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of a long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability, which were similar to those observed in the domestic dog. Based on the data of the fox experiment and survey of relevant data, we discuss the developmental, genetic and possible molecular genetic mechanisms underlying these changes. We ascribe the causative role in evolutionary transformation of domestic animals to the selection for behavior and to the neurospecific regulatory genes it affects.
Animal evolution during domestication: the domesticated fox as a model
Trut, Lyudmila; Oskina, Irina; Kharlamova, Anastasiya
2009-01-01
Summary We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris) as an illustration, we describe the evolutionary specificities of the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of the long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability, or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability and that were similar to those observed in the domestic dog. Based on the experimental fox data and survey of relevant data, we discuss the developmental, genetic and possible molecular-genetic mechanisms of these changes. We assign the causative role in evolutionary transformation of domestic animals to selection for behavior and to the neurospecific regulatory genes it affects. PMID:19260016
McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801
Chebib, Jobran; Guillaume, Frédéric
2017-10-01
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Bossart, J L; Scriber, J M
1995-12-01
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.
Physical Model for the Evolution of the Genetic Code
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuro; Narikiyo, Osamu
2011-12-01
Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.
Bull, James J; Barrick, Jeffrey E
2017-12-01
Evolution in the form of selective breeding has long been harnessed as a useful tool by humans. However, rapid evolution can also be a danger to our health and a stumbling block for biotechnology. Unwanted evolution can underlie the emergence of drug and pesticide resistance, cancer, and weeds. It makes live vaccines and engineered cells inherently unreliable and unpredictable, and therefore potentially unsafe. Yet, there are strategies that have been and can possibly be used to stop or slow many types of evolution. We review and classify existing population genetics-inspired methods for arresting evolution. Then, we discuss how genome editing techniques enable a radically new set of approaches to limit evolution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Strassmann, Joan E; Queller, David C
2011-05-01
Dictyostelium discoideum has been very useful for elucidating principles of development over the last 50 years, but a key attribute means there is a lot to be learned from a very different intellectual tradition: social evolution. Because Dictyostelium arrives at multicellularity by aggregation instead of through a single-cell bottleneck, the multicellular body could be made up of genetically distinct cells. If they are genetically distinct, natural selection will result in conflict over which cells become fertile spores and which become dead stalk cells. Evidence for this conflict includes unequal representation of two genetically different clones in spores of a chimera, the poison-like differentiation inducing factor (DIF) system that appears to involve some cells forcing others to become stalk, and reduced functionality in migrating chimeras. Understanding how selection operates on chimeras of genetically distinct clones is crucial for a comprehensive view of Dictyostelium multicellularity. In nature, Dictyostelium fruiting bodies are often clonal, or nearly so, meaning development will often be very cooperative. Relatedness levels tell us what benefits must be present for sociality to evolve. Therefore it is important to measure relatedness in nature, show that it has an impact on cooperation in the laboratory, and investigate genes that Dictyostelium uses to discriminate between relatives and non-relatives. Clearly, there is a promising future for research at the interface of development and social evolution in this fascinating group. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.
Natural and Chemotherapy-Induced Clonal Evolution of Tumors.
Ibragimova, M K; Tsyganov, M M; Litviakov, N V
2017-04-01
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker
2015-01-01
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. PMID:25714374
Programmed evolution for optimization of orthogonal metabolic output in bacteria.
Eckdahl, Todd T; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Blauch, David N; Snyder, Nicole L; Atchley, Dustin T; Baker, Erich J; Brown, Micah; Brunner, Elizabeth C; Callen, Sean A; Campbell, Jesse S; Carr, Caleb J; Carr, David R; Chadinha, Spencer A; Chester, Grace I; Chester, Josh; Clarkson, Ben R; Cochran, Kelly E; Doherty, Shannon E; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M; Evans, Rebecca A; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L; Keffeler, Erica C; Lantz, Andrew J; Lim, Jonathan N; McGuire, Erin P; Moore, Alexander K; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E; Polpityaarachchige, Sachith; Quaney, Michael J; Slattery, Abagael; Smith, Kathryn E; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J; Whitesides, E Tucker
2015-01-01
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.
Myers, Russell B; Millman, Brandon; Noor, Mohamed A F
2014-04-11
Students in college courses struggle to understand many concepts fundamental to transmission and evolutionary genetics, including multilocus inheritance, recombination, Hardy-Weinberg, and genetic drift. These students consistently ask for more demonstrations and more practice problems. With this demand in mind, the "Genetics and Evolution" app was designed to help students (and their instructors) by providing a suite of tools granting them the ability to: (1) simulate genetic crosses with varying numbers of genes and patterns of inheritance, (2) simulate allele frequency changes under natural selection and/ or genetic drift, (3) quiz themselves to reinforce terminology (customizable by any instructor for their whole classroom), *4) solve various problems (recombination fractions, Hardy-Weinberg, heritability, population growth), and (5) generate literally an infinite number of practice problems in all of these areas to try on their own. Although some of these functions are available elsewhere, the alternatives do not have the ability to instantly generate new practice problems or achieve these diverse functions in devices that students carry in their pockets every day. Copyright © 2014 Myers et al.
Genetics and the physiological ecology of conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitton, J.B.
1995-07-01
Natural selection acts on the diversity of genotypes, adapting populations to their specific environments and driving evolution in response to changes in climate. Genetically based differences in physiology and demography adapt species to alternate environments and produce, along with historical accidents, the present distribution of species. The sorting of conifer species by elevation is so marked that conifers help to define plant communities arranged in elevational bands in the Rocky Mountains. For these reasons, a genetic perspective is necessary to appreciate the evolution of ecophysiological patterns in the coniferous forests of the Rocky Mountains. The fascinating natural history and themore » economic importance of western conifers have stimulated numerous studies of their ecology, ecological genetics, and geographic variation. These studies yield some generalizations, and present some puzzling contradictions. This chapter focuses on the genetic variability associated with the physiological differences among genotypes in Rocky Mountain conifers. Variation among genotypes in survival, growth, and resistance to herbivores is used to illustrate genetically based differences in physiology, and to suggest the mechanistic studies needed to understand the relationships between genetic and physiological variation.« less
Genetic Diversity in the Interference Selection Limit
Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.
2014-01-01
Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740
Automatic Evolution of Molecular Nanotechnology Designs
NASA Technical Reports Server (NTRS)
Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)
1998-01-01
This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.
Darwin and Evolutionary Psychology
ERIC Educational Resources Information Center
Ghiselin, Michael T.
1973-01-01
Darwin's views on various psychological behaviors were significant. Basing his conclusions on empirical research, he wrote extensively on the phylogeny of behavior, emotional expression, sexual selection, instincts, evolution of morals, ontogeny of behavior, and genetics of behavior. (PS)
Biophysical Aspects of Spindle Evolution
NASA Astrophysics Data System (ADS)
Farhadifar, Reza; Baer, Charlie; Needleman, Daniel
2011-03-01
The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.
The evolution of personalized cancer genetic counseling in the era of personalized medicine.
Vig, Hetal S; Wang, Catharine
2012-09-01
Practice changes in cancer genetic counseling have occurred to meet the demand for cancer genetic services. As cancer genetics continues to impact not only prevention strategies but also treatment decisions, current cancer genetic counseling models will need to be tailored to accommodate emerging clinical indications. These clinical indications include: surgical prophylactic bilateral mastectomy candidates, PARP-inhibitor candidates, patients with abnormal tumor screening results for Lynch syndrome, and post-test counseling patients (after genetic testing is ordered by another healthcare provider). A more personalized, multidisciplinary approach to selecting the best framework, for a given clinical indication, may become increasingly necessary in this era of personalized medicine.
Mullon, Charles; Lehmann, Laurent
2017-08-01
Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Random genetic drift, natural selection, and noise in human cranial evolution.
Roseman, Charles C
2016-08-01
This study assesses the extent to which relationships among groups complicate comparative studies of adaptation in recent human cranial variation and the extent to which departures from neutral additive models of evolution hinder the reconstruction of population relationships among groups using cranial morphology. Using a maximum likelihood evolutionary model fitting approach and a mixed population genomic and cranial data set, I evaluate the relative fits of several widely used models of human cranial evolution. Moreover, I compare the goodness of fit of models of cranial evolution constrained by genomic variation to test hypotheses about population specific departures from neutrality. Models from population genomics are much better fits to cranial variation than are traditional models from comparative human biology. There is not enough evolutionary information in the cranium to reconstruct much of recent human evolution but the influence of population history on cranial variation is strong enough to cause comparative studies of adaptation serious difficulties. Deviations from a model of random genetic drift along a tree-like population history show the importance of environmental effects, gene flow, and/or natural selection on human cranial variation. Moreover, there is a strong signal of the effect of natural selection or an environmental factor on a group of humans from Siberia. The evolution of the human cranium is complex and no one evolutionary process has prevailed at the expense of all others. A holistic unification of phenome, genome, and environmental context, gives us a strong point of purchase on these problems, which is unavailable to any one traditional approach alone. Am J Phys Anthropol 160:582-592, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A test for selection employing quantitative trait locus and mutation accumulation data.
Rice, Daniel P; Townsend, Jeffrey P
2012-04-01
Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.
Runaway cultural niche construction
Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.
2011-01-01
Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897
Applications of genetic programming in cancer research.
Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M
2009-02-01
The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.
Saturation of recognition elements blocks evolution of new tRNA identities
Saint-Léger, Adélaïde; Bello, Carla; Dans, Pablo D.; Torres, Adrian Gabriel; Novoa, Eva Maria; Camacho, Noelia; Orozco, Modesto; Kondrashov, Fyodor A.; Ribas de Pouplana, Lluís
2016-01-01
Understanding the principles that led to the current complexity of the genetic code is a central question in evolution. Expansion of the genetic code required the selection of new transfer RNAs (tRNAs) with specific recognition signals that allowed them to be matured, modified, aminoacylated, and processed by the ribosome without compromising the fidelity or efficiency of protein synthesis. We show that saturation of recognition signals blocks the emergence of new tRNA identities and that the rate of nucleotide substitutions in tRNAs is higher in species with fewer tRNA genes. We propose that the growth of the genetic code stalled because a limit was reached in the number of identity elements that can be effectively used in the tRNA structure. PMID:27386510
Huang, Sui
2012-09-01
Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss.
Morris, J Jeffrey; Lenski, Richard E; Zinser, Erik R
2012-01-01
Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and "Candidatus Pelagibacter," and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism's limiting resources, provided the gene's function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates "beneficiaries" of reduced genomic content that are dependent on leaky "helpers," and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.
Brain evolution and development: adaptation, allometry and constraint
Barton, Robert A.
2016-01-01
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025
Repeated evolution of camouflage in speciose desert rodents.
Boratyński, Zbyszek; Brito, José C; Campos, João C; Cunha, José L; Granjon, Laurent; Mappes, Tapio; Ndiaye, Arame; Rzebik-Kowalska, Barbara; Serén, Nina
2017-06-14
There are two main factors explaining variation among species and the evolution of characters along phylogeny: adaptive change, including phenotypic and genetic responses to selective pressures, and phylogenetic inertia, or the resemblance between species due to shared phylogenetic history. Phenotype-habitat colour match, a classic Darwinian example of the evolution of camouflage (crypsis), offers the opportunity to test the importance of historical versus ecological mechanisms in shaping phenotypes among phylogenetically closely related taxa. To assess it, we investigated fur (phenotypic data) and habitat (remote sensing data) colourations, along with phylogenetic information, in the species-rich Gerbillus genus. Overall, we found a strong phenotype-habitat match, once the phylogenetic signal is taken into account. We found that camouflage has been acquired and lost repeatedly in the course of the evolutionary history of Gerbillus. Our results suggest that fur colouration and its covariation with habitat is a relatively labile character in mammals, potentially responding quickly to selection. Relatively unconstrained and substantial genetic basis, as well as structural and functional independence from other fitness traits of mammalian colouration might be responsible for that observation.
Palhiere, Isabelle; Brochard, Mickaël; Moazami-Goudarzi, Katayoun; Laloë, Denis; Amigues, Yves; Bed'hom, Bertrand; Neuts, Étienne; Leymarie, Cyril; Pantano, Thais; Cribiu, Edmond Paul; Bibé, Bernard; Verrier, Étienne
2008-01-01
Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers). The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies) and on the selection strategies for improving scrapie resistance while carrying out selection for production traits. PMID:18990357
Complex and changing patterns of natural selection explain the evolution of the human hip.
Grabowski, Mark; Roseman, Charles C
2015-08-01
Causal explanations for the dramatic changes that occurred during the evolution of the human hip focus largely on selection for bipedal function and locomotor efficiency. These hypotheses rest on two critical assumptions. The first-that these anatomical changes served functional roles in bipedalism-has been supported in numerous analyses showing how postcranial changes likely affected locomotion. The second-that morphological changes that did play functional roles in bipedalism were the result of selection for that behavior-has not been previously explored and represents a major gap in our understanding of hominin hip evolution. Here we use evolutionary quantitative genetic models to test the hypothesis that strong directional selection on many individual aspects of morphology was responsible for the large differences observed across a sample of fossil hominin hips spanning the Plio-Pleistocene. Our approach uses covariance among traits and the differences between relatively complete fossils to estimate the net selection pressures that drove the major transitions in hominin hip evolution. Our findings show a complex and changing pattern of natural selection drove hominin hip evolution, and that many, but not all, traits hypothesized to play functional roles in bipedalism evolved as a direct result of natural selection. While the rate of evolutionary change for all transitions explored here does not exceed the amount expected if evolution was occurring solely through neutral processes, it was far above rates of evolution for morphological traits in other mammalian groups. Given that stasis is the norm in the mammalian fossil record, our results suggest that large shifts in the adaptive landscape drove hominin evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.
Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel
2014-01-01
Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.
Balancing selection maintains cryptic colour morphs.
Wellenreuther, Maren
2017-11-01
Animals display incredibly diverse colour patterns, a testament to evolution's endless innovation in shaping life. In many species, the interplay between males and females in the pursuit of mates has driven the evolution of a myriad of colour forms, from the flashy peacock tail feathers to the tiniest colour markings in damselflies. In others, colour provides crypsis by allowing to blend into the background and to escape the eyes of predators. While the obvious benefits of this dazzling diversity for reproduction and survival seem straightforward, its maintenance is not. Theory predicts that genetic drift and various forms of selection reduce variation over time, making the persistence of colour variants over generations a puzzle. In this issue of Molecular Ecology, Lindtke et al. () study the cryptic colour morphs of Timema cristinae walking sticks to shed light on the genetic architecture and mechanisms that allow colour polymorphism maintenance over long timescales. By combining genome-wide data with phenotyping information from natural populations, they were able to map the green and melanistic colour to one genomic region with highly reduced effective recombination rate between two main chromosomal variants, consistent with an inversion polymorphism. These two main chromosomal variants showed geographically widespread heterozygote excess, and genomic signatures consistent with long-term balancing selection. A younger chromosomal variant was detected for the third morph, the green-striped colour morphs, in the same genomic regions as the melanistic and the green-unstriped morphs. Together, these results suggest that the genetic architecture of cryptic T. cristinae morphs is caused by nonrecombining genomic blocks that have been maintained over extended time periods by balancing selection making this study one of the few available empirical examples documenting that balancing selection of various forms may play an important role in maintaining adaptive genetic variation in nature. © 2017 John Wiley & Sons Ltd.
Charlesworth, Deborah
2018-01-01
Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution. PMID:29783761
Wu, Wenlan; Li, Zhongjie; Ma, Yibao
2017-06-01
Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=d N /d S ). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification. Copyright © 2017 Elsevier Inc. All rights reserved.
A Powerful Toolkit for Synthetic Biology: Over 3.8 Billion Years of Evolution
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.
2010-01-01
The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested
A powerful toolkit for synthetic biology: Over 3.8 billion years of evolution.
Rothschild, Lynn J
2010-04-01
The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested.
Sexually antagonistic polymorphism in simultaneous hermaphrodites
Jordan, Crispin Y.; Connallon, Tim
2015-01-01
In hermaphrodites, pleiotropic genetic tradeoffs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. While an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self-fertilization, and population size, on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self-fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female-beneficial alleles, and restricts invasion criteria for male-beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes”. PMID:25311368
Husby, Arild; Visser, Marcel E.; Kruuk, Loeske E. B.
2011-01-01
The amount of genetic variance underlying a phenotypic trait and the strength of selection acting on that trait are two key parameters that determine any evolutionary response to selection. Despite substantial evidence that, in natural populations, both parameters may vary across environmental conditions, very little is known about the extent to which they may covary in response to environmental heterogeneity. Here we show that, in a wild population of great tits (Parus major), the strength of the directional selection gradients on timing of breeding increased with increasing spring temperatures, and that genotype-by-environment interactions also predicted an increase in additive genetic variance, and heritability, of timing of breeding with increasing spring temperature. Consequently, we therefore tested for an association between the annual selection gradients and levels of additive genetic variance expressed each year; this association was positive, but non-significant. However, there was a significant positive association between the annual selection differentials and the corresponding heritability. Such associations could potentially speed up the rate of micro-evolution and offer a largely ignored mechanism by which natural populations may adapt to environmental changes. PMID:21408101
Dudycha, Jeffry L; Snoke-Smith, Margaret; Alía, Ricardo
2013-02-01
Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high-sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter-clutch interval appeared to respond more strongly in low-sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.
Zera, Anthony J; Zhao, Zhangwu
2003-03-01
Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.
Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication.
Doust, Andrew N; Lukens, Lewis; Olsen, Kenneth M; Mauro-Herrera, Margarita; Meyer, Ann; Rogers, Kimberly
2014-04-29
Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.
He, M; Taussig, M J
1997-01-01
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828
He, M; Taussig, M J
1997-12-15
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.
Relating hybrid advantage and genome replacement in unisexual salamanders.
Charney, Noah D
2012-05-01
Unisexual vertebrates are model systems for understanding the evolution of sex. Many predominantly clonal lineages allow occasional genetic recombination, which may be sufficient to avoid the accumulation of deleterious mutations and parasites. Introgression of paternal DNA into an all-female lineage represents a one-way flow of genetic material. Over many generations, this could result in complete replacement of the unisexual genomes by those of the donor species. The process of genome replacement may be counteracted by contemporary dispersal or by positive selection on hybrid nuclear genomes in ecotones. I present a conceptual model that relates nuclear genome replacement, positive selection on hybrids and biogeography in unisexual systems. I execute an individual-based simulation of the fate of hybrid genotypes in contact with a single host species. I parameterize these models for unisexual salamanders in the Ambystoma genus, for which the frequency of genome replacement has been a source of ongoing debate. I find that, if genome replacement occurs at a rate greater than 1/10,000 in Ambystoma, then there must be compensating positive selection in order to maintain observed levels of hybrid nuclei. Future researchers studying unisexual systems may use this framework as a guide to evaluating the hybrid superiority hypothesis. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Algorithms, complexity, and the sciences
Papadimitriou, Christos
2014-01-01
Algorithms, perhaps together with Moore’s law, compose the engine of the information technology revolution, whereas complexity—the antithesis of algorithms—is one of the deepest realms of mathematical investigation. After introducing the basic concepts of algorithms and complexity, and the fundamental complexity classes P (polynomial time) and NP (nondeterministic polynomial time, or search problems), we discuss briefly the P vs. NP problem. We then focus on certain classes between P and NP which capture important phenomena in the social and life sciences, namely the Nash equlibrium and other equilibria in economics and game theory, and certain processes in population genetics and evolution. Finally, an algorithm known as multiplicative weights update (MWU) provides an algorithmic interpretation of the evolution of allele frequencies in a population under sex and weak selection. All three of these equivalences are rife with domain-specific implications: The concept of Nash equilibrium may be less universal—and therefore less compelling—than has been presumed; selection on gene interactions may entail the maintenance of genetic variation for longer periods than selection on single alleles predicts; whereas MWU can be shown to maximize, for each gene, a convex combination of the gene’s cumulative fitness in the population and the entropy of the allele distribution, an insight that may be pertinent to the maintenance of variation in evolution. PMID:25349382
Casillas, Sònia; Barbadilla, Antonio
2017-01-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526
Molecular Population Genetics.
Casillas, Sònia; Barbadilla, Antonio
2017-03-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.
Castillo, Dean M; Burger, Melissa K; Lively, Curtis M; Delph, Lynda F
2015-12-01
Using experimental evolution, we investigated the contributions of ecological divergence, sexual selection, and genetic drift to the evolution of reproductive isolation in Caenorhabditis remanei. The nematodes were reared on two different environments for 100 generations. They were assayed for fitness on both environments after 30, 64, and 100 generations, and hybrid fitness were analyzed after 64 and 100 generations. Mating propensity within and between populations was also analyzed. The design allowed us to determine whether local adaptation was synchronous with pre- and postzygotic reproductive isolation. Prezygotic isolation evolved quickly but was unconnected with adaptation to the divergent environments. Instead, prezygotic isolation was driven by mate preferences favoring individuals from the same replicate population. A bottleneck treatment, meant to enhance the opportunity for genetic drift, had no effect on prezygotic isolation. Postzygotic isolation occurred in crosses where at least one population had a large fitness advantage in its "home" environment. Taken together, our results suggest that prezygotic isolation did not depend on drift or adaptation to divergent environments, but instead resulted from differences in sexual interactions within individual replicates. Furthermore, our results suggest that postzygotic isolation can occur between populations even when only one population has greater fitness in its home environment. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata
Sztepanacz, Jacqueline L.; Blows, Mark W.
2015-01-01
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700
Quantitative genetic models of sexual conflict based on interacting phenotypes.
Moore, Allen J; Pizzari, Tommaso
2005-05-01
Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.
Genetic Architecture Promotes the Evolution and Maintenance of Cooperation
Frénoy, Antoine; Taddei, François; Misevic, Dusan
2013-01-01
When cooperation has a direct cost and an indirect benefit, a selfish behavior is more likely to be selected for than an altruistic one. Kin and group selection do provide evolutionary explanations for the stability of cooperation in nature, but we still lack the full understanding of the genomic mechanisms that can prevent cheater invasion. In our study we used Aevol, an agent-based, in silico genomic platform to evolve populations of digital organisms that compete, reproduce, and cooperate by secreting a public good for tens of thousands of generations. We found that cooperating individuals may share a phenotype, defined as the amount of public good produced, but have very different abilities to resist cheater invasion. To understand the underlying genetic differences between cooperator types, we performed bio-inspired genomics analyses of our digital organisms by recording and comparing the locations of metabolic and secretion genes, as well as the relevant promoters and terminators. Association between metabolic and secretion genes (promoter sharing, overlap via frame shift or sense-antisense encoding) was characteristic for populations with robust cooperation and was more likely to evolve when secretion was costly. In mutational analysis experiments, we demonstrated the potential evolutionary consequences of the genetic association by performing a large number of mutations and measuring their phenotypic and fitness effects. The non-cooperating mutants arising from the individuals with genetic association were more likely to have metabolic deleterious mutations that eventually lead to selection eliminating such mutants from the population due to the accompanying fitness decrease. Effectively, cooperation evolved to be protected and robust to mutations through entangled genetic architecture. Our results confirm the importance of second-order selection on evolutionary outcomes, uncover an important genetic mechanism for the evolution and maintenance of cooperation, and suggest promising methods for preventing gene loss in synthetically engineered organisms. PMID:24278000
Clownfishes evolution below and above the species level
Litsios, Glenn; Faye, Laurélène; Salamin, Nicolas
2018-01-01
The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels. PMID:29467260
Cheeseman, John M
2015-04-01
The effective development of salt tolerant crops requires an understanding that the evolution of halophytes, glycophytes and our major grain crops has involved significantly different processes. Halophytes (and other edaphic endemics) generally arose through colonization of habitats in severe disequilibrium by pre-adapted individuals, rather than by gradual adaptation from populations of 'glycophytes'. Glycophytes, by contrast, occur in low sodium ecosystems, where sodium was and is the major limiting nutrient in herbivore diets, suggesting that their evolution reflects the fact that low sodium individuals experienced lower herbivory and had higher fitness. For domestication/evolution of crop plants, the selective pressure was human imposed and involved humans co-opting functions of defense and reproductive security. Unintended consequences of this included loss of tolerance to various stresses and loss of the genetic variability needed to correct that. Understanding, combining and manipulating all three modes of evolution are now critical to the development of salt tolerant crops, particularly those that will offer food security in countries with few economic resources and limited infrastructure. Such efforts will require exploiting the genetic structures of recently evolved halophytes, the genetic variability of model plants, and endemic halophytes and 'minor' crops that already exist. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.
Arkin, Adam P.
2015-01-01
ABSTRACT Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is <107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate of Ne, standard population genetics models imply that selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10−7 or so. PMID:26670382
Evidence for loss of nepotism in the evolution of permanent sociality
Berger-Tal, Reut; Lubin, Yael; Settepani, Virginia; Majer, Marija; Bilde, Trine; Tuni, Cristina
2015-01-01
Kin selected benefits of cooperation result in pronounced kin discrimination and nepotism in many social species and favour the evolution of sociality. However, low variability in relatedness among group members, infrequent competitive interactions with non-relatives, and direct benefits of cooperation may relax selection for nepotism. We tested this prediction in a permanently social spider, Stegodyphus dumicola that appears to fulfil these conditions. Sociality is a derived trait, and kin discrimination exists in sub-social closely related congeners and is likely a selective force in the sub-social route to permanent sociality in spiders. We examined whether social spiders show nepotism in cooperative feeding when genetic relatedness among group members was experimentally varied. We found no effect of relatedness on feeding efficiency, growth rate or participation in feeding events. Previous studies on sub-social species showed benefits of communal feeding with kin, indicating nepotistic cooperation. The lack of evidence for nepotism in the social species suggests that kin discrimination has been lost or is irrelevant in communal feeding. Our results are consistent with the hypothesis that the role of nepotism is diminished when cooperation evolves in certain genetic and ecological contexts, e.g. when intra-group genetic relatedness is homogeneous and encounters with competitors are rare. PMID:26333675
Careau, Vincent; Wolak, Matthew E.; Carter, Patrick A.; Garland, Theodore
2015-01-01
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016
Whittaker, Kerry A; Rynearson, Tatiana A
2017-03-07
The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations ( F ST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a , a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.
Schrider, Daniel R; Kern, Andrew D
2014-06-09
Identifying the complete set of functional elements within the human genome would be a windfall for multiple areas of biological research including medicine, molecular biology, and evolution. Complete knowledge of function would aid in the prioritization of loci when searching for the genetic bases of disease or adaptive phenotypes. Because mutations that disrupt function are disfavored by natural selection, purifying selection leaves a detectable signature within functional elements; accordingly, this signal has been exploited for over a decade through the use of genomic comparisons of distantly related species. While this is so, the functional complement of the genome changes extensively across time and between lineages; therefore, evidence of the current action of purifying selection in humans is essential. Because the removal of deleterious mutations by natural selection also reduces within-species genetic diversity within functional loci, dense population genetic data have the potential to reveal genomic elements that are currently functional. Here, we assess the potential of this approach by examining an ultradeep sample of human mitochondrial genomes (n = 16,411). We show that the high density of polymorphism in this data set precisely delineates regions experiencing purifying selection. Furthermore, we show that the number of segregating alleles at a site is strongly correlated with its divergence across species after accounting for known mutational biases in human mitochondrial DNA (ρ = 0.51; P < 2.2 × 10(-16)). These two measures track one another at a remarkably fine scale across many loci-a correlation that is purely the result of natural selection. Our results demonstrate that genetic variation has the potential to reveal with surprising precision which regions in the genome are currently performing important functions and likely to have deleterious fitness effects when mutated. As more complete human genomes are sequenced, similar power to reveal purifying selection may be achievable in the human nuclear genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes
Christie, Joshua R.; Beekman, Madeleine
2017-01-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes—specifically their organization into host cells and their uniparental (maternal) inheritance—enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller’s ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes—despite their asexual mode of reproduction—can readily undergo adaptive evolution. PMID:28025277
The evolution and consequences of sex-specific reproductive variance.
Mullon, Charles; Reuter, Max; Lehmann, Laurent
2014-01-01
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
The Evolution and Consequences of Sex-Specific Reproductive Variance
Mullon, Charles; Reuter, Max; Lehmann, Laurent
2014-01-01
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction. PMID:24172130
Price, Trevor D.
2015-01-01
Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait
Geroldinger, Ludwig; Bürger, Reinhard
2014-01-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. PMID:24726489
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.
Geroldinger, Ludwig; Bürger, Reinhard
2014-06-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Saltz, Julia B
2011-08-01
Gene-environment correlation (rGE) occurs when an individual's genotype determines its choice of environment, generating a correlation between environment and genotype frequency. In particular, social rGE, caused by genetic variation in social environment choice, can critically determine both individual development and the course of social selection. Despite its foundational role in social evolution and developmental psychology theory, natural genetic variation in social environment choice has scarcely been examined empirically. Drosophila melanogaster provides an ideal system for investigating social rGE. Flies live socially in nature and have many opportunities to make social decisions; and natural, heterozygous genotypes may be replicated, enabling comparisons between genotypes across environments. Using this approach, I show that all aspects of social environment choice vary among natural genotypes, demonstrating pervasive social rGE. Surprisingly, genetic variation in group-size preference was density dependent, indicating that the behavioral and evolutionary consequences of rGE may depend on the context in which social decisions are made. These results provide the first detailed investigation of social rGE, and illustrate that that genetic variation may influence organismal performance by specifying the environment in which traits are expressed. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Roff, Derek A; Fairbairn, Daphne J
2007-01-01
Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.
Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia
Galinsky, Kevin J.; Bhatia, Gaurav; Loh, Po-Ru; Georgiev, Stoyan; Mukherjee, Sayan; Patterson, Nick J.; Price, Alkes L.
2016-01-01
Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984∗T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease. PMID:26924531
Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.
2016-01-01
Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745
Modelling the influence of parental effects on gene-network evolution.
Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud
2018-05-01
Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Clerc, Melanie; Ebert, Dieter; Hall, Matthew D.
2015-01-01
How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710
Molecular evolution and emergence of avian gammacoronaviruses.
Jackwood, Mark W; Hall, David; Handel, Andreas
2012-08-01
Coronaviruses, which are single stranded, positive sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in humans and other animals. The gammacoronaviruses primarily infect avian hosts. Within this genus of coronaviruses, the avian coronavirus infectious bronchitis virus (IBV) causes a highly infectious upper-respiratory tract disease in commercial poultry. IBV shows rapid evolution in chickens, frequently producing new antigenic types, which adds to the multiple serotypes of the virus that do not cross protect. Rapid evolution in IBV is facilitated by strong selection, large population sizes and high genetic diversity within hosts, and transmission bottlenecks between hosts. Genetic diversity within a host arises primarily by mutation, which includes substitutions, insertions and deletions. Mutations are caused both by the high error rate, and limited proof reading capability, of the viral RNA-dependent RNA-polymerase, and by recombination. Recombination also generates new haplotype diversity by recombining existing variants. Rapid evolution of avian coronavirus IBV makes this virus extremely difficult to diagnose and control, but also makes it an excellent model system to study viral genetic diversity and the mechanisms behind the emergence of coronaviruses in their natural host. Copyright © 2012 Elsevier B.V. All rights reserved.
Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm
Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun
2013-01-01
Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949
Vriamont, Nicolas; Govaerts, Bernadette; Grenouillet, Pierre; de Bellefon, Claude; Riant, Olivier
2009-06-15
A library of catalysts was designed for asymmetric-hydrogen transfer to acetophenone. At first, the whole library was submitted to evaluation using high-throughput experiments (HTE). The catalysts were listed in ascending order, with respect to their performance, and best catalysts were identified. In the second step, various simulated evolution experiments, based on a genetic algorithm, were applied to this library. A small part of the library, called the mother generation (G0), thus evolved from generation to generation. The goal was to use our collection of HTE data to adjust the parameters of the genetic algorithm, in order to obtain a maximum of the best catalysts within a minimal number of generations. It was namely found that simulated evolution's results depended on the selection of G0 and that a random G0 should be preferred. We also demonstrated that it was possible to get 5 to 6 of the ten best catalysts while investigating only 10 % of the library. Moreover, we developed a double algorithm making this result still achievable if the evolution started with one of the worst G0.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster
Collet, Julie M.; Fuentes, Sara; Hesketh, Jack; Hill, Mark S.; Innocenti, Paolo; Morrow, Edward H.; Fowler, Kevin; Reuter, Max
2016-01-01
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution. PMID:27077679
Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee
2015-10-21
The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.
Dominance genetic variance for traits under directional selection in Drosophila serrata.
Sztepanacz, Jacqueline L; Blows, Mark W
2015-05-01
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.
Chhatre, Vikram E; Rajora, Om P
2014-01-01
Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (Ne) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and Ne than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and Ne between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.
Chhatre, Vikram E.; Rajora, Om P.
2014-01-01
Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance. PMID:24859159
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2018-02-01
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria
2017-01-01
ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950
The impact of transposable elements on mammalian development
Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.
2018-01-01
Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251
Han, Chang S; Dingemanse, Niels J
2017-10-11
Empirical studies imply that sex-specific genetic architectures can resolve evolutionary conflicts between males and females, and thereby facilitate the evolution of sexual dimorphism. Sex-specificity of behavioural genetic architectures has, however, rarely been considered. Moreover, as the expression of genetic (co)variances is often environment-dependent, general inferences on sex-specific genetic architectures require estimates of quantitative genetics parameters under multiple conditions. We measured exploration and aggression in pedigreed populations of southern field crickets ( Gryllus bimaculatus ) raised on either naturally balanced (free-choice) or imbalanced (protein-deprived) diets. For each dietary condition, we measured for each behavioural trait (i) level of sexual dimorphism, (ii) level of sex-specificity of survival selection gradients, (iii) level of sex-specificity of additive genetic variance, and (iv) strength of the cross-sex genetic correlation. We report here evidence for sexual dimorphism in behaviour as well as sex-specificity in the expression of genetic (co)variances as predicted by theory. The additive genetic variances of exploration and aggression were significantly greater in males compared with females. Cross-sex genetic correlations were highly positive for exploration but deviating (significantly) from one for aggression; findings were consistent across dietary treatments. This suggests that genetic architectures characterize the sexually dimorphic focal behaviours across various key environmental conditions in the wild. Our finding also highlights that sexual conflict can be resolved by evolving sexually independent genetic architectures. © 2017 The Author(s).
Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji
2013-11-01
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
Evolution and inheritance of early embryonic patterning in D. simulans and D. sechellia
Lott, Susan E.; Ludwig, Michael Z.; Kreitman, Martin
2010-01-01
Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation which selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth ‘stripe allometry’) in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species D. simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the “margin of error” for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness PMID:21121913
Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji
2013-01-01
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian–Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome. PMID:24026095
Understanding the Evolution and Stability of the G-Matrix
Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.
2011-01-01
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631
Genome-wide scans for loci under selection in humans
2005-01-01
Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection. PMID:16004726
What Does "the RNA World" Mean to "the Origin of Life"?
Ma, Wentao
2017-11-29
Corresponding to life's two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the "self-sustainment" we concern about life should be the self-sustainment of a relevant system that is "defined" by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution-provided that the genetic molecules can "simply" code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the "unitary-protocell", which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level-no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment-the advantage of these functions must overweigh the corresponding disadvantage.
Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance
Mead, Rebecca; Hejmadi, Momna
2017-01-01
What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students’ understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance. PMID:28542179
Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance.
Mead, Rebecca; Hejmadi, Momna; Hurst, Laurence D
2017-05-01
What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students' understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance.
Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals
2014-01-01
Background Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades. Results Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades. Conclusions Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses. PMID:24898820
2008-01-01
Background An open, focal issue in evolutionary biology is how reproductive isolation and speciation are initiated; elucidation of mechanisms with empirical evidence has lagged behind theory. Under ecological speciation, reproductive isolation between populations is predicted to evolve incidentally as a by-product of adaptation to divergent environments. The increased genetic diversity associated with interspecific hybridization has also been theorized to promote the development of reproductive isolation among independent populations. Using the fungal model Neurospora, we founded experimental lineages from both intra- and interspecific crosses, and evolved them in one of two sub-optimal, selective environments. We then measured the influence that initial genetic diversity and the direction of selection (parallel versus divergent) had on the evolution of reproductive isolation. Results When assayed in the selective environment in which they were evolved, lineages typically had greater asexual fitness than the progenitors and the lineages that were evolved in the alternate, selective environment. Assays for reproductive isolation showed that matings between lineages that were adapted to the same environment had greater sexual reproductive success than matings between lineages that were adapted to different environments. Evidence of this differential reproductive success was observed at two stages of the sexual cycle. For one of the two observed incompatibility phenotypes, results from genetic analyses were consistent with a two-locus, two-allele model with asymmetric (gender-specific), antagonistic epistasis. The effects of divergent adaptation on reproductive isolation were more pronounced for populations with greater initial genetic variation. Conclusion Divergent selection resulted in divergent adaptation and environmental specialization, consistent with fixation of different alleles in different environments. When brought together by mating, these alleles interacted negatively and had detrimental effects on sexual reproductive success, in agreement with the Dobzhansky-Muller model of genetic incompatibilities. As predicted by ecological speciation, greater reproductive isolation was observed among divergent-adapted lineages than among parallel-adapted lineages. These results support that, given adequate standing genetic variation, divergent adaptation can indirectly cause the evolution of reproductive isolation, and eventually lead to speciation. PMID:18237415
Parent-offspring conflict and the genetic trade-offs shaping parental investment.
Kölliker, Mathias; Boos, Stefan; Wong, Janine W Y; Röllin, Lilian; Stucki, Dimitri; Raveh, Shirley; Wu, Min; Meunier, Joël
2015-04-16
The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parent's ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent-offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.
Tosato, Valentina; Sims, Jason; West, Nicole; Colombin, Martina; Bruschi, Carlo V
2017-05-01
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.
Huang, Bing-Hong; Liao, Pei-Chun
2015-07-01
Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Weaver, Timothy D; Gunz, Philipp
2018-04-01
Researchers studying extant and extinct taxa are often interested in identifying the evolutionary processes that have lead to the morphological differences among the taxa. Ideally, one could distinguish the influences of neutral evolutionary processes (genetic drift, mutation) from natural selection, and in situations for which selection is implicated, identify the targets of selection. The directional selection gradient is an effective tool for investigating evolutionary process, because it can relate form (size and shape) differences between taxa to the variation and covariation found within taxa. However, although most modern morphometric analyses use the tools of geometric morphometrics (GM) to analyze landmark data, to date, selection gradients have mainly been calculated from linear measurements. To address this methodological gap, here we present a GM approach for visualizing and comparing between-taxon selection gradients with each other, associated difference vectors, and "selection" gradients from neutral simulations. To exemplify our approach, we use a dataset of 347 three-dimensional landmarks and semilandmarks recorded on the crania of 260 primate specimens (112 humans, 67 common chimpanzees, 36 bonobos, 45 gorillas). Results on this example dataset show how incorporating geometric information can provide important insights into the evolution of the human braincase, and serve to demonstrate the utility of our approach for understanding morphological evolution. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Within-Host Evolution of Human Influenza Virus.
Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D
2018-03-10
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Timing as a sexually selected trait: the right mate at the right moment.
Hau, Michaela; Dominoni, Davide; Casagrande, Stefania; Buck, C Loren; Wagner, Gabriela; Hazlerigg, David; Greives, Timothy; Hut, Roelof A
2017-11-19
Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-11-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-01-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680
Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems
Sander van Doorn, G.
2014-01-01
The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578
In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language
NASA Astrophysics Data System (ADS)
Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs
It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.
Darwinian evolution in the light of genomics
Koonin, Eugene V.
2009-01-01
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.
Christie, Joshua R; Beekman, Madeleine
2017-03-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model
Nené, Nuno R.; Dunham, Alistair S.; Illingworth, Christopher J. R.
2018-01-01
A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. PMID:29500183
Evolutionarily stable disequilibrium: endless dynamics of evolution in a stationary population.
Takeuchi, Nobuto; Kaneko, Kunihiko; Hogeweg, Paulien
2016-05-11
Evolution is often conceived as changes in the properties of a population over generations. Does this notion exhaust the possible dynamics of evolution? Life is hierarchically organized, and evolution can operate at multiple levels with conflicting tendencies. Using a minimal model of such conflicting multilevel evolution, we demonstrate the possibility of a novel mode of evolution that challenges the above notion: individuals ceaselessly modify their genetically inherited phenotype and fitness along their lines of descent, without involving apparent changes in the properties of the population. The model assumes a population of primitive cells (protocells, for short), each containing a population of replicating catalytic molecules. Protocells are selected towards maximizing the catalytic activity of internal molecules, whereas molecules tend to evolve towards minimizing it in order to maximize their relative fitness within a protocell. These conflicting evolutionary tendencies at different levels and genetic drift drive the lineages of protocells to oscillate endlessly between high and low intracellular catalytic activity, i.e. high and low fitness, along their lines of descent. This oscillation, however, occurs independently in different lineages, so that the population as a whole appears stationary. Therefore, ongoing evolution can be hidden behind an apparently stationary population owing to conflicting multilevel evolution. © 2016 The Authors.
R2d2 Drives Selfish Sweeps in the House Mouse.
Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando
2016-06-01
A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations
Jha, Aashish R.; Zhou, Dan; Brown, Christopher D.; Kreitman, Martin; Haddad, Gabriel G.; White, Kevin P.
2016-01-01
The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes’ expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations—Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years. PMID:26576852
Endogenous Retroviruses in the Genomics Era.
Johnson, Welkin E
2015-11-01
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Lacy, Robert C; Ballou, Jonathan D
1998-06-01
It has been hypothesized that natural selection reduces the "genetic load" of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection. © 1998 The Society for the Study of Evolution.
Zan, Yanjun; Sheng, Zheya; Lillie, Mette; Rönnegård, Lars; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan
2017-10-01
The ability of a population to adapt to changes in their living conditions, whether in nature or captivity, often depends on polymorphisms in multiple genes across the genome. In-depth studies of such polygenic adaptations are difficult in natural populations, but can be approached using the resources provided by artificial selection experiments. Here, we dissect the genetic mechanisms involved in long-term selection responses of the Virginia chicken lines, populations that after 40 generations of divergent selection for 56-day body weight display a 9-fold difference in the selected trait. In the F15 generation of an intercross between the divergent lines, 20 loci explained >60% of the additive genetic variance for the selected trait. We focused particularly on fine-mapping seven major QTL that replicated in this population and found that only two fine-mapped to single, bi-allelic loci; the other five contained linked loci, multiple alleles or were epistatic. This detailed dissection of the polygenic adaptations in the Virginia lines provides a deeper understanding of the range of different genome-wide mechanisms that have been involved in these long-term selection responses. The results illustrate that the genetic architecture of a highly polygenic trait can involve a broad range of genetic mechanisms, and that this can be the case even in a small population bred from founders with limited genetic diversity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Environment-dependent variation in selection on life history across small spatial scales.
Lange, Rolanda; Monro, Keyne; J Marshall, Dustin
2016-10-01
Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Implications of segment mismatch for influenza A virus evolution
White, Maria C.; Lowen, Anice C.
2018-01-01
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017
Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas.
Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen
2017-01-31
Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.
Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M
2012-04-01
Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas
Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen
2017-01-01
Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. PMID:28096377
Reid, J M; Arcese, P; Losdat, S
2014-01-01
The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454
Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain
2014-01-01
Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. PMID:24724612
New Editions for the Apple II of the Chelsea Science Simulations.
ERIC Educational Resources Information Center
Pipeline, 1983
1983-01-01
Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
Statistical genetics and evolution of quantitative traits
NASA Astrophysics Data System (ADS)
Neher, Richard A.; Shraiman, Boris I.
2011-10-01
The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.
Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes
Holzman, Roi; Collar, David C.; Price, Samantha A.; Hulsey, C. Darrin; Thomson, Robert C.; Wainwright, Peter C.
2012-01-01
Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution. PMID:21993506
Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes.
Holzman, Roi; Collar, David C; Price, Samantha A; Hulsey, C Darrin; Thomson, Robert C; Wainwright, Peter C
2012-04-07
Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.
Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.
Ibstedt, Sebastian; Stenberg, Simon; Bagés, Sara; Gjuvsland, Arne B; Salinas, Francisco; Kourtchenko, Olga; Samy, Jeevan K A; Blomberg, Anders; Omholt, Stig W; Liti, Gianni; Beltran, Gemma; Warringer, Jonas
2015-01-01
Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lessons learned from the dog genome.
Wayne, Robert K; Ostrander, Elaine A
2007-11-01
Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.
Cortical Evolution: Judge the Brain by Its Cover
Geschwind, Daniel H.; Rakic, Pasko
2014-01-01
To understand the emergence of human higher cognition, we must understand its biological substrate—the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders. PMID:24183016
Clonal evolution in hematologic malignancies and therapeutic implications
Landau, Dan A.; Carter, Scott L.; Getz, Gad; Wu, Catherine J.
2014-01-01
The ability of cancer to evolve and adapt is a principal challenge to therapy in general, and to the paradigm of targeted therapy in particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights into this process challenge us to understand the impact of treatment on clonal evolution, and inspire the development of novel prognostic and therapeutic strategies. PMID:23979521
Locomotion in response to shifting climate zones: not so fast.
Feder, Martin E; Garland, Theodore; Marden, James H; Zera, Anthony J
2010-01-01
Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.
Relatedness, conflict, and the evolution of eusociality.
Liao, Xiaoyun; Rong, Stephen; Queller, David C
2015-03-01
The evolution of sterile worker castes in eusocial insects was a major problem in evolutionary theory until Hamilton developed a method called inclusive fitness. He used it to show that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is favored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness theory is well supported empirically and has been applied to many other areas, but a recent paper argued that the general method of inclusive fitness was wrong and advocated an alternative population genetic method. The claim of these authors was bolstered by a new model of the evolution of eusociality with novel conclusions that appeared to overturn some major results from inclusive fitness. Here we report an expanded examination of this kind of model for the evolution of eusociality and show that all three of its apparently novel conclusions are essentially false. Contrary to their claims, genetic relatedness is important and causal, workers are agents that can evolve to be in conflict with the queen, and eusociality is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math but from overgeneralizing from narrow assumptions or parameter values. For example, all of their models implicitly assumed high relatedness, but modifying the model to allow lower relatedness shows that relatedness is essential and causal in the evolution of eusociality. Their modeling strategy, properly applied, actually confirms major insights of inclusive fitness studies of kin selection. This broad agreement of different models shows that social evolution theory, rather than being in turmoil, is supported by multiple theoretical approaches. It also suggests that extensive prior work using inclusive fitness, from microbial interactions to human evolution, should be considered robust unless shown otherwise.
Sanseverino, Walter; Hénaff, Elizabeth; Vives, Cristina; Pinosio, Sara; Burgos-Paz, William; Morgante, Michele; Ramos-Onsins, Sebastián E; Garcia-Mas, Jordi; Casacuberta, Josep Maria
2015-10-01
The availability of extensive databases of crop genome sequences should allow analysis of crop variability at an unprecedented scale, which should have an important impact in plant breeding. However, up to now the analysis of genetic variability at the whole-genome scale has been mainly restricted to single nucleotide polymorphisms (SNPs). This is a strong limitation as structural variation (SV) and transposon insertion polymorphisms are frequent in plant species and have had an important mutational role in crop domestication and breeding. Here, we present the first comprehensive analysis of melon genetic diversity, which includes a detailed analysis of SNPs, SV, and transposon insertion polymorphisms. The variability found among seven melon varieties representing the species diversity and including wild accessions and highly breed lines, is relatively high due in part to the marked divergence of some lineages. The diversity is distributed nonuniformly across the genome, being lower at the extremes of the chromosomes and higher in the pericentromeric regions, which is compatible with the effect of purifying selection and recombination forces over functional regions. Additionally, this variability is greatly reduced among elite varieties, probably due to selection during breeding. We have found some chromosomal regions showing a high differentiation of the elite varieties versus the rest, which could be considered as strongly selected candidate regions. Our data also suggest that transposons and SV may be at the origin of an important fraction of the variability in melon, which highlights the importance of analyzing all types of genetic variability to understand crop genome evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
First steps in experimental cancer evolution
Taylor, Tiffany B; Johnson, Louise J; Jackson, Robert W; Brockhurst, Michael A; Dash, Philip R
2013-01-01
Evolutionary processes play a central role in the development, progression and response to treatment of cancers. The current challenge facing researchers is to harness evolutionary theory to further our understanding of the clinical progression of cancers. Central to this endeavour will be the development of experimental systems and approaches by which theories of cancer evolution can be effectively tested. We argue here that the experimental evolution approach – whereby evolution is observed in real time and which has typically employed microorganisms – can be usefully applied to cancer. This approach allows us to disentangle the ecological causes of natural selection, identify the genetic basis of evolutionary changes and determine their repeatability. Cell cultures used in cancer research share many of the desirable traits that make microorganisms ideal for studying evolution. As such, experimental cancer evolution is feasible and likely to give great insight into the selective pressures driving the evolution of clinically destructive cancer traits. We highlight three areas of evolutionary theory with importance to cancer biology that are amenable to experimental evolution: drug resistance, social evolution and resource competition. Understanding the diversity, persistence and evolution of cancers is vital for treatment and drug development, and an experimental evolution approach could provide strategic directions and focus for future research. PMID:23745144
Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.
Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U
2015-11-01
The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Convergent evolution of sexual shape dimorphism in Diptera.
Bonduriansky, Russell
2006-05-01
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures. Copyright 2006 Wiley-Liss, Inc.
Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore
2015-11-22
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. © 2015 The Author(s).
The impact of transposable elements on mammalian development.
Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R
2016-11-15
Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.
Robert Heath Lock and His Textbook of Genetics, 1906
Edwards, A. W. F.
2013-01-01
Robert Heath Lock (1879–1915), a Cambridge botanist associated with William Bateson and R. C. Punnett, published his book Recent Progress in the Study of Variation, Heredity, and Evolution in 1906. This was a remarkable textbook of genetics for one appearing so early in the Mendelian era. It covered not only Mendelism but evolution, natural selection, biometry, mutation, and cytology. It ran to five editions but was, despite its success, largely forgotten following Lock’s early death in 1915. Nevertheless it was the book that inspired H. J. Muller to do genetics and was remembered by A. H. Sturtevant as the source of the earliest suggestion that linkage might be related to the exchange of parts between homologous chromosomes. Here we also put forward evidence that it had a major influence on the statistician and geneticist R. A. Fisher at the time he was a mathematics student at Cambridge. PMID:23824968