Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H
2018-01-05
Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.
Single-Cell Genomic Analysis in Plants
Hu, Haifei; Scheben, Armin; Edwards, David
2018-01-01
Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790
IMG 4 version of the integrated microbial genomes comparative analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna
The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts providemore » support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).« less
D3GB: An Interactive Genome Browser for R, Python, and WordPress.
Barrios, David; Prieto, Carlos
2017-05-01
Genome browsers are useful not only for showing final results but also for improving analysis protocols, testing data quality, and generating result drafts. Its integration in analysis pipelines allows the optimization of parameters, which leads to better results. New developments that facilitate the creation and utilization of genome browsers could contribute to improving analysis results and supporting the quick visualization of genomic data. D3 Genome Browser is an interactive genome browser that can be easily integrated in analysis protocols and shared on the Web. It is distributed as an R package, a Python module, and a WordPress plugin to facilitate its integration in pipelines and the utilization of platform capabilities. It is compatible with popular data formats such as GenBank, GFF, BED, FASTA, and VCF, and enables the exploration of genomic data with a Web browser.
Calibrating genomic and allelic coverage bias in single-cell sequencing.
Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher
2015-04-16
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.
Calibrating genomic and allelic coverage bias in single-cell sequencing
Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L.; Meyerson, Matthew; Love, J. Christopher
2016-01-01
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Functional genomics of lactic acid bacteria: from food to health
2014-01-01
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768
Functional genomics of lactic acid bacteria: from food to health.
Douillard, François P; de Vos, Willem M
2014-08-29
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
A community assessment of privacy preserving techniques for human genomes
2014-01-01
To answer the need for the rigorous protection of biomedical data, we organized the Critical Assessment of Data Privacy and Protection initiative as a community effort to evaluate privacy-preserving dissemination techniques for biomedical data. We focused on the challenge of sharing aggregate human genomic data (e.g., allele frequencies) in a way that preserves the privacy of the data donors, without undermining the utility of genome-wide association studies (GWAS) or impeding their dissemination. Specifically, we designed two problems for disseminating the raw data and the analysis outcome, respectively, based on publicly available data from HapMap and from the Personal Genome Project. A total of six teams participated in the challenges. The final results were presented at a workshop of the iDASH (integrating Data for Analysis, 'anonymization,' and SHaring) National Center for Biomedical Computing. We report the results of the challenge and our findings about the current genome privacy protection techniques. PMID:25521230
A community assessment of privacy preserving techniques for human genomes.
Jiang, Xiaoqian; Zhao, Yongan; Wang, Xiaofeng; Malin, Bradley; Wang, Shuang; Ohno-Machado, Lucila; Tang, Haixu
2014-01-01
To answer the need for the rigorous protection of biomedical data, we organized the Critical Assessment of Data Privacy and Protection initiative as a community effort to evaluate privacy-preserving dissemination techniques for biomedical data. We focused on the challenge of sharing aggregate human genomic data (e.g., allele frequencies) in a way that preserves the privacy of the data donors, without undermining the utility of genome-wide association studies (GWAS) or impeding their dissemination. Specifically, we designed two problems for disseminating the raw data and the analysis outcome, respectively, based on publicly available data from HapMap and from the Personal Genome Project. A total of six teams participated in the challenges. The final results were presented at a workshop of the iDASH (integrating Data for Analysis, 'anonymization,' and SHaring) National Center for Biomedical Computing. We report the results of the challenge and our findings about the current genome privacy protection techniques.
Public data and open source tools for multi-assay genomic investigation of disease.
Kannan, Lavanya; Ramos, Marcel; Re, Angela; El-Hachem, Nehme; Safikhani, Zhaleh; Gendoo, Deena M A; Davis, Sean; Gomez-Cabrero, David; Castelo, Robert; Hansen, Kasper D; Carey, Vincent J; Morgan, Martin; Culhane, Aedín C; Haibe-Kains, Benjamin; Waldron, Levi
2016-07-01
Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods. © The Author 2015. Published by Oxford University Press.
Genomic Approaches to Zebrafish Cancer
2017-01-01
The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further. PMID:27165352
Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A
2016-11-01
Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.
Informational laws of genome structures
Bonnici, Vincenzo; Manca, Vincenzo
2016-01-01
In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155
Informational laws of genome structures
NASA Astrophysics Data System (ADS)
Bonnici, Vincenzo; Manca, Vincenzo
2016-06-01
In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.
Ali, Amjad; Naz, Anam; Soares, Siomar C; Bakhtiar, Marriam; Tiwari, Sandeep; Hassan, Syed S; Hanan, Fazal; Ramos, Rommel; Pereira, Ulisses; Barh, Debmalya; Figueiredo, Henrique César Pereira; Ussery, David W; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2015-01-01
Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.
A survey of application: genomics and genetic programming, a new frontier.
Khan, Mohammad Wahab; Alam, Mansaf
2012-08-01
The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.
Delta: a new web-based 3D genome visualization and analysis platform.
Tang, Bixia; Li, Feifei; Li, Jing; Zhao, Wenming; Zhang, Zhihua
2018-04-15
Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. zhangzhihua@big.ac.cn. Supplementary data are available at Bioinformatics online.
Nunes, Luiz R; Rosato, Yoko B; Muto, Nair H; Yanai, Giane M; da Silva, Vivian S; Leite, Daniela B; Gonçalves, Edmilson R; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Lopes, Silvio A; de Oliveira, Regina Costa
2003-04-01
Genetically distinct strains of the plant bacterium Xylella fastidiosa (Xf) are responsible for a variety of plant diseases, accounting for severe economic damage throughout the world. Using as a reference the genome of Xf 9a5c strain, associated with citrus variegated chlorosis (CVC), we developed a microarray-based comparison involving 12 Xf isolates, providing a thorough assessment of the variation in genomic composition across the group. Our results demonstrate that Xf displays one of the largest flexible gene pools characterized to date, with several horizontally acquired elements, such as prophages, plasmids, and genomic islands (GIs), which contribute up to 18% of the final genome. Transcriptome analysis of bacteria grown under different conditions shows that most of these elements are transcriptionally active, and their expression can be influenced in a coordinated manner by environmental stimuli. Finally, evaluation of the genetic composition of these laterally transferred elements identified differences that may help to explain the adaptability of Xf strains to infect such a wide range of plant species.
Explaining human uniqueness: genome interactions with environment, behaviour and culture.
Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E
2008-10-01
What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.
Explaining human uniqueness: genome interactions with environment, behaviour and culture
Varki, Ajit; Geschwind, Daniel H.; Eichler, Evan E.
2009-01-01
What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, ‘anthropogeny’ (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any ‘genes versus environment’ dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture — perhaps relaxing allowable thresholds for large-scale genomic diversity. PMID:18802414
Phylogeny and comparative genome analysis of a Basidiomycete fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor
2011-03-14
Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein familiesmore » that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.« less
Multiple Myeloma Genomics: A Systematic Review.
Weaver, Casey J; Tariman, Joseph D
2017-08-01
This integrative review describes the genomic variants that have been found to be associated with poor prognosis in patients diagnosed with multiple myeloma (MM). Second, it identifies MM genetic and genomic changes using next-generation sequencing, specifically whole-genome sequencing or exome sequencing. A search for peer-reviewed articles through PubMed, EBSCOhost, and DePaul WorldCat Libraries Worldwide yielded 33 articles that were included in the final analysis. The most commonly reported genetic changes were KRAS, NRAS, TP53, FAM46C, BRAF, DIS3, ATM, and CCND1. These genetic changes play a role in the pathogenesis of MM, prognostication, and therapeutic targets for novel therapies. MM genetics and genomics are expanding rapidly; oncology nurse clinicians must have basic competencies in genetics and genomics to help patients understand the complexities of genetic and genomic alterations and be able to refer patients to appropriate genomic professionals if needed. Copyright © 2017 Elsevier Inc. All rights reserved.
Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis
Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; ...
2016-07-15
Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less
Microbial genomic island discovery, visualization and analysis.
Bertelli, Claire; Tilley, Keith E; Brinkman, Fiona S L
2018-06-03
Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.
A genomic view of food-related and probiotic Enterococcus strains
Suárez, Nadia; Hormigo, Ricardo; Fadda, Silvina; Saavedra, Lucila
2017-01-01
Abstract The study of enterococcal genomes has grown considerably in recent years. While special attention is paid to comparative genomic analysis among clinical relevant isolates, in this study we performed an exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential to be used as probiotics. Beyond common genetic features, we especially aimed to identify those that are specific to enterococcal strains isolated from a certain food-related source as well as features present in a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7 different species, were examined and compared. Their phylogenetic relationship was reconstructed based on orthologous proteins and whole genomes. Likewise, markers associated with a successful colonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clustered regularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features. At the same time, a search for antibiotic resistance genes was carried out, since they are of big concern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteome universally present among the genera and to determine that most of the accessory genes code for hypothetical proteins, providing reasonable hints to support their functional characterization. PMID:27773878
Upadhyay, Atul Kumar; Sowdhamini, Ramanathan
2016-01-01
3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.
Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.; Gabbard, Joseph L.; Shukla, Maulik P.; Dalay, Oral; Driscoll, Timothy; Hix, Deborah; Mane, Shrinivasrao P.; Mao, Chunhong; Nordberg, Eric K.; Scott, Mark; Schulman, Julie R.; Snyder, Eric E.; Sullivan, Daniel E.; Wang, Chunxia; Warren, Andrew; Williams, Kelly P.; Xue, Tian; Seung Yoo, Hyun; Zhang, Chengdong; Zhang, Yan; Will, Rebecca; Kenyon, Ronald W.; Sobral, Bruno W.
2011-01-01
Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. PMID:21896772
Guidelines for Genome-Scale Analysis of Biological Rhythms.
Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B
2017-10-01
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
Guidelines for Genome-Scale Analysis of Biological Rhythms
Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.
2017-01-01
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954
Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich.
Luan, Ming-Bao; Jian, Jian-Bo; Chen, Ping; Chen, Jun-Hui; Chen, Jian-Hua; Gao, Qiang; Gao, Gang; Zhou, Ju-Hong; Chen, Kun-Mei; Guang, Xuan-Min; Chen, Ji-Kang; Zhang, Qian-Qian; Wang, Xiao-Fei; Fang, Long; Sun, Zhi-Min; Bai, Ming-Zhou; Fang, Xiao-Dong; Zhao, Shan-Cen; Xiong, He-Ping; Yu, Chun-Ming; Zhu, Ai-Guo
2018-05-01
Ramie, Boehmeria nivea (L.) Gaudich, family Urticaceae, is a plant native to eastern Asia, and one of the world's oldest fibre crops. It is also used as animal feed and for the phytoremediation of heavy metal-contaminated farmlands. Thus, the genome sequence of ramie was determined to explore the molecular basis of its fibre quality, protein content and phytoremediation. For further understanding ramie genome, different paired-end and mate-pair libraries were combined to generate 134.31 Gb of raw DNA sequences using the Illumina whole-genome shotgun sequencing approach. The highly heterozygous B. nivea genome was assembled using the Platanus Genome Assembler, which is an effective tool for the assembly of highly heterozygous genome sequences. The final length of the draft genome of this species was approximately 341.9 Mb (contig N50 = 22.62 kb, scaffold N50 = 1,126.36 kb). Based on ramie genome annotations, 30,237 protein-coding genes were predicted, and the repetitive element content was 46.3%. The completeness of the final assembly was evaluated by benchmarking universal single-copy orthologous genes (BUSCO); 90.5% of the 1,440 expected embryophytic genes were identified as complete, and 4.9% were identified as fragmented. Phylogenetic analysis based on single-copy gene families and one-to-one orthologous genes placed ramie with mulberry and cannabis, within the clade of urticalean rosids. Genome information of ramie will be a valuable resource for the conservation of endangered Boehmeria species and for future studies on the biogeography and characteristic evolution of members of Urticaceae. © 2018 John Wiley & Sons Ltd.
Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed
Browett, Sam; McHugo, Gillian; Richardson, Ian W.; Magee, David A.; Park, Stephen D. E.; Fahey, Alan G.; Kearney, John F.; Correia, Carolina N.; Randhawa, Imtiaz A. S.; MacHugh, David E.
2018-01-01
Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland. PMID:29520297
GenColors: annotation and comparative genomics of prokaryotes made easy.
Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen
2007-01-01
GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293 species. The system provides versatile quick and advanced search options for all currently known prokaryotic genomes and generates circular and linear genome plots. Gene information sheets contain basic gene information, database search options, and links to external databases. GenColors is also available on request for local installation.
Wawrousek, Karen; Noble, Scott; Korlach, Jonas; ...
2014-12-05
In this article, we report here the sequencing and analysis of the genome of the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS. This microbe is a model for studies of its carboxydotrophic life style under anaerobic condition, based on its ability to utilize carbon monoxide (CO) as the sole carbon substrate and water as the electron acceptor, yielding CO 2 and H 2 as the end products. The CO-oxidation reaction is known to be catalyzed by two enzyme complexes, the CO dehydrogenase and hydrogenase. As expected, analysis of the genome of Rx. gelatinosus CBS reveals the presence of genes encodingmore » both enzyme complexes. The CO-oxidation reaction is CO-inducible, which is consistent with the presence of two putative CO-sensing transcription factors in its genome. Genome analysis also reveals the presence of two additional hydrogenases, an uptake hydrogenase that liberates the electrons in H 2 in support of cell growth, and a regulatory hydrogenase that senses H 2 and relays the signal to a two-component system that ultimately controls synthesis of the uptake hydrogenase. The genome also contains two sets of hydrogenase maturation genes which are known to assemble the catalytic metallocluster of the hydrogenase NiFe active site. Finally and collectively, the genome sequence and analysis information reveals the blueprint of an intricate network of signal transduction pathways and its underlying regulation that enables Rx. gelatinosus CBS to thrive on CO or H 2 in support of cell growth.« less
Analysis tools for the interplay between genome layout and regulation.
Bouyioukos, Costas; Elati, Mohamed; Képès, François
2016-06-06
Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.
High-throughput analysis of the satellitome illuminates satellite DNA evolution
NASA Astrophysics Data System (ADS)
Ruiz-Ruano, Francisco J.; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M.
2016-07-01
Satellite DNA (satDNA) is a major component yet the great unknown of eukaryote genomes and clearly underrepresented in genome sequencing projects. Here we show the high-throughput analysis of satellite DNA content in the migratory locust by means of the bioinformatic analysis of Illumina reads with the RepeatExplorer and RepeatMasker programs. This unveiled 62 satDNA families and we propose the term “satellitome” for the whole collection of different satDNA families in a genome. The finding that satDNAs were present in many contigs of the migratory locust draft genome indicates that they show many genomic locations invisible by fluorescent in situ hybridization (FISH). The cytological pattern of five satellites showing common descent (belonging to the SF3 superfamily) suggests that non-clustered satDNAs can become into clustered through local amplification at any of the many genomic loci resulting from previous dissemination of short satDNA arrays. The fact that all kinds of satDNA (micro- mini- and satellites) can show the non-clustered and clustered states suggests that all these elements are mostly similar, except for repeat length. Finally, the presence of VNTRs in bacteria, showing similar properties to non-clustered satDNAs in eukaryotes, suggests that this kind of tandem repeats show common properties in all living beings.
Genome Characterization of the First Mimiviruses of Lineage C Isolated in Brazil
Assis, Felipe L.; Franco-Luiz, Ana P. M.; dos Santos, Raíssa N.; Campos, Fabrício S.; Dornas, Fábio P.; Borato, Paulo V. M.; Franco, Ana C.; Abrahao, Jônatas S.; Colson, Philippe; Scola, Bernard La
2017-01-01
The family Mimiviridae, comprised by giant DNA viruses, has been increasingly studied since the isolation of the Acanthamoeba polyphaga mimivirus (APMV), in 2003. In this work, we describe the genome analysis of two new mimiviruses, each isolated from a distinct Brazilian environment. Furthermore, for the first time, we are reporting the genomic characterization of mimiviruses of group C in Brazil (Br-mimiC), where a predominance of mimiviruses from group A has been previously reported. The genomes of the Br-mimiC isolates Mimivirus gilmour (MVGM) and Mimivirus golden (MVGD) are composed of double-stranded DNA molecules of ∼1.2 Mb, each encoding more than 1,100 open reading frames. Genome functional annotations highlighted the presence of mimivirus group C hallmark genes, such as the set of seven aminoacyl-tRNA synthetases. However, the set of tRNA encoded by the Br-mimiC was distinct from those of other group C mimiviruses. Differences could also be observed in a genome synteny analysis, which demonstrated the presence of inversions and loci translocations at both extremities of Br-mimiC genomes. Both phylogenetic and phyletic analyses corroborate previous results, undoubtedly grouping the new Brazilian isolates into mimivirus group C. Finally, an updated pan-genome analysis of genus Mimivirus was performed including all new genomes available until the present moment. This last analysis showed a slight increase in the number of clusters of orthologous groups of proteins among mimiviruses of group A, with a larger increase after addition of sequences from mimiviruses of groups B and C, as well as a plateau tendency after the inclusion of the last four mimiviruses of group C, including the Br-mimiC isolates. Future prospective studies will help us to understand the genetic diversity among mimiviruses. PMID:29312242
A genomic view of food-related and probiotic Enterococcus strains.
Bonacina, Julieta; Suárez, Nadia; Hormigo, Ricardo; Fadda, Silvina; Lechner, Marcus; Saavedra, Lucila
2017-02-01
The study of enterococcal genomes has grown considerably in recent years. While special attention is paid to comparative genomic analysis among clinical relevant isolates, in this study we performed an exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential to be used as probiotics. Beyond common genetic features, we especially aimed to identify those that are specific to enterococcal strains isolated from a certain food-related source as well as features present in a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7 different species, were examined and compared. Their phylogenetic relationship was reconstructed based on orthologous proteins and whole genomes. Likewise, markers associated with a successful colonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clustered regularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features. At the same time, a search for antibiotic resistance genes was carried out, since they are of big concern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteome universally present among the genera and to determine that most of the accessory genes code for hypothetical proteins, providing reasonable hints to support their functional characterization. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.
Zhang, Ning; Cai, Guohong; Price, Dana C; Crouch, Jo Anne; Gladieux, Pierre; Hillman, Bradley; Khang, Chang Hyun; LeBrun, Marc-Henri; Lee, Yong-Hwan; Luo, Jing; Qiu, Huan; Veltri, Daniel; Wisecaver, Jennifer H; Zhu, Jie; Bhattacharya, Debashish
2018-04-12
The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.
It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research
Richards, Stephen
2015-01-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218
It's more than stamp collecting: how genome sequencing can unify biological research.
Richards, Stephen
2015-07-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gel, Bernat; Díez-Villanueva, Anna; Serra, Eduard; Buschbeck, Marcus; Peinado, Miguel A; Malinverni, Roberto
2016-01-15
Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model. regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions. In addition to the predefined randomization and evaluation strategies, regioneR is fully customizable allowing the use of custom strategies to adapt it to specific questions. Finally, it also implements a novel function to evaluate the local specificity of the detected association. regioneR is an R package released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/regioneR). rmalinverni@carrerasresearch.org. © The Author 2015. Published by Oxford University Press.
The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.
Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo
2018-02-01
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
Three Infectious Viral Species Lying in Wait in the Banana Genome
Chabannes, Matthieu; Baurens, Franc-Christophe; Duroy, Pierre-Olivier; Bocs, Stéphanie; Vernerey, Marie-Stéphanie; Rodier-Goud, Marguerite; Barbe, Valérie; Gayral, Philippe
2013-01-01
Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species—Goldfinger (eBSGFV), Imove (eBSImV), and Obino l'Ewai (eBSOLV)—in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed. PMID:23720724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...
2017-02-20
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.
Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin
2017-10-01
Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dermauw, Wannes; Van Leeuwen, Thomas; Vanholme, Bartel; Tirry, Luc
2009-01-01
Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. PMID:19284646
Zhao, J H; Tu, G J; Wu, X B; Li, C P
2018-05-01
Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.
Network-based machine learning and graph theory algorithms for precision oncology.
Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui
2017-01-01
Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.
Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen
2015-01-01
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.
Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen
2015-01-01
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762
Li, Ying-hui; Zhou, Guangyu; Ma, Jianxin; Jiang, Wenkai; Jin, Long-guo; Zhang, Zhouhao; Guo, Yong; Zhang, Jinbo; Sui, Yi; Zheng, Liangtao; Zhang, Shan-shan; Zuo, Qiyang; Shi, Xue-hui; Li, Yan-fei; Zhang, Wan-ke; Hu, Yiyao; Kong, Guanyi; Hong, Hui-long; Tan, Bing; Song, Jian; Liu, Zhang-xiong; Wang, Yaoshen; Ruan, Hang; Yeung, Carol K L; Liu, Jian; Wang, Hailong; Zhang, Li-juan; Guan, Rong-xia; Wang, Ke-jing; Li, Wen-bin; Chen, Shou-yi; Chang, Ru-zhen; Jiang, Zhi; Jackson, Scott A; Li, Ruiqiang; Qiu, Li-juan
2014-10-01
Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars.
Treu, Laura; Kougias, Panagiotis G; Campanaro, Stefano; Bassani, Ilaria; Angelidaki, Irini
2016-09-01
This research aimed to better characterize the biogas microbiome by means of high throughput metagenomic sequencing and to elucidate the core microbial consortium existing in biogas reactors independently from the operational conditions. Assembly of shotgun reads followed by an established binning strategy resulted in the highest, up to now, extraction of microbial genomes involved in biogas producing systems. From the 236 extracted genome bins, it was remarkably found that the vast majority of them could only be characterized at high taxonomic levels. This result confirms that the biogas microbiome is comprised by a consortium of unknown species. A comparative analysis between the genome bins of the current study and those extracted from a previous metagenomic assembly demonstrated a similar phylogenetic distribution of the main taxa. Finally, this analysis led to the identification of a subset of common microbes that could be considered as the core essential group in biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.
Privé, Florian; Aschard, Hugues; Ziyatdinov, Andrey; Blum, Michael G B
2017-03-30
Genome-wide datasets produced for association studies have dramatically increased in size over the past few years, with modern datasets commonly including millions of variants measured in dozens of thousands of individuals. This increase in data size is a major challenge severely slowing down genomic analyses, leading to some software becoming obsolete and researchers having limited access to diverse analysis tools. Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large scale genomic data to be performed within R. To address large data size, the packages use memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data pre-processing and data analysis, the packages integrate most of the tools that are commonly used, either through transparent system calls to existing software, or through updated or improved implementation of existing methods. In particular, the packages implement fast and accurate computations of principal component analysis and association studies, functions to remove SNPs in linkage disequilibrium and algorithms to learn polygenic risk scores on millions of SNPs. We illustrate applications of the two R packages by analyzing a case-control genomic dataset for celiac disease, performing an association study and computing Polygenic Risk Scores. Finally, we demonstrate the scalability of the R packages by analyzing a simulated genome-wide dataset including 500,000 individuals and 1 million markers on a single desktop computer. https://privefl.github.io/bigstatsr/ & https://privefl.github.io/bigsnpr/. florian.prive@univ-grenoble-alpes.fr & michael.blum@univ-grenoble-alpes.fr. Supplementary materials are available at Bioinformatics online.
A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter
Jeukens, Julie; Freschi, Luca; Vincent, Antony T.; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Charette, Steve J.
2017-01-01
Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the cystic fibrosis lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of Achromobacter xylosoxidans, Achromobacter insuavis, Achromobacter dolens, and Achromobacter ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared with other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus’s resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution. PMID:28383665
Looking Across Many Cancer Genomes - TCGA
TCGA's Pan-Cancer project publishes its integrative analysis of TCGA cancer types. The Pan-cancer project's goal is to assemble TCGA’s wealth of data across tumor types, analyze and interpret those data, and finally, make both the analyses and the data freely available.
Looking Across Many Cancer Genomes - TCGA
TCGA researchers have developed a formal project for a cross tumor analysis, called Pan-Cancer. Its goal is to assemble TCGA’s wealth of data across tumor types, analyze and interpret those data, and finally, make both the analyses and the data freely available.
Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations
Miller, Ian J.; Chevrette, Marc G.; Kwan, Jason C.
2017-01-01
Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC. PMID:28587290
The human genome: Some assembly required. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areasmore » of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.« less
Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.
Kim, Soonok; Cho, Yun Sung; Kim, Hak-Min; Chung, Oksung; Kim, Hyunho; Jho, Sungwoong; Seomun, Hong; Kim, Jeongho; Bang, Woo Young; Kim, Changmu; An, Junghwa; Bae, Chang Hwan; Bhak, Youngjune; Jeon, Sungwon; Yoon, Hyejun; Kim, Yumi; Jun, JeHoon; Lee, HyeJin; Cho, Suan; Uphyrkina, Olga; Kostyria, Aleksey; Goodrich, John; Miquelle, Dale; Roelke, Melody; Lewis, John; Yurchenko, Andrey; Bankevich, Anton; Cho, Juok; Lee, Semin; Edwards, Jeremy S; Weber, Jessica A; Cook, Jo; Kim, Sangsoo; Lee, Hang; Manica, Andrea; Lee, Ilbeum; O'Brien, Stephen J; Bhak, Jong; Yeo, Joo-Hong
2016-10-11
There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.
Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2
Lamers, Susanna L.; Weiner, Brian; Ray, Stuart C.; Colgrove, Robert C.; Diaz, Fernando; Jing, Lichen; Wang, Kening; Saif, Sakina; Young, Sarah; Henn, Matthew; Laeyendecker, Oliver; Tobian, Aaron A. R.; Cohen, Jeffrey I.; Koelle, David M.; Quinn, Thomas C.; Knipe, David M.
2015-01-01
ABSTRACT Herpes simplex virus 2 (HSV-2), the principal causative agent of recurrent genital herpes, is a highly prevalent viral infection worldwide. Limited information is available on the amount of genomic DNA variation between HSV-2 strains because only two genomes have been determined, the HG52 laboratory strain and the newly sequenced SD90e low-passage-number clinical isolate strain, each from a different geographical area. In this study, we report the nearly complete genome sequences of 34 HSV-2 low-passage-number and laboratory strains, 14 of which were collected in Uganda, 1 in South Africa, 11 in the United States, and 8 in Japan. Our analyses of these genomes demonstrated remarkable sequence conservation, regardless of geographic origin, with the maximum nucleotide divergence between strains being 0.4% across the genome. In contrast, prior studies indicated that HSV-1 genomes exhibit more sequence diversity, as well as geographical clustering. Additionally, unlike HSV-1, little viral recombination between HSV-2 strains could be substantiated. These results are interpreted in light of HSV-2 evolution, epidemiology, and pathogenesis. Finally, the newly generated sequences more closely resemble the low-passage-number SD90e than HG52, supporting the use of the former as the new reference genome of HSV-2. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a causative agent of genital and neonatal herpes. Therefore, knowledge of its DNA genome and genetic variability is central to preventing and treating genital herpes. However, only two full-length HSV-2 genomes have been reported. In this study, we sequenced 34 additional HSV-2 low-passage-number and laboratory viral genomes and initiated analysis of the genetic diversity of HSV-2 strains from around the world. The analysis of these genomes will facilitate research aimed at vaccine development, diagnosis, and the evaluation of clinical manifestations and transmission of HSV-2. This information will also contribute to our understanding of HSV evolution. PMID:26018166
Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex
Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P.; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel
2016-01-01
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094
Alignment of 1000 Genomes Project reads to reference assembly GRCh38.
Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul
2017-07-01
The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.
CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.
Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito
2016-08-17
Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.
Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters
Wu, Dongying; Daugherty, Sean C; Van Aken, Susan E; Pai, Grace H; Watkins, Kisha L; Khouri, Hoda; Tallon, Luke J; Zaborsky, Jennifer M; Dunbar, Helen E; Tran, Phat L; Moran, Nancy A
2006-01-01
Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission. PMID:16729848
fluff: exploratory analysis and visualization of high-throughput sequencing data
Georgiou, Georgios
2016-01-01
Summary. In this article we describe fluff, a software package that allows for simple exploration, clustering and visualization of high-throughput sequencing data mapped to a reference genome. The package contains three command-line tools to generate publication-quality figures in an uncomplicated manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in a heatmap, according to different clustering methods. This includes a predefined setting to identify dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is straightforward and documentation is available at http://fluff.readthedocs.org. Availability. fluff is implemented in Python and runs on Linux. The source code is freely available for download at https://github.com/simonvh/fluff. PMID:27547532
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
Thompson, Dawn; Regev, Aviv; Roy, Sushmita
2015-01-01
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei
Species of the genus Halomonas are halophilic and their flexible adaption to changes of salinity and temperature brings considerable potential biotechnology applications, such as degradation of organic pollutants and enzyme production. The type strain Halomonas lutea YIM 91125 T was isolated from a hypersaline lake in China. The genome of strain YIM 91125 T becomes the twelfth species sequenced in Halomonas, and the thirteenth species sequenced in Halomonadaceae. We described the features of H. lutea YIM 91125 T, together with the high quality draft genome sequence and annotation of its type strain. The 4,533,090 bp long genome of strain YIMmore » 91125 T with its 4,284 protein-coding and 84 RNA genes is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG-I) project. From the viewpoint of comparative genomics, H. lutea has a larger genome size and more specific genes, which indicated acquisition of function bringing better adaption to its environment. Finally, DDH analysis demonstrated that H. lutea is a distinctive species, and halophilic features and nitrogen metabolism related genes were discovered in its genome.« less
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; ...
2015-01-20
Species of the genus Halomonas are halophilic and their flexible adaption to changes of salinity and temperature brings considerable potential biotechnology applications, such as degradation of organic pollutants and enzyme production. The type strain Halomonas lutea YIM 91125 T was isolated from a hypersaline lake in China. The genome of strain YIM 91125 T becomes the twelfth species sequenced in Halomonas, and the thirteenth species sequenced in Halomonadaceae. We described the features of H. lutea YIM 91125 T, together with the high quality draft genome sequence and annotation of its type strain. The 4,533,090 bp long genome of strain YIMmore » 91125 T with its 4,284 protein-coding and 84 RNA genes is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG-I) project. From the viewpoint of comparative genomics, H. lutea has a larger genome size and more specific genes, which indicated acquisition of function bringing better adaption to its environment. Finally, DDH analysis demonstrated that H. lutea is a distinctive species, and halophilic features and nitrogen metabolism related genes were discovered in its genome.« less
Genomics-assisted breeding in fruit trees.
Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi
2016-01-01
Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.
Genomics-assisted breeding in fruit trees
Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi
2016-01-01
Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395
Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J
2007-06-14
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
eHive: an artificial intelligence workflow system for genomic analysis.
Severin, Jessica; Beal, Kathryn; Vilella, Albert J; Fitzgerald, Stephen; Schuster, Michael; Gordon, Leo; Ureta-Vidal, Abel; Flicek, Paul; Herrero, Javier
2010-05-11
The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/.
Inouye, Michael; Ripatti, Samuli; Kettunen, Johannes; Lyytikäinen, Leo-Pekka; Oksala, Niku; Laurila, Pirkka-Pekka; Kangas, Antti J.; Soininen, Pasi; Savolainen, Markku J.; Viikari, Jorma; Kähönen, Mika; Perola, Markus; Salomaa, Veikko; Raitakari, Olli; Lehtimäki, Terho; Taskinen, Marja-Riitta; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Palotie, Aarno; de Bakker, Paul I. W.
2012-01-01
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis. PMID:22916037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel
2013-01-01
The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.
Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert DeSalle
2004-09-10
This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less
A draft annotation and overview of the human genome
Wright, Fred A; Lemon, William J; Zhao, Wei D; Sears, Russell; Zhuo, Degen; Wang, Jian-Ping; Yang, Hee-Yung; Baer, Troy; Stredney, Don; Spitzner, Joe; Stutz, Al; Krahe, Ralf; Yuan, Bo
2001-01-01
Background The recent draft assembly of the human genome provides a unified basis for describing genomic structure and function. The draft is sufficiently accurate to provide useful annotation, enabling direct observations of previously inferred biological phenomena. Results We report here a functionally annotated human gene index placed directly on the genome. The index is based on the integration of public transcript, protein, and mapping information, supplemented with computational prediction. We describe numerous global features of the genome and examine the relationship of various genetic maps with the assembly. In addition, initial sequence analysis reveals highly ordered chromosomal landscapes associated with paralogous gene clusters and distinct functional compartments. Finally, these annotation data were synthesized to produce observations of gene density and number that accord well with historical estimates. Such a global approach had previously been described only for chromosomes 21 and 22, which together account for 2.2% of the genome. Conclusions We estimate that the genome contains 65,000-75,000 transcriptional units, with exon sequences comprising 4%. The creation of a comprehensive gene index requires the synthesis of all available computational and experimental evidence. PMID:11516338
Youssef, Noha H; Blainey, Paul C; Quake, Stephen R; Elshahed, Mostafa S
2011-11-01
Members of candidate division OP11 are widely distributed in terrestrial and marine ecosystems, yet little information regarding their metabolic capabilities and ecological role within such habitats is currently available. Here, we report on the microfluidic isolation, multiple-displacement-amplification, pyrosequencing, and genomic analysis of a single cell (ZG1) belonging to candidate division OP11. Genome analysis of the ∼270-kb partial genome assembly obtained showed that it had no particular similarity to a specific phylum. Four hundred twenty-three open reading frames were identified, 46% of which had no function prediction. In-depth analysis revealed a heterotrophic lifestyle, with genes encoding endoglucanase, amylopullulanase, and laccase enzymes, suggesting a capacity for utilization of cellulose, starch, and, potentially, lignin, respectively. Genes encoding several glycolysis enzymes as well as formate utilization were identified, but no evidence for an electron transport chain was found. The presence of genes encoding various components of lipopolysaccharide biosynthesis indicates a Gram-negative bacterial cell wall. The partial genome also provides evidence for antibiotic resistance (β-lactamase, aminoglycoside phosphotransferase), as well as antibiotic production (bacteriocin) and extracellular bactericidal peptidases. Multiple mechanisms for stress response were identified, as were elements of type I and type IV secretion systems. Finally, housekeeping genes identified within the partial genome were used to demonstrate the OP11 affiliation of multiple hitherto unclassified genomic fragments from multiple database-deposited metagenomic data sets. These results provide the first glimpse into the lifestyle of a member of a ubiquitous, yet poorly understood bacterial candidate division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, P; Garcia, E
2003-02-06
The goal of this proposed effort was to assess the difficulty in identifying and characterizing virulence candidate genes in an organism for which very limited data exists. This was accomplished by first addressing the finishing phase of draft-sequenced F. tularensis genomes and conducting comparative analyses to determine the coding potential of each genome; to discover the differences in genome structure and content, and to identify potential genes whose products may be involved in the F. tularensis virulence process. The project was divided into three parts: (1) Genome finishing: This part involves determining the order and orientation of the consensus sequencesmore » of contigs obtained from Phrap assemblies of random draft genomic sequences. This tedious process consists of linking contig ends using information embedded in each sequence file that relates the sequence to the original cloned insert. Since inserts are sequenced from both ends, we can establish a link between these paired-ends in different contigs and thus order and orient contigs. Since these genomes carry numerous copies of insertion sequences, these repeated elements ''confuse'' the Phrap assembly program. It is thus necessary to break these contigs apart at the repeated sequences and individually join the proper flanking regions using paired-end information, or using results of comparisons against a similar genome. Larger repeated elements such as the small subunit ribosomal RNA operon require verification with PCR. Tandem repeats require manual intervention and typically rely on single nucleotide polymorphisms to be resolved. Remaining gaps require PCR reactions and sequencing. Once the genomes have been ''closed'', low quality regions are addressed by resequencing reactions. (2) Genome analysis: The final consensus sequences are processed by combining the results of three gene modelers: Glimmer, Critica and Generation. The final gene models are submitted to a battery of homology searches and domain prediction programs in order to annotate them (e.g. BLAST, Pfam, TIGRfam, COG, KEGG, InterPro, TMhmm, SignalP). The genome structure is also assessed in terms of G+C content, GC bias (GC skew), and locations of repeated regions (e.g. IS elements) and phage-like genes. (3) Comparative genomics: The results of the various genome analyses are compared between the finished (or almost finished) genomes. Here, we have compared the F. tularensis genomes from the extremely lethal strain Schu4 (subsp. tularensis), the vaccine strain LVS (subsp. holartica), and strain UT01-4992 of the less virulent, opportunistic subsp. novicida. Regions present in the highly virulent strain that are absent from the other less virulent strains may provide insight into what factors are required for the high level of virulence.« less
Modulating Calcium Signals to Boost AON Exon Skipping for DMD
2016-10-01
RNA Seq analysis to identify mechanisms of activity and specificity in order to guide discovery of second-generation skipping drugs or combinations...with greater activity. 15. SUBJECT TERMS Exon skipping, Dantrolene, Calcium, Duchenne, Dytrophy, Dystrophin, anti-sense-oligonucleatide, DMD, RNA ...for a subset of very rare mutations. Finally, we hypothesize that by combining chemical genomics with RNA Seq analysis we can begin to identify
Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W
2013-01-01
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome. PMID:22895163
Reference genotype and exome data from an Australian Aboriginal population for health-based research
Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.
2016-01-01
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114
Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M
2016-04-12
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.
Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah E; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K E; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Borglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Levinson, Douglas F; Gejman, Pablo V; Kendler, Kenneth S; Laurent, Claudine; Mowry, Bryan J; O'Donovan, Michael C; Owen, Michael J; Pulver, Ann E; Riley, Brien P; Schwab, Sibylle G; Wildenauer, Dieter B; Dudbridge, Frank; Holmans, Peter; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A; Nestadt, Gerald; Norton, Nadine; O'Neill, Francis A; Papadimitriou, George N; Ribble, Robert; Sanders, Alan R; Silverman, Jeremy M; Walsh, Dermot; Williams, Nigel M; Wormley, Brandon; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M; Lin, Kuang; Linszen, Don H; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M; Ophoff, Roel A; Powell, John; Rujescu, Dan; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden P; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Spencer, Chris C A; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T; Liddle, Jennifer; Potter, Simon C; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G; Blackwell, Jenefer M; Brown, Matthew A; Corvin, Aiden P; McCarthy, Mark I; Spencer, Chris C A; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F
2013-10-01
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe
2006-01-01
Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450
Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie
2013-01-01
Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967
Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy
2015-09-22
Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.
Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping
2013-09-01
SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Ogilvie, Lesley A.; Caplin, Jonathan; Dedi, Cinzia; Diston, David; Cheek, Elizabeth; Bowler, Lucas; Taylor, Huw; Ebdon, James; Jones, Brian V.
2012-01-01
Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome. PMID:22558115
Genome-wide analysis of codon usage bias in four sequenced cotton species.
Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen
2018-01-01
Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.
Network-assisted target identification for haploinsufficiency and homozygous profiling screens
Wang, Sheng
2017-01-01
Chemical genomic screens have recently emerged as a systematic approach to drug discovery on a genome-wide scale. Drug target identification and elucidation of the mechanism of action (MoA) of hits from these noisy high-throughput screens remain difficult. Here, we present GIT (Genetic Interaction Network-Assisted Target Identification), a network analysis method for drug target identification in haploinsufficiency profiling (HIP) and homozygous profiling (HOP) screens. With the drug-induced phenotypic fitness defect of the deletion of a gene, GIT also incorporates the fitness defects of the gene’s neighbors in the genetic interaction network. On three genome-scale yeast chemical genomic screens, GIT substantially outperforms previous scoring methods on target identification on HIP and HOP assays, respectively. Finally, we showed that by combining HIP and HOP assays, GIT further boosts target identification and reveals potential drug’s mechanism of action. PMID:28574983
The dynamics of genome replication using deep sequencing
Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.
2014-01-01
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142
Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A
2017-11-10
The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lei, Wanjun; Ni, Dapeng; Wang, Yujun; Shao, Junjie; Wang, Xincun; Yang, Dan; Wang, Jinsheng; Chen, Haimei; Liu, Chang
2016-02-22
Astragalus membranaceus is an important medicinal plant in Asia. Several of its varieties have been used interchangeably as raw materials for commercial production. High resolution genetic markers are in urgent need to distinguish these varieties. Here, we sequenced and analyzed the chloroplast genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao using the next generation DNA sequencing technology. The genome was assembled using Abyss and then subjected to gene prediction using CPGAVAS and repeat analysis using MISA, Tandem Repeats Finder, and REPuter. Finally, the genome was subjected phylogenetic and comparative genomic analyses. The complete genome is 123,582 bp long, containing only one copy of the inverted repeat. Gene prediction revealed 110 genes encoding 76 proteins, 30 tRNAs, and four rRNAs. Five intra-specific hypermutation loci were identified, three of which are heteroplasmic. Furthermore, three gene losses and two large inversions were identified. Comparative genomic analyses demonstrated the dynamic nature of the Papilionoideae chloroplast genomes, which showed occurrence of numerous hypermutation loci, frequent gene losses, and fragment inversions. Results obtained herein elucidate the complex evolutionary history of chloroplast genomes and have laid the foundation for the identification of genetic markers to distinguish A. membranaceus varieties.
Chan, K. C. Allen; Jiang, Peiyong; Sun, Kun; Cheng, Yvonne K. Y.; Tong, Yu K.; Cheng, Suk Hang; Wong, Ada I. C.; Hudecova, Irena; Leung, Tak Y.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis
2016-01-01
Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts. Improvements in the interpretation of the sequence information of every base position in the genome allowed us to interrogate the maternal inheritance of the fetus for 618,271 of 656,676 (94.2%) heterozygous SNPs within the maternal genome. The fetal genotype at each of these sites was deduced individually, unlike previously, where the inheritance was determined for a collection of sites within a haplotype. These results represent a 90-fold enhancement in the resolution in determining the fetus’s maternal inheritance. Selected genomic locations were more likely to be found at the ends of plasma DNA molecules. We found that a subset of such preferred ends exhibited selectivity for fetal- or maternal-derived DNA in maternal plasma. The ratio of the number of maternal plasma DNA molecules with fetal preferred ends to those with maternal preferred ends showed a correlation with the fetal DNA fraction. Finally, this second generation approach for noninvasive fetal whole-genome analysis was validated in a pregnancy diagnosed with cardiofaciocutaneous syndrome with maternal plasma DNA sequenced to 195× coverage. The causative de novo BRAF mutation was successfully detected through the maternal plasma DNA analysis. PMID:27799561
Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun
2016-01-01
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207
A pan-genomic approach to understand the basis of host adaptation in Achromobacter.
Jeukens, J; Freschi, L; Vincent, A T; Emond-Rheault, J G; Kukavica-Ibrulj, I; Charette, S J; Levesque, R C
2017-04-05
Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis (CF) lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the CF lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of A. xylosoxidans A insuavis A. dolens and A. ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared to other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus's resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Variation block-based genomics method for crop plants.
Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon
2014-06-15
In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
eHive: An Artificial Intelligence workflow system for genomic analysis
2010-01-01
Background The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. Results We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. Conclusions eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/. PMID:20459813
Li, Yanwei; Ding, Xianlong; Wang, Xuan; He, Tingting; Zhang, Hao; Yang, Longshu; Wang, Tanliu; Chen, Linfeng; Gai, Junyi; Yang, Shouping
2017-08-10
DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Pyne, Michael E; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A; Chou, C Perry
2016-09-19
Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.
Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique
2009-01-01
Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products. PMID:19114527
Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique
2009-02-01
Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products.
Wu, Qizhu; Yin, Ye; Zhou, Huanmin
2014-01-01
Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]–1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941
The Paris-Sud yeast structural genomics pilot-project: from structure to function.
Quevillon-Cheruel, Sophie; Liger, Dominique; Leulliot, Nicolas; Graille, Marc; Poupon, Anne; Li de La Sierra-Gallay, Inès; Zhou, Cong-Zhao; Collinet, Bruno; Janin, Joël; Van Tilbeurgh, Herman
2004-01-01
We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.
Zhang, Jie; Li, Yongxiang; Zheng, Jun; Zhang, Hongwei; Yang, Xiaohong; Wang, Jianhua; Wang, Guoying
2017-01-01
The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting exonic polymorphisms to identify recently selected alleles by comparing haplotypes across the maize genome. This analysis revealed evidence of selection for more than 1100 genomic regions during recent improvement, and included regulatory genes and key genes with visible mutant phenotypes. We find that selected candidate target genes in temperate maize are enriched in biosynthetic processes, and further examination of these candidates highlights two cases, sucrose flux and oil storage, in which multiple genes in a common pathway can be cooperatively selected. Finally, based on available parallel gene expression data, we hypothesize that some genes were selected for regulatory variations, resulting in altered gene expression. PMID:28099470
Guo, Shicheng; Diep, Dinh; Plongthongkum, Nongluk; Fung, Ho-Lim; Zhang, Kang; Zhang, Kun
2017-04-01
Adjacent CpG sites in mammalian genomes can be co-methylated owing to the processivity of methyltransferases or demethylases, yet discordant methylation patterns have also been observed, which are related to stochastic or uncoordinated molecular processes. We focused on a systematic search and investigation of regions in the full human genome that show highly coordinated methylation. We defined 147,888 blocks of tightly coupled CpG sites, called methylation haplotype blocks, after analysis of 61 whole-genome bisulfite sequencing data sets and validation with 101 reduced-representation bisulfite sequencing data sets and 637 methylation array data sets. Using a metric called methylation haplotype load, we performed tissue-specific methylation analysis at the block level. Subsets of informative blocks were further identified for deconvolution of heterogeneous samples. Finally, using methylation haplotypes we demonstrated quantitative estimation of tumor load and tissue-of-origin mapping in the circulating cell-free DNA of 59 patients with lung or colorectal cancer.
Seabury, Christopher M.; Dowd, Scot E.; Seabury, Paul M.; Raudsepp, Terje; Brightsmith, Donald J.; Liboriussen, Poul; Halley, Yvette; Fisher, Colleen A.; Owens, Elaine; Viswanathan, Ganesh; Tizard, Ian R.
2013-01-01
Data deposition to NCBI Genomes This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N’s). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds. PMID:23667475
Cormier, Alexandre; Avia, Komlan; Sterck, Lieven; Derrien, Thomas; Wucher, Valentin; Andres, Gwendoline; Monsoor, Misharl; Godfroy, Olivier; Lipinska, Agnieszka; Perrineau, Marie-Mathilde; Van De Peer, Yves; Hitte, Christophe; Corre, Erwan; Coelho, Susana M; Cock, J Mark
2017-04-01
The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Weiss, Andy; Broach, William H.; Wiemels, Richard E.; Mogen, Austin B.; Rice, Kelly C.
2016-01-01
ABSTRACT In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. PMID:26861020
Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu
2016-01-01
Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487
Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E
2015-04-01
Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.
ReprDB and panDB: minimalist databases with maximal microbial representation.
Zhou, Wei; Gay, Nicole; Oh, Julia
2018-01-18
Profiling of shotgun metagenomic samples is hindered by a lack of unified microbial reference genome databases that (i) assemble genomic information from all open access microbial genomes, (ii) have relatively small sizes, and (iii) are compatible to various metagenomic read mapping tools. Moreover, computational tools to rapidly compile and update such databases to accommodate the rapid increase in new reference genomes do not exist. As a result, database-guided analyses often fail to profile a substantial fraction of metagenomic shotgun sequencing reads from complex microbiomes. We report pipelines that efficiently traverse all open access microbial genomes and assemble non-redundant genomic information. The pipelines result in two species-resolution microbial reference databases of relatively small sizes: reprDB, which assembles microbial representative or reference genomes, and panDB, for which we developed a novel iterative alignment algorithm to identify and assemble non-redundant genomic regions in multiple sequenced strains. With the databases, we managed to assign taxonomic labels and genome positions to the majority of metagenomic reads from human skin and gut microbiomes, demonstrating a significant improvement over a previous database-guided analysis on the same datasets. reprDB and panDB leverage the rapid increases in the number of open access microbial genomes to more fully profile metagenomic samples. Additionally, the databases exclude redundant sequence information to avoid inflated storage or memory space and indexing or analyzing time. Finally, the novel iterative alignment algorithm significantly increases efficiency in pan-genome identification and can be useful in comparative genomic analyses.
Dermauw, Wannes; Vanholme, Bartel; Tirry, Luc; Van Leeuwen, Thomas
2010-04-01
In this study we sequenced and analysed the complete mitochondrial (mt) genome of the Chilean predatory mite Phytoseiulus persimilis Athias-Henriot (Chelicerata: Acari: Mesostigmata: Phytoseiidae: Amblyseiinae). The 16 199 bp genome (79.8% AT) contains the standard set of 13 protein-coding and 24 RNA genes. Compared with the ancestral arthropod mtDNA pattern, the gene order is extremely reshuffled (35 genes changed position) and represents a novel arrangement within the arthropods. This is probably related to the presence of several large noncoding regions in the genome. In contrast with the mt genome of the closely related species Metaseiulus occidentalis (Phytoseiidae: Typhlodrominae) - which was reported to be unusually large (24 961 bp), to lack nad6 and nad3 protein-coding genes, and to contain 22 tRNAs without T-arms - the genome of P. persimilis has all the features of a standard metazoan mt genome. Consequently, we performed additional experiments on the M. occidentalis mt genome. Our preliminary restriction digests and Southern hybridization data revealed that this genome is smaller than previously reported. In addition, we cloned nad3 in M. occidentalis and positioned this gene between nad4L and 12S-rRNA on the mt genome. Finally, we report that at least 15 of the 22 tRNAs in the M. occidentalis mt genome can be folded into canonical cloverleaf structures similar to their counterparts in P. persimilis.
Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan
2016-01-01
High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.
Yao, Youli; Danna, Cristian H.; Zemp, Franz J.; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M.; Kovalchuk, Igor
2011-01-01
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C–irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C–irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C–irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability. PMID:22028460
Draft Sequences of the Radish (Raphanus sativus L.) Genome
Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi
2014-01-01
Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699
Nabavi, Sheida
2016-08-15
With advances in technologies, huge amounts of multiple types of high-throughput genomics data are available. These data have tremendous potential to identify new and clinically valuable biomarkers to guide the diagnosis, assessment of prognosis, and treatment of complex diseases, such as cancer. Integrating, analyzing, and interpreting big and noisy genomics data to obtain biologically meaningful results, however, remains highly challenging. Mining genomics datasets by utilizing advanced computational methods can help to address these issues. To facilitate the identification of a short list of biologically meaningful genes as candidate drivers of anti-cancer drug resistance from an enormous amount of heterogeneous data, we employed statistical machine-learning techniques and integrated genomics datasets. We developed a computational method that integrates gene expression, somatic mutation, and copy number aberration data of sensitive and resistant tumors. In this method, an integrative method based on module network analysis is applied to identify potential driver genes. This is followed by cross-validation and a comparison of the results of sensitive and resistance groups to obtain the final list of candidate biomarkers. We applied this method to the ovarian cancer data from the cancer genome atlas. The final result contains biologically relevant genes, such as COL11A1, which has been reported as a cis-platinum resistant biomarker for epithelial ovarian carcinoma in several recent studies. The described method yields a short list of aberrant genes that also control the expression of their co-regulated genes. The results suggest that the unbiased data driven computational method can identify biologically relevant candidate biomarkers. It can be utilized in a wide range of applications that compare two conditions with highly heterogeneous datasets.
Huang, Jie; Li, Yu-Zhi; Du, Lian-Ming; Yang, Bo; Shen, Fu-Jun; Zhang, He-Min; Zhang, Zhi-He; Zhang, Xiu-Yue; Yue, Bi-Song
2015-02-07
The giant panda (Ailuropoda melanoleuca) is a critically endangered species endemic to China. Microsatellites have been preferred as the most popular molecular markers and proven effective in estimating population size, paternity test, genetic diversity for the critically endangered species. The availability of the giant panda complete genome sequences provided the opportunity to carry out genome-wide scans for all types of microsatellites markers, which now opens the way for the analysis and development of microsatellites in giant panda. By screening the whole genome sequence of giant panda in silico mining, we identified microsatellites in the genome of giant panda and analyzed their frequency and distribution in different genomic regions. Based on our search criteria, a repertoire of 855,058 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. A total of 160 primer pairs were designed to screen for polymorphic microsatellites using the selected tetranucleotide microsatellite sequences. The 51 novel polymorphic tetranucleotide microsatellite loci were discovered based on genotyping blood DNA from 22 captive giant pandas in this study. Finally, a total of 15 markers, which showed good polymorphism, stability, and repetition in faecal samples, were used to establish the novel microsatellite marker system for giant panda. Meanwhile, a genotyping database for Chengdu captive giant pandas (n = 57) were set up using this standardized system. What's more, a universal individual identification method was established and the genetic diversity were analysed in this study as the applications of this marker system. The microsatellite abundance and diversity were characterized in giant panda genomes. A total of 154,677 tetranucleotide microsatellites were identified and 15 of them were discovered as the polymorphic and stable loci. The individual identification method and the genetic diversity analysis method in this study provided adequate material for the future study of giant panda.
Normalization of a chromosomal contact map.
Cournac, Axel; Marie-Nelly, Hervé; Marbouty, Martial; Koszul, Romain; Mozziconacci, Julien
2012-08-30
Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the influence of these unwanted but inevitable events on the final results. Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the biases inherent to the technique and proposed a simple normalization procedure to analyse them. Such an approach can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with cell population presenting highest levels of homogeneity will prove useful in this regards.
Roberts, Megan C; Clyne, Mindy; Kennedy, Amy E; Chambers, David A; Khoury, Muin J
2017-10-26
PurposeImplementation science offers methods to evaluate the translation of genomic medicine research into practice. The extent to which the National Institutes of Health (NIH) human genomics grant portfolio includes implementation science is unknown. This brief report's objective is to describe recently funded implementation science studies in genomic medicine in the NIH grant portfolio, and identify remaining gaps.MethodsWe identified investigator-initiated NIH research grants on implementation science in genomic medicine (funding initiated 2012-2016). A codebook was adapted from the literature, three authors coded grants, and descriptive statistics were calculated for each code.ResultsForty-two grants fit the inclusion criteria (~1.75% of investigator-initiated genomics grants). The majority of included grants proposed qualitative and/or quantitative methods with cross-sectional study designs, and described clinical settings and primarily white, non-Hispanic study populations. Most grants were in oncology and examined genetic testing for risk assessment. Finally, grants lacked the use of implementation science frameworks, and most examined uptake of genomic medicine and/or assessed patient-centeredness.ConclusionWe identified large gaps in implementation science studies in genomic medicine in the funded NIH portfolio over the past 5 years. To move the genomics field forward, investigator-initiated research grants should employ rigorous implementation science methods within diverse settings and populations.Genetics in Medicine advance online publication, 26 October 2017; doi:10.1038/gim.2017.180.
Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; ...
2017-05-08
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less
Delmont, Tom O.; Eren, A. Murat; Vineis, Joseph H.; Post, Anton F.
2015-01-01
Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface. PMID:26579075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less
Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min
2016-01-01
Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.
Comparative genomics of Lactobacillus
Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.
2011-01-01
Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712
A New Model Army: Emerging fish models to study the genomics of vertebrate Evo-Devo
Braasch, Ingo; Peterson, Samuel M.; Desvignes, Thomas; McCluskey, Braedan M.; Batzel, Peter; Postlethwait, John H.
2014-01-01
Many fields of biology – including vertebrate Evo-Devo research – are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this ‘genomic tsunami’. Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies - for which we introduce the term ‘chromonome’ – should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era. PMID:25111899
Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin
2014-11-05
Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C
2012-01-01
The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).
GAP Final Technical Report 12-14-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew J. Bordner, PhD, Senior Research Scientist
2004-12-14
The Genomics Annotation Platform (GAP) was designed to develop new tools for high throughput functional annotation and characterization of protein sequences and structures resulting from genomics and structural proteomics, benchmarking and application of those tools. Furthermore, this platform integrated the genomic scale sequence and structural analysis and prediction tools with the advanced structure prediction and bioinformatics environment of ICM. The development of GAP was primarily oriented towards the annotation of new biomolecular structures using both structural and sequence data. Even though the amount of protein X-ray crystal data is growing exponentially, the volume of sequence data is growing even moremore » rapidly. This trend was exploited by leveraging the wealth of sequence data to provide functional annotation for protein structures. The additional information provided by GAP is expected to assist the majority of the commercial users of ICM, who are involved in drug discovery, in identifying promising drug targets as well in devising strategies for the rational design of therapeutics directed at the protein of interest. The GAP also provided valuable tools for biochemistry education, and structural genomics centers. In addition, GAP incorporates many novel prediction and analysis methods not available in other molecular modeling packages. This development led to signing the first Molsoft agreement in the structural genomics annotation area with the University of oxford Structural Genomics Center. This commercial agreement validated the Molsoft efforts under the GAP project and provided the basis for further development of the large scale functional annotation platform.« less
Alves, João M.P.; Serrano, Myrna G.; Maia da Silva, Flávia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.
2013-01-01
It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457
A genome-wide approach to children's aggressive behavior: The EAGLE consortium.
Pappa, Irene; St Pourcain, Beate; Benke, Kelly; Cavadino, Alana; Hakulinen, Christian; Nivard, Michel G; Nolte, Ilja M; Tiesler, Carla M T; Bakermans-Kranenburg, Marian J; Davies, Gareth E; Evans, David M; Geoffroy, Marie-Claude; Grallert, Harald; Groen-Blokhuis, Maria M; Hudziak, James J; Kemp, John P; Keltikangas-Järvinen, Liisa; McMahon, George; Mileva-Seitz, Viara R; Motazedi, Ehsan; Power, Christine; Raitakari, Olli T; Ring, Susan M; Rivadeneira, Fernando; Rodriguez, Alina; Scheet, Paul A; Seppälä, Ilkka; Snieder, Harold; Standl, Marie; Thiering, Elisabeth; Timpson, Nicholas J; Veenstra, René; Velders, Fleur P; Whitehouse, Andrew J O; Smith, George Davey; Heinrich, Joachim; Hypponen, Elina; Lehtimäki, Terho; Middeldorp, Christel M; Oldehinkel, Albertine J; Pennell, Craig E; Boomsma, Dorret I; Tiemeier, Henning
2016-07-01
Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
Dunn, Joshua G; Weissman, Jonathan S
2016-11-22
Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .
Hadfield, James; Harris, Simon R; Seth-Smith, Helena M B; Parmar, Surendra; Andersson, Patiyan; Giffard, Philip M; Schachter, Julius; Moncada, Jeanne; Ellison, Louise; Vaulet, María Lucía Gallo; Fermepin, Marcelo Rodríguez; Radebe, Frans; Mendoza, Suyapa; Ouburg, Sander; Morré, Servaas A; Sachse, Konrad; Puolakkainen, Mirja; Korhonen, Suvi J; Sonnex, Chris; Wiggins, Rebecca; Jalal, Hamid; Brunelli, Tamara; Casprini, Patrizia; Pitt, Rachel; Ison, Cathy; Savicheva, Alevtina; Shipitsyna, Elena; Hadad, Ronza; Kari, Laszlo; Burton, Matthew J; Mabey, David; Solomon, Anthony W; Lewis, David; Marsh, Peter; Unemo, Magnus; Clarke, Ian N; Parkhill, Julian; Thomson, Nicholas R
2017-07-01
Chlamydia trachomatis is the world's most prevalent bacterial sexually transmitted infection and leading infectious cause of blindness, yet it is one of the least understood human pathogens, in part due to the difficulties of in vitro culturing and the lack of available tools for genetic manipulation. Genome sequencing has reinvigorated this field, shedding light on the contemporary history of this pathogen. Here, we analyze 563 full genomes, 455 of which are novel, to show that the history of the species comprises two phases, and conclude that the currently circulating lineages are the result of evolution in different genomic ecotypes. Temporal analysis indicates these lineages have recently expanded in the space of thousands of years, rather than the millions of years as previously thought, a finding that dramatically changes our understanding of this pathogen's history. Finally, at a time when almost every pathogen is becoming increasingly resistant to antimicrobials, we show that there is no evidence of circulating genomic resistance in C. trachomatis . © 2017 Hadfield et al.; Published by Cold Spring Harbor Laboratory Press.
Olvera-García, Myrna; Sanchez-Flores, Alejandro; Quirasco Baruch, Maricarmen
2018-03-01
Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
Kawase, Junya; Aoki, Jun-ya; Araki, Kazuo
2018-01-01
To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored the de novo assembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail genome. Between yellowtail and Japanese medaka (Oryzias latipes), almost all regions of the chromosomes were conserved and some blocks comprising several markers were translocated. Using the genome information of the spotted gar (Lepisosteus oculatus) as a reference, we further documented syntenic relationships and chromosomal rearrangements that occurred during evolution in four other acanthopterygian species (Japanese medaka, zebrafish, spotted green pufferfish and three-spined stickleback). The evolutionary chromosome translocation frequency was 1.5-2-times higher in yellowtail than in medaka, pufferfish, and stickleback. PMID:29290830
Phylogenomics from Whole Genome Sequences Using aTRAM.
Allen, Julie M; Boyd, Bret; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Warnow, Tandy; Huang, Daisie I; Grady, Patrick G S; Bell, Kayce C; Cronk, Quentin C B; Mugisha, Lawrence; Pittendrigh, Barry R; Leonardi, M Soledad; Reed, David L; Johnson, Kevin P
2017-09-01
Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C
2009-11-12
In FY09 they will (1) complete the implementation, verification, calibration, and sensitivity and scalability analysis of the in-cell virus replication model; (2) complete the design of the cell culture (cell-to-cell infection) model; (3) continue the research, design, and development of their bioinformatics tools: the Web-based structure-alignment-based sequence variability tool and the functional annotation of the genome database; (4) collaborate with the University of California at San Francisco on areas of common interest; and (5) submit journal articles that describe the in-cell model with simulations and the bioinformatics approaches to evaluation of genome variability and fitness.
Advances in high throughput DNA sequence data compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz
2016-06-01
Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.
Chen, Hongfei; Zuo, Xiya; Shao, Hongxia; Fan, Sheng; Ma, Juanjuan; Zhang, Dong; Zhao, Caiping; Yan, Xiangyan; Liu, Xiaojie; Han, Mingyu
2018-02-01
Carotenoid cleavage oxygenases (CCOs) are able to cleave carotenoids to produce apocarotenoids and their derivatives, which are important for plant growth and development. In this study, 21 apple CCO genes were identified and divided into six groups based on their phylogenetic relationships. We further characterized the apple CCO genes in terms of chromosomal distribution, structure and the presence of cis-elements in the promoter. We also predicted the cellular localization of the encoded proteins. An analysis of the synteny within the apple genome revealed that tandem, segmental, and whole-genome duplication events likely contributed to the expansion of the apple carotenoid oxygenase gene family. An additional integrated synteny analysis identified orthologous carotenoid oxygenase genes between apple and Arabidopsis thaliana, which served as references for the functional analysis of the apple CCO genes. The net photosynthetic rate, transpiration rate, and stomatal conductance of leaves decreased, while leaf stomatal density increased under drought and saline conditions. Tissue-specific gene expression analyses revealed diverse spatiotemporal expression patterns. Finally, hormone and abiotic stress treatments indicated that many apple CCO genes are responsive to various phytohormones as well as drought and salinity stresses. The genome-wide identification of apple CCO genes and the analyses of their expression patterns described herein may provide a solid foundation for future studies examining the regulation and functions of this gene family. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Trampush, J W; Yang, M L Z; Yu, J; Knowles, E; Davies, G; Liewald, D C; Starr, J M; Djurovic, S; Melle, I; Sundet, K; Christoforou, A; Reinvang, I; DeRosse, P; Lundervold, A J; Steen, V M; Espeseth, T; Räikkönen, K; Widen, E; Palotie, A; Eriksson, J G; Giegling, I; Konte, B; Roussos, P; Giakoumaki, S; Burdick, K E; Payton, A; Ollier, W; Horan, M; Chiba-Falek, O; Attix, D K; Need, A C; Cirulli, E T; Voineskos, A N; Stefanis, N C; Avramopoulos, D; Hatzimanolis, A; Arking, D E; Smyrnis, N; Bilder, R M; Freimer, N A; Cannon, T D; London, E; Poldrack, R A; Sabb, F W; Congdon, E; Conley, E D; Scult, M A; Dickinson, D; Straub, R E; Donohoe, G; Morris, D; Corvin, A; Gill, M; Hariri, A R; Weinberger, D R; Pendleton, N; Bitsios, P; Rujescu, D; Lahti, J; Le Hellard, S; Keller, M C; Andreassen, O A; Deary, I J; Glahn, D C; Malhotra, A K; Lencz, T
2017-03-01
The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10 -8 ). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness.
Trampush, J W; Yang, M L Z; Yu, J; Knowles, E; Davies, G; Liewald, D C; Starr, J M; Djurovic, S; Melle, I; Sundet, K; Christoforou, A; Reinvang, I; DeRosse, P; Lundervold, A J; Steen, V M; Espeseth, T; Räikkönen, K; Widen, E; Palotie, A; Eriksson, J G; Giegling, I; Konte, B; Roussos, P; Giakoumaki, S; Burdick, K E; Payton, A; Ollier, W; Horan, M; Chiba-Falek, O; Attix, D K; Need, A C; Cirulli, E T; Voineskos, A N; Stefanis, N C; Avramopoulos, D; Hatzimanolis, A; Arking, D E; Smyrnis, N; Bilder, R M; Freimer, N A; Cannon, T D; London, E; Poldrack, R A; Sabb, F W; Congdon, E; Conley, E D; Scult, M A; Dickinson, D; Straub, R E; Donohoe, G; Morris, D; Corvin, A; Gill, M; Hariri, A R; Weinberger, D R; Pendleton, N; Bitsios, P; Rujescu, D; Lahti, J; Le Hellard, S; Keller, M C; Andreassen, O A; Deary, I J; Glahn, D C; Malhotra, A K; Lencz, T
2017-01-01
The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10−8). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness. PMID:28093568
Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu
2015-12-01
Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Library Resources for Bac End Sequencing. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieter J. de Jong
2000-10-01
Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less
Welch, Andreanna J; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I; Schuster, Stephan C; Lindqvist, Charlotte
2016-06-01
These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.
Gudhka, Reema K; Neilan, Brett A; Burns, Brendan P
2015-01-01
Halococcus hamelinensis was the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome of H. hamelinensis consisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of the H. hamelinensis genome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome of H. hamelinensis also revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes of H. hamelinensis against various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.
A host plant genome ( Zizania latifolia ) after a century-long endophyte infection
Guo, Longbiao; Qiu, Jie; Han, Zujing; ...
2015-06-13
In spite of the importance of host–microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. Moreover, the vegetable crop ‘Jiaobai’ with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia–endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has amore » significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant–pathogen interaction pathway in Jiaobai. Finally, these results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.« less
DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.
Albalat, Ricard; Martí-Solans, Josep; Cañestro, Cristian
2012-03-01
In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genomes in vertebrates, most genomes in invertebrates are poorly or just moderately methylated, and the function of DNA methylation remains unclear. Here, we review the DNA methylation system in the cephalochordate amphioxus, which belongs to the most basally divergent group of our own phylum, the chordates. First, surveys of the amphioxus genome database reveal the presence of the DNA methylation machinery, DNA methyltransferases and methyl-CpG-binding domain proteins. Second, comparative genomics and analyses of conserved synteny between amphioxus and vertebrates provide robust evidence that the DNA methylation machinery of amphioxus represents the ancestral toolkit of chordates, and that its expansion in vertebrates was originated by the two rounds of whole-genome duplication that occurred in stem vertebrates. Third, in silico analysis of CpGo/e ratios throughout the amphioxus genome suggests a bimodal distribution of DNA methylation, consistent with a mosaic pattern comprising domains of methylated DNA interspersed with domains of unmethylated DNA, similar to the situation described in ascidians, but radically different to the globally methylated vertebrate genomes. Finally, we discuss potential roles of the DNA methylation system in amphioxus in the context of chordate genome evolution and the origin of vertebrates.
Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin
2017-01-01
The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.
Brownstein, Catherine A; Beggs, Alan H; Homer, Nils; Merriman, Barry; Yu, Timothy W; Flannery, Katherine C; DeChene, Elizabeth T; Towne, Meghan C; Savage, Sarah K; Price, Emily N; Holm, Ingrid A; Luquette, Lovelace J; Lyon, Elaine; Majzoub, Joseph; Neupert, Peter; McCallie, David; Szolovits, Peter; Willard, Huntington F; Mendelsohn, Nancy J; Temme, Renee; Finkel, Richard S; Yum, Sabrina W; Medne, Livija; Sunyaev, Shamil R; Adzhubey, Ivan; Cassa, Christopher A; de Bakker, Paul I W; Duzkale, Hatice; Dworzyński, Piotr; Fairbrother, William; Francioli, Laurent; Funke, Birgit H; Giovanni, Monica A; Handsaker, Robert E; Lage, Kasper; Lebo, Matthew S; Lek, Monkol; Leshchiner, Ignaty; MacArthur, Daniel G; McLaughlin, Heather M; Murray, Michael F; Pers, Tune H; Polak, Paz P; Raychaudhuri, Soumya; Rehm, Heidi L; Soemedi, Rachel; Stitziel, Nathan O; Vestecka, Sara; Supper, Jochen; Gugenmus, Claudia; Klocke, Bernward; Hahn, Alexander; Schubach, Max; Menzel, Mortiz; Biskup, Saskia; Freisinger, Peter; Deng, Mario; Braun, Martin; Perner, Sven; Smith, Richard J H; Andorf, Janeen L; Huang, Jian; Ryckman, Kelli; Sheffield, Val C; Stone, Edwin M; Bair, Thomas; Black-Ziegelbein, E Ann; Braun, Terry A; Darbro, Benjamin; DeLuca, Adam P; Kolbe, Diana L; Scheetz, Todd E; Shearer, Aiden E; Sompallae, Rama; Wang, Kai; Bassuk, Alexander G; Edens, Erik; Mathews, Katherine; Moore, Steven A; Shchelochkov, Oleg A; Trapane, Pamela; Bossler, Aaron; Campbell, Colleen A; Heusel, Jonathan W; Kwitek, Anne; Maga, Tara; Panzer, Karin; Wassink, Thomas; Van Daele, Douglas; Azaiez, Hela; Booth, Kevin; Meyer, Nic; Segal, Michael M; Williams, Marc S; Tromp, Gerard; White, Peter; Corsmeier, Donald; Fitzgerald-Butt, Sara; Herman, Gail; Lamb-Thrush, Devon; McBride, Kim L; Newsom, David; Pierson, Christopher R; Rakowsky, Alexander T; Maver, Aleš; Lovrečić, Luca; Palandačić, Anja; Peterlin, Borut; Torkamani, Ali; Wedell, Anna; Huss, Mikael; Alexeyenko, Andrey; Lindvall, Jessica M; Magnusson, Måns; Nilsson, Daniel; Stranneheim, Henrik; Taylan, Fulya; Gilissen, Christian; Hoischen, Alexander; van Bon, Bregje; Yntema, Helger; Nelen, Marcel; Zhang, Weidong; Sager, Jason; Zhang, Lu; Blair, Kathryn; Kural, Deniz; Cariaso, Michael; Lennon, Greg G; Javed, Asif; Agrawal, Saloni; Ng, Pauline C; Sandhu, Komal S; Krishna, Shuba; Veeramachaneni, Vamsi; Isakov, Ofer; Halperin, Eran; Friedman, Eitan; Shomron, Noam; Glusman, Gustavo; Roach, Jared C; Caballero, Juan; Cox, Hannah C; Mauldin, Denise; Ament, Seth A; Rowen, Lee; Richards, Daniel R; San Lucas, F Anthony; Gonzalez-Garay, Manuel L; Caskey, C Thomas; Bai, Yu; Huang, Ying; Fang, Fang; Zhang, Yan; Wang, Zhengyuan; Barrera, Jorge; Garcia-Lobo, Juan M; González-Lamuño, Domingo; Llorca, Javier; Rodriguez, Maria C; Varela, Ignacio; Reese, Martin G; De La Vega, Francisco M; Kiruluta, Edward; Cargill, Michele; Hart, Reece K; Sorenson, Jon M; Lyon, Gholson J; Stevenson, David A; Bray, Bruce E; Moore, Barry M; Eilbeck, Karen; Yandell, Mark; Zhao, Hongyu; Hou, Lin; Chen, Xiaowei; Yan, Xiting; Chen, Mengjie; Li, Cong; Yang, Can; Gunel, Murat; Li, Peining; Kong, Yong; Alexander, Austin C; Albertyn, Zayed I; Boycott, Kym M; Bulman, Dennis E; Gordon, Paul M K; Innes, A Micheil; Knoppers, Bartha M; Majewski, Jacek; Marshall, Christian R; Parboosingh, Jillian S; Sawyer, Sarah L; Samuels, Mark E; Schwartzentruber, Jeremy; Kohane, Isaac S; Margulies, David M
2014-03-25
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
2014-01-01
Background There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups. PMID:24667040
Widespread antisense transcription of Populus genome under drought.
Yuan, Yinan; Chen, Su
2018-06-06
Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.
Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F. Jerry; Glöckner, Frank O.; Crowley, Susan P.; O'Sullivan, Orla; Cotter, Paul D.; Adams, Claire; Dobson, Alan D. W.; O'Gara, Fergal
2016-01-01
Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny. PMID:27065959
diCenzo, George C; Finan, Turlough M
2018-01-01
The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.
Tennessen, Jacob A; Bollmann, Stephanie R; Blouin, Michael S
2017-07-05
The aquatic planorbid snail Biomphalaria glabrata is one of the most intensively-studied mollusks due to its role in the transmission of schistosomiasis. Its 916 Mb genome has recently been sequenced and annotated, but it remains poorly assembled. Here, we used targeted capture markers to map over 10,000 B. glabrata scaffolds in a linkage cross of 94 F1 offspring, generating 24 linkage groups (LGs). We added additional scaffolds to these LGs based on linkage disequilibrium (LD) analysis of targeted capture and whole-genome sequences of 96 unrelated snails. Our final linkage map consists of 18,613 scaffolds comprising 515 Mb, representing 56% of the genome and 75% of genic and nonrepetitive regions. There are 18 large (> 10 Mb) LGs, likely representing the expected 18 haploid chromosomes, and > 50% of the genome has been assigned to LGs of at least 17 Mb. Comparisons with other gastropod genomes reveal patterns of synteny and chromosomal rearrangements. Linkage relationships of key immune-relevant genes may help clarify snail-schistosome interactions. By focusing on linkage among genic and nonrepetitive regions, we have generated a useful resource for associating snail phenotypes with causal genes, even in the absence of a complete genome assembly. A similar approach could potentially improve numerous poorly-assembled genomes in other taxa. This map will facilitate future work on this host of a serious human parasite. Copyright © 2017 Tennessen et al.
Muñoz-Villagrán, Claudia Melissa; Mendez, Katterinne N; Cornejo, Fabian; Figueroa, Maximiliano; Undabarrena, Agustina; Morales, Eduardo Hugo; Arenas-Salinas, Mauricio; Arenas, Felipe Alejandro; Castro-Nallar, Eduardo; Vásquez, Claudio Christian
2018-01-01
The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.
Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun
2016-06-01
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Srinivasan, Vijaya Bharathi; Rajamohan, Govindan
2018-04-05
In this study, we present the genome sequence of Serratia marcescens SM03, recovered from a human gut in India. The final assembly consists of 26 scaffolds (4620 coding DNA sequences, 5.08 Mb, 59.6% G + C ratio) and 79 tRNA genes. Analysis identified novel genes associated with lactose utilization, virulence, P-loop GTPases involved in urease production, CFA/I fimbriae apparatus and Yersinia - type CRISPR proteins. Antibiotic susceptibility testing indicated drug tolerant phenotype and inhibition assays demonstrated involvement of extrusion in resistance. Presence of enzymes SRT-2, AAC(6')-Ic, with additional Ybh transporter and EamA-like efflux pumps signifies the genetic plasticity observed in S. marcescens SM03. Copyright © 2018 Elsevier Inc. All rights reserved.
Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.
Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A
2017-03-22
A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX
Szilard, Rachel K.; Jacques, Pierre-Étienne; Laramée, Louise; Cheng, Benjamin; Galicia, Sarah; Bataille, Alain R.; Yeung, ManTek; Mendez, Megan; Bergeron, Maxime; Robert, François; Durocher, Daniel
2011-01-01
Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication fork stalling results in histone H2A phosphorylation to yield γ-H2A (yeast γ-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)- dependent manner. Here, we describe the genome-wide location analysis of γ-H2A as a strategy to identify loci prone to engage the Mec1 and Tel1 pathways. Remarkably, γ-H2A enrichment overlaps with loci prone to replication fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for γ-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of γ-H2A at these loci. Finally, our work indicates that high resolution mapping of γ-H2AX is a fruitful route to map fragile sites in eukaryotic genomes. PMID:20139982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick; Lo, Chien-Chi; Li, Po-E
EDGE bioinformatics was developed to help biologists process Next Generation Sequencing data (in the form of raw FASTQ files), even if they have little to no bioinformatics expertise. EDGE is a highly integrated and interactive web-based platform that is capable of running many of the standard analyses that biologists require for viral, bacterial/archaeal, and metagenomic samples. EDGE provides the following analytical workflows: quality trimming and host removal, assembly and annotation, comparisons against known references, taxonomy classification of reads and contigs, whole genome SNP-based phylogenetic analysis, and PCR analysis. EDGE provides an intuitive web-based interface for user input, allows users tomore » visualize and interact with selected results (e.g. JBrowse genome browser), and generates a final detailed PDF report. Results in the form of tables, text files, graphic files, and PDFs can be downloaded. A user management system allows tracking of an individual’s EDGE runs, along with the ability to share, post publicly, delete, or archive their results.« less
Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M
2016-01-01
During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.
Fricova, Dominika; Valach, Matus; Farkas, Zoltan; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Nosek, Jozef
2010-01-01
As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast Candida subhashii and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5′ ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of C. subhashii contains essentially the same set of genes as other closely related pathogenic Candida species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element. PMID:20395267
Schrider, Daniel R.; Kern, Andrew D.
2015-01-01
The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. PMID:26590212
Approaches to integrating germline and tumor genomic data in cancer research
Feigelson, Heather Spencer; Goddard, Katrina A.B.; Hollombe, Celine; Tingle, Sharna R.; Gillanders, Elizabeth M.; Mechanic, Leah E.; Nelson, Stefanie A.
2014-01-01
Cancer is characterized by a diversity of genetic and epigenetic alterations occurring in both the germline and somatic (tumor) genomes. Hundreds of germline variants associated with cancer risk have been identified, and large amounts of data identifying mutations in the tumor genome that participate in tumorigenesis have been generated. Increasingly, these two genomes are being explored jointly to better understand how cancer risk alleles contribute to carcinogenesis and whether they influence development of specific tumor types or mutation profiles. To understand how data from germline risk studies and tumor genome profiling is being integrated, we reviewed 160 articles describing research that incorporated data from both genomes, published between January 2009 and December 2012, and summarized the current state of the field. We identified three principle types of research questions being addressed using these data: (i) use of tumor data to determine the putative function of germline risk variants; (ii) identification and analysis of relationships between host genetic background and particular tumor mutations or types; and (iii) use of tumor molecular profiling data to reduce genetic heterogeneity or refine phenotypes for germline association studies. We also found descriptive studies that compared germline and tumor genomic variation in a gene or gene family, and papers describing research methods, data sources, or analytical tools. We identified a large set of tools and data resources that can be used to analyze and integrate data from both genomes. Finally, we discuss opportunities and challenges for cancer research that integrates germline and tumor genomics data. PMID:25115441
Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H
2011-10-04
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Takahashi; Nakazawa; Watanabe; Konagaya
1999-01-01
We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.
Whole genome DNA methylation: beyond genes silencing.
Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati
2017-01-17
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
Whole genome DNA methylation: beyond genes silencing
Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati
2017-01-01
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology. PMID:27895318
Haendiges, Julie; Jones, Jessica; Myers, Robert A.; Mitchell, Clifford S.; Butler, Erin
2016-01-01
ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. PMID:26994080
Haendiges, Julie; Jones, Jessica; Myers, Robert A; Mitchell, Clifford S; Butler, Erin; Toro, Magaly; Gonzalez-Escalona, Narjol
2016-06-01
In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Design of a Genomics Curriculum: Competencies for Practicing Pathologists.
Laudadio, Jennifer; McNeal, Jeffrey L; Boyd, Scott D; Le, Long Phi; Lockwood, Christina; McCloskey, Cindy B; Sharma, Gaurav; Voelkerding, Karl V; Haspel, Richard L
2015-07-01
The field of genomics is rapidly impacting medical care across specialties. To help guide test utilization and interpretation, pathologists must be knowledgeable about genomic techniques and their clinical utility. The technology allowing timely generation of genomic data is relatively new to patient care and the clinical laboratory, and therefore, many currently practicing pathologists have been trained without any molecular or genomics exposure. Furthermore, the exposure that current and recent trainees receive in this field remains inconsistent. To assess pathologists' learning needs in genomics and to develop a curriculum to address these educational needs. A working group formed by the College of American Pathologists developed an initial list of genomics competencies (knowledge and skills statements) that a practicing pathologist needs to be successful. Experts in genomics were then surveyed to rate the importance of each competency. These data were used to create a final list of prioritized competencies. A subset of the working group defined subtopics and tasks for each competency. Appropriate delivery methods for the educational material were also proposed. A final list of 32 genomics competency statements was developed. A prioritized curriculum was created with designated subtopics and tasks associated with each competency. We present a genomics curriculum designed as a first step toward providing practicing pathologists with the competencies needed to practice successfully.
Unique transposon landscapes are pervasive across Drosophila melanogaster genomes
Rahman, Reazur; Chirn, Gung-wei; Kanodia, Abhay; Sytnikova, Yuliya A.; Brembs, Björn; Bergman, Casey M.; Lau, Nelson C.
2015-01-01
To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains. PMID:26578579
2009-01-01
Background ESTs or variable sequence reads can be available in prokaryotic studies well before a complete genome is known. Use cases include (i) transcriptome studies or (ii) single cell sequencing of bacteria. Without suitable software their further analysis and mapping would have to await finalization of the corresponding genome. Results The tool JANE rapidly maps ESTs or variable sequence reads in prokaryotic sequencing and transcriptome efforts to related template genomes. It provides an easy-to-use graphics interface for information retrieval and a toolkit for EST or nucleotide sequence function prediction. Furthermore, we developed for rapid mapping an enhanced sequence alignment algorithm which reassembles and evaluates high scoring pairs provided from the BLAST algorithm. Rapid assembly on and replacement of the template genome by sequence reads or mapped ESTs is achieved. This is illustrated (i) by data from Staphylococci as well as from a Blattabacteria sequencing effort, (ii) mapping single cell sequencing reads is shown for poribacteria to sister phylum representative Rhodopirellula Baltica SH1. The algorithm has been implemented in a web-server accessible at http://jane.bioapps.biozentrum.uni-wuerzburg.de. Conclusion Rapid prokaryotic EST mapping or mapping of sequence reads is achieved applying JANE even without knowing the cognate genome sequence. PMID:19943962
Identification of cis-suppression of human disease mutations by comparative genomics.
Jordan, Daniel M; Frangakis, Stephan G; Golzio, Christelle; Cassa, Christopher A; Kurtzberg, Joanne; Davis, Erica E; Sunyaev, Shamil R; Katsanis, Nicholas
2015-08-13
Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity.
Reticulate classification of mosaic microbial genomes using NeAT website.
Lima-Mendez, Gipsi
2012-01-01
The tree of life is the classical representation of the evolutionary relationships between existent species. A tree is appropriate to display the divergence of species through mutation, i.e., by vertical descent. However, lateral gene transfer (LGT) is excluded from such representations. When LGT contribution to genome evolution cannot be neglected (e.g., for prokaryotes and mobile genetic elements), the tree becomes misleading. Networks appear as an intuitive way to represent both vertical and horizontal relationships, while overlapping groups within such graphs are more suitable for their classification. Here, we describe a method to represent both vertical and horizontal relationships. We start with a set of genomes whose coded proteins have been grouped into families based on sequence similarity. Next, all pairs of genomes are compared, counting the number of proteins classified into the same family. From this comparison, we derive a weighted graph where genomes with a significant number of similar proteins are linked. Finally, we apply a two-step clustering of this graph to produce a classification where nodes can be assigned to multiple clusters. The procedure can be performed using the Network Analysis Tools (NeAT) website.
Li, Leilei; Illeghems, Koen; Van Kerrebroeck, Simon; Borremans, Wim; Cleenwerck, Ilse; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter
2016-01-01
The whole-genome sequence of Bombella intestini LMG 28161T, an endosymbiotic acetic acid bacterium (AAB) occurring in bumble bees, was determined to investigate the molecular mechanisms underlying its metabolic capabilities. The draft genome sequence of B. intestini LMG 28161T was 2.02 Mb. Metabolic carbohydrate pathways were in agreement with the metabolite analyses of fermentation experiments and revealed its oxidative capacity towards sucrose, D-glucose, D-fructose and D-mannitol, but not ethanol and glycerol. The results of the fermentation experiments also demonstrated that the lack of effective aeration in small-scale carbohydrate consumption experiments may be responsible for the lack of reproducibility of such results in taxonomic studies of AAB. Finally, compared to the genome sequences of its nearest phylogenetic neighbor and of three other insect associated AAB strains, the B. intestini LMG 28161T genome lost 69 orthologs and included 89 unique genes. Although many of the latter were hypothetical they also included several type IV secretion system proteins, amino acid transporter/permeases and membrane proteins which might play a role in the interaction with the bumble bee host.
Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.
Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei
2015-01-01
Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.
Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning
Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei
2015-01-01
Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455
Ndah, Elvis; Jonckheere, Veronique
2017-01-01
Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. PMID:28432195
Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra
2017-06-01
Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
The origin and evolution of Basigin(BSG) gene: A comparative genomic and phylogenetic analysis.
Zhu, Xinyan; Wang, Shenglan; Shao, Mingjie; Yan, Jie; Liu, Fei
2017-07-01
Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), plays various fundamental roles in the intercellular recognition involved in immunologic phenomena, differentiation, and development. In this study, we aimed to compare the similarities and differences of BSG among organisms and explore possible evolutionary relationships based on the comparison result. We used the extensive BLAST tool to search the metazoan genomes, N-glycosylation sites, the transmembrane region and other functional sites. We then identified BSG homologs from genomic sequences and analyzed their phylogenetic relationships. We identified that BSG genes exist not only in the vertebrate metazoans but also in the invertebrate metazoans such as Amphioxus B. floridae, D. melanogaster, A. mellifera, S. japonicum, C. gigas, and T. patagoniensis. After sequence analysis, we confirmed that only vertebrate metazoans and Cephalochordate (amphioxus B. floridae) have the classic structure (a signal peptide, two Ig-like domains (IgC2 and IgI), a transmembrane region, and an intracellular domain). The invertebrate metazoans (excluding amphioxus B. floridae) lack the N-terminal signal peptides and IgC2 domain. We then generated a phylogenetic tree, genome organization comparison, and chromosomal disposition analysis based on the biological information obtained from the NCBI and Ensembl databases. Finally, we established the possible evolutionary scenario of the BSG gene, which showed the restricted exon rearrangement that has occurred during evolution, forming the present-day BSG gene. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tajaddod, Mansoureh; Tanzer, Andrea; Licht, Konstantin; Wolfinger, Michael T; Badelt, Stefan; Huber, Florian; Pusch, Oliver; Schopoff, Sandy; Janisiw, Michael; Hofacker, Ivo; Jantsch, Michael F
2016-10-25
Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.
Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe
2014-10-01
So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.
CNV-WebStore: online CNV analysis, storage and interpretation.
Vandeweyer, Geert; Reyniers, Edwin; Wuyts, Wim; Rooms, Liesbeth; Kooy, R Frank
2011-01-05
Microarray technology allows the analysis of genomic aberrations at an ever increasing resolution, making functional interpretation of these vast amounts of data the main bottleneck in routine implementation of high resolution array platforms, and emphasising the need for a centralised and easy to use CNV data management and interpretation system. We present CNV-WebStore, an online platform to streamline the processing and downstream interpretation of microarray data in a clinical context, tailored towards but not limited to the Illumina BeadArray platform. Provided analysis tools include CNV analsyis, parent of origin and uniparental disomy detection. Interpretation tools include data visualisation, gene prioritisation, automated PubMed searching, linking data to several genome browsers and annotation of CNVs based on several public databases. Finally a module is provided for uniform reporting of results. CNV-WebStore is able to present copy number data in an intuitive way to both lab technicians and clinicians, making it a useful tool in daily clinical practice.
Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y
2017-09-22
A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.
Lee, Chang Hun; Wang, Hong En; Seo, Seung Young; Kim, Seong Hun; Kim, In Hee; Kim, Sang Wook; Lee, Soo Teik; Kim, Dae Ghon; Han, Myung Kwan; Lee, Seung Ok
2016-08-01
Genome-wide association study in diffusely infiltrating type cholangiocarcinoma (CC) can be limited due to the difficulty of obtaining tumor tissue. We aimed to evaluate the genomic alterations of diffusely infiltrating type CC using next-generation sequencing (NGS) of bile and to compare the variations with those of mass-forming type CC. A total of 24 bile samples obtained during endoscopic retrograde cholangiopancreatography (ERCP) and 17 surgically obtained tumor tissue samples were evaluated. Buffy coat and normal tissue samples were used as controls for a somatic mutation analysis. After extraction of genomic DNA, NGS analysis was performed for 48 cancer related genes. There were 27 men and 14 women with a mean age of 65.0±11.8years. The amount of extracted genomic DNA from 3cm(3) of bile was 66.0±84.7μg and revealed a high depth of sequencing coverage. All of the patients had genomic variations, with an average number of 19.4±2.8 and 22.3±3.3 alterations per patient from the bile and tumor tissue, respectively. After filtering process, damaging SNPs (8 sites for each type of CC) were predicted by analyzing tools, and their target genes showed relevant differences between the diffusely infiltrating and mass-forming type CC. Finally, in somatic mutation analysis, tumor-normal paired 14 tissue and 6 bile samples were analyzed, genomic alterations of EGFR, FGFR1, ABL1, PIK3CA, and CDKN2A gene were seen in the diffusely infiltrating type CC, and TP53, KRAS, APC, GNA11, ERBB4, ATM, SMAD4, BRAF, and IDH1 were altered in the mass-forming type CC group. STK11, GNAQ, RB1, KDR, and SMO genes were revealed in both groups. The NGS analysis was feasible with bile sample and diffusely infiltrating type CC revealed genetic differences compared with mass-forming type CC. Genome-wide association study could be performed using bile sample in the patients with CC undergoing ERCP and a different genetic approach for accurate diagnosis, pathogenesis study, and targeted therapy will be needed in diffusely infiltrating type CC. Copyright © 2016 Elsevier Inc. All rights reserved.
Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.
Rivero-Hinojosa, Samuel; Lau, Ling San; Stampar, Mojca; Staal, Jerome; Zhang, Huizhen; Gordish-Dressman, Heather; Northcott, Paul A; Pfister, Stefan M; Taylor, Michael D; Brown, Kristy J; Rood, Brian R
2018-06-07
Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.
Draft genome of the protandrous Chinese black porgy, Acanthopagrus schlegelii.
Zhang, Zhiyong; Zhang, Kai; Chen, Shuyin; Zhang, Zhiwei; Zhang, Jinyong; You, Xinxin; Bian, Chao; Xu, Jin; Jia, Chaofeng; Qiang, Jun; Zhu, Fei; Li, Hongxia; Liu, Hailin; Shen, Dehua; Ren, Zhonghong; Chen, Jieming; Li, Jia; Gao, Tianheng; Gu, Ruobo; Xu, Junmin; Shi, Qiong; Xu, Pao
2018-04-01
As one of the most popular and valuable commercial marine fishes in China and East Asian countries, the Chinese black porgy (Acanthopagrus schlegelii), also known as the blackhead seabream, has some attractive characteristics such as fast growth rate, good meat quality, resistance to diseases, and excellent adaptability to various environments. Furthermore, the black porgy is a good model for investigating sex changes in fish due to its protandrous hermaphroditism. Here, we obtained a high-quality genome assembly of this interesting teleost species and performed a genomic survey on potential genes associated with the sex-change phenomenon. We generated 175.4 gigabases (Gb) of clean sequence reads using a whole-genome shotgun sequencing strategy. The final genome assembly is approximately 688.1 megabases (Mb), accounting for 93% of the estimated genome size (739.6 Mb). The achieved scaffold N50 is 7.6 Mb, reaching a relatively high level among sequenced fish species. We identified 19 465 protein-coding genes, which had an average transcript length of 17.3 kb. By performing a comparative genomic analysis, we found 3 types of genes potentially associated with sex change, which are useful for studying the genetic basis of the protandrous hermaphroditism. We provide a draft genome assembly of the Chinese black porgy and discuss the potential genetic mechanisms of sex change. These data are also an important resource for studying the biology and for facilitating breeding of this economically important fish.
Sparse models for correlative and integrative analysis of imaging and genetic data
Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.
2014-01-01
The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561
A comparative analysis of soft computing techniques for gene prediction.
Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand
2013-07-01
The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.
Flanking genes of an essential gene give information about the evolution of metazoa.
Zimek, Alexander; Weber, Klaus
2011-04-01
We collected as much information as possible on new lamin genes and their flanking genes. The number of lamin genes varies from 1 to 4 depending more or less on the phylogenetic position of the species. Strong genome drift is recognised by fewer and unusually placed introns and a change in flanking genes. This applies to the nematode Caenorhabditis elegans, the insect Drosophila melanogaster, the urochordate Ciona intestinalis, the annelid Capitella teleta and the planaria Schmidtea mediterranea. In contrast stable genomes show astonishing conservation of the flanking genes. These are identical in the sea anemone Nematostella vectensis and the cephalochordate Branchiostoma floridae lamin B1 gene. Even in the lamin B1 genes from Xenopus tropicalis and man one of the flanking genes is conserved. Finally our analysis forms the basis for a molecular analysis of metazoan phylogeny. Copyright © 2010 Elsevier GmbH. All rights reserved.
Hay, Elizabeth A; Cowie, Philip; MacKenzie, Alasdair
2017-01-01
There can now be little doubt that the cis-regulatory genome represents the largest information source within the human genome essential for health. In addition to containing up to five times more information than the coding genome, the cis-regulatory genome also acts as a major reservoir of disease-associated polymorphic variation. The cis-regulatory genome, which is comprised of enhancers, silencers, promoters, and insulators, also acts as a major functional target for epigenetic modification including DNA methylation and chromatin modifications. These epigenetic modifications impact the ability of cis-regulatory sequences to maintain tissue-specific and inducible expression of genes that preserve health. There has been limited ability to identify and characterize the functional components of this huge and largely misunderstood part of the human genome that, for decades, was ignored as "Junk" DNA. In an attempt to address this deficit, the current chapter will first describe methods of identifying and characterizing functional elements of the cis-regulatory genome at a genome-wide level using databases such as ENCODE, the UCSC browser, and NCBI. We will then explore the databases on the UCSC genome browser, which provides access to DNA methylation and chromatin modification datasets. Finally, we will describe how we can superimpose the huge volume of study data contained in the NCBI archives onto that contained within the UCSC browser in order to glean relevant in vivo study data for any locus within the genome. An ability to access and utilize these information sources will become essential to informing the future design of experiments and subsequent determination of the role of epigenetics in health and disease and will form a critical step in our development of personalized medicine.
A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.
Moraes, Fernanda; Góes, Andréa
2016-05-06
The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun
2015-01-01
Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057
HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.
2017-10-01
PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.
2013-01-01
Background Brachiaria ruziziensis is one of the most important forage species planted in the tropics. The application of genomic tools to aid the selection of superior genotypes can provide support to B. ruziziensis breeding programs. However, there is a complete lack of information about the B. ruziziensis genome. Also, the availability of genomic tools, such as molecular markers, to support B. ruziziensis breeding programs is rather limited. Recently, next-generation sequencing technologies have been applied to generate sequence data for the identification of microsatellite regions and primer design. In this study, we present a first validated set of SSR markers for Brachiaria ruziziensis, selected from a de novo partial genome assembly of single-end Illumina reads. Results A total of 85,567 perfect microsatellite loci were detected in contigs with a minimum 10X coverage. We selected a set of 500 microsatellite loci identified in contigs with minimum 100X coverage for primer design and synthesis, and tested a subset of 269 primer pairs, 198 of which were polymorphic on 11 representative B. ruziziensis accessions. Descriptive statistics for these primer pairs are presented, as well as estimates of marker transferability to other relevant brachiaria species. Finally, a set of 11 multiplex panels containing the 30 most informative markers was validated and proposed for B. ruziziensis genetic analysis. Conclusions We show that the detection and development of microsatellite markers from genome assembled Illumina single-end DNA sequences is highly efficient. The developed markers are readily suitable for genetic analysis and marker assisted selection of Brachiaria ruziziensis. The use of this approach for microsatellite marker development is promising for species with limited genomic information, whose breeding programs would benefit from the use of genomic tools. To our knowledge, this is the first set of microsatellite markers developed for this important species. PMID:23324172
Orthogonal control of expression mean and variance by epigenetic features at different genomic loci
Dey, Siddharth S.; Foley, Jonathan E.; Limsirichai, Prajit; ...
2015-05-05
While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH andmore » protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise.« less
Cloud-based adaptive exon prediction for DNA analysis.
Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen
2018-02-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.
Transposases are the most abundant, most ubiquitous genes in nature.
Aziz, Ramy K; Breitbart, Mya; Edwards, Robert A
2010-07-01
Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and--consequently--evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist.
Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykidis, Athanasios
2006-12-01
Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymesmore » and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.« less
Perelman, Polina L; Pichler, Rudolf; Gaggl, Anna; Larkin, Denis M; Raudsepp, Terje; Alshanbari, Fahad; Holl, Heather M; Brooks, Samantha A; Burger, Pamela A; Periasamy, Kathiravan
2018-01-31
The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000 RAD and 15000 RAD ) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000 RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000 RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000 RAD panel is an important high-resolution complement to the main 5000 RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.
MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation.
Lugli, Gabriele Andrea; Milani, Christian; Mancabelli, Leonardo; van Sinderen, Douwe; Ventura, Marco
2016-04-01
Genome annotation is one of the key actions that must be undertaken in order to decipher the genetic blueprint of organisms. Thus, a correct and reliable annotation is essential in rendering genomic data valuable. Here, we describe a bioinformatics pipeline based on freely available software programs coordinated by a multithreaded script named MEGAnnotator (Multithreaded Enhanced prokaryotic Genome Annotator). This pipeline allows the generation of multiple annotated formats fulfilling the NCBI guidelines for assembled microbial genome submission, based on DNA shotgun sequencing reads, and minimizes manual intervention, while also reducing waiting times between software program executions and improving final quality of both assembly and annotation outputs. MEGAnnotator provides an efficient way to pre-arrange the assembly and annotation work required to process NGS genome sequence data. The script improves the final quality of microbial genome annotation by reducing ambiguous annotations. Moreover, the MEGAnnotator platform allows the user to perform a partial annotation of pre-assembled genomes and includes an option to accomplish metagenomic data set assemblies. MEGAnnotator platform will be useful for microbiologists interested in genome analyses of bacteria as well as those investigating the complexity of microbial communities that do not possess the necessary skills to prepare their own bioinformatics pipeline. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
De Novo Genome and Transcriptome Assembly of the Canadian Beaver (Castor canadensis).
Lok, Si; Paton, Tara A; Wang, Zhuozhi; Kaur, Gaganjot; Walker, Susan; Yuen, Ryan K C; Sung, Wilson W L; Whitney, Joseph; Buchanan, Janet A; Trost, Brett; Singh, Naina; Apresto, Beverly; Chen, Nan; Coole, Matthew; Dawson, Travis J; Ho, Karen; Hu, Zhizhou; Pullenayegum, Sanjeev; Samler, Kozue; Shipstone, Arun; Tsoi, Fiona; Wang, Ting; Pereira, Sergio L; Rostami, Pirooz; Ryan, Carol Ann; Tong, Amy Hin Yan; Ng, Karen; Sundaravadanam, Yogi; Simpson, Jared T; Lim, Burton K; Engstrom, Mark D; Dutton, Christopher J; Kerr, Kevin C R; Franke, Maria; Rapley, William; Wintle, Richard F; Scherer, Stephen W
2017-02-09
The Canadian beaver ( Castor canadensis ) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology. Copyright © 2017 Lok et al.
De Novo Genome and Transcriptome Assembly of the Canadian Beaver (Castor canadensis)
Lok, Si; Paton, Tara A.; Wang, Zhuozhi; Kaur, Gaganjot; Walker, Susan; Yuen, Ryan K. C.; Sung, Wilson W. L.; Whitney, Joseph; Buchanan, Janet A.; Trost, Brett; Singh, Naina; Apresto, Beverly; Chen, Nan; Coole, Matthew; Dawson, Travis J.; Ho, Karen; Hu, Zhizhou; Pullenayegum, Sanjeev; Samler, Kozue; Shipstone, Arun; Tsoi, Fiona; Wang, Ting; Pereira, Sergio L.; Rostami, Pirooz; Ryan, Carol Ann; Tong, Amy Hin Yan; Ng, Karen; Sundaravadanam, Yogi; Simpson, Jared T.; Lim, Burton K.; Engstrom, Mark D.; Dutton, Christopher J.; Kerr, Kevin C. R.; Franke, Maria; Rapley, William; Wintle, Richard F.; Scherer, Stephen W.
2017-01-01
The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology. PMID:28087693
Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N
2016-02-09
In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work, we have consolidated and curated known sRNA genes from the literature and mapped them to their position on the S. aureus genome, creating new genome annotation files. These files can now be used by the scientific community at large in experiments to search for previously undiscovered sRNA genes and to monitor sRNA gene expression by transcriptome sequencing (RNA-seq). We demonstrate this application, identifying 39 new sRNAs and studying their expression during S. aureus growth in human serum. Copyright © 2016 Carroll et al.
Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard
2013-01-01
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660
Clustering analysis of proteins from microbial genomes at multiple levels of resolution.
Zaslavsky, Leonid; Ciufo, Stacy; Fedorov, Boris; Tatusova, Tatiana
2016-08-31
Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy. Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering. The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters. The developed filtering strategies allow to identify and exclude such peripheral proteins limiting the protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of details to be obtained and data redundancy eliminated while keeping biologically interesting variations.
2014-01-01
Background Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. Results We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. Conclusions Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains. PMID:24450656
Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes.
Zheng, Chunfang; Zhu, Qian; Adam, Zaky; Sankoff, David
2008-07-01
Some present day species have incurred a whole genome doubling event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to 'halve' the genome, i.e. to reconstruct the ancestral genome at the moment of doubling, but the solution is often highly nonunique. To resolve this problem, we take account of outgroups, external reference genomes, to guide and narrow down the search. We improve on a previous, computationally costly, 'brute force' method by adapting the genome halving algorithm of El-Mabrouk and Sankoff so that it rapidly and accurately constructs an ancestor close the outgroups, prior to a local optimization heuristic. We apply this to reconstruct the predoubling ancestor of Saccharomyces cerevisiae and Candida glabrata, guided by the genomes of three other yeasts that diverged before the genome doubling event. We analyze the results in terms (1) of the minimum evolution criterion, (2) how close the genome halving result is to the final (local) minimum and (3) how close the final result is to an ancestor manually constructed by an expert with access to additional information. We also visualize the set of reconstructed ancestors using classic multidimensional scaling to see what aspects of the two doubled and three unduplicated genomes influence the differences among the reconstructions. The experimental software is available on request.
Zufferey, Flore; Martinet, Danielle; Osterheld, Maria-Chiara; Niel-Bütschi, Florence; Giannoni, Eric; Schmutz, Nathalie Besuchet; Xia, Zhilian; Beckmann, Jacques S; Shaw-Smith, Charles; Stankiewicz, Pawel; Langston, Claire; Fellmann, Florence
2011-11-01
Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. Descriptive case report. Genetic department and neonatal intensive care unit of a tertiary care children's hospital. None. We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.
Draft genome of the lined seahorse, Hippocampus erectus.
Lin, Qiang; Qiu, Ying; Gu, Ruobo; Xu, Meng; Li, Jia; Bian, Chao; Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Luo, Wei; Chen, Jieming; You, Xinxin; Fan, Mingjun; Sun, Min; Xu, Pao; Venkatesh, Byrappa; Xu, Junming; Fu, Hongtuo; Shi, Qiong
2017-06-01
The lined seahorse, Hippocampus erectus , is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse ( H. comes ). We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior. © The Authors 2017. Published by Oxford University Press.
Draft genome of the lined seahorse, Hippocampus erectus
Lin, Qiang; Qiu, Ying; Gu, Ruobo; Xu, Meng; Li, Jia; Bian, Chao; Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Luo, Wei; Chen, Jieming; You, Xinxin; Fan, Mingjun; Sun, Min; Xu, Pao; Venkatesh, Byrappa
2017-01-01
Abstract Background: The lined seahorse, Hippocampus erectus, is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. Findings: A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse (H. comes). Conclusion: We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior. PMID:28444302
Genome Writing: Current Progress and Related Applications.
Wang, Yueqiang; Shen, Yue; Gu, Ying; Zhu, Shida; Yin, Ye
2018-02-01
The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Copyright © 2018. Production and hosting by Elsevier B.V.
Toro, León; Pinilla, Laura; Avignone-Rossa, Claudio; Ríos-Estepa, Rigoberto
2018-05-01
In this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis. Flux balance analysis (FBA) showed that limiting concentrations of phosphate and an excess of ammonia accumulation are unfavorable for growth and clavulanic acid biosynthesis. The evaluation of different objective functions for FBA showed that maximization of ATP yields the best predictions for cellular behavior in continuous cultures, while the maximization of growth rate provides better predictions for batch cultures. Through gene essentiality analysis, 130 essential genes were found using a limited in silico media, while 100 essential genes were identified in amino acid-supplemented media. Finally, a strain design was carried out to identify candidate genes to be overexpressed or knocked out so as to maximize antibiotic biosynthesis. Interestingly, potential metabolic engineering targets, identified in this study, have not been tested experimentally.
Regulators of gene expression as biomarkers for prostate cancer
Willard, Stacey S; Koochekpour, Shahriar
2012-01-01
Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa. PMID:23226612
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
CellLineNavigator: a workbench for cancer cell line analysis
Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas
2013-01-01
The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487
Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach
Ponce-de-Leon, Miguel; Calle-Espinosa, Jorge; Peretó, Juli; Montero, Francisco
2015-01-01
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information. PMID:26629901
Dichgans, Martin; Malik, Rainer; König, Inke R.; Rosand, Jonathan; Clarke, Robert; Gretarsdottir, Solveig; Thorleifsson, Gudmar; Mitchell, Braxton D.; Assimes, Themistocles L.; Levi, Christopher; O′Donnell, Christopher J.; Fornage, Myriam; Thorsteinsdottir, Unnur; Psaty, Bruce M.; Hengstenberg, Christian; Seshadri, Sudha; Erdmann, Jeanette; Bis, Joshua C.; Peters, Annette; Boncoraglio, Giorgio B.; März, Winfried; Meschia, James F.; Kathiresan, Sekar; Ikram, M. Arfan; McPherson, Ruth; Stefansson, Kari; Sudlow, Cathie; Reilly, Muredach P.; Thompson, John R.; Sharma, Pankaj; Hopewell, Jemma C.; Chambers, John C.; Watkins, Hugh; Rothwell, Peter M.; Roberts, Robert; Markus, Hugh S.; Samani, Nilesh J.; Farrall, Martin; Schunkert, Heribert
2014-01-01
Summary Background and Purpose Ischemic stroke (IS) and coronary artery disease (CAD) share several risk factors and each have a substantial heritability. We conducted a genome-wide analysis to evaluate the extent of shared genetic determination of the two diseases. Methods Genome-wide association data were obtained from the METASTROKE, CARDIoGRAM, and C4D consortia. We first analyzed common variants reaching a nominal threshold of significance (p<0.01) for CAD for their association with IS and vice versa. We then examined specific overlap across phenotypes for variants that reached a high threshold of significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or CAD. Corresponding analyses were performed restricted to the 2,167 individuals with the ischemic large artery stroke (LAS) subtype. Results Common variants associated with CAD at p<0.01 were associated with a significant excess risk for IS and for LAS and vice versa. Among the 42 known genome-wide significant loci for CAD, three and five loci were significantly associated with IS and LAS, respectively. In the joint meta-analyses, 15 loci passed genome-wide significance (p<5×10-8) for the combined phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Since these loci had prior evidence for genome-wide significance for CAD we specifically analyzed the respective signals for IS and LAS and found evidence for association at chr12q24/SH2B3 (pIS=1.62×10-07) and ABO (pIS =2.6×10-4) as well as at HDAC9 (pLAS=2.32×10-12), 9p21 (pLAS =3.70×10-6), RAI1-PEMT-RASD1 (pLAS =2.69×10-5), EDNRA (pLAS =7.29×10-4), and CYP17A1-CNNM2-NT5C2 (pLAS =4.9×10-4). Conclusions Our results demonstrate substantial overlap in the genetic risk of ischemic stroke and particularly the large artery stroke subtype with coronary artery disease. PMID:24262325
Identification of cis-suppression of human disease mutations by comparative genomics
Jordan, Daniel M.; Frangakis, Stephan G.; Golzio, Christelle; Cassa, Christopher A.; Kurtzberg, Joanne; Davis, Erica E.; Sunyaev, Shamil R.; Katsanis, Nicholas
2015-01-01
Patterns of amino acid conservation have served as a tool for understanding protein evolution1. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients2. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes3,4 revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity5,6. PMID:26123021
Genome-wide alterations of the DNA replication program during tumor progression
NASA Astrophysics Data System (ADS)
Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.
2016-08-01
Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.
Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q.
Xie, Wen; Chen, Chunhai; Yang, Zezhong; Guo, Litao; Yang, Xin; Wang, Dan; Chen, Ming; Huang, Jinqun; Wen, Yanan; Zeng, Yang; Liu, Yating; Xia, Jixing; Tian, Lixia; Cui, Hongying; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Li, Xianchun; Tan, Xinqiu; Ghanim, Murad; Qiu, Baoli; Pan, Huipeng; Chu, Dong; Delatte, Helene; Maruthi, M N; Ge, Feng; Zhou, Xueping; Wang, Xiaowei; Wan, Fanghao; Du, Yuzhou; Luo, Chen; Yan, Fengming; Preisser, Evan L; Jiao, Xiaoguo; Coates, Brad S; Zhao, Jinyang; Gao, Qiang; Xia, Jinquan; Yin, Ye; Liu, Yong; Brown, Judith K; Zhou, Xuguo Joe; Zhang, Youjun
2017-05-01
The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future 'pan-genomic' comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management. © The Author 2017. Published by Oxford University Press.
De León, Kara B.; Utturkar, Sagar M.; Camilleri, Laura B.; ...
2015-09-24
The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Finally, nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.
Espinoza, Marlen B; Aedo, Jorge E; Zuloaga, Rodrigo; Valenzuela, Cristian; Molina, Alfredo; Valdés, Juan A
2017-04-01
Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Franco, Mario Emilio Ernesto; López, Silvina Marianela Yanil; Medina, Rocio; Lucentini, César Gustavo; Troncozo, Maria Inés; Pastorino, Graciela Noemí; Saparrat, Mario Carlos Nazareno; Balatti, Pedro Alberto
2017-01-01
Stemphylium lycopersici (Pleosporales) is a plant-pathogenic fungus that has been associated with a broad range of plant-hosts worldwide. It is one of the causative agents of gray leaf spot disease in tomato and pepper. The aim of this work was to characterize the mitochondrial genome of S. lycopersici CIDEFI-216, to use it to trace taxonomic relationships with other fungal taxa and to get insights into the evolutionary history of this phytopathogen. The complete mitochondrial genome was assembled into a circular double-stranded DNA molecule of 75,911 bp that harbors a set of 37 protein-coding genes, 2 rRNA genes (rns and rnl) and 28 tRNA genes, which are transcribed from both sense and antisense strands. Remarkably, its gene repertoire lacks both atp8 and atp9, contains a free-standing gene for the ribosomal protein S3 (rps3) and includes 13 genes with homing endonuclease domains that are mostly located within its 15 group I introns. Strikingly, subunits 1 and 2 of cytochrome oxidase are encoded by a single continuous open reading frame (ORF). A comparative mitogenomic analysis revealed the large extent of structural rearrangements among representatives of Pleosporales, showing the plasticity of their mitochondrial genomes. Finally, an exhaustive phylogenetic analysis of the subphylum Pezizomycotina based on mitochondrial data reconstructed their relationships in concordance with several studies based on nuclear data. This is the first report of a mitochondrial genome belonging to a representative of the family Pleosporaceae.
2012-01-01
Background Interspecific hybrids between S. cerevisiae × S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae × S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. Results Comparative genomic hybridization (CGH) and ploidy analyses carried out in this study confirmed the presence of individual and differential chromosomal composition patterns for most S. cerevisiae × S. kudriavzevii hybrids from beer and wine. All hybrids share a common set of depleted S. cerevisiae genes, which also are depleted or absent in the wine strains studied so far, and the presence a common set of S. kudriavzevii genes, which may be associated with their capability to grow at low temperatures. Finally, a maximum parsimony analysis of chromosomal rearrangement events, occurred in the hybrid genomes, indicated the presence of two main groups of wine hybrids and different divergent lineages of brewing strains. Conclusion Our data suggest that wine and beer S. cerevisiae × S. kudriavzevii hybrids have been originated by different rare-mating events involving a diploid wine S. cerevisiae and a haploid or diploid European S. kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes involved in cold adaptation as well as those related to S. kudriavzevii mitochondrial functions. PMID:22906207
Wang, Meng; Yue, Hong; Feng, Kewei; Deng, Pingchuan; Song, Weining; Nie, Xiaojun
2016-08-22
Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the important components of MAPK cascades, which play the crucial role in plant growth and development as well as in response to diverse stresses. Although this family has been systematically studied in many plant species, little is known about MAPKKK genes in wheat (Triticum aestivum L.), especially those involved in the regulatory network of stress processes. In this study, we identified 155 wheat MAPKKK genes through a genome-wide search method based on the latest available wheat genome information, of which 29 belonged to MEKK, 11 to ZIK and 115 to Raf subfamily, respectively. Then, chromosome localization, gene structure and conserved protein motifs and phylogenetic relationship as well as regulatory network of these TaMAPKKKs were systematically investigated and results supported the prediction. Furthermore, a total of 11 homologous groups between A, B and D sub-genome and 24 duplication pairs among them were detected, which contributed to the expansion of wheat MAPKKK gene family. Finally, the expression profiles of these MAPKKKs during development and under different abiotic stresses were investigated using the RNA-seq data. Additionally, 10 tissue-specific and 4 salt-responsive TaMAPKKK genes were selected to validate their expression level through qRT-PCR analysis. This study for the first time reported the genome organization, evolutionary features and expression profiles of the wheat MAPKKK gene family, which laid the foundation for further functional analysis of wheat MAPKKK genes, and contributed to better understanding the roles and regulatory mechanism of MAPKKKs in wheat.
Draft genome of the reindeer (Rangifer tarandus).
Li, Zhipeng; Lin, Zeshan; Ba, Hengxing; Chen, Lei; Yang, Yongzhi; Wang, Kun; Qiu, Qiang; Wang, Wen; Li, Guangyu
2017-12-01
The reindeer (Rangifer tarandus) is the only fully domesticated species in the Cervidae family, and it is the only cervid with a circumpolar distribution. Unlike all other cervids, female reindeer, as well as males, regularly grow cranial appendages (antlers, the defining characteristics of cervids). Moreover, reindeer milk contains more protein and less lactose than bovids' milk. A high-quality reference genome of this species will assist efforts to elucidate these and other important features in the reindeer. We obtained 615 Gb (Gigabase) of usable sequences by filtering the low-quality reads of the raw data generated from the Illumina Hiseq 4000 platform, and a 2.64-Gb final assembly, representing 95.7% of the estimated genome (2.76 Gb according to k-mer analysis), including 92.6% of expected genes according to BUSCO analysis. The contig N50 and scaffold N50 sizes were 89.7 kilo base (kb) and 0.94 mega base (Mb), respectively. We annotated 21 555 protein-coding genes and 1.07 Gb of repetitive sequences by de novo and homology-based prediction. Homology-based searches detected 159 rRNA, 547 miRNA, 1339 snRNA, and 863 tRNA sequences in the genome of R. tarandus. The divergence time between R. tarandus and ancestors of Bos taurus and Capra hircus is estimated to be about 29.5 million years ago. Our results provide the first high-quality reference genome for the reindeer and a valuable resource for studying the evolution, domestication, and other unusual characteristics of the reindeer. © The Authors 2017. Published by Oxford University Press.
Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens
Zeng, Y.; Yin, T.; Brügemann, K.
2018-01-01
Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle. PMID:29608619
The sumLINK statistic for genetic linkage analysis in the presence of heterogeneity.
Christensen, G B; Knight, S; Camp, N J
2009-11-01
We present the "sumLINK" statistic--the sum of multipoint LOD scores for the subset of pedigrees with nominally significant linkage evidence at a given locus--as an alternative to common methods to identify susceptibility loci in the presence of heterogeneity. We also suggest the "sumLOD" statistic (the sum of positive multipoint LOD scores) as a companion to the sumLINK. sumLINK analysis identifies genetic regions of extreme consistency across pedigrees without regard to negative evidence from unlinked or uninformative pedigrees. Significance is determined by an innovative permutation procedure based on genome shuffling that randomizes linkage information across pedigrees. This procedure for generating the empirical null distribution may be useful for other linkage-based statistics as well. Using 500 genome-wide analyses of simulated null data, we show that the genome shuffling procedure results in the correct type 1 error rates for both the sumLINK and sumLOD. The power of the statistics was tested using 100 sets of simulated genome-wide data from the alternative hypothesis from GAW13. Finally, we illustrate the statistics in an analysis of 190 aggressive prostate cancer pedigrees from the International Consortium for Prostate Cancer Genetics, where we identified a new susceptibility locus. We propose that the sumLINK and sumLOD are ideal for collaborative projects and meta-analyses, as they do not require any sharing of identifiable data between contributing institutions. Further, loci identified with the sumLINK have good potential for gene localization via statistical recombinant mapping, as, by definition, several linked pedigrees contribute to each peak.
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
Faria, José P.; Davis, James J.; Edirisinghe, Janaka N.; ...
2016-11-24
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. A multitude of technologies, abstractions, and interpretive frameworks have emerged to answer the challenges presented by genome function and regulatory network inference. Here, we propose a new approach for producing biologically meaningful clusters of coexpressed genes, called Atomic Regulons (ARs), based on expression data, gene context, and functional relationships. We demonstrate this new approach by computing ARs for Escherichia coli, which we compare with the coexpressed gene clusters predicted by two prevalent existing methods: hierarchical clustering and k-meansmore » clustering. We test the consistency of ARs predicted by all methods against expected interactions predicted by the Context Likelihood of Relatedness (CLR) mutual information based method, finding that the ARs produced by our approach show better agreement with CLR interactions. We then apply our method to compute ARs for four other genomes: Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus. We compare the AR clusters from all genomes to study the similarity of coexpression among a phylogenetically diverse set of species, identifying subsystems that show remarkable similarity over wide phylogenetic distances. We also study the sensitivity of our method for computing ARs to the expression data used in the computation, showing that our new approach requires less data than competing approaches to converge to a near final configuration of ARs. We go on to use our sensitivity analysis to identify the specific experiments that lead most rapidly to the final set of ARs for E. coli. As a result, this analysis produces insights into improving the design of gene expression experiments.« less
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, José P.; Davis, James J.; Edirisinghe, Janaka N.
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. A multitude of technologies, abstractions, and interpretive frameworks have emerged to answer the challenges presented by genome function and regulatory network inference. Here, we propose a new approach for producing biologically meaningful clusters of coexpressed genes, called Atomic Regulons (ARs), based on expression data, gene context, and functional relationships. We demonstrate this new approach by computing ARs for Escherichia coli, which we compare with the coexpressed gene clusters predicted by two prevalent existing methods: hierarchical clustering and k-meansmore » clustering. We test the consistency of ARs predicted by all methods against expected interactions predicted by the Context Likelihood of Relatedness (CLR) mutual information based method, finding that the ARs produced by our approach show better agreement with CLR interactions. We then apply our method to compute ARs for four other genomes: Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus. We compare the AR clusters from all genomes to study the similarity of coexpression among a phylogenetically diverse set of species, identifying subsystems that show remarkable similarity over wide phylogenetic distances. We also study the sensitivity of our method for computing ARs to the expression data used in the computation, showing that our new approach requires less data than competing approaches to converge to a near final configuration of ARs. We go on to use our sensitivity analysis to identify the specific experiments that lead most rapidly to the final set of ARs for E. coli. As a result, this analysis produces insights into improving the design of gene expression experiments.« less
Chætognath transcriptome reveals ancestral and unique features among bilaterians
Marlétaz, Ferdinand; Gilles, André; Caubit, Xavier; Perez, Yvan; Dossat, Carole; Samain, Sylvie; Gyapay, Gabor; Wincker, Patrick; Le Parco, Yannick
2008-01-01
Background The chætognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chætognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chætognaths prompted further investigation of their genomic features. Results Transcriptomic and genomic data were collected from the chætognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chætognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chætognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chætognath phylum and we further report that this processing is associated with operonic transcription. Conclusion These findings reveal both shared ancestral and unique derived characteristics of the chætognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chætognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes. PMID:18533022
Design of Biomedical Robots for Phenotype Prediction Problems
deAndrés-Galiana, Enrique J.; Sonis, Stephen T.
2016-01-01
Abstract Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem. PMID:27347715
Design of Biomedical Robots for Phenotype Prediction Problems.
deAndrés-Galiana, Enrique J; Fernández-Martínez, Juan Luis; Sonis, Stephen T
2016-08-01
Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem.
Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.
McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael
2014-08-01
Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.
Tra, Yolande V; Evans, Irene M
2010-01-01
BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.
Evans, Irene M.
2010-01-01
BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954
The long tail of oncogenic drivers in prostate cancer.
Armenia, Joshua; Wankowicz, Stephanie A M; Liu, David; Gao, Jianjiong; Kundra, Ritika; Reznik, Ed; Chatila, Walid K; Chakravarty, Debyani; Han, G Celine; Coleman, Ilsa; Montgomery, Bruce; Pritchard, Colin; Morrissey, Colm; Barbieri, Christopher E; Beltran, Himisha; Sboner, Andrea; Zafeiriou, Zafeiris; Miranda, Susana; Bielski, Craig M; Penson, Alexander V; Tolonen, Charlotte; Huang, Franklin W; Robinson, Dan; Wu, Yi Mi; Lonigro, Robert; Garraway, Levi A; Demichelis, Francesca; Kantoff, Philip W; Taplin, Mary-Ellen; Abida, Wassim; Taylor, Barry S; Scher, Howard I; Nelson, Peter S; de Bono, Johann S; Rubin, Mark A; Sawyers, Charles L; Chinnaiyan, Arul M; Schultz, Nikolaus; Van Allen, Eliezer M
2018-05-01
Comprehensive genomic characterization of prostate cancer has identified recurrent alterations in genes involved in androgen signaling, DNA repair, and PI3K signaling, among others. However, larger and uniform genomic analysis may identify additional recurrently mutated genes at lower frequencies. Here we aggregate and uniformly analyze exome sequencing data from 1,013 prostate cancers. We identify and validate a new class of E26 transformation-specific (ETS)-fusion-negative tumors defined by mutations in epigenetic regulators, as well as alterations in pathways not previously implicated in prostate cancer, such as the spliceosome pathway. We find that the incidence of significantly mutated genes (SMGs) follows a long-tail distribution, with many genes mutated in less than 3% of cases. We identify a total of 97 SMGs, including 70 not previously implicated in prostate cancer, such as the ubiquitin ligase CUL3 and the transcription factor SPEN. Finally, comparing primary and metastatic prostate cancer identifies a set of genomic markers that may inform risk stratification.
Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints
Diament, Alon; Tuller, Tamir
2015-01-01
The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633
Gibbon genome and the fast karyotype evolution of small apes.
Carbone, Lucia; Harris, R Alan; Gnerre, Sante; Veeramah, Krishna R; Lorente-Galdos, Belen; Huddleston, John; Meyer, Thomas J; Herrero, Javier; Roos, Christian; Aken, Bronwen; Anaclerio, Fabio; Archidiacono, Nicoletta; Baker, Carl; Barrell, Daniel; Batzer, Mark A; Beal, Kathryn; Blancher, Antoine; Bohrson, Craig L; Brameier, Markus; Campbell, Michael S; Capozzi, Oronzo; Casola, Claudio; Chiatante, Giorgia; Cree, Andrew; Damert, Annette; de Jong, Pieter J; Dumas, Laura; Fernandez-Callejo, Marcos; Flicek, Paul; Fuchs, Nina V; Gut, Ivo; Gut, Marta; Hahn, Matthew W; Hernandez-Rodriguez, Jessica; Hillier, LaDeana W; Hubley, Robert; Ianc, Bianca; Izsvák, Zsuzsanna; Jablonski, Nina G; Johnstone, Laurel M; Karimpour-Fard, Anis; Konkel, Miriam K; Kostka, Dennis; Lazar, Nathan H; Lee, Sandra L; Lewis, Lora R; Liu, Yue; Locke, Devin P; Mallick, Swapan; Mendez, Fernando L; Muffato, Matthieu; Nazareth, Lynne V; Nevonen, Kimberly A; O'Bleness, Majesta; Ochis, Cornelia; Odom, Duncan T; Pollard, Katherine S; Quilez, Javier; Reich, David; Rocchi, Mariano; Schumann, Gerald G; Searle, Stephen; Sikela, James M; Skollar, Gabriella; Smit, Arian; Sonmez, Kemal; ten Hallers, Boudewijn; Terhune, Elizabeth; Thomas, Gregg W C; Ullmer, Brygg; Ventura, Mario; Walker, Jerilyn A; Wall, Jeffrey D; Walter, Lutz; Ward, Michelle C; Wheelan, Sarah J; Whelan, Christopher W; White, Simon; Wilhelm, Larry J; Woerner, August E; Yandell, Mark; Zhu, Baoli; Hammer, Michael F; Marques-Bonet, Tomas; Eichler, Evan E; Fulton, Lucinda; Fronick, Catrina; Muzny, Donna M; Warren, Wesley C; Worley, Kim C; Rogers, Jeffrey; Wilson, Richard K; Gibbs, Richard A
2014-09-11
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.
Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae
Sõmera, Merike; Sarmiento, Cecilia; Truve, Erkki
2015-01-01
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses. PMID:26083319
Saving the spandrels? Adaptive genomic variation in conservation and fisheries management.
Pearse, D E
2016-12-01
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Crandall, Eric D.; Liggins, Libby; Bongaerts, Pim; Treml, Eric A.
2016-01-01
Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for landscape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations. PMID:29491947
Riginos, Cynthia; Crandall, Eric D; Liggins, Libby; Bongaerts, Pim; Treml, Eric A
2016-12-01
Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for landscape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.
Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon
2011-01-01
Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. Conclusion The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns. PMID:21599934
Dynamics of Genome Rearrangement in Bacterial Populations
Darling, Aaron E.; Miklós, István; Ragan, Mark A.
2008-01-01
Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965
Sabir, Jamal S M; Arasappan, Dhivya; Bahieldin, Ahmed; Abo-Aba, Salah; Bafeel, Sameera; Zari, Talal A; Edris, Sherif; Shokry, Ahmed M; Gadalla, Nour O; Ramadan, Ahmed M; Atef, Ahmed; Al-Kordy, Magdy A; El-Domyati, Fotoh M; Jansen, Robert K
2014-01-01
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.
Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime
2017-01-01
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus. PMID:28450852
2011-01-01
Background The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously thought to be encoded by bacteria. Supporting physiological data, global gene expression analysis shows that traps significantly over-express genes involved in respiration and that phosphate uptake might occur mainly in traps, whereas nitrogen uptake could in part take place in vegetative parts. Expression of DNA repair and ROS detoxification enzymes may be indicative of a response to increased respiration. Finally, evidence from the bladderwort transcriptome, direct measurement of ROS in situ, and cross-species comparisons of organellar genomes and multiple nuclear genes supports the hypothesis that increased nucleotide substitution rates throughout the plant may be due to the mutagenic action of amplified ROS production. PMID:21639913
Vaughan, Laura Kelly; Wiener, Howard W.; Aslibekyan, Stella; Allison, David B.; Havel, Peter J.; Stanhope, Kimber L.; O’Brien, Diane M.; Hopkins, Scarlett E.; Lemas, Dominick J.; Boyer, Bert B.; Tiwari, Hemant K.
2015-01-01
Objective To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup’ik people. Material and Methods We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. Results We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). Conclusions This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup’ik people. PMID:25772781
Vaughan, Laura Kelly; Wiener, Howard W; Aslibekyan, Stella; Allison, David B; Havel, Peter J; Stanhope, Kimber L; O'Brien, Diane M; Hopkins, Scarlett E; Lemas, Dominick J; Boyer, Bert B; Tiwari, Hemant K
2015-06-01
To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup'ik people. We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup'ik people. Copyright © 2015 Elsevier Inc. All rights reserved.
Jue, Dengwei; Sang, Xuelian; Liu, Liqin; Shu, Bo; Wang, Yicheng; Xie, Jianghui; Liu, Chengming; Shi, Shengyou
2018-03-15
Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan ( Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes ( DlUBCs ), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar "Sijimi" (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.
Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung
2014-01-01
Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353
INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.
2012-10-23
At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but doesmore » not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.« less
Lam, Max; Trampush, Joey W; Yu, Jin; Knowles, Emma; Davies, Gail; Liewald, David C; Starr, John M; Djurovic, Srdjan; Melle, Ingrid; Sundet, Kjetil; Christoforou, Andrea; Reinvang, Ivar; DeRosse, Pamela; Lundervold, Astri J; Steen, Vidar M; Espeseth, Thomas; Räikkönen, Katri; Widen, Elisabeth; Palotie, Aarno; Eriksson, Johan G; Giegling, Ina; Konte, Bettina; Roussos, Panos; Giakoumaki, Stella; Burdick, Katherine E; Payton, Antony; Ollier, William; Chiba-Falek, Ornit; Attix, Deborah K; Need, Anna C; Cirulli, Elizabeth T; Voineskos, Aristotle N; Stefanis, Nikos C; Avramopoulos, Dimitrios; Hatzimanolis, Alex; Arking, Dan E; Smyrnis, Nikolaos; Bilder, Robert M; Freimer, Nelson A; Cannon, Tyrone D; London, Edythe; Poldrack, Russell A; Sabb, Fred W; Congdon, Eliza; Conley, Emily Drabant; Scult, Matthew A; Dickinson, Dwight; Straub, Richard E; Donohoe, Gary; Morris, Derek; Corvin, Aiden; Gill, Michael; Hariri, Ahmad R; Weinberger, Daniel R; Pendleton, Neil; Bitsios, Panos; Rujescu, Dan; Lahti, Jari; Le Hellard, Stephanie; Keller, Matthew C; Andreassen, Ole A; Deary, Ian J; Glahn, David C; Malhotra, Anil K; Lencz, Todd
2017-11-28
Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability ("g"), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum). Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-09-01
The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.
Cloud-based adaptive exon prediction for DNA analysis
Putluri, Srinivasareddy; Fathima, Shaik Yasmeen
2018-01-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813
The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis.
Kang, Seunghyun; Ahn, Do-Hwan; Lee, Jun Hyuck; Lee, Sung Gu; Shin, Seung Chul; Lee, Jungeun; Min, Gi-Sik; Lee, Hyoungseok; Kim, Hyun-Woo; Kim, Sanghee; Park, Hyun
2017-01-01
The Antarctic intertidal zone is continuously subjected to extremely fluctuating biotic and abiotic stressors. The West Antarctic Peninsula is the most rapidly warming region on Earth. Organisms living in Antarctic intertidal pools are therefore interesting for research into evolutionary adaptation to extreme environments and the effects of climate change. We report the whole genome sequence of the Antarctic-endemic harpacticoid copepod Tigriopus kingsejongensi . The 37 Gb raw DNA sequence was generated using the Illumina Miseq platform. Libraries were prepared with 65-fold coverage and a total length of 295 Mb. The final assembly consists of 48 368 contigs with an N50 contig length of 17.5 kb, and 27 823 scaffolds with an N50 contig length of 159.2 kb. A total of 12 772 coding genes were inferred using the MAKER annotation pipeline. Comparative genome analysis revealed that T. kingsejongensis -specific genes are enriched in transport and metabolism processes. Furthermore, rapidly evolving genes related to energy metabolism showed positive selection signatures. The T. kingsejongensis genome provides an interesting example of an evolutionary strategy for Antarctic cold adaptation, and offers new genetic insights into Antarctic intertidal biota. © The Author 2017. Published by Oxford University Press.
The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis
Kang, Seunghyun; Ahn, Do-Hwan; Lee, Jun Hyuck; Lee, Sung Gu; Shin, Seung Chul; Lee, Jungeun; Min, Gi-Sik; Lee, Hyoungseok
2017-01-01
Abstract Background: The Antarctic intertidal zone is continuously subjected to extremely fluctuating biotic and abiotic stressors. The West Antarctic Peninsula is the most rapidly warming region on Earth. Organisms living in Antarctic intertidal pools are therefore interesting for research into evolutionary adaptation to extreme environments and the effects of climate change. Findings: We report the whole genome sequence of the Antarctic-endemic harpacticoid copepod Tigriopus kingsejongensi. The 37 Gb raw DNA sequence was generated using the Illumina Miseq platform. Libraries were prepared with 65-fold coverage and a total length of 295 Mb. The final assembly consists of 48 368 contigs with an N50 contig length of 17.5 kb, and 27 823 scaffolds with an N50 contig length of 159.2 kb. A total of 12 772 coding genes were inferred using the MAKER annotation pipeline. Comparative genome analysis revealed that T. kingsejongensis-specific genes are enriched in transport and metabolism processes. Furthermore, rapidly evolving genes related to energy metabolism showed positive selection signatures. Conclusions: The T. kingsejongensis genome provides an interesting example of an evolutionary strategy for Antarctic cold adaptation, and offers new genetic insights into Antarctic intertidal biota. PMID:28369352
Lun, Aaron T.L.; Smyth, Gordon K.
2016-01-01
Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify binding sites for a target protein in the genome. An important scientific application is to identify changes in protein binding between different treatment conditions, i.e. to detect differential binding. This can reveal potential mechanisms through which changes in binding may contribute to the treatment effect. The csaw package provides a framework for the de novo detection of differentially bound genomic regions. It uses a window-based strategy to summarize read counts across the genome. It exploits existing statistical software to test for significant differences in each window. Finally, it clusters windows into regions for output and controls the false discovery rate properly over all detected regions. The csaw package can handle arbitrarily complex experimental designs involving biological replicates. It can be applied to both transcription factor and histone mark datasets, and, more generally, to any type of sequencing data measuring genomic coverage. csaw performs favorably against existing methods for de novo DB analyses on both simulated and real data. csaw is implemented as a R software package and is freely available from the open-source Bioconductor project. PMID:26578583
Toward a framework linkage map of the canine genome.
Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A
1999-01-01
Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.
Systematic identification and analysis of frequent gene fusion events in metabolic pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Christopher S.; Lerma-Ortiz, Claudia; Gerdes, Svetlana Y.
Here, gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. As a result, here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These setsmore » were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database. A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. In conclusion, customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.« less
Systematic identification and analysis of frequent gene fusion events in metabolic pathways
Henry, Christopher S.; Lerma-Ortiz, Claudia; Gerdes, Svetlana Y.; ...
2016-06-24
Here, gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. As a result, here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These setsmore » were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database. A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. In conclusion, customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.« less
Martin, Guillaume; Baurens, Franc-Christophe; Droc, Gaëtan; Rouard, Mathieu; Cenci, Alberto; Kilian, Andrzej; Hastie, Alex; Doležel, Jaroslav; Aury, Jean-Marc; Alberti, Adriana; Carreel, Françoise; D'Hont, Angélique
2016-03-16
Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.
Yassin, Atteyet F; Langenberg, Stefan; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Mukherjee, Supratim; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C
2017-01-01
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
[The pathogenesis and regulation of autoimmunity].
Miyake, Sachiko
2008-06-01
The pathogenesis of autoimmunity has been studied extensively using animal models and genome-wide genetic analysis. Moreover, recent advance in the therapy for the autoimmune diseases using molecular-targeted drugs has provided us a lot of information in the pathogenesis of human autoimmune diseases. In this review, we overviewed the recent progress in the study of autoimmunity including central tolerance, regulatory cells and cytokines. Finally, we discuss the relationship of innate immunity and adoptive immunity in the context of autoimmunity.
Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.
Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal
2016-09-01
Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.
Syurina, Elena V; Schulte In den Bäumen, Tobias; Brand, Angela; Ambrosino, Elena; Feron, Frans Jm
2013-03-01
Recent vast and rapid development of genome-related sciences is followed by the development of different assessment techniques or attempts to adapt the existing ones. The aim of this article is to give an overview of existing concepts for the assessment and translation of innovations into healthcare, applying a descriptive analysis of their present use by public health specialists and policy makers. The international literature review identified eight concepts including Health Technology Assessment, analytic validity, clinical validity, clinical utility, ethical, legal and social implications, Public Health Wheel and others. This study gives an overview of these concepts (including the level of current use) applying a descriptive analysis of their present use by public health specialists and policy makers. Despite the heterogeneity of the analyzed concepts and difference in use in everyday healthcare practice, the cross-integration of these concepts is important in order to improve translation speed and quality. Finally, some recommendations are made regarding the most applicable translational concepts.
Large-scale association analyses identifies 13 new susceptibility loci for coronary artery disease
Schunkert, Heribert; König, Inke R.; Kathiresan, Sekar; Reilly, Muredach P.; Assimes, Themistocles L.; Holm, Hilma; Preuss, Michael; Stewart, Alexandre F. R.; Barbalic, Maja; Gieger, Christian; Absher, Devin; Aherrahrou, Zouhair; Allayee, Hooman; Altshuler, David; Anand, Sonia S.; Andersen, Karl; Anderson, Jeffrey L.; Ardissino, Diego; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Timothy A.; Becker, Diane M.; Becker, Lewis C.; Berger, Klaus; Bis, Joshua C.; Boekholdt, S. Matthijs; Boerwinkle, Eric; Braund, Peter S.; Brown, Morris J.; Burnett, Mary Susan; Buysschaert, Ian; Carlquist, Cardiogenics, John F.; Chen, Li; Cichon, Sven; Codd, Veryan; Davies, Robert W.; Dedoussis, George; Dehghan, Abbas; Demissie, Serkalem; Devaney, Joseph M.; Do, Ron; Doering, Angela; Eifert, Sandra; El Mokhtari, Nour Eddine; Ellis, Stephen G.; Elosua, Roberto; Engert, James C.; Epstein, Stephen E.; Faire, Ulf de; Fischer, Marcus; Folsom, Aaron R.; Freyer, Jennifer; Gigante, Bruna; Girelli, Domenico; Gretarsdottir, Solveig; Gudnason, Vilmundur; Gulcher, Jeffrey R.; Halperin, Eran; Hammond, Naomi; Hazen, Stanley L.; Hofman, Albert; Horne, Benjamin D.; Illig, Thomas; Iribarren, Carlos; Jones, Gregory T.; Jukema, J.Wouter; Kaiser, Michael A.; Kaplan, Lee M.; Kastelein, John J.P.; Khaw, Kay-Tee; Knowles, Joshua W.; Kolovou, Genovefa; Kong, Augustine; Laaksonen, Reijo; Lambrechts, Diether; Leander, Karin; Lettre, Guillaume; Li, Mingyao; Lieb, Wolfgang; Linsel-Nitschke, Patrick; Loley, Christina; Lotery, Andrew J.; Mannucci, Pier M.; Maouche, Seraya; Martinelli, Nicola; McKeown, Pascal P.; Meisinger, Christa; Meitinger, Thomas; Melander, Olle; Merlini, Pier Angelica; Mooser, Vincent; Morgan, Thomas; Mühleisen, Thomas W.; Muhlestein, Joseph B.; Münzel, Thomas; Musunuru, Kiran; Nahrstaedt, Janja; Nelson, Christopher P.; Nöthen, Markus M.; Olivieri, Oliviero; Patel, Riyaz S.; Patterson, Chris C.; Peters, Annette; Peyvandi, Flora; Qu, Liming; Quyyumi, Arshed A.; Rader, Daniel J.; Rallidis, Loukianos S.; Rice, Catherine; Rosendaal, Frits R.; Rubin, Diana; Salomaa, Veikko; Sampietro, M. Lourdes; Sandhu, Manj S.; Schadt, Eric; Schäfer, Arne; Schillert, Arne; Schreiber, Stefan; Schrezenmeir, Jürgen; Schwartz, Stephen M.; Siscovick, David S.; Sivananthan, Mohan; Sivapalaratnam, Suthesh; Smith, Albert; Smith, Tamara B.; Snoep, Jaapjan D.; Soranzo, Nicole; Spertus, John A.; Stark, Klaus; Stirrups, Kathy; Stoll, Monika; Tang, W. H. Wilson; Tennstedt, Stephanie; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Tomaszewski, Maciej; Uitterlinden, Andre G.; van Rij, Andre M.; Voight, Benjamin F.; Wareham, Nick J.; Wells, George A.; Wichmann, H.-Erich; Wild, Philipp S.; Willenborg, Christina; Witteman, Jaqueline C. M.; Wright, Benjamin J.; Ye, Shu; Zeller, Tanja; Ziegler, Andreas; Cambien, Francois; Goodall, Alison H.; Cupples, L. Adrienne; Quertermous, Thomas; März, Winfried; Hengstenberg, Christian; Blankenberg, Stefan; Ouwehand, Willem H.; Hall, Alistair S.; Deloukas, Panos; Thompson, John R.; Stefansson, Kari; Roberts, Robert; Thorsteinsdottir, Unnur; O’Donnell, Christopher J.; McPherson, Ruth; Erdmann, Jeanette; Samani, Nilesh J.
2011-01-01
We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 cases and 64,762 controls of European descent, followed by genotyping of top association signals in 60,738 additional individuals. This genomic analysis identified 13 novel loci harboring one or more SNPs that were associated with CAD at P<5×10−8 and confirmed the association of 10 of 12 previously reported CAD loci. The 13 novel loci displayed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6 to 17 percent increase in the risk of CAD per allele. Notably, only three of the novel loci displayed significant association with traditional CAD risk factors, while the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the novel CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits. PMID:21378990
Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan
2014-01-01
Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725
Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development. PMID:24265739
Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development.
Elucidating and mining the Tulipa and Lilium transcriptomes.
Moreno-Pachon, Natalia M; Leeggangers, Hendrika A C F; Nijveen, Harm; Severing, Edouard; Hilhorst, Henk; Immink, Richard G H
2016-10-01
Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.
Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; ...
2016-04-21
Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.
Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less
Clostridium botulinum strains producing BoNT/F4 or BoNT/F5.
Raphael, Brian H; Bradshaw, Marite; Kalb, Suzanne R; Joseph, Lavin A; Lúquez, Carolina; Barr, John R; Johnson, Eric A; Maslanka, Susan E
2014-05-01
Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.
Peng, Zhong; Liu, Sidi; Meng, Xiujuan; Liang, Wan; Xu, Zhuofei; Tang, Biao; Wang, Yuanguo; Duan, Juping; Fu, Chenchao; Wu, Bin; Wu, Anhua; Li, Chunhui
2017-01-01
Clostridium difficile is an anaerobic Gram-positive spore-forming gut pathogen that causes antibiotic-associated diarrhea worldwide. A small number of C. difficile strains express the binary toxin (CDT), which is generally found in C. difficile 027 (ST1) and/or 078 (ST11) in clinic. However, we isolated a binary toxin-positive non-027, non-078 C. difficile LC693 that is associated with severe diarrhea in China. The genotype of this strain was determined as ST201. To understand the pathogenesis-basis of C. difficile ST201, the strain LC693 was chosen for whole genome sequencing, and its genome sequence was analyzed together with the other two ST201 strains VL-0104 and VL-0391 and compared to the epidemic 027/ST1 and 078/ST11 strains. The project finally generated an estimated genome size of approximately 4.07 Mbp for strain LC693. Genome size of the three ST201 strains ranged from 4.07 to 4.16 Mb, with an average GC content between 28.5 and 28.9%. Phylogenetic analysis demonstrated that the ST201 strains belonged to clade 3. The ST201 genomes contained more than 40 antibiotic resistance genes and 15 of them were predicted to be associated with vancomycin-resistance. The ST201 strains contained a larger PaLoc with a Tn6218 element inserted than the 027/ST1 and 078/ST11 strains, and encoded a truncated TcdC. In addition, the ST201 strains contained intact binary toxin coding and regulation genes which are highly homologous to the 027/ST1 strain. Genome comparison of the ST201 strains with the epidemic 027 and 078 strain identified 641 genes specific for C. difficile ST201, and a number of them were predicted as fitness and virulence associated genes. The presence of those genes also contributes to the pathogenesis of the ST201 strains. In this study, the genomic characterization of three binary toxin-positive C. difficile ST201 strains in clade 3 was discussed and compared to the genomes of the epidemic 027 and the 078 strains. Our analysis identified a number fitness and virulence associated genes/loci in the ST201 genomes that contribute to the pathogenesis of C. difficile ST201.
Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J
2018-04-16
Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.
methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data.
Kishore, Kamal; de Pretis, Stefano; Lister, Ryan; Morelli, Marco J; Bianchi, Valerio; Amati, Bruno; Ecker, Joseph R; Pelizzola, Mattia
2015-09-29
Numerous methods are available to profile several epigenetic marks, providing data with different genome coverage and resolution. Large epigenomic datasets are then generated, and often combined with other high-throughput data, including RNA-seq, ChIP-seq for transcription factors (TFs) binding and DNase-seq experiments. Despite the numerous computational tools covering specific steps in the analysis of large-scale epigenomics data, comprehensive software solutions for their integrative analysis are still missing. Multiple tools must be identified and combined to jointly analyze histone marks, TFs binding and other -omics data together with DNA methylation data, complicating the analysis of these data and their integration with publicly available datasets. To overcome the burden of integrating various data types with multiple tools, we developed two companion R/Bioconductor packages. The former, methylPipe, is tailored to the analysis of high- or low-resolution DNA methylomes in several species, accommodating (hydroxy-)methyl-cytosines in both CpG and non-CpG sequence context. The analysis of multiple whole-genome bisulfite sequencing experiments is supported, while maintaining the ability of integrating targeted genomic data. The latter, compEpiTools, seamlessly incorporates the results obtained with methylPipe and supports their integration with other epigenomics data. It provides a number of methods to score these data in regions of interest, leading to the identification of enhancers, lncRNAs, and RNAPII stalling/elongation dynamics. Moreover, it allows a fast and comprehensive annotation of the resulting genomic regions, and the association of the corresponding genes with non-redundant GeneOntology terms. Finally, the package includes a flexible method based on heatmaps for the integration of various data types, combining annotation tracks with continuous or categorical data tracks. methylPipe and compEpiTools provide a comprehensive Bioconductor-compliant solution for the integrative analysis of heterogeneous epigenomics data. These packages are instrumental in providing biologists with minimal R skills a complete toolkit facilitating the analysis of their own data, or in accelerating the analyses performed by more experienced bioinformaticians.
Ai, Yuncan; Ai, Hannan; Meng, Fanmei; Zhao, Lei
2013-01-01
No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology. First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy. We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set up the methodology of systematic comparative genomics based on the genome fingerprint analysis.
Mizutani, Osamu; Arazoe, Takayuki; Toshida, Kenji; Hayashi, Risa; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Kuwata, Shigeru; Yamada, Osamu
2017-03-01
Transcription activator-like effector nucleases (TALENs), which can generate DNA double-strand breaks at specific sites in the desired genome locus, have been used in many organisms as a tool for genome editing. In Aspergilli, including Aspergillus oryzae, however, the use of TALENs has not been validated. In this study, we performed genome editing of A. oryzae wild-type strain via error of nonhomologous end-joining (NHEJ) repair by transient expression of high-efficiency Platinum-Fungal TALENs (PtFg TALENs). Targeted mutations were observed as various mutation patterns. In particular, approximately half of the PtFg TALEN-mediated deletion mutants had deletions larger than 1 kb in the TALEN-targeting region. We also conducted PtFg TALEN-based genome editing in A. oryzae ligD disruptant (ΔligD) lacking the ligD gene involved in the final step of the NHEJ repair and found that mutations were still obtained as well as wild-type. In this case, the ratio of the large deletions reduced compared to PtFg TALEN-based genome editing in the wild-type. In conclusion, we demonstrate that PtFg TALENs are sufficiently functional to cause genome editing via error of NHEJ in A. oryzae. In addition, we reveal that genome editing using TALENs in A. oryzae tends to cause large deletions at the target region, which were partly suppressed by deletion of ligD. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Govin, Jerome; Gaucher, Jonathan; Ferro, Myriam; Debernardi, Alexandra; Garin, Jerome; Khochbin, Saadi; Rousseaux, Sophie
2012-01-01
After meiosis, during the final stages of spermatogenesis, the haploid male genome undergoes major structural changes, resulting in a shift from a nucleosome-based genome organization to the sperm-specific, highly compacted nucleoprotamine structure. Recent data support the idea that region-specific programming of the haploid male genome is of high importance for the post-fertilization events and for successful embryo development. Although these events constitute a unique and essential step in reproduction, the mechanisms by which they occur have remained completely obscure and the factors involved have mostly remained uncharacterized. Here, we sought a strategy to significantly increase our understanding of proteins controlling the haploid male genome reprogramming, based on the identification of proteins in two specific pools: those with the potential to bind nucleic acids (basic proteins) and proteins capable of binding basic proteins (acidic proteins). For the identification of acidic proteins, we developed an approach involving a transition-protein (TP)-based chromatography, which has the advantage of retaining not only acidic proteins due to the charge interactions, but also potential TP-interacting factors. A second strategy, based on an in-depth bioinformatic analysis of the identified proteins, was then applied to pinpoint within the lists obtained, male germ cells expressed factors relevant to the post-meiotic genome organization. This approach reveals a functional network of DNA-packaging proteins and their putative chaperones and sheds a new light on the way the critical transitions in genome organizations could take place. This work also points to a new area of research in male infertility and sperm quality assessments.
Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.).
Ming, Ray; VanBuren, Robert; Liu, Yanling; Yang, Mei; Han, Yuepeng; Li, Lei-Ting; Zhang, Qiong; Kim, Min-Jeong; Schatz, Michael C; Campbell, Michael; Li, Jingping; Bowers, John E; Tang, Haibao; Lyons, Eric; Ferguson, Ann A; Narzisi, Giuseppe; Nelson, David R; Blaby-Haas, Crysten E; Gschwend, Andrea R; Jiao, Yuannian; Der, Joshua P; Zeng, Fanchang; Han, Jennifer; Min, Xiang Jia; Hudson, Karen A; Singh, Ratnesh; Grennan, Aleel K; Karpowicz, Steven J; Watling, Jennifer R; Ito, Kikukatsu; Robinson, Sharon A; Hudson, Matthew E; Yu, Qingyi; Mockler, Todd C; Carroll, Andrew; Zheng, Yun; Sunkar, Ramanjulu; Jia, Ruizong; Chen, Nancy; Arro, Jie; Wai, Ching Man; Wafula, Eric; Spence, Ashley; Han, Yanni; Xu, Liming; Zhang, Jisen; Peery, Rhiannon; Haus, Miranda J; Xiong, Wenwei; Walsh, James A; Wu, Jun; Wang, Ming-Li; Zhu, Yun J; Paull, Robert E; Britt, Anne B; Du, Chunguang; Downie, Stephen R; Schuler, Mary A; Michael, Todd P; Long, Steve P; Ort, Donald R; Schopf, J William; Gang, David R; Jiang, Ning; Yandell, Mark; dePamphilis, Claude W; Merchant, Sabeeha S; Paterson, Andrew H; Buchanan, Bob B; Li, Shaohua; Shen-Miller, Jane
2013-05-10
Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
Genomics and Public Health Research: Can the State Allow Access to Genomic Databases?
Cousineau, J; Girard, N; Monardes, C; Leroux, T; Jean, M Stanton
2012-01-01
Because many diseases are multifactorial disorders, the scientific progress in genomics and genetics should be taken into consideration in public health research. In this context, genomic databases will constitute an important source of information. Consequently, it is important to identify and characterize the State’s role and authority on matters related to public health, in order to verify whether it has access to such databases while engaging in public health genomic research. We first consider the evolution of the concept of public health, as well as its core functions, using a comparative approach (e.g. WHO, PAHO, CDC and the Canadian province of Quebec). Following an analysis of relevant Quebec legislation, the precautionary principle is examined as a possible avenue to justify State access to and use of genomic databases for research purposes. Finally, we consider the Influenza pandemic plans developed by WHO, Canada, and Quebec, as examples of key tools framing public health decision-making process. We observed that State powers in public health, are not, in Quebec, well adapted to the expansion of genomics research. We propose that the scope of the concept of research in public health should be clear and include the following characteristics: a commitment to the health and well-being of the population and to their determinants; the inclusion of both applied research and basic research; and, an appropriate model of governance (authorization, follow-up, consent, etc.). We also suggest that the strategic approach version of the precautionary principle could guide collective choices in these matters. PMID:23113174
Funding Opportunity: Genomic Data Centers
Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,
Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan
2014-07-04
Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.
Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne
2012-01-01
The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
2014-01-01
Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes. PMID:24993543
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-01-01
Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat’s selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome. PMID:27989103
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing.
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-12-01
Goats ( Capra hircus ) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.
Long, Meng; Nielsen, Tue K; Leisner, Jørgen J; Hansen, Lars H; Shen, Zhi X; Zhang, Qian Q; Li, Aihua
2016-09-01
Two strains of Aeromonas salmonicida, YK and BG, were isolated from largemouth bronze gudgeon and northern whitefish in China, and identified as A. salmonicida subsp. salmonicida based on phylogenetic analysis of vapA and 16S rRNA gene sequences. YK and BG originated from freshwater fish, one of which belonged to the cyprinid family, and the strains showed a difference in virulence. Subsequently, we performed whole genome sequencing of the strains, and comparison of their genomic sequences to the genome of the A449 reference strain revealed various genomic rearrangements, including a new variant of the genomic island AsaGEI in BG, designated as AsaGEI2c This is the first report on a GEI of A. salmonicida strain from China. Furthermore, both YK and BG strains contained a Tn7 transposon inserted at the same position in the chromosome. Finally, IS-dependent rearrangements on pAsa5 are deemed likely to have occurred, with omission of the resD gene in both strains as well as omission of genes related to the IncF conjugal transfer system in the YK isolate. This study demonstrates that A. salmonicida subsp. salmonicida can infect non-salmonids (cyprinids) in addition to salmonids, and that AsaGEI2c might be useful as a geographical indicator of Chinese A. salmonicida subsp. salmonicida isolates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.
Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei
2018-06-01
The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou
2011-11-01
Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.
Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony
2016-08-01
Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Drozdova, Polina B.; Tarasov, Oleg V.; Matveenko, Andrew G.; Radchenko, Elina A.; Sopova, Julia V.; Polev, Dmitrii E.; Inge-Vechtomov, Sergey G.; Dobrynin, Pavel V.
2016-01-01
The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles. PMID:27152522
Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D
2013-01-01
Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.
Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan
2015-01-01
Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592
Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine.
Fang, Han; Wu, Yiyang; Yang, Hui; Yoon, Margaret; Jiménez-Barrón, Laura T; Mittelman, David; Robison, Reid; Wang, Kai; Lyon, Gholson J
2017-02-23
Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader-Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously.
Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica
2018-03-31
This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and major depression. © 2018 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Isolation and whole genome analysis of endospore-forming bacteria from heroin.
Kalinowski, Jörn; Ahrens, Björn; Al-Dilaimi, Arwa; Winkler, Anika; Wibberg, Daniel; Schleenbecker, Uwe; Rückert, Christian; Wölfel, Roman; Grass, Gregor
2018-01-01
Infections caused by endospore-forming bacteria have been associated with severe illness and death among persons who inject drugs. Analysis of the bacteria residing in heroin has thus been biased towards species that affect human health. Similarly, exploration of the bacterial diversity of seized street market heroin correlated with the skin microflora of recreational heroin users insofar as different Staphylococus spp. or typical environmental endospore formers including Bacillus cereus and other Bacilli outside the B. cereus sensu lato group as well as diverse Clostridia were identified. In this work 82 samples of non-street market ("wholesale") heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2009 and 2014 were analyzed for contaminating bacteria. Without contact with the end user and with only little contaminations introduced by final processing, adulteration and cutting this heroin likely harbors original microbiota from the drug's original source or trafficking route. We found this drug to be only sparsely populated with retrievable heterotrophic, aerobic bacteria. In total, 68 isolates were retrieved from 49 out of 82 samples analyzed (60% culture positive). All isolates were endospore-forming, Gram-positive Bacilli. Completely absent were non-endospore-formers or Gram-negatives. The three most predominant species were Bacillus clausii, Bacillus (para)licheniformis, and Terribacillus saccharophilus. Whole genome sequencing of these 68 isolates was performed using Illumina technology. Sequence data sets were assembled and annotated using an automated bioinformatics pipeline. Average nucleotide identity (ANI) values were calculated for all draft genomes and all close to identical genomes (ANI>99.5%) were compared to the forensic data of the seized drug, showing positive correlations that strongly warrant further research on this subject. Copyright © 2017 Elsevier B.V. All rights reserved.
Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J
2016-03-01
Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Logotheti, Marianthi; Papadodima, Olga; Venizelos, Nikolaos; Chatziioannou, Aristotelis; Kolisis, Fragiskos
2013-01-01
Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets. PMID:23554570
Genetic variation associated with cardiovascular risk in autoimmune diseases
Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio
2017-01-01
Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122
Butts, Carter T.; Bierma, Jan C.; Martin, Rachel W.
2016-01-01
In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. PMID:27353064
Baratelli, Massimiliano; Córdoba, Lorena; Pérez, Lester J; Maldonado, Jaime; Fraile, Lorenzo; Núñez, José I; Montoya, Maria
2014-04-01
Swine influenza virus is one of the most important pathogens involved in the swine respiratory disease complex. Recent serological surveys showed a high prevalence of swine influenza strains belonging to the H1N1, H1N2 and H3N2 subtypes circulating in pigs in Spain. However, little is known about their genome sequence. Five swine influenza strains were isolated from some unrelated outbreaks occurred during 2006-2007, and their complete genome sequences were determined. Phylogenetic analysis revealed that they belonged to the lineages "Avian-Like" H1N1, "Human-Like" H3N2, and "Human-Like" H1N2, showing tight relationships with early or contemporary strains described in Europe. Notably, one virus of the H1N2 subtype showed genetic and antigenic divergence with the European contemporary strains or vaccinal strains of the same subtype, suggesting that some local and divergent clusters of the virus may pass unnoticed in routinary subtyping. Finally, analysis on the entire pattern of genome segments suggested that a second reassortment event could have influenced the evolution of that divergent H1N2 strain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome.
Cohen-Tannoudji, M; Babinet, C
1998-10-01
The emergence of gene inactivation by homologous recombination methodology in embryonic stem cells has revolutionized the field of mouse genetics. Indeed, the availability of a rapidly growing number of mouse null mutants has represented an invaluable source of knowledge on mammalian development, cellular biology and physiology and has provided many models for human inherited diseases. In recent years, improvements of the original 'knock-out' strategy, as well as the exploitation of exogenous enzymatic systems that are active in the recombination process, have considerably extended the range of genetic manipulations that can be produced. For example, it is now possible to create a mouse bearing a targeted point mutation as the unique change in its entire genome therefore allowing very fine dissection of gene function in vivo. Chromosome alterations such as large deletions, inversions or translocations can also be designed and will facilitate the global functional analysis of the mouse genome. This will extend the possibilities of creating models of human pathologies that frequently originate from various chromosomal disorders. Finally, the advent of methods allowing conditional gene targeting will open the way for the analysis of the consequence of a particular mutation in a defined organ and at a specific time during the life of a mouse.
Hammoud, Saher Sue; Nix, David A; Hammoud, Ahmad O; Gibson, Mark; Cairns, Bradley R; Carrell, Douglas T
2011-09-01
The sperm chromatin of fertile men retains a small number of nucleosomes that are enriched at developmental gene promoters and imprinted gene loci. This unique chromatin packaging at certain gene promoters provides these genomic loci the ability to convey instructive epigenetic information to the zygote, potentially expanding the role and significance of the sperm epigenome in embryogenesis. We hypothesize that changes in chromatin packaging may be associated with poor reproductive outcome. Seven patients with reproductive dysfunction were recruited: three had unexplained poor embryogenesis during IVF and four were diagnosed with male infertility and previously shown to have altered protamination. Genome-wide analysis of the location of histones and histone modifications was analyzed by isolation and purification of DNA bound to histones and protamines. The histone-bound fraction of DNA was analyzed using high-throughput sequencing, both initially and following chromatin immunoprecipitation. The protamine-bound fraction was hybridized to agilent arrays. DNA methylation was examined using bisulfite sequencing. Unlike fertile men, five of seven infertile men had non-programmatic (randomly distributed) histone retention genome-wide. Interestingly, in contrast to the total histone pool, the localization of H3 Lysine 4 methylation (H3K4me) or H3 Lysine 27 methylation (H3K27me) was highly similar in the gametes of infertile men compared with fertile men. However, there was a reduction in the amount of H3K4me or H3K27me retained at developmental transcription factors and certain imprinted genes. Finally, the methylation status of candidate developmental promoters and imprinted loci were altered in a subset of the infertile men. This initial genome-wide analysis of epigenetic markings in the sperm of infertile men demonstrates differences in composition and epigenetic markings compared with fertile men, especially at certain imprinted and developmental loci. Although no single locus displays a complete change in chromatin packaging or DNA modification, the data suggest that moderate changes throughout the genome exist and may have a cumulative detrimental effect on fecundity.
[Applications of meta-analysis in multi-omics].
Han, Mingfei; Zhu, Yunping
2014-07-01
As a statistical method integrating multi-features and multi-data, meta-analysis was introduced to the field of life science in the 1990s. With the rapid advances in high-throughput technologies, life omics, the core of which are genomics, transcriptomics and proteomics, is becoming the new hot spot of life science. Although the fast output of massive data has promoted the development of omics study, it results in excessive data that are difficult to integrate systematically. In this case, meta-analysis is frequently applied to analyze different types of data and is improved continuously. Here, we first summarize the representative meta-analysis methods systematically, and then study the current applications of meta-analysis in various omics fields, finally we discuss the still-existing problems and the future development of meta-analysis.
USDA-ARS?s Scientific Manuscript database
The final speaker, Paul Nakata from the USDA Children’s Nutrition Research Center in Houston, Texas, discussed manipulating the plant genome, with emphasis on CRISPR/Cas9-mediated genome editing. Dating back thousands of years ago, traditional and then mutational breeding was used to influence, for ...
Primer on Molecular Genetics; DOE Human Genome Program
DOE R&D Accomplishments Database
1992-04-01
This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.
Quality scores for 32,000 genomes
Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran; ...
2014-12-08
More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less
Quality scores for 32,000 genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran
More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less
Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression
Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio
2012-01-01
CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger
2018-04-19
Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.
Bosch, Thijs; Verkade, Erwin; van Luit, Martijn; Pot, Bruno; Vauterin, Paul; Burggrave, Ronald; Savelkoul, Paul; Kluytmans, Jan; Schouls, Leo
2013-01-01
After its emergence in 2003, a livestock-associated (LA-)MRSA clade (CC398) has caused an impressive increase in the number of isolates submitted for the Dutch national MRSA surveillance and now comprises 40% of all isolates. The currently used molecular typing techniques have limited discriminatory power for this MRSA clade, which hampers studies on the origin and transmission routes. Recently, a new molecular analysis technique named whole genome mapping was introduced. This method creates high-resolution, ordered whole genome restriction maps that may have potential for strain typing. In this study, we assessed and validated the capability of whole genome mapping to differentiate LA-MRSA isolates. Multiple validation experiments showed that whole genome mapping produced highly reproducible results. Assessment of the technique on two well-documented MRSA outbreaks showed that whole genome mapping was able to confirm one outbreak, but revealed major differences between the maps of a second, indicating that not all isolates belonged to this outbreak. Whole genome mapping of LA-MRSA isolates that were epidemiologically unlinked provided a much higher discriminatory power than spa-typing or MLVA. In contrast, maps created from LA-MRSA isolates obtained during a proven LA-MRSA outbreak were nearly indistinguishable showing that transmission of LA-MRSA can be detected by whole genome mapping. Finally, whole genome maps of LA-MRSA isolates originating from two unrelated veterinarians and their household members showed that veterinarians may carry and transmit different LA-MRSA strains at the same time. No such conclusions could be drawn based spa-typing and MLVA. Although PFGE seems to be suitable for molecular typing of LA-MRSA, WGM provides a much higher discriminatory power. Furthermore, whole genome mapping can provide a comparison with other maps within 2 days after the bacterial culture is received, making it suitable to investigate transmission events and outbreaks caused by LA-MRSA. PMID:23805225
Wang, Liang; Chen, Xusheng; Wu, Guangyao; Zeng, Xin; Ren, Xidong; Li, Shu; Tang, Lei; Mao, Zhonggui
2016-12-01
Genome shuffling has been a recently effective method for screening the desirable phenotypes of industrial strains. Here, we combined genome shuffling and gentamicin resistance to improve the production of ε-poly-L-lysine in Streptomyces albulus W-156. Five starting mutants with higher ε-poly-L-lysine (ε-PL) productivities were firstly obtained by atmospheric and room temperature plasma (ARTP) mutagenesis. After three rounds of genome shuffling with increasing concentration of gentamicin for selection, S. albulus AG3-28, was finally got with a production of 3.43 g/L in shaking flask. In a 5-L fermenter, AG3-28 exhibited a higher ε-PL productivity (56.5 g/L) than the initial strain W-156 (37.5 g/L). Key enzyme activities in primary and secondary metabolic pathways were analyzed, and the transcription levels of hrdD and pls were determined by quantitative real time-polymerase chain reaction (qRT-PCR). Increase of key enzyme activities and the upregulation of the gene transcriptional levels demonstrated that ε-PL synthetic pathway in AG3-28 was obviously strengthened, which might be responsible for the high productivity. Moreover, hyper-yield strain AG3-28 was found to produce a slightly lower ε-PL polymerization degree than the parent strain. Amplified fragment length polymorphism (AFLP) analysis reflects the genetic diversity among the derivates after genome shuffling.
Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato
Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo
2014-01-01
Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669
Gherghe, Cristina; Lombo, Tania; Leonard, Christopher W.; Datta, Siddhartha A. K.; Bess, Julian W.; Gorelick, Robert J.; Rein, Alan; Weeks, Kevin M.
2010-01-01
All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs—only four nucleotides per genomic RNA—reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs. PMID:20974908
Rousseau-Gueutin, M; Bellot, S; Martin, G E; Boutte, J; Chelaifa, H; Lima, O; Michon-Coudouel, S; Naquin, D; Salmon, A; Ainouche, K; Ainouche, M
2015-12-01
The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution. Copyright © 2015 Elsevier Inc. All rights reserved.
New Insights into the Diversity of the Genus Faecalibacterium.
Benevides, Leandro; Burman, Sriti; Martin, Rebeca; Robert, Véronique; Thomas, Muriel; Miquel, Sylvie; Chain, Florian; Sokol, Harry; Bermudez-Humaran, Luis G; Morrison, Mark; Langella, Philippe; Azevedo, Vasco A; Chatel, Jean-Marc; Soares, Siomar
2017-01-01
Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium , but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium . For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii , which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii , but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.
Various Cmap analyses within and across species and microarray platforms conducted and summarized to generate the tables in the publication.This dataset is associated with the following publication:Wang , R., A. Biales , N. Garcia-Reyero, E. Perkins, D. Villeneuve, G. Ankley, and D. Bencic. Fish Connectivity Mapping: Linking Chemical Stressors by Their MOA-Driven Transcriptomic Profiles. BMC Genomics. BioMed Central Ltd, London, UK, 17(84): 1-20, (2016).
Comparative genome analysis in the integrated microbial genomes (IMG) system.
Markowitz, Victor M; Kyrpides, Nikos C
2007-01-01
Comparative genome analysis is critical for the effective exploration of a rapidly growing number of complete and draft sequences for microbial genomes. The Integrated Microbial Genomes (IMG) system (img.jgi.doe.gov) has been developed as a community resource that provides support for comparative analysis of microbial genomes in an integrated context. IMG allows users to navigate the multidimensional microbial genome data space and focus their analysis on a subset of genes, genomes, and functions of interest. IMG provides graphical viewers, summaries, and occurrence profile tools for comparing genes, pathways, and functions (terms) across specific genomes. Genes can be further examined using gene neighborhoods and compared with sequence alignment tools.
Large-scale De Novo Prediction of Physical Protein-Protein Association*
Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas
2011-01-01
Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163
A multi-strategy approach to informative gene identification from gene expression data.
Liu, Ziying; Phan, Sieu; Famili, Fazel; Pan, Youlian; Lenferink, Anne E G; Cantin, Christiane; Collins, Catherine; O'Connor-McCourt, Maureen D
2010-02-01
An unsupervised multi-strategy approach has been developed to identify informative genes from high throughput genomic data. Several statistical methods have been used in the field to identify differentially expressed genes. Since different methods generate different lists of genes, it is very challenging to determine the most reliable gene list and the appropriate method. This paper presents a multi-strategy method, in which a combination of several data analysis techniques are applied to a given dataset and a confidence measure is established to select genes from the gene lists generated by these techniques to form the core of our final selection. The remainder of the genes that form the peripheral region are subject to exclusion or inclusion into the final selection. This paper demonstrates this methodology through its application to an in-house cancer genomics dataset and a public dataset. The results indicate that our method provides more reliable list of genes, which are validated using biological knowledge, biological experiments, and literature search. We further evaluated our multi-strategy method by consolidating two pairs of independent datasets, each pair is for the same disease, but generated by different labs using different platforms. The results showed that our method has produced far better results.
Shen, Qi; Zhang, Dong; Sun, Wei; Zhang, Yu-Jun; Shang, Zhi-Wei; Chen, Shi-Lin
2017-05-01
Perilla frutescens is one of 60 kinds of food and medicine plants in the initial directory announced by health ministry of China. With the development of Perilla domain in recent , the breeding and application of good varieties has become the main bottleneck of its development. This study reported that applied to the system selection, add to marker-assisted method to breed perilla varieties. Through the whole genome sequencing and consistency matching, annotated the mutation locus according to genome data, and comparison analysis with Perilla common variants database, finally selected 30 non-synonymous mutation SNPs used as characteristic markers of Zhongyan Feishu No.1. those SNP marker were used as chosen standard of Perilla varieties. Finally breeding new perilla variety Zhongyan Feishu No.1, which possess to characters of the leaf and seed dual-used, high yield, high resistance, and could used to green fertilizer. The Zhongyan Feishu No.1 acquired the plant new varieties identification of Beijing city , the identification numbers is 2016054. Marker assisted identification guide new varieties breeding in plants, which can provide a new reference for breeding of medicinal plants. Copyright© by the Chinese Pharmaceutical Association.
IDEA: Interactive Display for Evolutionary Analyses.
Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C
2008-12-08
The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.
IDEA: Interactive Display for Evolutionary Analyses
Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C
2008-01-01
Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522
Yin, Xian; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian
2017-01-01
Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed. PMID:28106122
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
Wozniak, Magdalena B.; Le Calvez-Kelm, Florence; Abedi-Ardekani, Behnoush; Byrnes, Graham; Durand, Geoffroy; Carreira, Christine; Michelon, Jocelyne; Janout, Vladimir; Holcatova, Ivana; Foretova, Lenka; Brisuda, Antonin; Lesueur, Fabienne; McKay, James; Brennan, Paul; Scelo, Ghislaine
2013-01-01
Gene expression microarray and next generation sequencing efforts on conventional, clear cell renal cell carcinoma (ccRCC) have been mostly performed in North American and Western European populations, while the highest incidence rates are found in Central/Eastern Europe. We conducted whole-genome expression profiling on 101 pairs of ccRCC tumours and adjacent non-tumour renal tissue from Czech patients recruited within the “K2 Study”, using the Illumina HumanHT-12 v4 Expression BeadChips to explore the molecular variations underlying the biological and clinical heterogeneity of this cancer. Differential expression analysis identified 1650 significant probes (fold change ≥2 and false discovery rate <0.05) mapping to 630 up- and 720 down-regulated unique genes. We performed similar statistical analysis on the RNA sequencing data of 65 ccRCC cases from the Cancer Genome Atlas (TCGA) project and identified 60% (402) of the downregulated and 74% (469) of the upregulated genes found in the K2 series. The biological characterization of the significantly deregulated genes demonstrated involvement of downregulated genes in metabolic and catabolic processes, excretion, oxidation reduction, ion transport and response to chemical stimulus, while simultaneously upregulated genes were associated with immune and inflammatory responses, response to hypoxia, stress, wounding, vasculature development and cell activation. Furthermore, genome-wide DNA methylation analysis of 317 TCGA ccRCC/adjacent non-tumour renal tissue pairs indicated that deregulation of approximately 7% of genes could be explained by epigenetic changes. Finally, survival analysis conducted on 89 K2 and 464 TCGA cases identified 8 genes associated with differential prognostic outcomes. In conclusion, a large proportion of ccRCC molecular characteristics were common to the two populations and several may have clinical implications when validated further through large clinical cohorts. PMID:23526956
Genome-wide maps of nuclear lamina interactions in single human cells.
Kind, Jop; Pagie, Ludo; de Vries, Sandra S; Nahidiazar, Leila; Dey, Siddharth S; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas
2015-09-24
Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel
2016-01-01
Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810
The integrated microbial genome resource of analysis.
Checcucci, Alice; Mengoni, Alessio
2015-01-01
Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.
Polten, Andreas; Hezroni, Hadas; Eldar, Yonina C.; Meshorer, Eran; Yakhini, Zohar; Simon, Itamar
2012-01-01
DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR). Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs) in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs) in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR). Our algorithm, ARTO (Analysis of Replication Timing and Organization), uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10–25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are associated with compact chromatin and are located significantly closer to the nuclear envelope. Supplementary material is available. Raw and processed data were deposited in Geo (GSE17236). PMID:23145042
Yang, Chongguang; Lu, Liping; Warren, Joshua L; Wu, Jie; Jiang, Qi; Zuo, Tianyu; Gan, Mingyu; Liu, Mei; Liu, Qingyun; DeRiemer, Kathryn; Hong, Jianjun; Shen, Xin; Colijn, Caroline; Guo, Xiaoqin; Gao, Qian; Cohen, Ted
2018-04-19
Massive internal migration from rural to urban areas poses new challenges for tuberculosis control in China. We aimed to combine genomic, spatial, and epidemiological data to describe the dynamics of tuberculosis in an urban setting with large numbers of migrants. We did a population-based study of culture-positive Mycobacterium tuberculosis isolates in Songjiang, Shanghai. We used whole-genome sequencing to discriminate apparent genetic clusters of M tuberculosis sharing identical variable-number-tandem-repeat (VNTR) patterns, and analysed the relations between proximity of residence and the risk of genomically clustered M tuberculosis. Finally, we used genomic, spatial, and epidemiological data to estimate time of infection and transmission links among migrants and residents. Between Jan 1, 2009, and Dec 31, 2015, 1620 cases of culture-positive tuberculosis were recorded, 1211 (75%) of which occurred among internal migrants. 150 (69%) of 218 people sharing identical VNTR patterns had isolates within ten single-nucleotide polymorphisms (SNPs) of at least one other strain, consistent with recent transmission of M tuberculosis. Pairs of strains collected from individuals living in close proximity were more likely to be genetically similar than those from individuals who lived far away-for every additional km of distance between patients' homes, the odds that genotypically matched strains were within ten SNPs of each other decreased by about 10% (OR 0·89 [95% CI 0·87-0·91]; p<0·0001). We inferred that transmission from residents to migrants occurs as commonly as transmission from migrants to residents, and we estimated that more than two-thirds of migrants in genomic clusters were infected locally after migration. The primary mechanism driving local incidence of tuberculosis in urban centres is local transmission between both migrants and residents. Combined analysis of epidemiological, genomic, and spatial data contributes to a richer understanding of local transmission dynamics and should inform the design of more effective interventions. National Natural Science Foundation of China, National Science and Technology Major Project of China, and US National Institutes of Health. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2011-03-14
Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less
Genome-wide comparative analysis of four Indian Drosophila species.
Mohanty, Sujata; Khanna, Radhika
2017-12-01
Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.
LINE-1 Elements in Structural Variation and Disease
Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.
2014-01-01
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021
Hazin, Ribhi; Brothers, Kyle B; Malin, Bradley A; Koenig, Barbara A; Sanderson, Saskia C; Rothstein, Mark A; Williams, Marc S; Clayton, Ellen W; Kullo, Iftikhar J
2013-10-01
The inclusion of genomic data in the electronic health record raises important ethical, legal, and social issues. In this article, we highlight these challenges and discuss potential solutions. We provide a brief background on the current state of electronic health records in the context of genomic medicine, discuss the importance of equitable access to genome-enabled electronic health records, and consider the potential use of electronic health records for improving genomic literacy in patients and providers. We highlight the importance of privacy, access, and security, and of determining which genomic information is included in the electronic health record. Finally, we discuss the challenges of reporting incidental findings, storing and reinterpreting genomic data, and nondocumentation and duty to warn family members at potential genetic risk.
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z.; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-01-01
Summary: The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. Availability and Implementation: VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org. Contact: lukas.habegger@yale.edu or mark.gerstein@yale.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22743228
Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula
2016-08-20
Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.
The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation
Arkin, Adam
2006-01-01
Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used. PMID:17083272
Williams, Ruth M; Senanayake, Upeka; Artibani, Mara; Taylor, Gunes; Wells, Daniel; Ahmed, Ahmed Ashour; Sauka-Spengler, Tatjana
2018-02-23
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo . © 2018. Published by The Company of Biologists Ltd.
Hobolth, Asger; Dutheil, Julien Y.; Hawks, John; Schierup, Mikkel H.; Mailund, Thomas
2011-01-01
We search the complete orangutan genome for regions where humans are more closely related to orangutans than to chimpanzees due to incomplete lineage sorting (ILS) in the ancestor of human and chimpanzees. The search uses our recently developed coalescent hidden Markov model (HMM) framework. We find ILS present in ∼1% of the genome, and that the ancestral species of human and chimpanzees never experienced a severe population bottleneck. The existence of ILS is validated with simulations, site pattern analysis, and analysis of rare genomic events. The existence of ILS allows us to disentangle the time of isolation of humans and orangutans (the speciation time) from the genetic divergence time, and we find speciation to be as recent as 9–13 million years ago (Mya; contingent on the calibration point). The analyses provide further support for a recent speciation of human and chimpanzee at ∼4 Mya and a diverse ancestor of human and chimpanzee with an effective population size of about 50,000 individuals. Posterior decoding infers ILS for each nucleotide in the genome, and we use this to deduce patterns of selection in the ancestral species. We demonstrate the effect of background selection in the common ancestor of humans and chimpanzees. In agreement with predictions from population genetics, ILS was found to be reduced in exons and gene-dense regions when we control for confounding factors such as GC content and recombination rate. Finally, we find the broad-scale recombination rate to be conserved through the complete ape phylogeny. PMID:21270173
Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.
2014-01-01
A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973
A genome-wide analysis of gene–caffeine consumption interaction on basal cell carcinoma
Li, Xin; Cornelis, Marilyn C.; Liang, Liming; Song, Fengju; De Vivo, Immaculata; Giovannucci, Edward; Tang, Jean Y.; Han, Jiali
2016-01-01
Animal models have suggested that oral or topical administration of caffeine could inhibit ultraviolet-induced carcinogenesis via the ataxia telangiectasia and rad3 (ATR)-related apoptosis. Previous epidemiological studies have demonstrated that increased caffeine consumption is associated with reduced risk of basal cell carcinoma (BCC). To identify common genetic markers that may modify this association, we tested gene–caffeine intake interaction on BCC risk in a genome-wide analysis. We included 3383 BCC cases and 8528 controls of European ancestry from the Nurses’ Health Study and Health Professionals Follow-up Study. Single nucleotide polymorphism (SNP) rs142310826 near the NEIL3 gene showed a genome-wide significant interaction with caffeine consumption (P = 1.78 × 10–8 for interaction) on BCC risk. There was no gender difference for this interaction (P = 0.64 for heterogeneity). NEIL3, a gene belonging to the base excision DNA repair pathway, encodes a DNA glycosylase that recognizes and removes lesions produced by oxidative stress. In addition, we identified several loci with P value for interaction <5 × 10–7 in gender-specific analyses (P for heterogeneity between genders < 0.001) including those mapping to the genes LRRTM4, ATF3 and DCLRE1C in women and POTEA in men. Finally, we tested the associations between caffeine consumption-related SNPs reported by previous genome-wide association studies and risk of BCC, both individually and jointly, but found no significant association. In sum, we identified a DNA repair gene that could be involved in caffeine-mediated skin tumor inhibition. Further studies are warranted to confirm these findings. PMID:27797824
Pezer, Željka; Chung, Amanda G.; Karn, Robert C.
2017-01-01
Abstract The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. PMID:28575204
Lee, Mikyung; Kim, Yangseok
2009-12-16
Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.
The Burmese python genome reveals the molecular basis for extreme adaptation in snakes
Castoe, Todd A.; de Koning, A. P. Jason; Hall, Kathryn T.; Card, Daren C.; Schield, Drew R.; Fujita, Matthew K.; Ruggiero, Robert P.; Degner, Jack F.; Daza, Juan M.; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J.; Castoe, Jill M.; Fox, Samuel E.; Poole, Alex W.; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W.; Li, Qing; Schott, Ryan K.; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A.; Hoffmann, Federico G.; Bogden, Robert; Smith, Eric N.; Chang, Belinda S. W.; Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Richardson, Michael K.; Mackessy, Stephen P.; Bronikowski, Anne M.; Yandell, Mark; Warren, Wesley C.; Secor, Stephen M.; Pollock, David D.
2013-01-01
Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome. PMID:24297902
Heuristics for the inversion median problem
2010-01-01
Background The study of genome rearrangements has become a mainstay of phylogenetics and comparative genomics. Fundamental in such a study is the median problem: given three genomes find a fourth that minimizes the sum of the evolutionary distances between itself and the given three. Many exact algorithms and heuristics have been developed for the inversion median problem, of which the best known is MGR. Results We present a unifying framework for median heuristics, which enables us to clarify existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new insight: the best strategies continue to refer to the input data rather than reducing the problem to smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses input data to the end of its computation and leverages our previous work with DCJ medians. Finally, we present the results of extensive experimentation showing that our new heuristic outperforms all others in accuracy and, especially, in running time: the heuristic typically returns solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25'000 genes--in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1'000 genes. Conclusion Finding good rearrangement medians, in particular inversion medians, had long been regarded as the computational bottleneck in whole-genome studies. Our new heuristic for inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by providing near-optimal solutions within seconds to minutes on even the largest genomes. PMID:20122203
Liu, Chunhong; Morishima, Masae; Jiang, Xiaoling; Yu, Tao; Meng, Kai; Ray, Debjit; Pao, Annie; Ye, Ping; Parmacek, Michael S; Yu, Y Eugene
2014-06-01
Trisomy 21 (Down syndrome, DS) is the most common human genetic anomaly associated with heart defects. Based on evolutionary conservation, DS-associated heart defects have been modeled in mice. By generating and analyzing mouse mutants carrying different genomic rearrangements in human chromosome 21 (Hsa21) syntenic regions, we found the triplication of the Tiam1-Kcnj6 region on mouse chromosome 16 (Mmu16) resulted in DS-related cardiovascular abnormalities. In this study, we developed two tandem duplications spanning the Tiam1-Kcnj6 genomic region on Mmu16 using recombinase-mediated genome engineering, Dp(16)3Yey and Dp(16)4Yey, spanning the 2.1 Mb Tiam1-Il10rb and 3.7 Mb Ifnar1-Kcnj6 regions, respectively. We found that Dp(16)4Yey/+, but not Dp(16)3Yey/+, led to heart defects, suggesting the triplication of the Ifnar1-Kcnj6 region is sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16)4Yey/+ embryos showed that the Hsa21 gene orthologs located within the duplicated interval were expressed at the elevated levels, reflecting the consequences of the gene dosage alterations. Therefore, we have identified a 3.7 Mb genomic region, the smallest critical genomic region, for DS-associated heart defects, and our results should set the stage for the final step to establish the identities of the causal gene(s), whose elevated expression(s) directly underlie this major DS phenotype.
The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.
Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D
2013-12-17
Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.
Stakeholder consultation insights on the future of genomics at the clinical-public health interface.
Modell, Stephen M; Kardia, Sharon L R; Citrin, Toby
2014-05-01
In summer 2011, the Centers for Disease Control and Prevention Office of Public Health Genomics conducted a stakeholder consultation, administered by the University of Michigan Center for Public Health and Community Genomics, and Genetic Alliance, to recommend priorities for public health genomics from 2012 through 2017. Sixty-two responses from health professionals, administrators, and members of the public were pooled with 2 sets of key informant interviews and 3 discussion groups. NVivo 9 and manual methods were used to organize themes. This review offers an interim analysis of progress with respect to the final recommendations, which demonstrated a strong interest in moving genomic discoveries toward implementation and comparative effectiveness (T3/T4) translational research. A translational research continuum exists with familial breast and ovarian cancer at one end and prostate cancer at the other. Cascade screening for inherited arrhythmia syndromes and hypercholesterolemia lags stakeholder recommendations in the United States but not in Europe; implementation of health service-based screening for Lynch syndrome, and integration into electronic health information systems, is on pace with the recommended timeline. A number of options exist to address deficits in the funding of translational research, particularly for oncogenomic gene expression profiling. The goal of personalized risk assessment necessitates both research progress (eg, in whole genome sequencing, as well as provider education in the differentiation of low- vs high-risk status. The public health approach supports an emphasis on genetic test validation while endorsing clinical translation research inclusion of an environmental and population-based perspective. Copyright © 2014 Mosby, Inc. All rights reserved.
2010-01-01
Background Mitochondria are a valuable resource for studying the evolutionary process and deducing phylogeny. A few mitochondria genomes have been sequenced, but a comprehensive picture of the domestication event for silkworm mitochondria remains to be established. In this study, we integrate the extant data, and perform a whole genome resequencing of Japanese wild silkworm to obtain breakthrough results in silkworm mitochondrial (mt) population, and finally use these to deduce a more comprehensive phylogeny of the Bombycidae. Results We identified 347 single nucleotide polymorphisms (SNPs) in the mt genome, but found no past recombination event to have occurred in the silkworm progenitor. A phylogeny inferred from these whole genome SNPs resulted in a well-classified tree, confirming that the domesticated silkworm, Bombyx mori, most recently diverged from the Chinese wild silkworm, rather than from the Japanese wild silkworm. We showed that the population sizes of the domesticated and Chinese wild silkworms both experience neither expansion nor contraction. We also discovered that one mt gene, named cytochrome b, shows a strong signal of positive selection in the domesticated clade. This gene is related to energy metabolism, and may have played an important role during silkworm domestication. Conclusions We present a comparative analysis on 41 mt genomes of B. mori and B. mandarina from China and Japan. With these, we obtain a much clearer picture of the evolution history of the silkworm. The data and analyses presented here aid our understanding of the silkworm in general, and provide a crucial insight into silkworm phylogeny. PMID:20334646
A genome-wide association meta-analysis identifies new childhood obesity loci
Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.
2012-01-01
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627
Estimating differential expression from multiple indicators
Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik
2014-01-01
Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062
Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640
Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.
Similar Ratios of Introns to Intergenic Sequence across Animal Genomes
Wörheide, Gert
2017-01-01
Abstract One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. PMID:28633296
Yoneyama, T; Hagiwara, A; Hara, M; Shimojo, H
1982-01-01
A close relationship was demonstrated by oligonucleotide fingerprinting between genomes of the poliovirus type 2 Sabin vaccine strain and recent isolates from paralytic cases associated with vaccination in Japan. The oligonucleotide maps of isolates from an agammaglobulinemic patient, who continued to excrete poliovirus type 2 for 3.5 years after the administration of oral vaccine, showed that the genomic alteration proceeded gradually, retaining the majority of the oligonucleotides characteristic of the vaccine strain for a long period, indicating vaccine origin for the isolates. The final isolate at month 41, however, lost the majority of these oligonucleotides. The heterologous antigenic relationship between the final isolate and the previous isolates was also observed. The serial alteration in electrophoretic mobility of the major structural proteins (VP1, VP2, and VP3) was observed throughout the excreting period. These results indicate that the population of the virus in this individual changed markedly during the last short period (about 3 months), in which the treatment with secretory immunoglobulin A was carried out. Genome comparisons in oligonucleotide maps show that some oligonucleotides in the genome of the vaccine strain are highly mutable after passage in humans. Images PMID:6179881
Huang, Zhenzhen; Duan, Huilong; Li, Haomin
2015-01-01
Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supportedmore » by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less
Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level
Chen, Zixi; Chen, Lei; Zhang, Weiwen
2017-01-01
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented. PMID:28979258
The Genomic HyperBrowser: an analysis web server for genome-scale data
Sandve, Geir K.; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K.; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalaš, Matúš; Lien, Tonje; Rye, Morten B.; Frigessi, Arnoldo; Hovig, Eivind
2013-01-01
The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome. PMID:23632163
The Genomic HyperBrowser: an analysis web server for genome-scale data.
Sandve, Geir K; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalas, Matús; Lien, Tonje; Rye, Morten B; Frigessi, Arnoldo; Hovig, Eivind
2013-07-01
The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome.
The end of the LINE?: lack of recent L1 activity in a group of South American rodents.
Casavant, N C; Scott, L; Cantrell, M A; Wiggins, L E; Baker, R J; Wichman, H A
2000-01-01
L1s (LINE-1: Long Interspersed Nuclear Element 1) are present in all mammals examined to date. They occur in both placental mammals and marsupials and thus are thought to have been present in the genome prior to the mammalian radiation. This unusual conservation of a transposable element family for over 100 million years has led to speculation that these elements provide an advantage to the genomes they inhabit. We have recently identified a group of South American rodents, including rice rats (Oryzomys), in which L1s appear to be quiescent or extinct. Several observations support this conclusion. First, genomic Southern blot analysis fails to reveal genus-specific bands in Oryzomys. Second, we were unable to find recently inserted elements. Procedures to enrich for young elements did not yield any with an intact open reading frame for reverse transcriptase; all elements isolated had numerous insertions, deletions, and stop codons. Phylogenetic analysis failed to yield species-specific clusters among the L1 elements isolated, and all Oryzomys sequences had numerous private mutations. Finally, in situ hybridization of L1 to Oryzomys chromosomes failed to reveal the characteristic L1 distribution in Oryzomys with either a homologous or heterologous probe. Thus, Oryzomys is a viable candidate for L1 extinction from a mammalian host. PMID:10747071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.; ...
2018-02-16
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
Shared genetic aetiology of puberty timing between sexes and with health-related outcomes
Day, Felix R.; Bulik-Sullivan, Brendan; Hinds, David A.; Finucane, Hilary K.; Murabito, Joanne M.; Tung, Joyce Y.; Ong, Ken K.; Perry, John R.B.
2015-01-01
Understanding of the genetic regulation of puberty timing has come largely from studies of rare disorders and population-based studies in women. Here, we report the largest genomic analysis for puberty timing in 55,871 men, based on recalled age at voice breaking. Analysis across all genomic variants reveals strong genetic correlation (0.74, P=2.7 × 10−70) between male and female puberty timing. However, some loci show sex-divergent effects, including directionally opposite effects between sexes at the SIM1/MCHR2 locus (Pheterogeneity=1.6 × 10−12). We find five novel loci for puberty timing (P<5 × 10−8), in addition to nine signals in men that were previously reported in women. Newly implicated genes include two retinoic acid-related receptors, RORB and RXRA, and two genes reportedly disrupted in rare disorders of puberty, LEPR and KAL1. Finally, we identify genetic correlations that indicate shared aetiologies in both sexes between puberty timing and body mass index, fasting insulin levels, lipid levels, type 2 diabetes and cardiovascular disease. PMID:26548314
Shared genetic aetiology of puberty timing between sexes and with health-related outcomes.
Day, Felix R; Bulik-Sullivan, Brendan; Hinds, David A; Finucane, Hilary K; Murabito, Joanne M; Tung, Joyce Y; Ong, Ken K; Perry, John R B
2015-11-09
Understanding of the genetic regulation of puberty timing has come largely from studies of rare disorders and population-based studies in women. Here, we report the largest genomic analysis for puberty timing in 55,871 men, based on recalled age at voice breaking. Analysis across all genomic variants reveals strong genetic correlation (0.74, P=2.7 × 10(-70)) between male and female puberty timing. However, some loci show sex-divergent effects, including directionally opposite effects between sexes at the SIM1/MCHR2 locus (Pheterogeneity=1.6 × 10(-12)). We find five novel loci for puberty timing (P<5 × 10(-8)), in addition to nine signals in men that were previously reported in women. Newly implicated genes include two retinoic acid-related receptors, RORB and RXRA, and two genes reportedly disrupted in rare disorders of puberty, LEPR and KAL1. Finally, we identify genetic correlations that indicate shared aetiologies in both sexes between puberty timing and body mass index, fasting insulin levels, lipid levels, type 2 diabetes and cardiovascular disease.
Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao
2012-03-01
High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.
O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan
2015-01-15
Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.
Nelson, Sarah C.; Stilp, Adrienne M.; Papanicolaou, George J.; Taylor, Kent D.; Rotter, Jerome I.; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available. PMID:27346520
Tejerizo, Gonzalo Torres; Kim, Yong Sung; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Off, Sandra; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas
2017-04-10
Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats. Copyright © 2017 Elsevier B.V. All rights reserved.
Genome characterization of the selected long- and short-sleep mouse lines.
Dowell, Robin; Odell, Aaron; Richmond, Phillip; Malmer, Daniel; Halper-Stromberg, Eitan; Bennett, Beth; Larson, Colin; Leach, Sonia; Radcliffe, Richard A
2016-12-01
The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.
Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.
Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T
2017-10-01
Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, Michael
2012-06-01
Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
FitzGerald, Michael
2018-01-11
Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Fungal Genomics for Energy and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2013-03-11
Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less
Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping
2017-12-01
The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.
Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng
2017-10-01
The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.
Development of forward genetics in Toxoplasma gondii
Sibley, L. David
2009-01-01
The development of forward genetics as a functional system in Toxoplasma gondii spanned more than three decades from the mid-1970s until now. The initial demonstration of experimental genetics relied on chemically-induced drug resistant mutants that were crossed by co-infecting cats, collecting oocysts, sporulating and hatching progeny in vitro. To capitalize on this, genetic markers were employed to develop linkage maps by tracking inheritance through experimental crosses. In all, three generations of genetic maps were developed to define the chromosomes, estimate recombination rates, and provide a system for linkage analysis. Ultimately this genetic map would become the foundation for the assembly of the T. gondii genome, which was derived from whole genome shotgun sequencing, into a chromosome-centric view. Finally, application of forward genetics to multigenic biological traits showed the potential to map and identify specific genes that control complex phenotypes including virulence. PMID:19254720
Summary of talks and papers at ISCB-Asia/SCCG 2012
2013-01-01
The second ISCB-Asia conference of the International Society for Computational Biology took place December 17-19, 2012, in Shenzhen, China. The conference was co-hosted by BGI as the first Shenzhen Conference on Computational Genomics (SCCG). 45 talks were presented at ISCB-Asia/SCCG 2012. The topics covered included software tools, reproducible computing, next-generation sequencing data analysis, transcription and mRNA regulation, protein structure and function, cancer genomics and personalized medicine. Nine of the proceedings track talks are included as full papers in this supplement. In this report we first give a short overview of the conference by listing some statistics and visualizing the talk abstracts as word clouds. Then we group the talks by topic and briefly summarize each one, providing references to related publications whenever possible. Finally, we close with a few comments on the success of this conference.
Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.
Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju
2014-08-01
Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.
Pathways for virus assembly around nucleic acids
Perlmutter, Jason D; Perkett, Matthew R
2014-01-01
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288
Log-Linear Models for Gene Association
Hu, Jianhua; Joshi, Adarsh; Johnson, Valen E.
2009-01-01
We describe a class of log-linear models for the detection of interactions in high-dimensional genomic data. This class of models leads to a Bayesian model selection algorithm that can be applied to data that have been reduced to contingency tables using ranks of observations within subjects, and discretization of these ranks within gene/network components. Many normalization issues associated with the analysis of genomic data are thereby avoided. A prior density based on Ewens’ sampling distribution is used to restrict the number of interacting components assigned high posterior probability, and the calculation of posterior model probabilities is expedited by approximations based on the likelihood ratio statistic. Simulation studies are used to evaluate the efficiency of the resulting algorithm for known interaction structures. Finally, the algorithm is validated in a microarray study for which it was possible to obtain biological confirmation of detected interactions. PMID:19655032
Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data
Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian
2015-01-01
In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213
Lessons learned from the dog genome.
Wayne, Robert K; Ostrander, Elaine A
2007-11-01
Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.
CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips
Tan, Mui Fern; Jakubovics, Nick S.; Wee, Wei Yee; Mutha, Naresh V. R.; Wong, Guat Jah; Ang, Mia Yang; Yazdi, Amir Hessam; Choo, Siew Woh
2014-01-01
Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/. PMID:24466021
Genome Annotation and Transcriptomics of Oil-Producing Algae
2015-03-16
AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some
Systematic analysis of transcription start sites in avian development.
Lizio, Marina; Deviatiiarov, Ruslan; Nagai, Hiroki; Galan, Laura; Arner, Erik; Itoh, Masayoshi; Lassmann, Timo; Kasukawa, Takeya; Hasegawa, Akira; Ros, Marian A; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Kawaji, Hideya; Gusev, Oleg; Sheng, Guojun
2017-09-01
Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.
Nullomers and High Order Nullomers in Genomic Sequences
Vergni, Davide; Santoni, Daniele
2016-01-01
A nullomer is an oligomer that does not occur as a subsequence in a given DNA sequence, i.e. it is an absent word of that sequence. The importance of nullomers in several applications, from drug discovery to forensic practice, is now debated in the literature. Here, we investigated the nature of nullomers, whether their absence in genomes has just a statistical explanation or it is a peculiar feature of genomic sequences. We introduced an extension of the notion of nullomer, namely high order nullomers, which are nullomers whose mutated sequences are still nullomers. We studied different aspects of them: comparison with nullomers of random sequences, CpG distribution and mean helical rise. In agreement with previous results we found that the number of nullomers in the human genome is much larger than expected by chance. Nevertheless antithetical results were found when considering a random DNA sequence preserving dinucleotide frequencies. The analysis of CpG frequencies in nullomers and high order nullomers revealed, as expected, a high CpG content but it also highlighted a strong dependence of CpG frequencies on the dinucleotide position, suggesting that nullomers have their own peculiar structure and are not simply sequences whose CpG frequency is biased. Furthermore, phylogenetic trees were built on eleven species based on both the similarities between the dinucleotide frequencies and the number of nullomers two species share, showing that nullomers are fairly conserved among close species. Finally the study of mean helical rise of nullomers sequences revealed significantly high mean rise values, reinforcing the hypothesis that those sequences have some peculiar structural features. The obtained results show that nullomers are the consequence of the peculiar structure of DNA (also including biased CpG frequency and CpGs islands), so that the hypermutability model, also taking into account CpG islands, seems to be not sufficient to explain nullomer phenomenon. Finally, high order nullomers could emphasize those features that already make simple nullomers useful in several applications. PMID:27906971
Thakur, Shalabh; Guttman, David S
2016-06-30
Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .
Plant centromeres: structure and control.
Richards, E J; Dawe, R K
1998-04-01
Recent work has led to a better understanding of the molecular components of plant centromeres. Conservation of at least some centromere protein constituents between plant and non-plant systems has been demonstrated. The identity and organization of plant centromeric DNA sequences are also beginning to yield to analysis. While there is little primary DNA sequence conservation among the characterized plant centromeres and their non-plant counterparts, some parallels in centromere genomic organisation can be seen across species. Finally, the emerging idea that centromere activity is controlled epigenetically finds support in an examination of the plant centromere literature.
Assignment of Alzheimer's presenilin-2 (PS-2) gene to 1q42.1 by fluorescence in situ hybridization.
Takano, T; Sahara, N; Yamanouchi, Y; Mori, H
1997-01-17
Presenilin-2 (PS-2) was suggested to be localized on 1q31-42 based on linkage analysis and cDNA cloning. The final identification of PS-2 as the causal gene for early-onset familial Alzheimer's disease in Voga-German pedigrees was concluded based on the point mutation found in the candidate cDNA isolated from this familial AD. We present evidence of its physical genome mapping of PS-2 on chromosome 1q42.1 by fluorescence in situ hybridization method.
Evolution and Diversity of Transposable Elements in Vertebrate Genomes.
Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A
2017-01-01
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Patel, Isha R.; Gangiredla, Jayanthi; Lacher, David W.; Mammel, Mark K.; Jackson, Scott A.; Lampel, Keith A.
2016-01-01
ABSTRACT Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available whole-genome sequences of E. coli and Shigella spp. by distilling useful signatures for epidemiology and molecular risk assessment into one assay. The FDA-ECID microarray contains features that enable comprehensive molecular serotyping and virulence profiling along with genome-scale genotyping and SNP analysis. Hence, it is a molecular toolbox that stratifies strain identification and pathogenic potential in the contexts of epidemiology and phylogeny. We applied this tool to strains from food, environmental, and clinical sources, resulting in significantly greater phylogenetic and strain-specific resolution than previously reported for available typing methods. PMID:27037122
Jaiswal, Alok; Peddinti, Gopal; Akimov, Yevhen; Wennerberg, Krister; Kuznetsov, Sergey; Tang, Jing; Aittokallio, Tero
2017-06-01
Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.
Conte, Matthew A; Gammerdinger, William J; Bartie, Kerry L; Penman, David J; Kocher, Thomas D
2017-05-02
Tilapias are the second most farmed fishes in the world and a sustainable source of food. Like many other fish, tilapias are sexually dimorphic and sex is a commercially important trait in these fish. In this study, we developed a significantly improved assembly of the tilapia genome using the latest genome sequencing methods and show how it improves the characterization of two sex determination regions in two tilapia species. A homozygous clonal XX female Nile tilapia (Oreochromis niloticus) was sequenced to 44X coverage using Pacific Biosciences (PacBio) SMRT sequencing. Dozens of candidate de novo assemblies were generated and an optimal assembly (contig NG50 of 3.3Mbp) was selected using principal component analysis of likelihood scores calculated from several paired-end sequencing libraries. Comparison of the new assembly to the previous O. niloticus genome assembly reveals that recently duplicated portions of the genome are now well represented. The overall number of genes in the new assembly increased by 27.3%, including a 67% increase in pseudogenes. The new tilapia genome assembly correctly represents two recent vasa gene duplication events that have been verified with BAC sequencing. At total of 146Mbp of additional transposable element sequence are now assembled, a large proportion of which are recent insertions. Large centromeric satellite repeats are assembled and annotated in cichlid fish for the first time. Finally, the new assembly identifies the long-range structure of both a ~9Mbp XY sex determination region on LG1 in O. niloticus, and a ~50Mbp WZ sex determination region on LG3 in the related species O. aureus. This study highlights the use of long read sequencing to correctly assemble recent duplications and to characterize repeat-filled regions of the genome. The study serves as an example of the need for high quality genome assemblies and provides a framework for identifying sex determining genes in tilapia and related fish species.
Baucom, Regina S; Estill, James C; Chaparro, Cristian; Upshaw, Naadira; Jogi, Ansuya; Deragon, Jean-Marc; Westerman, Richard P; Sanmiguel, Phillip J; Bennetzen, Jeffrey L
2009-11-01
Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.
ParallABEL: an R library for generalized parallelization of genome-wide association studies.
Sangket, Unitsa; Mahasirimongkol, Surakameth; Chantratita, Wasun; Tandayya, Pichaya; Aulchenko, Yurii S
2010-04-29
Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL.
Weber, Kristina L; Welly, Bryan T; Van Eenennaam, Alison L; Young, Amy E; Porto-Neto, Laercio R; Reverter, Antonio; Rincon, Gonzalo
2016-01-01
Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other traits and gene co-expression networks.
van der Harst, Pim; Verweij, Niek
2018-02-02
Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view on the genetic architecture of CAD. © 2017 The Authors.
A dictionary based informational genome analysis
2012-01-01
Background In the post-genomic era several methods of computational genomics are emerging to understand how the whole information is structured within genomes. Literature of last five years accounts for several alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others, recent approaches are based on empirical frequencies of DNA k-mers in whole genomes. Results Any set of words (factors) occurring in a genome provides a genomic dictionary. About sixty genomes were analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local sequence analysis. A software prototype applying a methodology here outlined carried out some computations on genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with frequency distributions. The software performed three main tasks: computation of informational indexes, storage of these in a database, index analysis and visualization. The validation was done by investigating genomes of various organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for example to compute excessively represented functional sequences, such as promoters), was discussed, and suggested a method to define synthetic genetic networks. Conclusions We introduced a methodology based on dictionaries, and an efficient motif-finding software application for comparative genomics. This approach could be extended along many investigation lines, namely exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies. PMID:22985068
GenomeVIP: a cloud platform for genomic variant discovery and interpretation
Mashl, R. Jay; Scott, Adam D.; Huang, Kuan-lin; Wyczalkowski, Matthew A.; Yoon, Christopher J.; Niu, Beifang; DeNardo, Erin; Yellapantula, Venkata D.; Handsaker, Robert E.; Chen, Ken; Koboldt, Daniel C.; Ye, Kai; Fenyö, David; Raphael, Benjamin J.; Wendl, Michael C.; Ding, Li
2017-01-01
Identifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a result, the search for alternative approaches to the traditional “download and analyze” paradigm on local computing resources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis. Here, we introduce the Genome Variant Investigation Platform (GenomeVIP), an open-source framework for performing genomics variant discovery and annotation using cloud- or local high-performance computing infrastructure. GenomeVIP orchestrates the analysis of whole-genome and exome sequence data using a set of robust and popular task-specific tools, including VarScan, GATK, Pindel, BreakDancer, Strelka, and Genome STRiP, through a web interface. GenomeVIP has been used for genomic analysis in large-data projects such as the TCGA PanCanAtlas and in other projects, such as the ICGC Pilots, CPTAC, ICGC-TCGA DREAM Challenges, and the 1000 Genomes SV Project. Here, we demonstrate GenomeVIP's ability to provide high-confidence annotated somatic, germline, and de novo variants of potential biological significance using publicly available data sets. PMID:28522612
Fueling the Future with Fungal Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2014-10-27
Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less
Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.
Francis, Warren R; Wörheide, Gert
2017-06-01
One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Pang, T
2009-12-01
Scientific and technological advances derived from the genomics revolution have a central role to play in dealing with continuing infectious disease threats in the developing world caused by emerging and re-emerging pathogens. These techniques, coupled with increasing knowledge of host-pathogen interactions, can assist in the early identification and containment of outbreaks as well as in the development of preventive vaccination and therapeutic interventions, including the urgent need for new antibiotics. However, the effective application of genomics technologies faces key barriers and challenges which occur at three stages: from the research to the products, from the products to individual patients, and, finally, from patients to entire populations. There needs to be an emphasis on research in areas of greatest need, in facilitating the translation of research into interventions and, finally, the effective delivery of such interventions to those in greatest need. Ultimate success will depend on bringing together science, society and policy to develop effective public health implementation strategies to provide health security and health equity for all peoples.
Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.
Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare
2017-01-01
The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We highlight both the advantages and caveats of three commonly used genome-wide 5hmC profiling technologies and show that interpretation of 5hmC data can be significantly influenced by the sensitivity of methods used, especially as the levels of 5hmC are low and vary in different cell types and different genomic locations.
Sequence and Analysis of the Genome of the Pathogenic Yeast Candida orthopsilosis
Riccombeni, Alessandro; Vidanes, Genevieve; Proux-Wéra, Estelle; Wolfe, Kenneth H.; Butler, Geraldine
2012-01-01
Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH, undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with expansion of gene families. PMID:22563396
Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis G; De Francisci, Davide; Valle, Giorgio; Angelidaki, Irini
2016-01-01
Biogas production is an economically attractive technology that has gained momentum worldwide over the past years. Biogas is produced by a biologically mediated process, widely known as "anaerobic digestion." This process is performed by a specialized and complex microbial community, in which different members have distinct roles in the establishment of a collective organization. Deciphering the complex microbial community engaged in this process is interesting both for unraveling the network of bacterial interactions and for applicability potential to the derived knowledge. In this study, we dissect the bioma involved in anaerobic digestion by means of high throughput Illumina sequencing (~51 gigabases of sequence data), disclosing nearly one million genes and extracting 106 microbial genomes by a novel strategy combining two binning processes. Microbial phylogeny and putative taxonomy performed using >400 proteins revealed that the biogas community is a trove of new species. A new approach based on functional properties as per network representation was developed to assign roles to the microbial species. The organization of the anaerobic digestion microbiome is resembled by a funnel concept, in which the microbial consortium presents a progressive functional specialization while reaching the final step of the process (i.e., methanogenesis). Key microbial genomes encoding enzymes involved in specific metabolic pathways, such as carbohydrates utilization, fatty acids degradation, amino acids fermentation, and syntrophic acetate oxidation, were identified. Additionally, the analysis identified a new uncultured archaeon that was putatively related to Methanomassiliicoccales but surprisingly having a methylotrophic methanogenic pathway. This study is a pioneer research on the phylogenetic and functional characterization of the microbial community populating biogas reactors. By applying for the first time high-throughput sequencing and a novel binning strategy, the identified genes were anchored to single genomes providing a clear understanding of their metabolic pathways and highlighting their involvement in anaerobic digestion. The overall research established a reference catalog of biogas microbial genomes that will greatly simplify future genomic studies.
Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J; Wurtele, Eve Syrkin
2013-04-01
Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publicly available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these datasets with transcriptomic data to create hypotheses concerning specialized metabolisms that generate the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software.
Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J.
2013-01-01
Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publically available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these dataset with transcriptomic data to create hypotheses concerning specialized metabolism that generates the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software. PMID:23447050
Gene context analysis in the Integrated Microbial Genomes (IMG) data management system.
Mavromatis, Konstantinos; Chu, Ken; Ivanova, Natalia; Hooper, Sean D; Markowitz, Victor M; Kyrpides, Nikos C
2009-11-24
Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.
YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.
Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh
2015-01-16
Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .
Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L
2016-01-04
The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Biohistorical materials and contemporary privacy concerns-the forensic case of King Albert I.
Larmuseau, Maarten H D; Bekaert, Bram; Baumers, Maarten; Wenseleers, Tom; Deforce, Dieter; Borry, Pascal; Decorte, Ronny
2016-09-01
The rapid advancement of technology in genomic analysis increasingly allows researchers to study human biohistorical materials. Nevertheless, little attention has been paid to the privacy of the donor's living relatives and the negative impact they might experience from the (public) availability of genetic results, even in cases of scientific, forensic or historical relevance. This issue has become clear during a cold case investigation of a relic attributed to Belgian King and World War I-hero Albert I who died, according to the official version, in a solo climbing accident in 1934. Authentication of the relic with blood stains assigned to the King and collected on the place where his body was discovered is recognised as one of the final opportunities to test the plausibility of various conspiracy theories on the King's demise. While the historical value and current technological developments allow the genomic analysis of this relic, publication of genetic data would immediately lead to privacy concerns for living descendants and relatives of the King, including the Belgian and British royal families, even after more than 80 years. Therefore, the authentication study of the relic of King Albert I has been a difficult exercise towards balancing public research interests and privacy interests. The identification of the relic was realised by using a strict genetic genealogical approach including Y-chromosome and mitochondrial genome comparison with living relatives, thereby limiting the analysis to genomic regions relevant for identification. The genetic results combined with all available historical elements concerning the relic, provide strong evidence that King Albert I was indeed the donor of the blood stains, which is in line with the official climbing accident hypothesis and contradicts widespread 'mise-en-scène' scenarios. Since publication of the haploid data of the blood stains has the potential to violate the privacy of living relatives, we opted for external and independent reviewing of (the quality of) our data and statistical interpretation by external forensic experts in haploid markers to guarantee the objectivity and scientific accuracy of the identification data analysis as well as the privacy of living descendants and relatives. Although the cold case investigation provided relevant insights into the circumstances surrounding the death of King Albert I, it also revealed the insufficient ethical guidance for current genomic studies of biohistorical material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sanzol, Javier
2010-05-14
Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.
Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7
Katani, Robab; Cote, Rebecca; Kudva, Indira T.; DebRoy, Chitrita; Arthur, Terrance M.
2017-01-01
Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157. PMID:28797098
Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7.
Katani, Robab; Cote, Rebecca; Kudva, Indira T; DebRoy, Chitrita; Arthur, Terrance M; Kapur, Vivek
2017-01-01
Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157.
Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq.
Shmakov, Nickolay A; Vasiliev, Gennadiy V; Shatskaya, Natalya V; Doroshkov, Alexey V; Gordeeva, Elena I; Afonnikov, Dmitry A; Khlestkina, Elena K
2016-11-16
Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Comparative analysis reveals genomic features of stress-induced transcriptional readthrough
Vilborg, Anna; Sabath, Niv; Wiesel, Yuval; Nathans, Jenny; Levy-Adam, Flonia; Yario, Therese A.; Steitz, Joan A.; Shalgi, Reut
2017-01-01
Transcription is a highly regulated process, and stress-induced changes in gene transcription have been shown to play a major role in stress responses and adaptation. Genome-wide studies reveal prevalent transcription beyond known protein-coding gene loci, generating a variety of RNA classes, most of unknown function. One such class, termed downstream of gene-containing transcripts (DoGs), was reported to result from transcriptional readthrough upon osmotic stress in human cells. However, how widespread the readthrough phenomenon is, and what its causes and consequences are, remain elusive. Here we present a genome-wide mapping of transcriptional readthrough, using nuclear RNA-Seq, comparing heat shock, osmotic stress, and oxidative stress in NIH 3T3 mouse fibroblast cells. We observe massive induction of transcriptional readthrough, both in levels and length, under all stress conditions, with significant, yet not complete, overlap of readthrough-induced loci between different conditions. Importantly, our analyses suggest that stress-induced transcriptional readthrough is not a random failure process, but is rather differentially induced across different conditions. We explore potential regulators and find a role for HSF1 in the induction of a subset of heat shock-induced readthrough transcripts. Analysis of public datasets detected increases in polymerase II occupancy in DoG regions after heat shock, supporting our findings. Interestingly, DoGs tend to be produced in the vicinity of neighboring genes, leading to a marked increase in their antisense-generating potential. Finally, we examine genomic features of readthrough transcription and observe a unique chromatin signature typical of DoG-producing regions, suggesting that readthrough transcription is associated with the maintenance of an open chromatin state. PMID:28928151
Metagenomic Analysis of Therapeutic PYO Phage Cocktails from 1997 to 2014
Larsen, Mette Voldby
2017-01-01
Phage therapy has regained interest in recent years due to the alarming spread of antibiotic resistance. Whilst phage cocktails are commonly sold in pharmacies in countries such as Georgia and Russia, this is not the case in western countries due to western regulatory agencies requiring a thorough characterization of the drug. Here, DNA sequencing of constituent biological entities constitutes a first step. The pyophage (PYO) cocktail is one of the main commercial products of the Georgian Eliava Institute of Bacteriophage, Microbiology and Virology and is used to cure skin infections. Since its first production in the 1930s, the composition of the cocktail has been periodically modified to add phages effective against emerging pathogenic strains. In this paper, we compared the composition of three PYO cocktails from 1997 (PYO97), 2000 (PYO2000) and 2014 (PYO2014). Based on next generation sequencing, de novo assembly and binning of contigs into draft genomes based on tetranucleotide distance, thirty and twenty-nine phage draft genomes were predicted in PYO97 and PYO2014, respectively. Of these, thirteen and fifteen shared high similarity to known phages. Eleven draft genomes were found to be common in the two cocktails. One of these showed no similarity to publicly available phage genomes. Representatives of phages targeting E. faecalis, E. faecium, E. coli, Proteus, P. aeruginosa and S. aureus were found in both cocktails. Finally, we estimated larger overlap of the PYO2000 cocktail to PYO97 compared to PYO2014. Using next generation sequencing and metagenomics analysis, we were able to characterize and compare the content of PYO cocktails separated by 17 years in time. Even though the cocktail composition is upgraded every six months, we found it to remain relatively stable over the years. PMID:29099783
Liu, Tianzhe; Wang, Pinmei; Zhao, Wenpeng; Zhu, Muyuan; Jiang, Xinhang; Zhao, Yuhua; Wu, Xuechang
2012-01-01
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes. PMID:22363590
Wang, Xiaoyun; Liu, Hailiang; Chen, Yangyi; Guo, Lei; Luo, Fang; Sun, Jiufeng; Mao, Qiang; Liang, Pei; Xie, Zhizhi; Zhou, Chenhui; Tian, Yanli; Lv, Xiaoli; Huang, Lisi; Zhou, Juanjuan; Hu, Yue; Li, Ran; Zhang, Fan; Lei, Huali; Li, Wenfang; Hu, Xuchu; Liang, Chi; Xu, Jin; Li, Xuerong; Yu, Xinbing
2013-01-01
Clonorchis sinensis (C. sinensis), an important food-borne parasite that inhabits the intrahepatic bile duct and causes clonorchiasis, is of interest to both the public health field and the scientific research community. To learn more about the migration, parasitism and pathogenesis of C. sinensis at the molecular level, the present study developed an upgraded genomic assembly and annotation by sequencing paired-end and mate-paired libraries. We also performed transcriptome sequence analyses on multiple C. sinensis tissues (sucker, muscle, ovary and testis). Genes encoding molecules involved in responses to stimuli and muscle-related development were abundantly expressed in the oral sucker. Compared with other species, genes encoding molecules that facilitate the recognition and transport of cholesterol were observed in high copy numbers in the genome and were highly expressed in the oral sucker. Genes encoding transporters for fatty acids, glucose, amino acids and oxygen were also highly expressed, along with other molecules involved in metabolizing these substrates. All genes involved in energy metabolism pathways, including the β-oxidation of fatty acids, the citrate cycle, oxidative phosphorylation, and fumarate reduction, were expressed in the adults. Finally, we also provide valuable insights into the mechanism underlying the process of pathogenesis by characterizing the secretome of C. sinensis. The characterization and elaborate analysis of the upgraded genome and the tissue transcriptomes not only form a detailed and fundamental C. sinensis resource but also provide novel insights into the physiology and pathogenesis of C. sinensis. We anticipate that this work will aid the development of innovative strategies for the prevention and control of clonorchiasis. PMID:23382950
VitisExpDB: a database resource for grape functional genomics.
Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L
2008-02-28
The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores approximately 320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of approximately 20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website http://cropdisease.ars.usda.gov/vitis_at/main-page.htm.
Poplar Interactome: Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, Pankaj
The feedstock plant Poplar has many advantages over traditional crop plants. Not only Poplar needs low energy input and off season storage as compared to feedstocks such as corn, in the winter season Poplar biomass is stored on the stem/trunk, and Poplar plantations serve as large carbon sink. A key constraint to the expansion of cellulosic bioenergy sources such as in Poplar however, is the negative consequence of converting land use from food crops to energy crops. Therefore in order for Poplar to become a viable energy crop it needs to be grown mostly on marginal land unsuitable agricultural crops.more » For this we need a better understanding of abiotic stress and adaptation response in poplar. In the process we expected to find new and existing poplar genes and their function that respond to sustain abiotic stress. We carried out an extensive gene expression study on the control untreated and stress (drought, salinity, cold and heat) treated poplar plants. The samples were collected from the stem, leaf and root tissues. The RNA of protein coding genes and regulatory smallRNA genes were sequenced generating more than a billion reads. This is the first such known study in Poplar plants. These were used for quantification and genomic analysis to identify stress responsive genes in poplar. Based on the quantification and genomic analysis, a select set of genes were studied for gene-gene interactions to find their association to stress response. The data was also used to find novel stress responsive genes in poplar that were previously not identified in the Poplar reference genome. The data is made available to the public through the national and international genomic data archives.« less
VitisExpDB: A database resource for grape functional genomics
Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L
2008-01-01
Background The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. Description VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. Conclusion The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website . PMID:18307813
Zhao, Qian; Ma, Dongna; Huang, Yuping; He, Weiyi; Li, Yiying; Vasseur, Liette; You, Minsheng
2018-04-01
Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.
Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network
Chen, Zhao; Tang, Hua; Qayyum, Rehan; Schick, Ursula M.; Nalls, Michael A.; Handsaker, Robert; Li, Jin; Lu, Yingchang; Yanek, Lisa R.; Keating, Brendan; Meng, Yan; van Rooij, Frank J.A.; Okada, Yukinori; Kubo, Michiaki; Rasmussen-Torvik, Laura; Keller, Margaux F.; Lange, Leslie; Evans, Michele; Bottinger, Erwin P.; Linderman, Michael D.; Ruderfer, Douglas M.; Hakonarson, Hakon; Papanicolaou, George; Zonderman, Alan B.; Gottesman, Omri; Thomson, Cynthia; Ziv, Elad; Singleton, Andrew B.; Loos, Ruth J.F.; Sleiman, Patrick M.A.; Ganesh, Santhi; McCarroll, Steven; Becker, Diane M.; Wilson, James G.; Lettre, Guillaume; Reiner, Alexander P.
2013-01-01
Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs. PMID:23446634
Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M
2017-06-01
The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène
2017-10-01
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Developing a European grid infrastructure for cancer research: vision, architecture and services
Tsiknakis, M; Rueping, S; Martin, L; Sfakianakis, S; Bucur, A; Sengstag, T; Brochhausen, M; Pucaski, J; Graf, N
2007-01-01
Life sciences are currently at the centre of an information revolution. The nature and amount of information now available opens up areas of research that were once in the realm of science fiction. During this information revolution, the data-gathering capabilities have greatly surpassed the data-analysis techniques. Data integration across heterogeneous data sources and data aggregation across different aspects of the biomedical spectrum, therefore, is at the centre of current biomedical and pharmaceutical R&D. This paper reports on original results from the ACGT integrated project, focusing on the design and development of a European Biomedical Grid infrastructure in support of multi-centric, post-genomic clinical trials (CTs) on cancer. Post-genomic CTs use multi-level clinical and genomic data and advanced computational analysis and visualization tools to test hypotheses in trying to identify the molecular reasons for a disease and the stratification of patients in terms of treatment. The paper provides a presentation of the needs of users involved in post-genomic CTs and presents indicative scenarios, which drive the requirements of the engineering phase of the project. Subsequently, the initial architecture specified by the project is presented, and its services are classified and discussed. A range of such key services, including the Master Ontology on sCancer, which lie at the heart of the integration architecture of the project, is presented. Special efforts have been taken to describe the methodological and technological framework of the project, enabling the creation of a legally compliant and trustworthy infrastructure. Finally, a short discussion of the forthcoming work is included, and the potential involvement of the cancer research community in further development or utilization of the infrastructure is described. PMID:22275955
In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome
2013-01-01
Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia. PMID:24059783
Genetic variation and population structure of Cucumber green mottle mosaic virus.
Rao, Li-Xia; Guo, Yushuang; Zhang, Li-Li; Zhou, Xue-Ping; Hong, Jian; Wu, Jian-Xiang
2017-05-01
Cucumber green mottle mosaic virus (CGMMV) is a single-stranded, positive sense RNA virus infecting cucurbitaceous plants. In recent years, CGMMV has become an important pathogen of cucurbitaceous crops including watermelon, pumpkin, cucumber and bottle gourd in China, causing serious losses to their production. In this study, we surveyed CGMMV infection in various cucurbitaceous crops grown in Zhejiang Province and in several seed lots purchased from local stores with the dot enzyme-linked immunosorbent assay (dot-ELISA), using a CGMMV specific monoclonal antibody. Seven CGMMV isolates obtained from watermelon, grafted watermelon or oriental melon samples were cloned and sequenced. Identity analysis showed that the nucleotide identities of the seven complete genome sequences ranged from 99.2 to 100%. Phylogenetic analysis of seven CGMMV isolates as well as 24 other CGMMV isolates from the GenBank database showed that all CGMMV isolates could be grouped into two distinct monophyletic clades according to geographic distribution, i.e. Asian isolates for subtype I and European isolates for subtype II, indicating that population diversification of CGMMV isolates may be affected by geographical distribution. Site variation rate analysis of CGMMV found that the overall variation rate was below 8% and mainly ranged from 2 to 5%, indicating that the CGMMV genomic sequence was conservative. Base substitution type analysis of CGMMV showed a mutational bias, with more transitions (A↔G and C↔T) than transversions (A↔C, A↔T, G↔C and G↔T). Most of the variation occurring in the CGMMV genome resulted in non-synonymous substitutions, and the variation rate of some sites was higher than 30% because of this mutational bias. Selection constraint analysis of CGMMV ORFs showed strong negative selection acting on the replication-associated protein, similar to what occurs for other plant RNA viruses. Finally, potential recombination analysis identified isolate Ec as a recombinant with a low degree of confidence.
IMG: the integrated microbial genomes database and comparative analysis system
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.
2012-01-01
The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640
IMG: the Integrated Microbial Genomes database and comparative analysis system.
Markowitz, Victor M; Chen, I-Min A; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C
2012-01-01
The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp).
Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles
NASA Astrophysics Data System (ADS)
Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.
Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.
Ortholog Identification and Comparative Analysis of Microbial Genomes Using MBGD and RECOG.
Uchiyama, Ikuo
2017-01-01
Comparative genomics is becoming an essential approach for identification of genes associated with a specific function or phenotype. Here, we introduce the microbial genome database for comparative analysis (MBGD), which is a comprehensive ortholog database among the microbial genomes available so far. MBGD contains several precomputed ortholog tables including the standard ortholog table covering the entire taxonomic range and taxon-specific ortholog tables for various major taxa. In addition, MBGD allows the users to create an ortholog table within any specified set of genomes through dynamic calculations. In particular, MBGD has a "My MBGD" mode where users can upload their original genome sequences and incorporate them into orthology analysis. The created ortholog table can serve as the basis for various comparative analyses. Here, we describe the use of MBGD and briefly explain how to utilize the orthology information during comparative genome analysis in combination with the stand-alone comparative genomics software RECOG, focusing on the application to comparison of closely related microbial genomes.
2013-01-01
Background A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages. Twenty human genes are absent in songbirds, birds, or sauropsids, or unique to mammals, suggesting K-Channel properties may be lineage-specific. We also identified specific family members with insertions/deletions and/or high dN/dS ratios compared to chicken, a non-vocal learner. In situ hybridization revealed that while most K-Channel genes are broadly expressed in the brain, a subset is selectively expressed in song nuclei, representing molecular specializations of the vocal circuitry. Conclusions Together, these findings shed new light on genes that may regulate biophysical and excitable properties of the song circuitry, identify potential targets for the manipulation of the song system, and reveal genomic specializations that may relate to the emergence of vocal learning and associated brain areas in birds. PMID:23845108
Oenococcus oeni in Chilean Red Wines: Technological and Genomic Characterization
Romero, Jaime; Ilabaca, Carolina; Ruiz, Mauricio; Jara, Carla
2018-01-01
The presence and load of species of LAB at the end of the malolactic fermentation (MLF) were investigated in 16 wineries from the different Chilean valleys (Limarí, Casablanca, Maipo, Rapel, and Maule Valleys) during 2012 and 2013, using PCR-RFLP and qPCR. Oenococcus oeni was observed in 80% of the samples collected. Dominance of O. oeni was reflected in the bacterial load (O. oeni/total bacteria) measured by qPCR, corresponding to >85% in most of the samples. A total of 178 LAB isolates were identified after sequencing molecular markers, 95 of them corresponded to O. oeni. Further genetic analyses were performed using MLST (7 genes) including 10 commercial strains; the results indicated that commercial strains were grouped together, while autochthonous strains distributed among different genetic clusters. To pre-select some autochthonous O. oeni, these isolates were also characterized based on technological tests such as ethanol tolerance (12 and 15%), SO2 resistance (0 and 80 mg l−1), and pH (3.1 and 3.6) and malic acid transformation (1.5 and 4 g l−1). For comparison purposes, commercial strain VP41 was also tested. Based on their technological performance, only 3 isolates were selected for further examination (genome analysis) and they were able to reduce malic acid concentration, to grow at low pH 3.1, 15% ethanol and 80 mg l−1 SO2. The genome analyses of three selected isolates were examined and compared to PSU-1 and VP41 strains to study their potential contribution to the organoleptic properties of the final product. The presence and homology of genes potentially related to aromatic profile were compared among those strains. The results indicated high conservation of malolactic enzyme (>99%) and the absence of some genes related to odor such as phenolic acid decarboxylase, in autochthonous strains. Genomic analysis also revealed that these strains shared 470 genes with VP41 and PSU-1 and that autochthonous strains harbor an interesting number of unique genes (>21). Altogether these results reveal the presence of local strains distinguishable from commercial strains at the genetic/genomic level and also having genomic traits that enforce their potential use as starter cultures. PMID:29491847
Betz-Stablein, B. D.; Töpfer, A.; Littlejohn, M.; Yuen, L.; Colledge, D.; Sozzi, V.; Angus, P.; Thompson, A.; Revill, P.; Beerenwinkel, N.; Warner, N.
2016-01-01
ABSTRACT Chronic hepatitis B (CHB) is prevalent worldwide. The infectious agent, hepatitis B virus (HBV), replicates via an RNA intermediate and is error prone, leading to the rapid generation of closely related but not identical viral variants, including those that can escape host immune responses and antiviral treatments. The complexity of CHB can be further enhanced by the presence of HBV variants with large deletions in the genome generated via splicing (spHBV variants). Although spHBV variants are incapable of autonomous replication, their replication is rescued by wild-type HBV. spHBV variants have been shown to enhance wild-type virus replication, and their prevalence increases with liver disease progression. Single-molecule deep sequencing was performed on whole HBV genomes extracted from samples, including the liver explant, longitudinally collected from a subject with CHB over a 15-year period after liver transplantation. By employing novel bioinformatics methods, this analysis showed that the dynamics of the viral population across a period of changing treatment regimens was complex. The spHBV variants detected in the liver explant remained present posttransplantation, and a highly diverse novel spHBV population as well as variants with multiple deletions in the pre-S genes emerged. The identification of novel mutations outside the HBV reverse transcriptase gene that co-occurred with known drug resistance-associated mutations highlights the relevance of using full-genome deep sequencing and supports the hypothesis that drug resistance involves interactions across the full length of the HBV genome. IMPORTANCE Single-molecule sequencing allowed the characterization, in unprecedented detail, of the evolution of HBV populations and offered unique insights into the dynamics of defective and spHBV variants following liver transplantation and complex treatment regimens. This analysis also showed the rapid adaptation of HBV populations to treatment regimens with evolving drug resistance phenotypes and evidence of purifying selection across the whole genome. Finally, the new open-source bioinformatics tools with the capacity to easily identify potential spliced variants from deep sequencing data are freely available. PMID:27252524
Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier
2017-01-01
KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression. PMID:28334004
Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630
DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.; ...
2018-01-24
Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less
Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.
Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less
Jungbluth, Sean P.; Glavina del Rio, Tijana; Tringe, Susannah G.; ...
2017-04-06
It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “more » Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “ Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Finally, our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungbluth, Sean P.; Glavina del Rio, Tijana; Tringe, Susannah G.
It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “more » Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “ Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Finally, our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.« less
Poncet, Bénédicte N; Herrmann, Doris; Gugerli, Felix; Taberlet, Pierre; Holderegger, Rolf; Gielly, Ludovic; Rioux, Delphine; Thuiller, Wilfried; Aubert, Serge; Manel, Stéphanie
2010-07-01
Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.
Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier
2017-01-01
KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression.
Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene.
Gergen, Janina; Coulon, Flora; Creneguy, Alison; Elain-Duret, Nathan; Gutierrez, Alejandra; Pinkenburg, Olaf; Verhoeyen, Els; Anegon, Ignacio; Nguyen, Tuan Huy; Halary, Franck Albert; Haspot, Fabienne
2018-01-01
Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.
Barbeyron, Tristan; Thomas, François; Barbe, Valérie; Teeling, Hanno; Schenowitz, Chantal; Dossat, Carole; Goesmann, Alexander; Leblanc, Catherine; Oliver Glöckner, Frank; Czjzek, Mirjam; Amann, Rudolf; Michel, Gurvan
2016-12-01
The marine flavobacterium Zobellia galactanivorans Dsij T was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.
Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X
2017-01-01
Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less
The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
Liao, Yang; Smyth, Gordon K.; Shi, Wei
2013-01-01
Read alignment is an ongoing challenge for the analysis of data from sequencing technologies. This article proposes an elegantly simple multi-seed strategy, called seed-and-vote, for mapping reads to a reference genome. The new strategy chooses the mapped genomic location for the read directly from the seeds. It uses a relatively large number of short seeds (called subreads) extracted from each read and allows all the seeds to vote on the optimal location. When the read length is <160 bp, overlapping subreads are used. More conventional alignment algorithms are then used to fill in detailed mismatch and indel information between the subreads that make up the winning voting block. The strategy is fast because the overall genomic location has already been chosen before the detailed alignment is done. It is sensitive because no individual subread is required to map exactly, nor are individual subreads constrained to map close by other subreads. It is accurate because the final location must be supported by several different subreads. The strategy extends easily to find exon junctions, by locating reads that contain sets of subreads mapping to different exons of the same gene. It scales up efficiently for longer reads. PMID:23558742
WHOLE-GENOME SEQUENCING OF SALIVARY GLAND ADENOID CYSTIC CARCINOMA
Rettig, Eleni M; Talbot, C Conover; Sausen, Mark; Jones, Sian; Bishop, Justin A; Wood, Laura D; Tokheim, Collin; Niknafs, Noushin; Karchin, Rachel; Fertig, Elana J; Wheelan, Sarah J; Marchionni, Luigi; Considine, Michael; Ling, Shizhang; Fakhry, Carole; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Ha, Patrick K; Agrawal, Nishant
2016-01-01
Adenoid cystic carcinomas (ACCs) of the salivary glands are challenging to understand, treat, and cure. To better understand the genetic alterations underlying the pathogenesis of these tumors, we performed comprehensive genome analyses of 25 fresh-frozen tumors, including whole genome sequencing, expression and pathway analyses. In addition to the well-described MYB-NFIB fusion which was found in 11 tumors (44%), we observed five different rearrangements involving the NFIB transcription factor gene in seven tumors (28%). Taken together, NFIB translocations occurred in 15 of 25 samples (60%, 95%CI=41–77%). In addition, mRNA expression analysis of 17 tumors revealed overexpression of NFIB in ACC tumors compared with normal tissues (p=0.002). There was no difference in NFIB mRNA expression in tumors with NFIB fusions compared to those without. We also report somatic mutations of genes involved in the axonal guidance and Rho family signaling pathways. Finally, we confirm previously described alterations in genes related to chromatin regulation and Notch signaling. Our findings suggest a separate role for NFIB in ACC oncogenesis and highlight important signaling pathways for future functional characterization and potential therapeutic targeting. PMID:26862087
PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.
Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X
2016-01-01
PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.
Primer in Genetics and Genomics, Article 2-Advancing Nursing Research With Genomic Approaches.
Lee, Hyunhwa; Gill, Jessica; Barr, Taura; Yun, Sijung; Kim, Hyungsuk
2017-03-01
Nurses investigate reasons for variable patient symptoms and responses to treatments to inform how best to improve outcomes. Genomics has the potential to guide nursing research exploring contributions to individual variability. This article is meant to serve as an introduction to the novel methods available through genomics for addressing this critical issue and includes a review of methodological considerations for selected genomic approaches. This review presents essential concepts in genetics and genomics that will allow readers to identify upcoming trends in genomics nursing research and improve research practice. It introduces general principles of genomic research and provides an overview of the research process. It also highlights selected nursing studies that serve as clinical examples of the use of genomic technologies. Finally, the authors provide suggestions about how to apply genomic technology in nursing research along with directions for future research. Using genomic approaches in nursing research can advance the understanding of the complex pathophysiology of disease susceptibility and different patient responses to interventions. Nurses should be incorporating genomics into education, clinical practice, and research as the influence of genomics in health-care research and practice continues to grow. Nurses are also well placed to translate genomic discoveries into improved methods for patient assessment and intervention.
Li, Qili; Bu, Junyan; Yu, Zhihe; Tang, Lihua; Huang, Suiping; Guo, Tangxun; Mo, Jianyou; Hsiang, Tom
2018-02-22
Here, we present a draft genome sequence of isolate 15060 of Colletotrichum fructicola , a causal agent of mango anthracnose. The final assembly consists of 1,048 scaffolds totaling 56,493,063 bp (G+C content, 53.38%) and 15,180 predicted genes. Copyright © 2018 Li et al.
Ghatak, Sandeep; Blom, Jochen; Das, Samir; Sanjukta, Rajkumari; Puro, Kekungu; Mawlong, Michael; Shakuntala, Ingudam; Sen, Arnab; Goesmann, Alexander; Kumar, Ashok; Ngachan, S V
2016-07-01
Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.
Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David
2017-09-12
The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.
Meta-analysis genomewide association of pork quality traits: ultimate pH and shear force
USDA-ARS?s Scientific Manuscript database
It is common practice to perform genome-wide association analysis (GWA) using a genomic evaluation model of a single population. Joint analysis of several populations is more difficult. An alternative to joint analysis could be the meta-analysis (MA) of several GWA from independent genomic evaluatio...
Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A
2018-05-11
Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.
Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie
2017-01-06
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.
Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations.
Cubillos, Francisco A; Vásquez, Claudia; Faugeron, Sylvain; Ganga, Angélica; Martínez, Claudio
2009-01-01
Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding (F(is)) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie
2018-01-01
Abstract With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. PMID:29126285
Kessner, Darren; Novembre, John
2015-01-01
Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748
Vélez, Julián Reyes; Cameron, Marguerite; Rodríguez-Lecompte, Juan Carlos; Xia, Fangfang; Heider, Luke C.; Saab, Matthew; McClure, J. Trenton; Sánchez, Javier
2017-01-01
The objectives of this study are to determine the occurrence of antimicrobial resistance (AMR) genes using whole-genome sequence (WGS) of Streptococcus uberis (S. uberis) and Streptococcus dysgalactiae (S. dysgalactiae) isolates, recovered from dairy cows in the Canadian Maritime Provinces. A secondary objective included the exploration of the association between phenotypic AMR and the genomic characteristics (genome size, guanine–cytosine content, and occurrence of unique gene sequences). Initially, 91 isolates were sequenced, and of these isolates, 89 were assembled. Furthermore, 16 isolates were excluded due to larger than expected genomic sizes (>2.3 bp × 1,000 bp). In the final analysis, 73 were used with complete WGS and minimum inhibitory concentration records, which were part of the previous phenotypic AMR study, representing 18 dairy herds from the Maritime region of Canada (1). A total of 23 unique AMR gene sequences were found in the bacterial genomes, with a mean number of 8.1 (minimum: 5; maximum: 13) per genome. Overall, there were 10 AMR genes [ANT(6), TEM-127, TEM-163, TEM-89, TEM-95, Linb, Lnub, Ermb, Ermc, and TetS] present only in S. uberis genomes and 2 genes unique (EF-TU and TEM-71) to the S. dysgalactiae genomes; 11 AMR genes [APH(3′), TEM-1, TEM-136, TEM-157, TEM-47, TetM, bl2b, gyrA, parE, phoP, and rpoB] were found in both bacterial species. Two-way tabulations showed association between the phenotypic susceptibility to lincosamides and the presence of linB (P = 0.002) and lnuB (P < 0.001) genes and the between the presence of tetM (P = 0.015) and tetS (P = 0.064) genes and phenotypic resistance to tetracyclines only for the S. uberis isolates. The logistic model showed that the odds of resistance (to any of the phenotypically tested antimicrobials) was 4.35 times higher when there were >11 AMR genes present in the genome, compared with <7 AMR genes (P < 0.001). The odds of resistance was lower for S. dysgalactiae than S. uberis (P = 0.031). When the within-herd somatic cell count was >250,000 cells/mL, a trend toward higher odds of resistance compared with the baseline category of <150,000 cells/mL was observed. When the isolate corresponded to a post-mastitis sample, there were lower odds of resistance when compared with non-clinical isolates (P = 0.01). The results of this study showed the strength of associations between phenotypic AMR resistance of both mastitis pathogens and their genotypic resistome and other epidemiological characteristics. PMID:28589129
Jo, Jinkwan; Purushotham, Preethi M.; Han, Koeun; Lee, Heung-Ryul; Nah, Gyoungju; Kang, Byoung-Cheorl
2017-01-01
Single nucleotide polymorphisms (SNPs) play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L.) is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS) offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM), with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs. PMID:28959273
Senier, Laura; Smollin, Leandra; Lee, Rachael; Nicoll, Lauren; Shields, Michael; Tan, Catherine
2018-06-23
In the past decade, healthcare delivery has faced two major disruptions: the mapping of the human genome and the rise of evidence-based practice. Sociologists have documented the paradigmatic shift towards evidence-based practice in medicine, but have yet to examine its effect on other health professions or the broader healthcare arena. This article shows how evidence-based practice is transforming public health in the United States. We present an in-depth qualitative analysis of interview, ethnographic, and archival data to show how Michigan's state public health agency has navigated the turn to evidence-based practice, as they have integrated scientific advances in genomics into their chronic disease prevention programming. Drawing on organizational theory, we demonstrate how they managed ambiguity through a combination of sensegiving and sensemaking activities. Specifically, they linked novel developments in genomics to a long-accepted public health planning model, the Core Public Health Functions. This made cutting edge advances in genomics more familiar to their peers in the state health agency. They also marshaled state-specific surveillance data to illustrate the public health burden of hereditary cancers in Michigan, and to make expert panel recommendations for genetic screening more locally relevant. Finally, they mobilized expertise to help their internal colleagues and external partners modernize conventional public health activities in chronic disease prevention. Our findings show that tools and concepts from organizational sociology can help medical sociologists understand how evidence-based practice is shaping institutions and interprofessional relations in the healthcare arena. Copyright © 2018 Elsevier Ltd. All rights reserved.
Applications of Genomic Sequencing in Pediatric CNS Tumors.
Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams
2016-05-01
Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.
Private genome analysis through homomorphic encryption
2015-01-01
Background The rapid development of genome sequencing technology allows researchers to access large genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy. The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or any interaction with the data owner, which preserves the privacy of genome data. Methods We present evaluation algorithms for secure computation of the minor allele frequencies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of using two practical homomorphic encryption schemes - the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and Naehrig. Results The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences between them. Conclusions The performance numbers for BGV are better than YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test statistic in a case-control study. PMID:26733152
The octopus genome and the evolution of cephalopod neural and morphological novelties.
Albertin, Caroline B; Simakov, Oleg; Mitros, Therese; Wang, Z Yan; Pungor, Judit R; Edsinger-Gonzales, Eric; Brenner, Sydney; Ragsdale, Clifton W; Rokhsar, Daniel S
2015-08-13
Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.
Romero Navarro, J. Alberto; Phillips-Mora, Wilbert; Arciniegas-Leal, Adriana; Mata-Quirós, Allan; Haiminen, Niina; Mustiga, Guiliana; Livingstone III, Donald; van Bakel, Harm; Kuhn, David N.; Parida, Laxmi; Kasarskis, Andrew; Motamayor, Juan C.
2017-01-01
Chocolate is a highly valued and palatable confectionery product. Chocolate is primarily made from the processed seeds of the tree species Theobroma cacao. Cacao cultivation is highly relevant for small-holder farmers throughout the tropics, yet its productivity remains limited by low yields and widespread pathogens. A panel of 148 improved cacao clones was assembled based on productivity and disease resistance, and phenotypic single-tree replicated clonal evaluation was performed for 8 years. Using high-density markers, the diversity of clones was expressed relative to 10 known ancestral cacao populations, and significant effects of ancestry were observed in productivity and disease resistance. Genome-wide association (GWA) was performed, and six markers were significantly associated with frosty pod disease resistance. In addition, genomic selection was performed, and consistent with the observed extensive linkage disequilibrium, high predictive ability was observed at low marker densities for all traits. Finally, quantitative trait locus mapping and differential expression analysis of two cultivars with contrasting disease phenotypes were performed to identify genes underlying frosty pod disease resistance, identifying a significant quantitative trait locus and 35 differentially expressed genes using two independent differential expression analyses. These results indicate that in breeding populations of heterozygous and recently admixed individuals, mapping approaches can be used for low complexity traits like pod color cacao, or in other species single gene disease resistance, however genomic selection for quantitative traits remains highly effective relative to mapping. Our results can help guide the breeding process for sustainable improved cacao productivity. PMID:29184558
Maringer, Kevin; Yousuf, Amjad; Heesom, Kate J; Fan, Jun; Lee, David; Fernandez-Sesma, Ana; Bessant, Conrad; Matthews, David A; Davidson, Andrew D
2017-01-19
Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
The effect of rare alleles on estimated genomic relationships from whole genome sequence data.
Eynard, Sonia E; Windig, Jack J; Leroy, Grégoire; van Binsbergen, Rianne; Calus, Mario P L
2015-03-12
Relationships between individuals and inbreeding coefficients are commonly used for breeding decisions, but may be affected by the type of data used for their estimation. The proportion of variants with low Minor Allele Frequency (MAF) is larger in whole genome sequence (WGS) data compared to Single Nucleotide Polymorphism (SNP) chips. Therefore, WGS data provide true relationships between individuals and may influence breeding decisions and prioritisation for conservation of genetic diversity in livestock. This study identifies differences between relationships and inbreeding coefficients estimated using pedigree, SNP or WGS data for 118 Holstein bulls from the 1000 Bull genomes project. To determine the impact of rare alleles on the estimates we compared three scenarios of MAF restrictions: variants with a MAF higher than 5%, variants with a MAF higher than 1% and variants with a MAF between 1% and 5%. We observed significant differences between estimated relationships and, although less significantly, inbreeding coefficients from pedigree, SNP or WGS data, and between MAF restriction scenarios. Computed correlations between pedigree and genomic relationships, within groups with similar relationships, ranged from negative to moderate for both estimated relationships and inbreeding coefficients, but were high between estimates from SNP and WGS (0.49 to 0.99). Estimated relationships from genomic information exhibited higher variation than from pedigree. Inbreeding coefficients analysis showed that more complete pedigree records lead to higher correlation between inbreeding coefficients from pedigree and genomic data. Finally, estimates and correlations between additive genetic (A) and genomic (G) relationship matrices were lower, and variances of the relationships were larger when accounting for allele frequencies than without accounting for allele frequencies. Using pedigree data or genomic information, and including or excluding variants with a MAF below 5% showed significant differences in relationship and inbreeding coefficient estimates. Estimated relationships and inbreeding coefficients are the basis for selection decisions. Therefore, it can be expected that using WGS instead of SNP can affect selection decision. Inclusion of rare variants will give access to the variation they carry, which is of interest for conservation of genetic diversity.
PanWeb: A web interface for pan-genomic analysis.
Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J
2017-01-01
With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.
A metabolite-centric view on flux distributions in genome-scale metabolic models
2013-01-01
Background Genome-scale metabolic models are important tools in systems biology. They permit the in-silico prediction of cellular phenotypes via mathematical optimisation procedures, most importantly flux balance analysis. Current studies on metabolic models mostly consider reaction fluxes in isolation. Based on a recently proposed metabolite-centric approach, we here describe a set of methods that enable the analysis and interpretation of flux distributions in an integrated metabolite-centric view. We demonstrate how this framework can be used for the refinement of genome-scale metabolic models. Results We applied the metabolite-centric view developed here to the most recent metabolic reconstruction of Escherichia coli. By compiling the balance sheets of a small number of currency metabolites, we were able to fully characterise the energy metabolism as predicted by the model and to identify a possibility for model refinement in NADPH metabolism. Selected branch points were examined in detail in order to demonstrate how a metabolite-centric view allows identifying functional roles of metabolites. Fructose 6-phosphate aldolase and the sedoheptulose bisphosphate bypass were identified as enzymatic reactions that can carry high fluxes in the model but are unlikely to exhibit significant activity in vivo. Performing a metabolite essentiality analysis, unconstrained import and export of iron ions could be identified as potentially problematic for the quality of model predictions. Conclusions The system-wide analysis of split ratios and branch points allows a much deeper insight into the metabolic network than reaction-centric analyses. Extending an earlier metabolite-centric approach, the methods introduced here establish an integrated metabolite-centric framework for the interpretation of flux distributions in genome-scale metabolic networks that can complement the classical reaction-centric framework. Analysing fluxes and their metabolic context simultaneously opens the door to systems biological interpretations that are not apparent from isolated reaction fluxes. Particularly powerful demonstrations of this are the analyses of the complete metabolic contexts of energy metabolism and the folate-dependent one-carbon pool presented in this work. Finally, a metabolite-centric view on flux distributions can guide the refinement of metabolic reconstructions for specific growth scenarios. PMID:23587327
Mahajan, Prashant; Kuppermann, Nathan; Suarez, Nicolas; Mejias, Asuncion; Casper, Charlie; Dean, J Michael; Ramilo, Octavio
2015-01-01
To develop the infrastructure and demonstrate the feasibility of conducting microarray-based RNA transcriptional profile analyses for the diagnosis of serious bacterial infections in febrile infants 60 days and younger in a multicenter pediatric emergency research network. We designed a prospective multicenter cohort study with the aim of enrolling more than 4000 febrile infants 60 days and younger. To ensure success of conducting complex genomic studies in emergency department (ED) settings, we established an infrastructure within the Pediatric Emergency Care Applied Research Network, including 21 sites, to evaluate RNA transcriptional profiles in young febrile infants. We developed a comprehensive manual of operations and trained site investigators to obtain and process blood samples for RNA extraction and genomic analyses. We created standard operating procedures for blood sample collection, processing, storage, shipping, and analyses. We planned to prospectively identify, enroll, and collect 1 mL blood samples for genomic analyses from eligible patients to identify logistical issues with study procedures. Finally, we planned to batch blood samples and determined RNA quantity and quality at the central microarray laboratory and organized data analysis with the Pediatric Emergency Care Applied Research Network data coordinating center. Below we report on establishment of the infrastructure and the feasibility success in the first year based on the enrollment of a limited number of patients. We successfully established the infrastructure at 21 EDs. Over the first 5 months we enrolled 79% (74 of 94) of eligible febrile infants. We were able to obtain and ship 1 mL of blood from 74% (55 of 74) of enrolled participants, with at least 1 sample per participating ED. The 55 samples were shipped and evaluated at the microarray laboratory, and 95% (52 of 55) of blood samples were of adequate quality and contained sufficient RNA for expression analysis. It is possible to create a robust infrastructure to conduct genomic studies in young febrile infants in the context of a multicenter pediatric ED research setting. The sufficient quantity and high quality of RNA obtained suggests that whole blood transcriptional profile analysis for the diagnostic evaluation of young febrile infants can be successfully performed in this setting.
Genomic Diversity and Evolution of the Lyssaviruses
Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé
2008-01-01
Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239
Minimal Absent Words in Four Human Genome Assemblies
Garcia, Sara P.; Pinho, Armando J.
2011-01-01
Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210
Comparative Genomics as a Foundation for Evo-Devo Studies in Birds.
Grayson, Phil; Sin, Simon Y W; Sackton, Timothy B; Edwards, Scott V
2017-01-01
Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.
Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D
2017-01-04
The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
In silico search, characterization and validation of new EST-SSR markers in the genus Prunus.
Sorkheh, Karim; Prudencio, Angela S; Ghebinejad, Azim; Dehkordi, Mehrana Kohei; Erogul, Deniz; Rubio, Manuel; Martínez-Gómez, Pedro
2016-07-07
Simple sequence repeats (SSRs) are defined as sequence repeat units between 1 and 6 bp that occur in both coding and non-coding regions abundant in eukaryotic genomes, which may affect the expression of genes. In this study, expressed sequence tags (ESTs) of eight Prunus species were analyzed for in silico mining of EST-SSRs, protein annotation, and open reading frames (ORFs), and the identification of codon repetitions. A total of 316 SSRs were identified using MISA software. Dinucleotide SSR motifs (26.31 %) were found to be the most abundant type of repeats, followed by tri- (14.58 %), tetra- (0.53 %), and penta- (0.27 %) nucleotide motifs. An attempt was made to design primer pairs for 316 identified SSRs but these were successful for only 175 SSR sequences. The positions of SSRs with respect to ORFs were detected, and annotation of sequences containing SSRs was performed to assign function to each sequence. SSRs were also characterized (in terms of position in the reference genome and associated gene) using the two available Prunus reference genomes (mei and peach). Finally, 38 SSR markers were validated across peach, almond, plum, and apricot genotypes. This validation showed a higher transferability level of EST-SSR developed in P. mume (mei) in comparison with the rest of species analyzed. Findings will aid analysis of functionally important molecular markers and facilitate the analysis of genetic diversity.
Harpur, Brock A; Kent, Clement F; Molodtsova, Daria; Lebon, Jonathan M D; Alqarni, Abdulaziz S; Owayss, Ayman A; Zayed, Amro
2014-02-18
Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.
Next-generation technologies and data analytical approaches for epigenomics.
Mensaert, Klaas; Denil, Simon; Trooskens, Geert; Van Criekinge, Wim; Thas, Olivier; De Meyer, Tim
2014-04-01
Epigenetics refers to the collection of heritable features that modulate the genome-environment interaction without being encoded in the actual DNA sequence. While being mitotically and sometimes even meiotically transmitted, epigenetic traits often demonstrate extensive flexibility. This allows cells to acquire diverse gene expression patterns during differentiation, but also to adapt to a changing environment. However, epigenetic alterations are not always beneficial to the organism, as they are, for example, frequently identified in human diseases such as cancer. Accurate and cost-efficient genome-scale profiling of epigenetic features is thus of major importance to pinpoint these "epimutations," for example, to monitor the epigenetic impact of environmental exposure. Over the last decade, the field of epigenetics has been revolutionized by several innovative "epigenomics" technologies exactly addressing this need. In this review, we discuss and compare widely used next-generation methods to assess DNA methylation and hydroxymethylation, noncoding RNA expression, histone modifications, and nucleosome positioning. Although recent methods are typically based on "second-generation" sequencing, we also pay attention to still commonly used array- and PCR-based methods, and look forward to the additional advantages of single-molecule sequencing. As the current bottleneck in epigenomics research is the analysis rather than generation of data, the basic difficulties and problem-solving strategies regarding data preprocessing and statistical analysis are introduced for the different technologies. Finally, we also consider the complications associated with epigenomic studies of species with yet unsequenced genomes and possible solutions. Copyright © 2013 Wiley Periodicals, Inc.
Lipid metabolism in Rhodnius prolixus: Lessons from the genome.
Majerowicz, David; Calderón-Fernández, Gustavo M; Alves-Bezerra, Michele; De Paula, Iron F; Cardoso, Lívia S; Juárez, M Patricia; Atella, Georgia C; Gondim, Katia C
2017-01-05
The kissing bug Rhodnius prolixus is both an important vector of Chagas' disease and an interesting model for investigation into the field of physiology, including lipid metabolism. The publication of this insect genome will bring a huge amount of new molecular biology data to be used in future experiments. Although this work represents a promising scenario, a preliminary analysis of the sequence data is necessary to identify and annotate the genes involved in lipid metabolism. Here, we used bioinformatics tools and gene expression analysis to explore genes from different genes families and pathways, including genes for fat breakdown, as lipases and phospholipases, and enzymes from β-oxidation, fatty acid metabolism, and acyl-CoA and glycerolipid synthesis. The R. prolixus genome encodes 31 putative lipase genes, including 21 neutral lipases and 5 acid lipases. The expression profiles of some of these genes were analyzed. We were able to identify nine phospholipase A2 genes. A variety of gene families that participate in fatty acid synthesis and modification were studied, including fatty acid synthase, elongase, desaturase and reductase. Concerning the synthesis of glycerolipids, we found a second isoform of glycerol-3-phosphate acyltransferase that was ubiquitously expressed throughout the organs. Finally, all genes involved in fatty acid β-oxidation were identified, but not a long-chain acyl-CoA dehydrogenase. These results provide fundamental data to be used in future research on insect lipid metabolism and its possible relevance to Chagas' disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Zhengwei; Zhang, Tianyu; Ouyang, Qi
2018-02-01
One of the long-expected goals of genome-scale metabolic modelling is to evaluate the influence of the perturbed enzymes on flux distribution. Both ordinary differential equation (ODE) models and constraint-based models, like Flux balance analysis (FBA), lack the capacity to perform metabolic control analysis (MCA) for large-scale networks. In this study, we developed a hyper-cube shrink algorithm (HCSA) to incorporate the enzymatic properties into the FBA model by introducing a pseudo reaction V constrained by enzymatic parameters. Our algorithm uses the enzymatic information quantitatively rather than qualitatively. We first demonstrate the concept by applying HCSA to a simple three-node network, whereby we obtained a good correlation between flux and enzyme abundance. We then validate its prediction by comparison with ODE and with a synthetic network producing voilacein and analogues in Saccharomyces cerevisiae. We show that HCSA can mimic the state-state results of ODE. Finally, we show its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast. We show the ability of HCSA to operate without biomass flux and perform MCA to determine rate-limiting reactions. Algorithm was implemented by Matlab and C ++. The code is available at https://github.com/kekegg/HCSA. xiezhengwei@hsc.pku.edu.cn or qi@pku.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Harpur, Brock A.; Kent, Clement F.; Molodtsova, Daria; Lebon, Jonathan M. D.; Alqarni, Abdulaziz S.; Owayss, Ayman A.; Zayed, Amro
2014-01-01
Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees. PMID:24488971
Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models
Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.
2014-01-01
Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891
MycoCosm, an Integrated Fungal Genomics Resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabalov, Igor; Grigoriev, Igor
2012-03-16
MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/monthmore » or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.« less
IMG 4 version of the integrated microbial genomes comparative analysis system
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.
2014-01-01
The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu). PMID:24165883