Sample records for genome informatics advances

  1. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  2. Farm animal genomics and informatics: an update

    PubMed Central

    Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D.

    2005-01-01

    Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects. PMID:16275782

  3. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research.

    PubMed

    Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J

    2017-01-01

    The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.

  4. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology

    PubMed Central

    Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron

    2016-01-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094

  5. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    PubMed Central

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  7. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah

    2018-01-15

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Whole-genome CNV analysis: advances in computational approaches.

    PubMed

    Pirooznia, Mehdi; Goes, Fernando S; Zandi, Peter P

    2015-01-01

    Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development.

  9. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  10. Genomics Community Resources | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    To facilitate genomic research and the dissemination of its products, National Human Genome Research Institute (NHGRI) supports genomic resources that are crucial for basic research, disease studies, model organism studies, and other biomedical research.  Awards under this FOA will support the development and distribution of genomic resources that will be valuable for the broad research community, using cost-effective approaches.  Such resources include (but are not limited to) databases and informatics resources (such as human and model organism databases, ontologies, and analysi

  11. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  12. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  13. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  15. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    PubMed

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  16. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse

    PubMed Central

    Eppig, Janan T.

    2017-01-01

    Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066

  17. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  18. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Pop, Mihai

    2018-04-27

    University of Maryland's Mihai Pop on Genome Assembly Forensics: Metrics for Assessing Assembly Correctness at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. Consumer Health Informatics Aspects of Direct-to-Consumer Personal Genomic Testing.

    PubMed

    Gray, Kathleen; Stephen, Remya; Terrill, Bronwyn; Wilson, Brenda; Middleton, Anna; Tytherleigh, Rigan; Turbitt, Erin; Gaff, Clara; Savard, Jacqueline; Hickerton, Chriselle; Newson, Ainsley; Metcalfe, Sylvia

    2017-01-01

    This paper uses consumer health informatics as a framework to explore whether and how direct-to-consumer personal genomic testing can be regarded as a form of information which assists consumers to manage their health. It presents findings from qualitative content analysis of web sites that offer testing services, and of transcripts from focus groups conducted as part a study of the Australian public's expectations of personal genomics. Content analysis showed that service offerings have some features of consumer health information but lack consistency. Focus group participants were mostly unfamiliar with the specifics of test reports and related information services. Some of their ideas about aids to knowledge were in line with the benefits described on provider web sites, but some expectations were inflated. People were ambivalent about whether these services would address consumers' health needs, interests and contexts and whether they would support consumers' health self-management decisions and outcomes. There is scope for consumer health informatics approaches to refine the usage and the utility of direct-to-consumer personal genomic testing. Further research may focus on how uptake is affected by consumers' health literacy or by services' engagement with consumers about what they really want.

  20. An information technology emphasis in biomedical informatics education.

    PubMed

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  1. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  2. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Quake, Steve

    2018-02-02

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Steve

    2011-10-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Disease model curation improvements at Mouse Genome Informatics

    PubMed Central

    Bello, Susan M.; Richardson, Joel E.; Davis, Allan P.; Wiegers, Thomas C.; Mattingly, Carolyn J.; Dolan, Mary E.; Smith, Cynthia L.; Blake, Judith A.; Eppig, Janan T.

    2012-01-01

    Optimal curation of human diseases requires an ontology or structured vocabulary that contains terms familiar to end users, is robust enough to support multiple levels of annotation granularity, is limited to disease terms and is stable enough to avoid extensive reannotation following updates. At Mouse Genome Informatics (MGI), we currently use disease terms from Online Mendelian Inheritance in Man (OMIM) to curate mouse models of human disease. While OMIM provides highly detailed disease records that are familiar to many in the medical community, it lacks structure to support multilevel annotation. To improve disease annotation at MGI, we evaluated the merged Medical Subject Headings (MeSH) and OMIM disease vocabulary created by the Comparative Toxicogenomics Database (CTD) project. Overlaying MeSH onto OMIM provides hierarchical access to broad disease terms, a feature missing from the OMIM. We created an extended version of the vocabulary to meet the genetic disease-specific curation needs at MGI. Here we describe our evaluation of the CTD application, the extensions made by MGI and discuss the strengths and weaknesses of this approach. Database URL: http://www.informatics.jax.org/ PMID:22434831

  5. Using Informatics-, Bioinformatics- and Genomics-Based Approaches for the Molecular Surveillance and Detection of Biothreat Agents

    NASA Astrophysics Data System (ADS)

    Seto, Donald

    The convergence and wealth of informatics, bioinformatics and genomics methods and associated resources allow a comprehensive and rapid approach for the surveillance and detection of bacterial and viral organisms. Coupled with the continuing race for the fastest, most cost-efficient and highest-quality DNA sequencing technology, that is, "next generation sequencing", the detection of biological threat agents by `cheaper and faster' means is possible. With the application of improved bioinformatic tools for the understanding of these genomes and for parsing unique pathogen genome signatures, along with `state-of-the-art' informatics which include faster computational methods, equipment and databases, it is feasible to apply new algorithms to biothreat agent detection. Two such methods are high-throughput DNA sequencing-based and resequencing microarray-based identification. These are illustrated and validated by two examples involving human adenoviruses, both from real-world test beds.

  6. Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics.

    PubMed

    Roberts, Kirk; Boland, Mary Regina; Pruinelli, Lisiane; Dcruz, Jina; Berry, Andrew; Georgsson, Mattias; Hazen, Rebecca; Sarmiento, Raymond F; Backonja, Uba; Yu, Kun-Hsing; Jiang, Yun; Brennan, Patricia Flatley

    2017-04-01

    The field of biomedical informatics experienced a productive 2015 in terms of research. In order to highlight the accomplishments of that research, elicit trends, and identify shortcomings at a macro level, a 19-person team conducted an extensive review of the literature in clinical and consumer informatics. The result of this process included a year-in-review presentation at the American Medical Informatics Association Annual Symposium and a written report (see supplemental data). Key findings are detailed in the report and summarized here. This article organizes the clinical and consumer health informatics research from 2015 under 3 themes: the electronic health record (EHR), the learning health system (LHS), and consumer engagement. Key findings include the following: (1) There are significant advances in establishing policies for EHR feature implementation, but increased interoperability is necessary for these to gain traction. (2) Decision support systems improve practice behaviors, but evidence of their impact on clinical outcomes is still lacking. (3) Progress in natural language processing (NLP) suggests that we are approaching but have not yet achieved truly interactive NLP systems. (4) Prediction models are becoming more robust but remain hampered by the lack of interoperable clinical data records. (5) Consumers can and will use mobile applications for improved engagement, yet EHR integration remains elusive. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  8. Open source bioimage informatics for cell biology

    PubMed Central

    Swedlow, Jason R.; Eliceiri, Kevin W.

    2009-01-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery. PMID:19833518

  9. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  10. Informatics and computational strategies for the study of lipids.

    PubMed

    Yetukuri, Laxman; Ekroos, Kim; Vidal-Puig, Antonio; Oresic, Matej

    2008-02-01

    Recent advances in mass spectrometry (MS)-based techniques for lipidomic analysis have empowered us with the tools that afford studies of lipidomes at the systems level. However, these techniques pose a number of challenges for lipidomic raw data processing, lipid informatics, and the interpretation of lipidomic data in the context of lipid function and structure. Integration of lipidomic data with other systemic levels, such as genomic or proteomic, in the context of molecular pathways and biophysical processes provides a basis for the understanding of lipid function at the systems level. The present report, based on the limited literature, is an update on a young but rapidly emerging field of lipid informatics and related pathway reconstruction strategies.

  11. Health system informatics.

    PubMed

    Felkey, B G

    1997-02-01

    The application of informatics in a health system in general and to pharmacy in particular is discussed. Informatics is the use of information technology to enhance the quality of care, facilitate accountability, and assist in cost containment. Tying the pieces of health care into a seamless system using informatics principles yields a more rational approach to caregiving. A four-layer hierarchy of information systems can be found in any health system: layer 1, the foundational layer formed by a transaction-processing system; 2, the management information system; 3, decision support; and 4, advanced informatics applications such as expert systems. Other industries appear to be ahead of health care in investing in informatics applications. Pharmacy is one of the key health care professions that must adopt informatics. A stepwise structure for pharmacy informatics has been proposed; it consists of establishing a relationship with the patient, establishing a database, listing and ranking problems, choosing among alternatives, and planning and monitoring. Informatics should be approached by determining where the department is going strategically. Informatics standards will be needed. Pharmacists will need to use informatics to enhance their worth on the health care team and to improve patient care.

  12. Informatics for the Modern Intensive Care Unit.

    PubMed

    Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A

    Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.

  13. Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.

    PubMed

    Maojo, Victor; Kulikowski, Casimir A

    2006-01-01

    Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.

  14. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John

    2018-01-22

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  15. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, John

    2012-06-01

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  16. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database

    PubMed Central

    Drabkin, Harold J.; Blake, Judith A.

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations

  17. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported

  18. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-02-26

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams.

  19. Nursing informatics, outcomes, and quality improvement.

    PubMed

    Charters, Kathleen G

    2003-08-01

    Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.

  20. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sczyrba, Alex

    2018-02-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  2. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  3. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course.

    PubMed

    Park, Seung; Parwani, Anil; Macpherson, Trevor; Pantanowitz, Liron

    2012-01-01

    The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in "Web 2.0") in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an effective mechanism for mastery of content. Future residents

  4. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course

    PubMed Central

    Park, Seung; Parwani, Anil; MacPherson, Trevor; Pantanowitz, Liron

    2012-01-01

    Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in “Web 2.0”) in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an

  5. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    PubMed

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  6. Tools and Methods for Teaching Informatics at School: An Advanced Logo Course.

    ERIC Educational Resources Information Center

    Nikolov, Rumen

    1992-01-01

    Describes a course in educational informatics for preservice teachers and students in educational software development that emphasizes the use of LOGO, and summarizes course modules that cover tools and methods for teaching informatics, informatics curriculum design, introducing the basic notions of informatics, integrating informatics into the…

  7. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.

  8. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  9. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    PubMed

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  10. Technological Ecosystems in Health Informatics: A Brief Review Article.

    PubMed

    Wu, Zhongmei; Zhang, Xiuxiu; Chen, Ying; Zhang, Yan

    2016-09-01

    The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting.

  11. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    PubMed

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  12. The phytophthora genome initiative database: informatics and analysis for distributed pathogenomic research.

    PubMed

    Waugh, M; Hraber, P; Weller, J; Wu, Y; Chen, G; Inman, J; Kiphart, D; Sobral, B

    2000-01-01

    The Phytophthora Genome Initiative (PGI) is a distributed collaboration to study the genome and evolution of a particularly destructive group of plant pathogenic oomycete, with the goal of understanding the mechanisms of infection and resistance. NCGR provides informatics support for the collaboration as well as a centralized data repository. In the pilot phase of the project, several investigators prepared Phytophthora infestans and Phytophthora sojae EST and Phytophthora sojae BAC libraries and sent them to another laboratory for sequencing. Data from sequencing reactions were transferred to NCGR for analysis and curation. An analysis pipeline transforms raw data by performing simple analyses (i.e., vector removal and similarity searching) that are stored and can be retrieved by investigators using a web browser. Here we describe the database and access tools, provide an overview of the data therein and outline future plans. This resource has provided a unique opportunity for the distributed, collaborative study of a genus from which relatively little sequence data are available. Results may lead to insight into how better to control these pathogens. The homepage of PGI can be accessed at http:www.ncgr.org/pgi, with database access through the database access hyperlink.

  13. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  14. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  15. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation

    PubMed Central

    Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.

    2016-01-01

    numbers of informatics nurses are pursuing certification. Conclusions The pathway to certification is clear and well-established for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership. PMID:27830261

  16. Informatics and Technology in Resident Education.

    PubMed

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Toward an Informatics Research Agenda

    PubMed Central

    Kaplan, Bonnie; Brennan, Patricia Flatley; Dowling, Alan F.; Friedman, Charles P.; Peel, Victor

    2001-01-01

    As we have advanced in medical informatics and created many impressive innovations, we also have learned that technologic developments are not sufficient to bring the value of computer and information technologies to health care systems. This paper proposes a model for improving how we develop and deploy information technology. The authors focus on trends in people, organizational, and social issues (POI/OSI), which are becoming more complex as both health care institutions and information technologies are changing rapidly. They outline key issues and suggest high-priority research areas. One dimension of the model concerns different organizational levels at which informatics applications are used. The other dimension draws on social science disciplines for their approaches to studying implications of POI/OSI in informatics. By drawing on a wide variety of research approaches and asking questions based in social science disciplines, the authors propose a research agenda for high-priority issues, so that the challenges they see ahead for informatics may be met better. PMID:11320068

  19. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  20. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  1. Career Paths of Pathology Informatics Fellowship Alumni.

    PubMed

    Rudolf, Joseph W; Garcia, Christopher A; Hanna, Matthew G; Williams, Christopher L; Balis, Ulysses G; Pantanowitz, Liron; Tuthill, J Mark; Gilbertson, John R

    2018-01-01

    The alumni of today's Pathology Informatics and Clinical Informatics fellowships fill diverse roles in academia, large health systems, and industry. The evolving training tracks and curriculum of Pathology Informatics fellowships have been well documented. However, less attention has been given to the posttraining experiences of graduates from informatics training programs. Here, we examine the career paths of subspecialty fellowship-trained pathology informaticians. Alumni from four Pathology Informatics fellowship training programs were contacted for their voluntary participation in the study. We analyzed various components of training, and the subsequent career paths of Pathology Informatics fellowship alumni using data extracted from alumni provided curriculum vitae. Twenty-three out of twenty-seven alumni contacted contributed to the study. A majority had completed undergraduate study in science, technology, engineering, and math fields and combined track training in anatomic and clinical pathology. Approximately 30% (7/23) completed residency in a program with an in-house Pathology Informatics fellowship. Most completed additional fellowships (15/23) and many also completed advanced degrees (10/23). Common primary posttraining appointments included chief medical informatics officer (3/23), director of Pathology Informatics (10/23), informatics program director (2/23), and various roles in industry (3/23). Many alumni also provide clinical care in addition to their informatics roles (14/23). Pathology Informatics alumni serve on a variety of institutional committees, participate in national informatics organizations, contribute widely to scientific literature, and more than half (13/23) have obtained subspecialty certification in Clinical Informatics to date. Our analysis highlights several interesting phenomena related to the training and career trajectory of Pathology Informatics fellowship alumni. We note the long training track alumni complete in

  2. Public Health, Population Health, and Epidemiology Informatics: Recent Research and Trends in the United States.

    PubMed

    Massoudi, B L; Chester, K G

    2017-08-01

    Objectives: To survey advances in public and population health and epidemiology informatics over the past 18 months. Methods: We conducted a review of English-language research works conducted in the domain of public and population health informatics and published in MEDLINE or Web of Science between January 2015 and June 2016 where information technology or informatics was a primary subject or main component of the study methodology. Selected articles were presented using a thematic analysis based on the 2011 American Medical Informatics Association (AMIA) Public Health Informatics Agenda tracks as a typology. Results: Results are given within the context developed by Dixon et al., (2015) and key themes from the 2011 AMIA Public Health Informatics Agenda. Advances are presented within a socio-technical infrastructure undergirded by a trained, competent public health workforce, systems development to meet the business needs of the practice field, and research that evaluates whether those needs are adequately met. The ability to support and grow the infrastructure depends on financial sustainability. Conclusions: The fields of public health and population health informatics continue to grow, with the most notable developments focused on surveillance, workforce development, and linking to or providing clinical services, which encompassed population health informatics advances. Very few advances addressed the need to improve communication, coordination, and consistency with the field of informatics itself, as identified in the AMIA agenda. This will likely result in the persistence of the silos of public health information systems that currently exist. Future research activities need to aim toward a holistic approach of informatics across the enterprise. Georg Thieme Verlag KG Stuttgart.

  3. Informatics Essentials for DNPs.

    PubMed

    Jenkins, Melinda L

    2018-01-01

    Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.

  4. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    PubMed

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  5. The role of informatics in patient-centered care and personalized medicine.

    PubMed

    Hanna, Matthew G; Pantanowitz, Liron

    2017-06-01

    The practice of cytopathology has dramatically changed due to advances in genomics and information technology. Cytology laboratories have accordingly become increasingly dependent on pathology informatics support to meet the emerging demands of precision medicine. Pathology informatics deals with information technology in the laboratory, and the impact of this technology on workflow processes and staff who interact with these tools. This article covers the critical role that laboratory information systems, electronic medical records, and digital imaging plays in patient-centered personalized medicine. The value of integrated diagnostic reports, clinical decision support, and the use of whole-slide imaging to better evaluate cytology samples destined for molecular testing is discussed. Image analysis that offers more precise and quantitative measurements in cytology is addressed, as well as the role of bioinformatics tools to cope with Big Data from next-generation sequencing. This article also highlights the barriers to the widespread adoption of these disruptive technologies due to regulatory obstacles, limited commercial solutions, poor interoperability, and lack of standardization. Cancer Cytopathol 2017;125(6 suppl):494-501. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  7. Chapter 17: Bioimage Informatics for Systems Pharmacology

    PubMed Central

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T. C.

    2013-01-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies. PMID:23633943

  8. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  9. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  10. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  11. Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine

    NASA Astrophysics Data System (ADS)

    Vizirianakis, Ioannis S.; Amanatiadou, Elsa P.

    The target of personalized medicine to achieve major benefits for all patients in terms of diagnosis and drug delivery can be facilitated by creating a sincere multidisciplinary information-based infrastructure in health care. To this end, nanotechnology, pharmacogenomics, and informatics can advance the utility of personalized medicine, enable clinical translation of genomic knowledge, empower healthcare environment, and finally improve clinical outcomes.

  12. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  13. Multiscale Integration of -Omic, Imaging, and Clinical Data in Biomedical Informatics

    PubMed Central

    Phan, John H.; Quo, Chang F.; Cheng, Chihwen; Wang, May Dongmei

    2016-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data. PMID:23231990

  14. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    PubMed

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  15. Consumer Health Informatics--integrating patients, providers, and professionals online.

    PubMed

    Klein-Fedyshin, Michele S

    2002-01-01

    Consumer Health Informatics (CHI) means different things to patients, health professionals, and health care systems. A broader perspective on this new and rapidly developing field will enable us to understand and better apply its advances. This article provides an overview of CHI discussing its evolution and driving forces, along with advanced applications such as Personal Health Records, Internet transmission of personal health data, clinical e-mail, online pharmacies, and shared decision-making tools. Consumer Health Informatics will become integrated with medical care, electronic medical records, and patient education to impact the whole process and business of health care.

  16. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  17. The exploration of the exhibition informatization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  18. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.

  19. Massive open online course for health informatics education.

    PubMed

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  20. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    PubMed Central

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  1. Aquatic Plant Genomics: Advances, Applications, and Prospects

    PubMed Central

    Li, Gaojie; Yang, Jingjing

    2017-01-01

    Genomics is a discipline in genetics that studies the genome composition of organisms and the precise structure of genes and their expression and regulation. Genomics research has resolved many problems where other biological methods have failed. Here, we summarize advances in aquatic plant genomics with a focus on molecular markers, the genes related to photosynthesis and stress tolerance, comparative study of genomes and genome/transcriptome sequencing technology. PMID:28900619

  2. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    PubMed

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  3. Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics.

    PubMed

    Leider, Jonathon P; Shah, Gulzar H; Williams, Karmen S; Gupta, Akrati; Castrucci, Brian C

    Health informatics can play a critical role in supporting local health departments' (LHDs') delivery of certain essential public health services and improving evidence base for decision support. However, LHDs' informatics capacities are below an optimum level. Efforts to build such capacities face ongoing challenges. Moreover, little is known about LHD leaders' desires for the future of public health informatics. Conduct a qualitative analysis of LHDs' future informatics plans, perceived barriers to accomplishing those plans, and potential impact of future advances in public health informatics on the work of the public health enterprise. This research presents findings from 49 in-depth key informant interviews with public health leaders and informatics professionals from LHDs, representing insights from across the United States. Interviewees were selected on the basis of the size of the population their LHD serves, as well as level of informatics capacity. Interviews were transcribed, verified, and double coded. Major barriers to doing more with informatics included staff capacity and training, financial constraints, dependency on state health agency, and small LHD size/lack of regionalization. When asked about the role of leadership in expanding informatics, interviewees said that leaders could make it a priority through (1) learning more about informatics and (2) creating appropriate budgets for integrated information systems. Local health department leaders said that they desired data that were timely and geographically specific. In addition, LHD leaders said that they desired greater access to clinical data, especially around chronic disease indicators. Local health department leadership desires to have timely or even real-time data. Local health departments have a great potential to benefit from informatics, particularly electronic health records in advancing their administrative practices and service delivery, but financial and human capital represents the

  4. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  5. Informatics for Metabolomics.

    PubMed

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  6. SMART on FHIR Genomics: facilitating standardized clinico-genomic apps.

    PubMed

    Alterovitz, Gil; Warner, Jeremy; Zhang, Peijin; Chen, Yishen; Ullman-Cullere, Mollie; Kreda, David; Kohane, Isaac S

    2015-11-01

    Supporting clinical decision support for personalized medicine will require linking genome and phenome variants to a patient's electronic health record (EHR), at times on a vast scale. Clinico-genomic data standards will be needed to unify how genomic variant data are accessed from different sequencing systems. A specification for the basis of a clinic-genomic standard, building upon the current Health Level Seven International Fast Healthcare Interoperability Resources (FHIR®) standard, was developed. An FHIR application protocol interface (API) layer was attached to proprietary sequencing platforms and EHRs in order to expose gene variant data for presentation to the end-user. Three representative apps based on the SMART platform were built to test end-to-end feasibility, including integration of genomic and clinical data. Successful design, deployment, and use of the API was demonstrated and adopted by HL7 Clinical Genomics Workgroup. Feasibility was shown through development of three apps by various types of users with background levels and locations. This prototyping work suggests that an entirely data (and web) standards-based approach could prove both effective and efficient for advancing personalized medicine. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Information management and informatics: need for a modern pathology service.

    PubMed

    Jones, Rick; O'Connor, John

    2004-05-01

    Requirements for information technology in pathology now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, "informatics"--the art and science of turning data into useful information--is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology--whether in implementing processes for pathology modernization, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients--which requires critical assessment of the ever-increasing volume of information available--can also benefit greatly from appropriate use of informatics. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerized order entry, data security and recovery, and audit. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this paper.

  8. PigGIS: Pig Genomic Informatics System

    PubMed Central

    Ruan, Jue; Guo, Yiran; Li, Heng; Hu, Yafeng; Song, Fei; Huang, Xin; Kristiensen, Karsten; Bolund, Lars; Wang, Jun

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of sequence data, including whole genome shotgun (WGS) reads and expressed sequence tags (ESTs), and achieves a successful mapping solution to the low-coverage genome problem. With the data presently available, we have identified a total of 15 700 pig consensus sequences covering 18.5 Mb of the homologous human exons. We have also recovered 18 700 SNPs and 20 800 unique 60mer oligonucleotide probes for future pig genome analyses. PigGIS can be freely accessed via the web at and . PMID:17090590

  9. Informatics for practicing anatomical pathologists: marking a new era in pathology practice.

    PubMed

    Gabril, Manal Y; Yousef, George M

    2010-03-01

    Informatics can be defined as using highly advanced technologies to improve patient diagnosis or management. Pathology informatics had evolved as a response to the overwhelming amount of information that was available, in an attempt to better use and maintain them. The most commonly used tools of informatics can be classified into digital imaging, telepathology, as well as Internet and electronic data mining. Digital imaging is the storage of anatomical pathology information, either gross pictures or microscopic slides, in an electronic format. These images can be used for education, archival, diagnosis, and consultation. Virtual microscopy is the more advanced form of digital imaging with enhanced efficiency and accessibility. Telepathology is now increasingly becoming a useful tool in anatomical pathology practice. Different types of telepathology communications are available for both diagnostic and consultation services. The spectrum of applications of informatics in the field of anatomical pathology is broad and encompasses medical education, clinical services, and pathology research. Informatics is now settling on solid ground as an important tool for pathology teaching, with digital teaching becoming the standard tool in many institutions. After a slow start, we now witness the transition of informatics from the research bench to bedside. As we are moving into a new era of extensive pathology informatics utilization, several challenges have to be addressed, including the cost of the new technology, legal issues, and resistance of pathologists. It is clear from the current evidence that pathology informatics will continue to grow and have a major role in the future of our specialty. However, it is also clear that it is not going to fully replace the human factor or the regular microscope.

  10. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    PubMed

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.

  11. All about the Human Genome Project (HGP)

    MedlinePlus

    ... CSER), and Genome Sequencing Informatics Tools (GS-IT) Comparative Genomics Background information prepared for the media on ... other species to the human sequence. Background on Comparative Genomic Analysis New Process to Prioritize Animal Genomes ...

  12. A primer on precision medicine informatics.

    PubMed

    Sboner, Andrea; Elemento, Olivier

    2016-01-01

    In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  14. Translational informatics: an industry perspective.

    PubMed

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  15. Biomedical informatics publications: a global perspective: part I: conferences.

    PubMed

    Maojo, V; García-Remesal, M; Bielza, C; Crespo, J; Perez-Rey, D; Kulikowski, C

    2012-01-01

    In the past decade, Medical Informatics (MI) and Bioinformatics (BI) have converged towards a new discipline, called Biomedical Informatics (BMI) bridging informatics methods across the spectrum from genomic research to personalized medicine and global healthcare. This convergence still raises challenging research questions which are being addressed by researchers internationally, which in turn raises the question of how biomedical informatics publications reflect the contributions from around the world in documenting the research. To analyse the worldwide participation of biomedical informatics researchers from professional groups and societies in the best-known scientific conferences in the field. The analysis is focused on their geographical affiliation, but also includes other features, such as the impact and recognition of the conferences. We manually collected data about authors of papers presented at three major MI conferences: Medinfo, MIE and the AMIA symposium. In addition, we collected data from a BI conference, ISMB, as a comparison. Finally, we analyzed the impact and recognition of these conferences within their scientific contexts. Data indicate a predominance of local authors at the regional conferences (AMIA and MIE), whereas other conferences with a world-wide scope (Medinfo and ISMB) had broader participation. Our analysis shows that the influence of these conferences beyond the discipline remains somewhat limited. Our results suggest that for BMI to be recognized as a broad discipline, both in the geographical and scientific sense, it will need to extend the scope of collaborations and their interdisciplinary impacts worldwide.

  16. Advancing the Framework: Use of Health Data—A Report of a Working Conference of the American Medical Informatics Association

    PubMed Central

    Bloomrosen, Meryl; Detmer, Don

    2008-01-01

    The fields of health informatics and biomedical research increasingly depend on the availability of aggregated health data. Yet, despite over fifteen years of policy work on health data issues, the United States (U.S.) lacks coherent policy to guide users striving to navigate the ethical, political, technical, and economic challenges associated with health data use. In 2007, building on more than a decade of previous work, the American Medical Informatics Association (AMIA) convened a panel of experts to stimulate discussion about and action on a national framework for health data use. This initiative is being carried out in the context of rapidly accelerating advances in the fields of health informatics and biomedical research, many of which are dependent on the availability of aggregated health data. Use of these data poses complex challenges that must be addressed by public policy. This paper highlights the results of the meeting, presents data stewardship as a key building block in the national framework, and outlines stewardship principles for the management of health information. The authors also introduce a taxonomy developed to focus definitions and terminology in the evolving field of health data applications. Finally, they identify areas for further policy analysis and recommend that public and private sector organizations elevate consideration of a national framework on the uses of health data to a top priority. PMID:18755988

  17. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  18. An innovative capstone health care informatics clinical residency: Interprofessional team collaboration.

    PubMed

    Custis, Laura M; Hawkins, Shelley Y; Thomason, Tanna R

    2017-03-01

    Integrated information systems and wireless technology have been increasingly incorporated into health care organizations with the premise that information technology will promote safe, high-quality, cost-effective patient care. With the advancement of technology, the level of expertise necessary to assume health care information technology roles has escalated. The purpose of this article is to describe a clinical residency project whereby students in a graduate degree health care informatics program successfully fulfilled program competencies through a faculty-lead research project focused on the use of home telehealth with a group of heart failure patients. Through the use of Donabedian's framework of structure, process, and outcomes, the health care informatics students completed essential learning activities deemed essential for transition into the role of an informatics specialist. Health care informatics educational leaders are encouraged to adapt this template of applied learning into their practices.

  19. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    PubMed

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  20. Education review: applied medical informatics--informatics in medical education.

    PubMed

    Naeymi-Rad, F; Trace, D; Moidu, K; Carmony, L; Booden, T

    1994-05-01

    The importance of informatics training within a health sciences program is well recognized and is being implemented on an increasing scale. At Chicago Medical School (CMS), the Informatics program incorporates information technology at every stage of medical education. First-year students are offered an elective in computer topics that concentrate on basic computer literacy. Second-year students learn information management such as entry and information retrieval skills. For example, during the Introduction to Clinical Medicine course, the student is exposed to the Intelligent Medical Record-Entry (IMR-E), allowing the student to enter and organize information gathered from patient encounters. In the third year, students in the Internal Medicine rotation at Norwalk Hospital use Macintosh power books to enter and manage their patients. Patient data gathered by the student are stored in a local server in Norwalk Hospital. In the final year, we teach students the role of informatics in clinical decision making. The present senior class at CMS has been exposed to the power of medical informatics tools for several years. The use of these informatics tools at the point of care is stressed.

  1. Foundational biomedical informatics research in the clinical and translational science era: a call to action.

    PubMed

    Payne, Philip R O; Embi, Peter J; Niland, Joyce

    2010-01-01

    Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.

  2. The pathology informatics curriculum wiki: Harnessing the power of user-generated content.

    PubMed

    Kim, Ji Yeon; Gudewicz, Thomas M; Dighe, Anand S; Gilbertson, John R

    2010-07-13

    The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  3. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    PubMed Central

    Kim, Ji Yeon; Gudewicz, Thomas M.; Dighe, Anand S.; Gilbertson, John R.

    2010-01-01

    Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the “pathology informatics curriculum wiki”, an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki. PMID:20805963

  4. Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response

    PubMed Central

    Brown, Eric W.; Detter, Chris; Gerner-Smidt, Peter; Gilmour, Matthew W.; Harmsen, Dag; Hendriksen, Rene S.; Hewson, Roger; Heymann, David L.; Johansson, Karin; Ijaz, Kashef; Keim, Paul S.; Koopmans, Marion; Kroneman, Annelies; Wong, Danilo Lo Fo; Lund, Ole; Palm, Daniel; Sawanpanyalert, Pathom; Sobel, Jeremy; Schlundt, Jørgen

    2012-01-01

    The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide. PMID:23092707

  5. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  6. Integration of Telemedicine in Graduate Medical Informatics Education

    PubMed Central

    Demiris, George

    2003-01-01

    An essential part of health informatics is telemedicine, the use of advanced telecommunications technologies to bridge distance and support health care delivery and education. This report discusses the integration of telemedicine into a medical informatics curriculum and, specifically, a framework for a telemedicine course. Within this framework, the objectives and exit competencies are presented and course sections are described: definitions, introduction to technical aspects of telemedicine, evolution of telemedicine and its impact on health care delivery, success and failure factors, and legal and ethical issues. The emphasis is on literature review tools, practical exposure to products and applications, and problem-based learning. Given the rapid advances in the telecommunication field, keeping the course material up to date becomes a challenge for the instructor who at the same time aims to equip students with the knowledge and tools they will need in their future role as decision makers to detect a need for, design, implement, maintain, or evaluate a telemedicine application. PMID:12668696

  7. Advances in cereal genomics and applications in crop breeding.

    PubMed

    Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K

    2006-11-01

    Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.

  8. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA).

    PubMed

    Voolstra, Christian R; Wörheide, Gert; Lopez, Jose V

    2017-03-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research.

  9. Health Professionals' Views of Informatics Education

    PubMed Central

    Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228

  10. The evolution of medical informatics in China: A retrospective study and lessons learned.

    PubMed

    Lei, Jianbo; Meng, Qun; Li, Yuefeng; Liang, Minghui; Zheng, Kai

    2016-08-01

    In contrast to China's giant health information technology (HIT) market and tremendous investments in hospital information systems the contributions of Chinese scholars in medical informatics to the global community are very limited. China would like to have a more important position in the global medical informatics community. A better understanding of the differences between medical informatics research and education in China and the discipline that emerged abroad will better inform Chinese scholars to develop right strategies to advance the field in China and help identify an appropriate means to collaborate more closely with medical informatics scholars globally. For the first time, this paper divides the evolution of medical informatics in China into four stages based on changes in the core content of research, the educational orientation and other developmental characteristics. The four stages are infancy, incubation, primary establishment and formal establishment. This paper summarizes and reviews major supporting journals and publications, as well as major organizations. Finally, we analyze the main problems that exist in the current disciplinary development in China related to medical informatics research and education and offer suggestions for future improvement. The evolution of medical informatics shows a strong and traditional concentration on medical library/bibliographic information rather than medical (hospital information or patient information) information. Misdirected-concentration, a lack of formal medical informatics trained teaching staff and mistakenly positioning medical informatics as an undergraduate discipline are some of the problems inhibiting the development of medical informatics in China. These lessons should be shared and learned for the global community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association.

    PubMed

    Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B

    2003-01-01

    The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  12. MIRASS: medical informatics research activity support system using information mashup network.

    PubMed

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  13. Clinical informatics in undergraduate teaching of health informatics.

    PubMed

    Pantazi, Stefan V; Pantazi, Felicia; Daly, Karen

    2011-01-01

    We are reporting on a recent experience with Health Informatics (HI) teaching at undergraduate degree level to an audience of HI and Pharmacy students. The important insight is that effective teaching of clinical informatics must involve highly interactive, applied components in addition to the traditional theoretical material. This is in agreement with general literature underlining the importance of simulations and role playing in teaching and is well supported by our student evaluation results. However, the viability and sustainability of such approaches to teaching hinges on significant course preparation efforts. These efforts consist of time-consuming investigations of informatics technologies, applications and systems followed by the implementation of workable solutions to a wide range of technical problems. In effect, this approach to course development is an involved process that relies on a special form of applied research whose technical complexity could explain the dearth of published reports on similar approaches in HI education. Despite its difficulties, we argue that this approach can be used to set a baseline for clinical informatics training at undergraduate level and that its implications for HI education in Canada are of importance.

  14. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  15. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA)

    PubMed Central

    Voolstra, Christian R.; Wörheide, Gert; Lopez, Jose V.

    2017-01-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research. PMID:28603454

  16. The Emerging Role of the Chief Research Informatics Officer in Academic Health Centers.

    PubMed

    Sanchez-Pinto, L Nelson; Mosa, Abu S M; Fultz-Hollis, Kate; Tachinardi, Umberto; Barnett, William K; Embi, Peter J

    2017-08-16

    The role of the Chief Research Informatics Officer (CRIO) is emerging in academic health centers to address the challenges clinical researchers face in the increasingly digitalized, data-intensive healthcare system. Most current CRIOs are the first officers in their institutions to hold that role. To date there is very little published information about this role and the individuals who serve it. To increase our understanding of the CRIO role, the leaders who serve it, and the factors associated with their success in their organizations. The Clinical Research Informatics Working Group of the American Medical Informatics Association (AMIA) conducted a national survey of CRIOs in the United States and convened an expert panel of CRIOs to discuss their experience during the 2016 AMIA Annual Symposium. CRIOs come from diverse academic backgrounds. Most have advance training and extensive experience in biomedical informatics but the majority have been CRIOs for less than three years. CRIOs identify funding, data governance, and advancing data analytics as their major challenges. CRIOs play an important role in helping shape the future of clinical research, innovation, and data analytics in healthcare in their organizations. They share many of the same challenges and see the same opportunities for the future of the field. Better understanding the background and experience of current CRIOs can help define and develop the role in other organizations and enhance their influence in the field of research informatics.

  17. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  18. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize

    PubMed Central

    Nepolean, Thirunavukkarsau; Kaul, Jyoti; Mukri, Ganapati; Mittal, Shikha

    2018-01-01

    Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems. PMID:29696027

  19. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  20. Publication trends in the medical informatics literature: 20 years of "Medical Informatics" in MeSH

    PubMed Central

    2009-01-01

    Background The purpose of this study is to identify publication output, and research areas, as well as descriptively and quantitatively characterize the field of medical informatics through publication trend analysis over a twenty year period (1987–2006). Methods A bibliometric analysis of medical informatics citations indexed in Medline was performed using publication trends, journal frequency, impact factors, MeSH term frequencies and characteristics of citations. Results There were 77,023 medical informatics articles published during this 20 year period in 4,644 unique journals. The average annual article publication growth rate was 12%. The 50 identified medical informatics MeSH terms are rarely assigned together to the same document and are almost exclusively paired with a non-medical informatics MeSH term, suggesting a strong interdisciplinary trend. Trends in citations, journals, and MeSH categories of medical informatics output for the 20-year period are summarized. Average impact factor scores and weighted average impact factor scores increased over the 20-year period with two notable growth periods. Conclusion There is a steadily growing presence and increasing visibility of medical informatics literature over the years. Patterns in research output that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline, and highlight specific journals in which the medical informatics literature appears most frequently, including general medical journals as well as informatics-specific journals. PMID:19159472

  1. Professional values and informatics: what is the connection?

    PubMed

    Pritchard, Peter

    2004-01-01

    General practitioners (GPs) need to feel that they are doing a good job in providing care of high quality in a humane manner - that they are "good" doctors. The General Medical Council booklet Good Medical Practice is full of imperatives, but short on values that are the determinants of behaviour. Much has been written on doctors' professional values in the past decade, but it is not easy for individual GPs and teams to define their own values and consider to what extent they live up to them. Values and informatics, at first glance, might seem to have little in common, or even to be mutually antipathetic, and this is possible within the limitations of current technology. However, providing high-quality care involves the application of knowledge, evidence and guidelines, as well as auditing outcomes. For all these tasks, informatics provides the essential means of discovering whether we, as individuals and teams, are living up to our espoused values so that they become values-in-action that drive behaviour. Application of advanced informatics has the potential to improve and measure diagnostic and therapeutic skills. Technical advances are impressive, but their application lags. The next logical step would seem to be a comprehensive and easy-to-use knowledge-based decision support (KBDS) system in a convenient format. Locally based KBDS could facilitate self-audit and provide a step towards the ideal of a "self-organising system" requiring little external audit.

  2. The diversity and disparity in biomedical informatics (DDBI) workshop.

    PubMed

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  3. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    PubMed

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  4. The internal challenges of medical informatics.

    PubMed

    Gell, G

    1997-03-01

    Haux's [7] basic assumption that the object of medical informatics is: "... to assure and to improve the quality of healthcare as well as the quality of research and education in medicine and in the health sciences ..." is taken as a starting point to discuss the three main topics: What is the meaning of medical informatics (i.e. what should be the main activities of medical informatics to bring maximum benefit to medicine)? What are the achievements and failures of medical informatics today (again considering the impact on the quality of healthcare)? What are the main challenges? Concerning the definition of medical informatics it is argued that one should not hide the link to basic informatics and, for that matter to computers, completely behind abstract definitions. After an analysis of the purposes of the definition of a discipline, a differentiated definition of the scope of medical informatics, rather general when concerning the field of scientific interest, more focused when concerning the practical (constructive) applications, is proposed. Contrasting Haux's chapter on achievements of medical informatics we concentrate on and analyse non fulfilled promises of medical informatics to derive lessons for the future and to propose 'generic' (or core) tasks of medical informatics to meet the challenges of the future. A set of 'internal challenges' of medical informatics to change priorities and attitudes within the discipline is put forward to enable medical informatics to meet the 'external challenges' listed by Haux.

  5. The state of medical informatics in India: a roadmap for optimal organization.

    PubMed

    Sarbadhikari, Suptendra Nath

    2005-04-01

    In India, the healthcare delivery systems are based on manual record keeping despite a good telecommunication infrastructure. Unfortunately, Indian policy makers are yet to realize the importance of medical informatics (including tele-health, which comprises e-Health and Telemedicine) in delivering healthcare. In the medical curriculum also, nowhere is this treated as a subject or even as a tool for learning. The final aim of most of the medical and paramedical students should be to become good users, and if possible, also experts for advancing medical knowledge base through medical informatics. In view of the fast changing world of medical informatics, it is essential to formulate a flexible syllabus rather than a rigid one for incorporating into the regular curriculum of medical and paramedical education. Only after that one may expect all members of the healthcare delivery systems to adopt and apply medical informatics optimally as a routine tool for their services.

  6. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  7. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    2015-12-01

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  8. Instantiating informatics in nursing practice for integrated patient centred holistic models of care: a discussion paper.

    PubMed

    Hussey, Pamela A; Kennedy, Margaret Ann

    2016-05-01

    A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.

  9. The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics

    PubMed Central

    Kilbridge, Peter M.; Classen, David C.

    2008-01-01

    Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896

  10. Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2017-01-01

    -Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  11. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    PubMed Central

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species. PMID:28025636

  12. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    PubMed

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.

  13. Research Strategies for Biomedical and Health Informatics

    PubMed Central

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  14. Phytozome Comparative Plant Genomics Portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  15. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  16. Medical Informatics Education

    PubMed Central

    Patton, Gregory A.; Gardner, Reed M.

    1999-01-01

    The University of Utah has been educating health professionals in medical informatics since 1964. Over the 35 years since the program's inception, 272 graduate students have studied in the department. Most students have been male (80 percent) and have come from the United States (75 percent). Students entering the program have had diverse educational backgrounds, most commonly in medicine, engineering, computer science, or biology (59 percent of all informatics students). A total of 209 graduate degrees have been awarded, with an overall graduation rate of 87 percent since the program's start. Alumni are located in the United States (91 percent) and abroad (9 percent); half (51 percent) have remained in Utah. Former students are employed in a wide variety of jobs, primarily concerned with the application of medical informatics in sizable health care delivery organizations. Trends toward increasing managerial responsibility for medical informatics graduates and the emergence of the chief information officer role are noted. PMID:10579604

  17. The Asia Pacific Association for Medical Informatics (APAMI) and World Organisation of Family Doctors (WONCA) Consortium on General and Family Practice Informatics--a statement of intent.

    PubMed

    Liaw, S T; Kidd, M; Cesnik, B; Lun, K C; Goh, L G; Yoo, T; Wun, Y T

    1998-01-01

    This paper describes the establishment of a consortium to advance health and medical informatics in general/family practice in the Asia Pacific Region. The objectives, current activities currently taking place in the region and key activities planned will be outlined.

  18. Medical informatics in morocco.

    PubMed

    Bouhaddou, O; Bennani Othmani, M; Diouny, S

    2013-01-01

    Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.

  19. Primer in Genetics and Genomics, Article 2-Advancing Nursing Research With Genomic Approaches.

    PubMed

    Lee, Hyunhwa; Gill, Jessica; Barr, Taura; Yun, Sijung; Kim, Hyungsuk

    2017-03-01

    Nurses investigate reasons for variable patient symptoms and responses to treatments to inform how best to improve outcomes. Genomics has the potential to guide nursing research exploring contributions to individual variability. This article is meant to serve as an introduction to the novel methods available through genomics for addressing this critical issue and includes a review of methodological considerations for selected genomic approaches. This review presents essential concepts in genetics and genomics that will allow readers to identify upcoming trends in genomics nursing research and improve research practice. It introduces general principles of genomic research and provides an overview of the research process. It also highlights selected nursing studies that serve as clinical examples of the use of genomic technologies. Finally, the authors provide suggestions about how to apply genomic technology in nursing research along with directions for future research. Using genomic approaches in nursing research can advance the understanding of the complex pathophysiology of disease susceptibility and different patient responses to interventions. Nurses should be incorporating genomics into education, clinical practice, and research as the influence of genomics in health-care research and practice continues to grow. Nurses are also well placed to translate genomic discoveries into improved methods for patient assessment and intervention.

  20. Integrating Governance of Research Informatics and Health Care IT Across an Enterprise: Experiences from the Trenches.

    PubMed

    Embi, Peter J; Tachinardi, Umberto; Lussier, Yves; Starren, Justin; Silverstein, Jonathan

    2013-01-01

    Advances in health information technology and biomedical informatics have laid the groundwork for significant improvements in healthcare and biomedical research. For instance, Electronic Health Records can help improve the delivery of evidence-based care, enhance quality, and contribute to discoveries and evidence generation. Despite this promise, there are many challenges to achieving the vision and missions of our healthcare and research enterprises. Given the challenges inherent in doing so, institutions are increasingly moving to establish dedicated leadership and governance models charged with designing, deploying and leveraging various information resources to advance research and advanced care activities at AHCs. Some institutions have even created a new leadership position to oversee such activities, such as the Chief Research Information Officer. This panel will include research informatics leaders discussing their experiences from the proverbial trenches as they work to operationalize such cross-mission governance models. Panelists will start by providing an overview their respective positions and environments, discuss their experiences, and share lessons learned through their work at the intersection of clinical and translational research informatics and Health IT.

  1. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    PubMed Central

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  2. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  3. INFOBIOMED: European Network of Excellence on Biomedical Informatics to support individualised healthcare.

    PubMed

    Maojo, Victor; de la Calle, Guillermo; Martín-Sánchez, Fernando; Díaz, Carlos; Sanz, Ferran

    2005-01-01

    INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included.

  4. Human Genome Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  5. Pathology informatics questions and answers from the University of Pittsburgh pathology residency informatics rotation.

    PubMed

    Harrison, James H

    2004-01-01

    Effective pathology practice increasingly requires familiarity with concepts in medical informatics that may cover a broad range of topics, for example, traditional clinical information systems, desktop and Internet computer applications, and effective protocols for computer security. To address this need, the University of Pittsburgh (Pittsburgh, Pa) includes a full-time, 3-week rotation in pathology informatics as a required component of pathology residency training. To teach pathology residents general informatics concepts important in pathology practice. We assess the efficacy of the rotation in communicating these concepts using a short-answer examination administered at the end of the rotation. Because the increasing use of computers and the Internet in education and general communications prior to residency training has the potential to communicate key concepts that might not need additional coverage in the rotation, we have also evaluated incoming residents' informatics knowledge using a similar pretest. This article lists 128 questions that cover a range of topics in pathology informatics at a level appropriate for residency training. These questions were used for pretests and posttests in the pathology informatics rotation in the Pathology Residency Program at the University of Pittsburgh for the years 2000 through 2002. With slight modification, the questions are organized here into 15 topic categories within pathology informatics. The answers provided are brief and are meant to orient the reader to the question and suggest the level of detail appropriate in an answer from a pathology resident. A previously published evaluation of the test results revealed that pretest scores did not increase during the 3-year evaluation period, and self-assessed computer skill level correlated with pretest scores, but all pretest scores were low. Posttest scores increased substantially, and posttest scores did not correlate with the self-assessed computer skill level

  6. Advances in Swine Biomedical Model Genomics

    PubMed Central

    Lunney, Joan K.

    2007-01-01

    This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736

  7. Combining clinical and genomics queries using i2b2 – Three methods

    PubMed Central

    Murphy, Shawn N.; Avillach, Paul; Bellazzi, Riccardo; Phillips, Lori; Gabetta, Matteo; Eran, Alal; McDuffie, Michael T.; Kohane, Isaac S.

    2017-01-01

    We are fortunate to be living in an era of twin biomedical data surges: a burgeoning representation of human phenotypes in the medical records of our healthcare systems, and high-throughput sequencing making rapid technological advances. The difficulty representing genomic data and its annotations has almost by itself led to the recognition of a biomedical “Big Data” challenge, and the complexity of healthcare data only compounds the problem to the point that coherent representation of both systems on the same platform seems insuperably difficult. We investigated the capability for complex, integrative genomic and clinical queries to be supported in the Informatics for Integrating Biology and the Bedside (i2b2) translational software package. Three different data integration approaches were developed: The first is based on Sequence Ontology, the second is based on the tranSMART engine, and the third on CouchDB. These novel methods for representing and querying complex genomic and clinical data on the i2b2 platform are available today for advancing precision medicine. PMID:28388645

  8. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    PubMed

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  9. Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    PubMed Central

    Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832

  10. Advances in Genomics of Entomopathogenic Fungi.

    PubMed

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.

  12. Skills and knowledge of informatics, and training needs of hospital pharmacists in Thailand: A self-assessment survey.

    PubMed

    Chonsilapawit, Teeraporn; Rungpragayphan, Suang

    2016-10-01

    Because hospital pharmacists have to deal with large amounts of health information and advanced information technology in practice, they must possess adequate skills and knowledge of informatics to operate efficiently. However, most current pharmacy curricula in Thailand barely address the principles and skills concerned with informatics, and Thai pharmacists usually acquire computer literacy and informatics skills through personal-interest training and self-study. In this study, we aimed to assess the skills and knowledge of informatics and the training needs of hospital pharmacists in Thailand, in order to improve curricular and professional development. A self-assessment postal survey of 73 questions was developed and distributed to the pharmacy departments of 601 hospitals throughout the country. Practicing hospital pharmacists were requested to complete and return the survey voluntarily. Within the 3 months of the survey period, a total of 805 out of 2002 surveys were returned. On average, respondents rated themselves as competent or better in the skills of basic computer operation, the Internet, information management, and communication. Understandably, they rated themselves at novice level for information technology and database design knowledge/skills, and at advanced beginner level for project, risk, and change management skills. Respondents believed that skills and knowledge of informatics were highly necessary for their work, and definitely needed training. Thai hospital pharmacists were confident in using computers and the Internet. They realized and appreciated their lack of informatics knowledge and skills, and needed more training. Pharmacy curricula and training should be developed accordingly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Advances in Arachis through genomics and biotechnology

    USDA-ARS?s Scientific Manuscript database

    The 5th International Conference of the peanut research community met in Brasilia, Brazil from June 13 through 16, 2011 to discuss “Advances in Arachis through genomics and biotechnology”. Over 100 participated from many countries such as United States, Japan, China, India, Brazil, Argentina, with ...

  14. An Approach for All in Pharmacy Informatics Education.

    PubMed

    Fox, Brent I; Flynn, Allen; Clauson, Kevin A; Seaton, Terry L; Breeden, Elizabeth

    2017-03-25

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal .

  15. An Approach for All in Pharmacy Informatics Education

    PubMed Central

    Flynn, Allen; Clauson, Kevin A.; Seaton, Terry L.; Breeden, Elizabeth

    2017-01-01

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal. PMID:28381898

  16. Informatics Competencies for Nursing and Healthcare Leaders

    PubMed Central

    Westra, Bonnie L.; Delaney, Connie W.

    2008-01-01

    Historically, educational preparation did not address informatics competencies; thus managers, administrators, or executives may not be prepared to use or lead change in the use of health information technologies. A number of resources for informatics competencies exist, however, a comprehensive list addressing the unique knowledge and skills required in the role of a manager or administrator was not found. The purpose of this study was to develop informatics competencies for nursing leaders. A synthesis of the literature and a Delphi approach using three rounds of surveys with an expert panel resulted in identification of informatics competencies for nursing leaders that address computer skills, informatics knowledge, and informatics skills. PMID:18998803

  17. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  18. The European community and its standardization efforts in medical informatics

    NASA Astrophysics Data System (ADS)

    Mattheus, Rudy A.

    1992-07-01

    A summary of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given. CEN is the European standardization institute, TC 251 deals with medical informatics. Standardization is a condition for the wide scale use of health care and medical informatics and for the creation of a common market. In the last two years, three important categories-- namely, the Commission of the European Communities with their programs and the mandates, the medical informaticians through their European professional federation, and the national normalization institutes through the European committee--have shown to be aware of this problem and have taken actions. As a result, a number of AIM (Advanced Informatics in Medicine), CEC sponsored projects, the CEC mandates to CEN and EWOS, the EFMI working group on standardization, the technical committee of CEN, and the working groups and project teams of CEN and EWOS are working on the subject. On overview of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given, including their relation to other work.

  19. Web impact factor: a bibliometric criterion applied to medical informatics societies' web sites.

    PubMed

    Soualmia, Lina Fatima; Darmoni, Stéfan Jacques; Le Duff, Franck; Douyere, Magaly; Thelwall, Maurice

    2002-01-01

    Several methods are available to evaluate and compare medical journals. The most popular is the journal Impact Factor, derived from averaging counts of citations to articles. Ingwersen adapted this method to assess the attractiveness of Web sites, defining the external Web Impact Factor (WIF) to be the number of external pages containing a link to a given Web site. This paper applies the WIF to 43 medical informatics societies' Web sites using advanced search engine queries to obtain the necessary link counts. The WIF was compared to the number of publications available in the Medline bibliographic database in medical informatics in these 43 countries. Between these two metrics, the observed Pearson correlation was 0.952 (p < 0.01) and the Spearman rank correlation was 0.548 (p < 0.01) showing in both cases a positive and strong significant correlation. The WIF of medicalm informatics society's Web site is statistically related to national productivity and discrepancies can be used to indicate countries where there are either weak medical informatics associations, or ones that do not make optimal use of the Web.

  20. Current Status of Nursing Informatics Education in Korea.

    PubMed

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  1. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  2. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2000-08-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1).

  3. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies.

    PubMed

    McCarty, Catherine A; Chisholm, Rex L; Chute, Christopher G; Kullo, Iftikhar J; Jarvik, Gail P; Larson, Eric B; Li, Rongling; Masys, Daniel R; Ritchie, Marylyn D; Roden, Dan M; Struewing, Jeffery P; Wolf, Wendy A

    2011-01-26

    The eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors. The five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel. The primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈ 2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site. Plans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care. By combining

  4. Current Status of Nursing Informatics Education in Korea

    PubMed Central

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  5. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  6. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  7. The genomics of preterm birth: from animal models to human studies

    PubMed Central

    2013-01-01

    Preterm birth (delivery at less than 37 weeks of gestation) is the leading cause of infant mortality worldwide. So far, the application of animal models to understand human birth timing has not substantially revealed mechanisms that could be used to prevent prematurity. However, with amassing data implicating an important role for genetics in the timing of the onset of human labor, the use of modern genomic approaches, such as genome-wide association studies, rare variant analyses using whole-exome or genome sequencing, and family-based designs, holds enormous potential. Although some progress has been made in the search for causative genes and variants associated with preterm birth, the major genetic determinants remain to be identified. Here, we review insights from and limitations of animal models for understanding the physiology of parturition, recent human genetic and genomic studies to identify genes involved in preterm birth, and emerging areas that are likely to be informative in future investigations. Further advances in understanding fundamental mechanisms, and the development of preventative measures, will depend upon the acquisition of greater numbers of carefully phenotyped pregnancies, large-scale informatics approaches combining genomic information with information on environmental exposures, and new conceptual models for studying the interaction between the maternal and fetal genomes to personalize therapies for mothers and infants. Information emerging from these advances will help us to identify new biomarkers for earlier detection of preterm labor, develop more effective therapeutic agents, and/or promote prophylactic measures even before conception. PMID:23673148

  8. [Advances in genome editing technologies for treating muscular dystrophy.

    PubMed

    Makita, Yukimasa; Hozumi, Hiroyuki; Hotta, Akitsu

    Recent advances in genome editing technologies have opened the possibility for treating genetic diseases, such as Duchenne muscular dystrophy(DMD), by correcting the causing gene mutations in dystrophin gene. In fact, there are several reports that demonstrated the restoration of the mutated dystrophin gene in DMD patient-derived iPS cell or functional recovery of forelimb grip strength in DMD model mice. For future clinical applications, there are several aspects that need to be taken into consideration:efficient delivery of the genome editing components, risk of off-target mutagenesis and immunogenicity against genome editing enzyme. In this review, we summarize the current status and future prospective of the research in applying genome editing technologies to DMD.

  9. Automatic glaucoma diagnosis through medical imaging informatics.

    PubMed

    Liu, Jiang; Zhang, Zhuo; Wong, Damon Wing Kee; Xu, Yanwu; Yin, Fengshou; Cheng, Jun; Tan, Ngan Meng; Kwoh, Chee Keong; Xu, Dong; Tham, Yih Chung; Aung, Tin; Wong, Tien Yin

    2013-01-01

    Computer-aided diagnosis for screening utilizes computer-based analytical methodologies to process patient information. Glaucoma is the leading irreversible cause of blindness. Due to the lack of an effective and standard screening practice, more than 50% of the cases are undiagnosed, which prevents the early treatment of the disease. To design an automatic glaucoma diagnosis architecture automatic glaucoma diagnosis through medical imaging informatics (AGLAIA-MII) that combines patient personal data, medical retinal fundus image, and patient's genome information for screening. 2258 cases from a population study were used to evaluate the screening software. These cases were attributed with patient personal data, retinal images and quality controlled genome data. Utilizing the multiple kernel learning-based classifier, AGLAIA-MII, combined patient personal data, major image features, and important genome single nucleotide polymorphism (SNP) features. Receiver operating characteristic curves were plotted to compare AGLAIA-MII's performance with classifiers using patient personal data, images, and genome SNP separately. AGLAIA-MII was able to achieve an area under curve value of 0.866, better than 0.551, 0.722 and 0.810 by the individual personal data, image and genome information components, respectively. AGLAIA-MII also demonstrated a substantial improvement over the current glaucoma screening approach based on intraocular pressure. AGLAIA-MII demonstrates for the first time the capability of integrating patients' personal data, medical retinal image and genome information for automatic glaucoma diagnosis and screening in a large dataset from a population study. It paves the way for a holistic approach for automatic objective glaucoma diagnosis and screening.

  10. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2004-01-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1).

  11. Machine learning in materials informatics: recent applications and prospects

    NASA Astrophysics Data System (ADS)

    Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam; Mannodi-Kanakkithodi, Arun; Kim, Chiho

    2017-12-01

    Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as "descriptors", may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven "materials informatics" strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.

  12. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2018-05-24

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  13. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  14. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  15. Health Informatics via Machine Learning for the Clinical Management of Patients.

    PubMed

    Clifton, D A; Niehaus, K E; Charlton, P; Colopy, G W

    2015-08-13

    To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale.

  16. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  17. Nursing Informatics Competencies: Psychometric Validation, Dissemination, and Maintenance of Self-Assessment Tool for Nurse Leaders.

    PubMed

    Collins, Sarah

    2016-01-01

    Due to rapid advances in technology, HIT competencies for nursing leaders require frequent attention and updating from experts in the field to ensure relevance to nursing leaders' work. This workshop will target nursing informatics researchers and leaders to: 1) learn methods and findings from a study validating a Self-Assessment Scale for Nursing Informatics Competencies for Nurse Leaders, 2) generate awareness of the Self-Assessment scale, 3) discuss strategies for maintenance of competencies overtime and 4) identify strategies to engage nursing leaders in this pursuit.

  18. The emerging impact of genomics on the development of biological weapons. Threats and benefits posed by engineered extremophiles.

    PubMed

    Daly, M J

    2001-09-01

    During the past decades, representatives of Archaea, Bacteria, and Protista have been found thriving in many newly discovered extremely hostile habitats, which hitherto were regarded as too harsh to harbor life. To illustrate how an extremophile could be targeted for development as a biowarfare agent, an example is presented describing current advances in engineering Deinococcus radiodurans. Using a generally applicable combination of conventional genetic engineering and genomic informatics, this extremely radiation-resistant and environmentally robust bacterium is being developed for biotechnology.

  19. Public Policy and Health Informatics.

    PubMed

    Bell, Katherine

    2018-05-01

    To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2015-01-01

    Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

  1. Advances in Genetical Genomics of Plants

    PubMed Central

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research. PMID:20514216

  2. The state and profile of open source software projects in health and medical informatics.

    PubMed

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  3. 2018 Informatics Tool Challenge Winners

    Cancer.gov

    DCEG announced six winners of the 2018 DCEG Informatics Tool Challenge, a competitive funding program that supports innovation to enhance epidemiological methods, data collection, analysis, and other research using modern technology and informatics. Learn more about the winning innovations.

  4. The scope and direction of health informatics.

    PubMed

    McGinnis, Patrick J

    2002-05-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  5. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  6. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  7. The Impact of Imaging Informatics Fellowships.

    PubMed

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists.

  8. The Interactions Between Clinical Informatics and Bioinformatics

    PubMed Central

    Altman, Russ B.

    2000-01-01

    For the past decade, Stanford Medical Informatics has combined clinical informatics and bioinformatics research and training in an explicit way. The interest in applying informatics techniques to both clinical problems and problems in basic science can be traced to the Dendral project in the 1960s. Having bioinformatics and clinical informatics in the same academic unit is still somewhat unusual and can lead to clashes of clinical and basic science cultures. Nevertheless, the benefits of this organization have recently become clear, as the landscape of academic medicine in the next decades has begun to emerge. The author provides examples of technology transfer between clinical informatics and bioinformatics that illustrate how they complement each other. PMID:10984462

  9. Craniofacial imaging informatics and technology development.

    PubMed

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  10. Towards health informatics 3.0. Editorial.

    PubMed

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  11. Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

  12. Latvian Education Informatization System LIIS

    ERIC Educational Resources Information Center

    Bicevskis, Janis; Andzans, Agnis; Ikaunieks, Evalds; Medvedis, Inga; Straujums, Uldis; Vezis, Viesturs

    2004-01-01

    The Latvian Education Informatization System LIIS project covers the whole information grid: education content, management, information services, infrastructure and user training at several levels--schools, school boards and Ministry of Education and Science. Informatization is the maintained process of creating the technical, economical and…

  13. Systems Medicine: The Future of Medical Genomics, Healthcare, and Wellness.

    PubMed

    Saqi, Mansoor; Pellet, Johann; Roznovat, Irina; Mazein, Alexander; Ballereau, Stéphane; De Meulder, Bertrand; Auffray, Charles

    2016-01-01

    Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.

  14. Advancing Crop Transformation in the Era of Genome Editing

    USDA-ARS?s Scientific Manuscript database

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to...

  15. Advances in genome studies in plants and animals.

    PubMed

    Appels, R; Nystrom-Persson, J; Keeble-Gagnere, G

    2014-03-01

    The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.

  16. Integrating experiential learning into a double degree masters program in nursing and health informatics.

    PubMed

    Borycki, Elizabeth M; Frisch, Noreen; Kushniruk, Andre W; McIntyre, Marjorie; Hutchinson, David

    2012-01-01

    In Canada there are few nurses who have advanced practice competencies in nursing informatics. This is a significant issue for regional health authorities, governments and electronic health record vendors in Canada who are implementing electronic health records. Few Schools of Nursing provide formalized opportunities for nurses to develop informatics competencies. Many of these opportunities take the form of post-baccalaureate certificate programs or individual undergraduate or graduate level courses in nursing. The purpose of this paper will be to: (1) describe the health and human resource issues in this area in Canada, (2) provide a brief overview of the design and development of a new, innovative double degree program at the intersection of nursing and health informatics that interleaves cooperative learning, (3) describe the integration of cooperative learning into this new program, and (4) outline the lessons learned in integrating cooperative education into such a graduate program.

  17. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  18. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    PubMed

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its

  19. Smartphone as a personal, pervasive health informatics services platform: literature review.

    PubMed

    Wac, K

    2012-01-01

    The article provides an overview of current trends in personal sensor, signal and imaging informatics, that are based on emerging mobile computing and communications technologies enclosed in a smartphone and enabling the provision of personal, pervasive health informatics services. The article reviews examples of these trends from the PubMed and Google scholar literature search engines, which, by no means claim to be complete, as the field is evolving and some recent advances may not be documented yet. There exist critical technological advances in the surveyed smartphone technologies, employed in provision and improvement of diagnosis, acute and chronic treatment and rehabilitation health services, as well as in education and training of healthcare practitioners. However, the most emerging trend relates to a routine application of these technologies in a prevention/wellness sector, helping its users in self-care to stay healthy. Smartphone-based personal health informatics services exist, but still have a long way to go to become an everyday, personalized healthcare-provisioning tool in the medical field and in a clinical practice. Key main challenge for their widespread adoption involve lack of user acceptance striving from variable credibility and reliability of applications and solutions as they a) lack evidence- based approach; b) have low levels of medical professional involvement in their design and content; c) are provided in an unreliable way, influencing negatively its usability; and, in some cases, d) being industry-driven, hence exposing bias in information provided, for example towards particular types of treatment or intervention procedures.

  20. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  1. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  2. Military research needs in biomedical informatics.

    PubMed

    Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard

    2002-01-01

    The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.

  3. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Chain, Patrick

    2018-01-25

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on Metagenome Assembly at the DOE JGIat the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  5. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  6. Crossing the chasm: information technology to biomedical informatics.

    PubMed

    Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph

    2011-06-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.

  7. Informatics for multi-disciplinary ocean sciences

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Delory, Eric; Pissierssens, Peter; Raymond, Lisa; Simpson, Pauline; Waldmann, Christoph; Williams 3rd, Albert; Yoder, Jim

    2014-05-01

    Ocean researchers must work across disciplines to provide clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions at the time and space scales that are relevant to our state of the art research needs. This presentation will address three areas of the informatics of the end-to-end process: sensors and information extraction in the sensing environment; using diverse data for understanding selected ocean processes; and supporting open data initiatives. A National Science Foundation funded Ocean Observations Research Coordination Network (RCN) is addressing these areas from the perspective of improving interdisciplinary research. The work includes an assessment of Open Data Access with a paper in preparation. Interoperability and sensors is a new activity that couples with European projects, COOPEUS and NeXOS, in looking at sensors and related information systems for a new generation of measurement capability. A working group on synergies of in-situ and satellite remote sensing is analyzing approaches for more effective use of these measurements. This presentation will examine the steps forward for data exchange and for addressing gaps in communication and informatics.

  8. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.

    PubMed

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-10-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  9. Capacity building in e-health and health informatics: a review of the global vision and informatics educational initiatives of the American Medical Informatics Association.

    PubMed

    Detmer, D E

    2010-01-01

    Substantial global and national commitment will be required for current healthcare systems and health professional practices to become learning care systems utilizing information and communications technology (ICT) empowered by informatics. To engage this multifaceted challenge, a vision is required that shifts the emphasis from silos of activities toward integrated systems. Successful systems will include a set of essential elements, e.g., a sufficient ICT infrastructure, evolving health care processes based on evidence and harmonized to local cultures, a fresh view toward educational preparation, sound and sustained policy support, and ongoing applied research and development. Increasingly, leaders are aware that ICT empowered by informatics must be an integral part of their national and regional visions. This paper sketches out the elements of what is needed in terms of objectives and some steps toward achieving them. It summarizes some of the progress that has been made to date by the American and International Medical Informatics Associations working separately as well as collaborating to conceptualize informatics capacity building in order to bring this vision to reality in low resource nations in particular.

  10. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. An overview of medical informatics education in China.

    PubMed

    Hu, Dehua; Sun, Zhenling; Li, Houqing

    2013-05-01

    To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that

  12. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Recent advances in the prenatal interrogation of the human fetal genome.

    PubMed

    Hui, Lisa; Bianchi, Diana W

    2013-02-01

    The amount of genetic and genomic information obtainable from the human fetus during pregnancy is accelerating at an unprecedented rate. Two themes have dominated recent technological advances in prenatal diagnosis: interrogation of the fetal genome in increasingly high resolution and the development of non-invasive methods of fetal testing using cell-free DNA in maternal plasma. These two areas of advancement have now converged with several recent reports of non-invasive assessment of the entire fetal genome from maternal blood. However, technological progress is outpacing the ability of the healthcare providers and patients to incorporate these new tests into existing clinical care, and further complicates many of the economic and ethical dilemmas in prenatal diagnosis. This review summarizes recent work in this field and discusses the integration of these new technologies into the clinic and society. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics.

    PubMed

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-12-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. Copyright © 2013. Production and hosting by Elsevier Ltd.

  15. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    PubMed

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  16. Medical informatics across Europe: analysis of medical informatics scientific output in 33 European countries.

    PubMed

    Polašek, Ozren; Kern, Josipa

    2012-01-01

    To investigate the medical informatics scientific output in 33 European countries. Medical Subject Heading term "medical informatics" was used to identify all relevant articles published in 1998-2007 and indexed in the Medline database. The number of articles was adjusted to the population size of each included country in order to obtain the rates per million inhabitants. A total of 28,604 articles were identified. The highest number per million inhabitants was found for Switzerland and the lowest for Albania. Overall, European Union member states had higher output than non-member states, gross domestic product was strongly associated with the scientific output in the field of medical informatics (r = 0.88, p < 0.001). While most countries had significant increase in the scientific output during the observed period, an adjustment to the European average output trend suggested that Lithuania, Portugal, Serbia and Spain had a greater increase than the rest of Europe. The results suggest large disparities across Europe. Further development of medical informatics as a profession and a clear recognition of the discipline are needed to reduce these disparities and propel further increase in research productivity.

  17. Medical Informatics Education & Research in Greece.

    PubMed

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  18. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    PubMed

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  19. Informatics and operations--let's get integrated.

    PubMed

    Marsolo, Keith

    2013-01-01

    The widespread adoption of commercial electronic health records (EHRs) presents a significant challenge to the field of informatics. In their current form, EHRs function as a walled garden and prevent the integration of outside tools and services. This impedes the widespread adoption and diffusion of research interventions into the clinic. In most institutions, EHRs are supported by clinical operations staff who are largely separate from their informatics counterparts. This relationship needs to change. Research informatics and clinical operations need to work more closely on the implementation and configuration of EHRs to ensure that they are used to collect high-quality data for research and improvement at the point of care. At the same time, the informatics community needs to lobby commercial EHR vendors to open their systems and design new architectures that allow for the integration of external applications and services.

  20. Biomedical informatics training at the University of Wisconsin-Madison.

    PubMed

    Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P

    2007-01-01

    The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.

  1. An insight into cyanobacterial genomics--a perspective.

    PubMed

    Lakshmi, Palaniswamy Thanga Velan

    2007-05-20

    At the turn of the millennium, cyanobacteria deserve attention to be reviewed to understand the past, present and future. The advent of post genomic research, which encompasses functional genomics, structural genomics, transcriptomics, pharmacogenomics, proteomics and metabolomics that allows a systematic wide approach for biological system studies. Thus by exploiting genomic and associated protein information through computational analyses, the fledging information that are generated by biotechnological analyses, could be well extrapolated to fill in the lacuna of scarce information on cyanobacteria and as an effort this paper attempts to highlights the perspectives available and awakens researcher to concentrate in the field of cyanobacterial informatics.

  2. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision.

    PubMed

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K C; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-07

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in biomedical and health informatics (BMHI), particularly international activities in educating BMHI specialists and the sharing of courseware. Method: An IMIA task force, nominated in 2006, worked on updating the recommendations' first version. These updates have been broadly discussed and refined by members of IMIA's National Member Societies, IMIA's Academic Institutional Members and by members of IMIA's Working Group on Health and Medical Informatics Education. Results and Conclusions: The IMIA recommendations center on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (e.g. physicians, nurses, BMHI professionals), 2) type of specialization in BMHI (IT users, BMHI specialists), and 3) stage of career progression (bachelor, master, doctorate). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role a) as IT user and b) as BMHI specialist. Recommendations are given for courses/course tracks in BMHI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in BMHI (with bachelor, master or doctor degree). To support education in BMHI, IMIA offers to award a certificate for high-quality BMHI education. It supports information

  3. Informatics in clinical research in oncology: current state, challenges, and a future perspective.

    PubMed

    Chahal, Amar P S

    2011-01-01

    The informatics landscape of clinical trials in oncology has changed significantly in the last 10 years. The current state of the infrastructure for clinical trial management, execution, and data management is reviewed. The systems, their functionality, the users, and the standards available to researchers are discussed from the perspective of the oncologist-researcher. Challenges in complexity and in the processing of information are outlined. These challenges include the lack of communication and information-interchange between systems, the lack of simplified standards, and the lack of implementation and adherence to the standards that are available. The clinical toxicology criteria from the National Cancer Institute (CTCAE) are cited as a successful standard in oncology, and HTTP on the Internet is referenced for its simplicity. Differences in the management of information standards between industries are discussed. Possible future advances in oncology clinical research informatics are addressed. These advances include strategic policy review of standards and the implementation of actions to make standards free, ubiquitous, simple, and easily interpretable; the need to change from a local data-capture- or transaction-driven model to a large-scale data-interpretation model that provides higher value to the oncologist and the patient; and the need for information technology investment in a readily available digital educational model for clinical research in oncology that is customizable for individual studies. These new approaches, with changes in information delivery to mobile platforms, will set the stage for the next decade in clinical research informatics.

  4. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  5. WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickens, D; Flynn, M; Peck, D

    . However, effective implementation of that oversight has been challenging due to the number and extend of medical displays in use at a facility. The advent of color display and mobile displays has added additional challenges to the task of the medical physicist. This informatics display lecture first addresses the current display guidelines (the 1.0 paradigm) and further outlines the initiatives and prospects for color and mobile displays (the 2.0 paradigm). Informatics Management 1.0 to 2.0: Imaging informatics is part of every radiology practice today. Imaging informatics covers everything from the ordering of a study, through the data acquisition and processing, display and archiving, reporting of findings and the billing for the services performed. The standardization of the processes used to manage the information and methodologies to integrate these standards is being developed and advanced continuously. These developments are done in an open forum and imaging organizations and professionals all have a part in the process. In the Informatics Management presentation, the flow of information and the integration of the standards used in the processes will be reviewed. The role of radiologists and physicists in the process will be discussed. Current methods (the 1.0 paradigm) and evolving methods (the 2.0 paradigm) for validation of informatics systems function will also be discussed. Learning Objectives: Identify requirements for improving quality assurance and compliance tools for advanced and hybrid MRI systems. Identify the need for new quality assurance metrics and testing procedures for advanced systems. Identify new hardware systems and new procedures needed to evaluate MRI systems. Understand the components of current medical physics expectation for medical displays. Understand the role and prospect fo medical physics for color and mobile display devices. Understand different areas of imaging informatics and the methodology for developing informatics standards

  6. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments

    PubMed Central

    Nesvizhskii, Alexey I.

    2013-01-01

    Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false positive protein interactions present in unfiltered datasets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome-wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS datasets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data. PMID:22611043

  7. [Advances in CRISPR-Cas-mediated genome editing system in plants].

    PubMed

    Wang, Chun; Wang, Kejian

    2017-10-25

    Targeted genome editing technology is an important tool to study the function of genes and to modify organisms at the genetic level. Recently, CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) system has emerged as an efficient tool for specific genome editing in animals and plants. CRISPR-Cas system uses CRISPR-associated endonuclease and a guide RNA to generate double-strand breaks at the target DNA site, subsequently leading to genetic modifications. CRISPR-Cas system has received widespread attention for manipulating the genomes with simple, easy and high specificity. This review summarizes recent advances of diverse applications of the CRISPR-Cas toolkit in plant research and crop breeding, including expanding the range of genome editing, precise editing of a target base, and efficient DNA-free genome editing technology. This review also discusses the potential challenges and application prospect in the future, and provides a useful reference for researchers who are interested in this field.

  8. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  9. Relational databases: a transparent framework for encouraging biology students to think informatically.

    PubMed

    Rice, Michael; Gladstone, William; Weir, Michael

    2004-01-01

    We discuss how relational databases constitute an ideal framework for representing and analyzing large-scale genomic data sets in biology. As a case study, we describe a Drosophila splice-site database that we recently developed at Wesleyan University for use in research and teaching. The database stores data about splice sites computed by a custom algorithm using Drosophila cDNA transcripts and genomic DNA and supports a set of procedures for analyzing splice-site sequence space. A generic Web interface permits the execution of the procedures with a variety of parameter settings and also supports custom structured query language queries. Moreover, new analytical procedures can be added by updating special metatables in the database without altering the Web interface. The database provides a powerful setting for students to develop informatic thinking skills.

  10. Relational Databases: A Transparent Framework for Encouraging Biology Students To Think Informatically

    PubMed Central

    2004-01-01

    We discuss how relational databases constitute an ideal framework for representing and analyzing large-scale genomic data sets in biology. As a case study, we describe a Drosophila splice-site database that we recently developed at Wesleyan University for use in research and teaching. The database stores data about splice sites computed by a custom algorithm using Drosophila cDNA transcripts and genomic DNA and supports a set of procedures for analyzing splice-site sequence space. A generic Web interface permits the execution of the procedures with a variety of parameter settings and also supports custom structured query language queries. Moreover, new analytical procedures can be added by updating special metatables in the database without altering the Web interface. The database provides a powerful setting for students to develop informatic thinking skills. PMID:15592597

  11. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  12. Recent Advances in Microbial Single Cell Genomics Technology and Applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2016-02-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.

  13. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  14. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud

    PubMed Central

    Griffith, Malachi; Walker, Jason R.; Spies, Nicholas C.; Ainscough, Benjamin J.; Griffith, Obi L.

    2015-01-01

    Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki. PMID:26248053

  15. History of health informatics: a global perspective.

    PubMed

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  16. Discussion on informatization teaching of certain radar transmitter

    NASA Astrophysics Data System (ADS)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  17. Building the informatics infrastructure for comparative effectiveness research (CER): a review of the literature.

    PubMed

    Lopez, Marianne Hamilton; Holve, Erin; Sarkar, Indra Neil; Segal, Courtney

    2012-07-01

    Technological advances in clinical informatics have made large amounts of data accessible and potentially useful for research. As a result, a burgeoning literature addresses efforts to bridge the fields of health services research and biomedical informatics. The Electronic Data Methods Forum review examines peer-reviewed literature at the intersection of comparative effectiveness research and clinical informatics. The authors are specifically interested in characterizing this literature and identifying cross-cutting themes and gaps in the literature. A 3-step systematic literature search was conducted, including a structured search of PubMed, manual reviews of articles from selected publication lists, and manual reviews of research activities based on prospective electronic clinical data. Two thousand four hundred thirty-five citations were identified as potentially relevant. Ultimately, a full-text review was performed for 147 peer-reviewed papers. One hundred thirty-two articles were selected for inclusion in the review. Of these, 88 articles are the focus of the discussion in this paper. Three types of articles were identified, including papers that: (1) provide historical context or frameworks for using clinical informatics for research, (2) describe platforms and projects, and (3) discuss issues, challenges, and applications of natural language processing. In addition, 2 cross-cutting themes emerged: the challenges of conducting research in the absence of standardized ontologies and data collection; and unique data governance concerns related to the transfer, storage, deidentification, and access to electronic clinical data. Finally, the authors identified several current gaps on important topics such as the use of clinical informatics for cohort identification, cloud computing, and single point access to research data.

  18. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  19. Informatics Infrastructure for the Materials Genome Initiative

    NASA Astrophysics Data System (ADS)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-08-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  20. The Unified Medical Language System: an informatics research collaboration.

    PubMed

    Humphreys, B L; Lindberg, D A; Schoolman, H M; Barnett, G O

    1998-01-01

    In 1986, the National Library of Medicine (NLM) assembled a large multidisciplinary, multisite team to work on the Unified Medical Language System (UMLS), a collaborative research project aimed at reducing fundamental barriers to the application of computers to medicine. Beyond its tangible products, the UMLS Knowledge Sources, and its influence on the field of informatics, the UMLS project is an interesting case study in collaborative research and development. It illustrates the strengths and challenges of substantive collaboration among widely distributed research groups. Over the past decade, advances in computing and communications have minimized the technical difficulties associated with UMLS collaboration and also facilitated the development, dissemination, and use of the UMLS Knowledge Sources. The spread of the World Wide Web has increased the visibility of the information access problems caused by multiple vocabularies and many information sources which are the focus of UMLS work. The time is propitious for building on UMLS accomplishments and making more progress on the informatics research issues first highlighted by the UMLS project more than 10 years ago.

  1. Implementation of the CDC translational informatics platform--from genetic variants to the national Swedish Rheumatology Quality Register.

    PubMed

    Abugessaisa, Imad; Gomez-Cabrero, David; Snir, Omri; Lindblad, Staffan; Klareskog, Lars; Malmström, Vivianne; Tegnér, Jesper

    2013-04-02

    Sequencing of the human genome and the subsequent analyses have produced immense volumes of data. The technological advances have opened new windows into genomics beyond the DNA sequence. In parallel, clinical practice generate large amounts of data. This represents an underused data source that has much greater potential in translational research than is currently realized. This research aims at implementing a translational medicine informatics platform to integrate clinical data (disease diagnosis, diseases activity and treatment) of Rheumatoid Arthritis (RA) patients from Karolinska University Hospital and their research database (biobanks, genotype variants and serology) at the Center for Molecular Medicine, Karolinska Institutet. Requirements engineering methods were utilized to identify user requirements. Unified Modeling Language and data modeling methods were used to model the universe of discourse and data sources. Oracle11g were used as the database management system, and the clinical development center (CDC) was used as the application interface. Patient data were anonymized, and we employed authorization and security methods to protect the system. We developed a user requirement matrix, which provided a framework for evaluating three translation informatics systems. The implementation of the CDC successfully integrated biological research database (15172 DNA, serum and synovial samples, 1436 cell samples and 65 SNPs per patient) and clinical database (5652 clinical visit) for the cohort of 379 patients presents three profiles. Basic functionalities provided by the translational medicine platform are research data management, development of bioinformatics workflow and analysis, sub-cohort selection, and re-use of clinical data in research settings. Finally, the system allowed researchers to extract subsets of attributes from cohorts according to specific biological, clinical, or statistical features. Research and clinical database integration is a real

  2. An informatics strategy for cancer care

    PubMed Central

    Wright, J; Shogan, A; McCune, J; Stevens, S

    2008-01-01

    Whether transitioning from paper to electronic records or attempting to leverage data from existing systems for outcome studies, oncology practices face many challenges in defining and executing an informatics strategy. With the increasing costs of oncology treatments and expected changes in reimbursement rules, including requirements for evidence that supports physician decisions, it will become essential to collect data on treatment decisions and treatment efficacy to run a successful program. This study evaluates the current state of informatics systems available for use in oncology programs and focuses on developing an informatics strategy to meet the challenges introduced by expected changes in reimbursement rules and in medical and information technologies. PMID:21611003

  3. NASA Biomedical Informatics Capabilities and Needs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  4. Informatics and the Organization of Education.

    ERIC Educational Resources Information Center

    van Weert, Tom J.

    1992-01-01

    Defines informatics as both a pure and an applied science dealing with information technology and its uses and examines the organization of education from two different perspectives: how applications of informatics may impact on education, forcing it to change; and how the educational system may deal with problems to effectively integrate…

  5. Early experiences of accredited clinical informatics fellowships.

    PubMed

    Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R

    2016-07-01

    Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Simpson, Jared

    2018-01-24

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. Knowledge, Skills, and Resources for Pharmacy Informatics Education

    PubMed Central

    Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.

    2011-01-01

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates’ practice environment. PMID:21829267

  8. Knowledge, skills, and resources for pharmacy informatics education.

    PubMed

    Fox, Brent I; Flynn, Allen J; Fortier, Christopher R; Clauson, Kevin A

    2011-06-10

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates' practice environment.

  9. The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

    PubMed Central

    Harris, Anthony D.; McGregor, Jessina C.; Perencevich, Eli N.; Furuno, Jon P.; Zhu, Jingkun; Peterson, Dan E.; Finkelstein, Joseph

    2006-01-01

    Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI), to determine the number of quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy. They hope that future medical informatics studies will implement higher level quasi-experimental study designs that yield more convincing evidence for causal links between medical informatics interventions and outcomes. PMID:16221933

  10. Core Content for the Subspecialty of Clinical Informatics

    PubMed Central

    Gardner, Reed M.; Overhage, J. Marc; Steen, Elaine B.; Munger, Benson S.; Holmes, John H.; Williamson, Jeffrey J.; Detmer, Don E.

    2009-01-01

    The Core Content for Clinical Informatics defines the boundaries of the discipline and informs the Program Requirements for Fellowship Education in Clinical Informatics. The Core Content includes four major categories: fundamentals, clinical decision making and care process improvement, health information systems, and leadership and management of change. The AMIA Board of Directors approved the Core Content for Clinical Informatics in November 2008. PMID:19074296

  11. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis.

    PubMed

    Cuomo, Christina A; Rhodes, Johanna; Desjardins, Christopher A

    2018-01-01

    Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.

  12. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  13. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    PubMed Central

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  14. Unintended Consequences of Sensor, Signal, and Imaging Informatics: New Problems and New Solutions.

    PubMed

    Hughes, C; Voros, S; Moreau-Gaudry, A

    2016-11-10

    This synopsis presents a selection for the IMIA (International Medical Informatics Association) Yearbook 2016 of excellent research in the broad field of Sensor, Signal and Imaging Informatics published in the year 2015, with a focus on Unintended consequences: new problems and new solutions. We performed a systematic initial selection and a double blind peer review process to find the best papers in this domain published in 2015, from the PubMed and Web of Science databases. The set of MesH keywords used was provided by experts. The constant advances in medical technology allow ever more relevant diagnostic and therapeutic approaches to be designed. Nevertheless, there is a need to acquire expert knowledge of these innovations in order to identify precociously new associated problems for which new solutions need to be designed and developed.

  15. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; hide

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  16. Genomic and physiological approaches to advancing forest tree improvement

    Treesearch

    C. Dana Nelson; Kurt H. Johnsen

    2008-01-01

    Summary The recent completion of a draft sequence of the poplar (Populus trichocarpa Torr. & Gray ex Brayshaw) genome has advanced forest tree genetics to an unprecedented level. A "parts list" for a forest tree has been produced, opening up new opportunities for dissecting the interworkings of tree growth and development. In the relatively near future we...

  17. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  18. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  19. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools.

    PubMed

    Lee, Roy E; McClintock, David S; Balis, Ulysses J; Baron, Jason M; Becich, Michael J; Beckwith, Bruce A; Brodsky, Victor B; Carter, Alexis B; Dighe, Anand S; Haghighi, Mehrvash; Hipp, Jason D; Henricks, Walter H; Kim, Jiyeon Y; Klepseis, Veronica E; Kuo, Frank C; Lane, William J; Levy, Bruce P; Onozato, Maristela L; Park, Seung L; Sinard, John H; Tuthill, Mark J; Gilbertson, John R

    2012-01-01

    Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012) and involved both local and visiting faculty and fellows. Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions). Case studies have become an important component of our fellowship's educational platform.

  20. Development, Implementation, and Evaluation of Health Informatics Masters Program at KSAU-HS University, Saudi Arabia

    ERIC Educational Resources Information Center

    Majid, Altuwaijri

    2007-01-01

    The Saudi health sector has witnessed a significant progress in recent decades with some Saudi hospitals receiving international recognition. However, this progress has not been accompanied by the same advancement in the health informatics field whose applications have become a necessity for hospitals in order to achieve important objectives such…

  1. The NIH BD2K center for big data in translational genomics.

    PubMed

    Paten, Benedict; Diekhans, Mark; Druker, Brian J; Friend, Stephen; Guinney, Justin; Gassner, Nadine; Guttman, Mitchell; Kent, W James; Mantey, Patrick; Margolin, Adam A; Massie, Matt; Novak, Adam M; Nothaft, Frank; Pachter, Lior; Patterson, David; Smuga-Otto, Maciej; Stuart, Joshua M; Van't Veer, Laura; Wold, Barbara; Haussler, David

    2015-11-01

    The world's genomics data will never be stored in a single repository - rather, it will be distributed among many sites in many countries. No one site will have enough data to explain genotype to phenotype relationships in rare diseases; therefore, sites must share data. To accomplish this, the genetics community must forge common standards and protocols to make sharing and computing data among many sites a seamless activity. Through the Global Alliance for Genomics and Health, we are pioneering the development of shared application programming interfaces (APIs) to connect the world's genome repositories. In parallel, we are developing an open source software stack (ADAM) that uses these APIs. This combination will create a cohesive genome informatics ecosystem. Using containers, we are facilitating the deployment of this software in a diverse array of environments. Through benchmarking efforts and big data driver projects, we are ensuring ADAM's performance and utility. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Better informed in clinical practice - a brief overview of dental informatics.

    PubMed

    Reynolds, P A; Harper, J; Dunne, S

    2008-03-22

    Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training.

  3. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  4. Four "E"pochs: The Story of Informatization.

    ERIC Educational Resources Information Center

    Duff, Alistair S.

    2003-01-01

    Informatization is a term of Japanese provenance denoting major systemic change from the application of information technology. Proposes a theory of post-war informatization focusing on information services in libraries, specifically computerized information retrieval. Describes four electronic epochs: offline, online, CD-ROM, and Internet, and…

  5. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Transforming consumer health informatics through a patient work framework: connecting patients to context.

    PubMed

    Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C

    2015-01-01

    Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients' and their family members' health-related activities, referred to here as 'patient work'. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients' biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients' health management in larger processes and contexts and prioritizes patients' perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients' everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com. For numbered affiliations see end of article.

  7. Impact of genomic profiling on the treatment and outcomes of patients with advanced gastrointestinal malignancies.

    PubMed

    Dhir, Mashaal; Choudry, Haroon A; Holtzman, Matthew P; Pingpank, James F; Ahrendt, Steven A; Zureikat, Amer H; Hogg, Melissa E; Bartlett, David L; Zeh, Herbert J; Singhi, Aatur D; Bahary, Nathan

    2017-01-01

    The impact of genomic profiling on the outcomes of patients with advanced gastrointestinal (GI) malignancies remains unknown. The primary objectives of the study were to investigate the clinical benefit of genomic-guided therapy, defined as complete response (CR), partial response (PR), or stable disease (SD) at 3 months, and its impact on progression-free survival (PFS) in patients with advanced GI malignancies. Clinical and genomic data of all consecutive GI tumor samples from April, 2013 to April, 2016 sequenced by FoundationOne were obtained and analyzed. A total of 101 samples from 97 patients were analyzed. Ninety-eight samples from 95 patients could be amplified making this approach feasible in 97% of the samples. After removing duplicates, 95 samples from 95 patients were included in the further analysis. Median time from specimen collection to reporting was 11 days. Genomic alteration-guided treatment recommendations were considered new and clinically relevant in 38% (36/95) of the patients. Rapid decline in functional status was noted in 25% (9/36) of these patients who could therefore not receive genomic-guided therapy. Genomic-guided therapy was utilized in 13 patients (13.7%) and 7 patients (7.4%) experienced clinical benefit (6 PR and 1 SD). Among these seven patients, median PFS was 10 months with some ongoing durable responses. Genomic profiling-guided therapy can lead to clinical benefit in a subset of patients with advanced GI malignancies. Attempting genomic profiling earlier in the course of treatment prior to functional decline may allow more patients to benefit from these therapies. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Continuous quality improvement and medical informatics: the convergent synergy.

    PubMed

    Werth, G R; Connelly, D P

    1992-01-01

    Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach.

  9. Information science for the future: an innovative nursing informatics curriculum.

    PubMed

    Travis, L; Flatley Brennan, P

    1998-04-01

    Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.

  10. Informatics, evidence-based care, and research; implications for national policy: a report of an American Medical Informatics Association health policy conference.

    PubMed

    Bloomrosen, Meryl; Detmer, Don E

    2010-01-01

    There is an increased level of activity in the biomedical and health informatics world (e-prescribing, electronic health records, personal health records) that, in the near future, will yield a wealth of available data that we can exploit meaningfully to strengthen knowledge building and evidence creation, and ultimately improve clinical and preventive care. The American Medical Informatics Association (AMIA) 2008 Health Policy Conference was convened to focus and propel discussions about informatics-enabled evidence-based care, clinical research, and knowledge management. Conference participants explored the potential of informatics tools and technologies to improve the evidence base on which providers and patients can draw to diagnose and treat health problems. The paper presents a model of an evidence continuum that is dynamic, collaborative, and powered by health informatics technologies. The conference's findings are described, and recommendations on terminology harmonization, facilitation of the evidence continuum in a "wired" world, development and dissemination of clinical practice guidelines and other knowledge support strategies, and the role of diverse stakeholders in the generation and adoption of evidence are presented.

  11. Scalability of Comparative Analysis, Novel Algorithms and Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Mavrommatis, Kostas

    2017-12-22

    DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  13. A National Agenda for Public Health Informatics

    PubMed Central

    Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin

    2001-01-01

    The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561

  14. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  15. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  16. Recent advance on genome editing for therapy of β-hemoglobinopathies.

    PubMed

    Liu, Jia-Wei; Hong, Tao; Qin, Xin; Liang, Ying-Min; Zhang, Ping

    2018-02-20

    β-hemoglobinopathies are one of six groups of common illnesses affecting human health. Although the genetic mechanisms have been elucidated for several decades, curable treatment options, other than allogeneic bone marrow transplantation, are still lacking. In recent years, rapid development in genome editing technologies and their clinical applications have opened up new directions for treatment of β-hemoglobinopathies. Genome editing technologies, as applied in autologous CD34 + hematopoietic stem and progenitor cells, represents a promising remedial means for the β-globin disorders. Hemoglobin gene mutations could be corrected with homologous recombination-mediated DNA repair pathway to repair the genetic defects, while the nonhomologous end-joining pathway may be used to silence the key repressor of fetal globin expression and reactivate fetal hemoglobin expression, thereby alleviating the clinical symptoms of β-hemoglobinopathies in patients. This review summarizes the recent advances on genome editing of β-hemoglobinopathies from the bench design to the establishment of clinical translational platforms, thereby providing critical insights and references on the application of genome editing technologies for the development of therapeutic strategies for β-hemoglobinopathies.

  17. Addressing informatics challenges in Translational Research with workflow technology.

    PubMed

    Beaulah, Simon A; Correll, Mick A; Munro, Robin E J; Sheldon, Jonathan G

    2008-09-01

    Interest in Translational Research has been growing rapidly in recent years. In this collision of different data, technologies and cultures lie tremendous opportunities for the advancement of science and business for organisations that are able to integrate, analyse and deliver this information effectively to users. Workflow-based integration and analysis systems are becoming recognised as a fast and flexible way to build applications that are tailored to scientific areas, yet are built on a common platform. Workflow systems are allowing organisations to meet the key informatics challenges in Translational Research and improve disease understanding and patient care.

  18. Overview: The Impact of Microbial Genomics on Food Safety

    NASA Astrophysics Data System (ADS)

    Milillo, Sara R.; Wiedmann, Martin; Hoelzer, Karin

    The first use of the term "genome" is attributed to Hans Winkler in his 1920 publication Verbeitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche (Winkler, 1920). However, it was not until 1986 that the study of genomic concepts coalesced with the creation of a new journal by the same name (McKusick, 1997). The study of genomics was initially defined as the use or the application of "informatic tools" to study features of a sequenced genome (Strauss and Falkow, 1997). Today the field of genomics is typically considered to encompass efforts to determine the nucleic acid DNA sequence of an organism as well as the expression of genetic information using high-throughput, genome-wide methods, including transcriptomic, proteomic, and metabolomic analyses.

  19. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    PubMed

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  20. Ensembl core software resources: storage and programmatic access for DNA sequence and genome annotation.

    PubMed

    Ruffier, Magali; Kähäri, Andreas; Komorowska, Monika; Keenan, Stephen; Laird, Matthew; Longden, Ian; Proctor, Glenn; Searle, Steve; Staines, Daniel; Taylor, Kieron; Vullo, Alessandro; Yates, Andrew; Zerbino, Daniel; Flicek, Paul

    2017-01-01

    The Ensembl software resources are a stable infrastructure to store, access and manipulate genome assemblies and their functional annotations. The Ensembl 'Core' database and Application Programming Interface (API) was our first major piece of software infrastructure and remains at the centre of all of our genome resources. Since its initial design more than fifteen years ago, the number of publicly available genomic, transcriptomic and proteomic datasets has grown enormously, accelerated by continuous advances in DNA-sequencing technology. Initially intended to provide annotation for the reference human genome, we have extended our framework to support the genomes of all species as well as richer assembly models. Cross-referenced links to other informatics resources facilitate searching our database with a variety of popular identifiers such as UniProt and RefSeq. Our comprehensive and robust framework storing a large diversity of genome annotations in one location serves as a platform for other groups to generate and maintain their own tailored annotation. We welcome reuse and contributions: our databases and APIs are publicly available, all of our source code is released with a permissive Apache v2.0 licence at http://github.com/Ensembl and we have an active developer mailing list ( http://www.ensembl.org/info/about/contact/index.html ). http://www.ensembl.org. © The Author(s) 2017. Published by Oxford University Press.

  1. Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2012-03-01

    The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.

  2. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  3. Psychometric Properties of the Canadian Nurse Informatics Competency Assessment Scale.

    PubMed

    Kleib, Manal; Nagle, Lynn

    2018-04-10

    Assessment of nursing informatics competencies has gained momentum in the scholarly literature in response to the increased need for resources available to support informatics capacity in nursing. The purpose of this study was to examine the factor structure and internal consistency reliability of the Canadian Nurse Informatics Competency Assessment Scale, a newly developed 21-item measure based on published entry-to-practice informatics competencies for RNs. For this study, 2844 nurses completed the Canadian Nurse Informatics Competency Assessment Scale through a cross-sectional survey. Exploratory principal component analysis with oblique promax rotation revealed a four-component/factor structure for the 21-item Canadian Nurse Informatics Competency Assessment Scale, explaining 61.04% of the variance. Item loading per each component reflected the original Canadian Association of Schools of Nursing grouping of nursing informatics competency indicators, as per three key domains of competency: information and knowledge management (α = .85); professional and regulatory accountability (α = .81); and use of information and communication technology in the delivery of patient care (α = .87) with the exception of one item (Indicator 3), which loaded into the category of foundational information and communication technology skills (α = .81). This study provided preliminary evidence for the construct validity of the entry-to-practice competency domains and the factor structure and reliability of the Canadian Nurse Informatics Competency Assessment Scale among practicing nurses. Further testing among nurses in other settings and among nursing students is recommended.

  4. Pharmacovigilance and Biomedical Informatics: A Model for Future Development.

    PubMed

    Beninger, Paul; Ibara, Michael A

    2016-12-01

    The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log 10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in

  5. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  6. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Dehal, Paramvir

    2018-02-06

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  8. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  9. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.

    PubMed

    Siggens, L; Ekwall, K

    2014-09-01

    The organization of the genome into functional units, such as enhancers and active or repressed promoters, is associated with distinct patterns of DNA and histone modifications. The Encyclopedia of DNA Elements (ENCODE) project has advanced our understanding of the principles of genome, epigenome and chromatin organization, identifying hundreds of thousands of potential regulatory regions and transcription factor binding sites. Part of the ENCODE consortium, GENCODE, has annotated the human genome with novel transcripts including new noncoding RNAs and pseudogenes, highlighting transcriptional complexity. Many disease variants identified in genome-wide association studies are located within putative enhancer regions defined by the ENCODE project. Understanding the principles of chromatin and epigenome organization will help to identify new disease mechanisms, biomarkers and drug targets, particularly as ongoing epigenome mapping projects generate data for primary human cell types that play important roles in disease. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  10. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    PubMed

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  11. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research

    PubMed Central

    King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991

  12. [Current advances and future prospects of genome editing technology in the field of biomedicine.

    PubMed

    Sakuma, Tetsushi

    Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.

  13. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    PubMed

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Health Informatics for Development: a Three-pronged Strategy of Partnerships, Standards, and Mobile Health. Contribution of the IMIA Working Group on Health Informatics for Development.

    PubMed

    Marcelo, A; Adejumo, A; Luna, D

    2011-01-01

    Describe the issues surrounding health informatics in developing countries and the challenges faced by practitioners in building internal capacity. From these issues, the authors propose cost-effective strategies that can fast track health informatics development in these low to medium income countries (LMICs). The authors conducted a review of literature and consulted key opinion leaders who have experience with health informatics implementations around the world. Despite geographic and cultural differences, many LMICs share similar challenges and opportunities in developing health informatics. Partnerships, standards, and inter-operability are well known components of successful informatics programs. Establishing partnerships can be comprised of formal inter-institutional collaborations on training and research, collaborative open source software development, and effective use of social networking. Lacking legacy systems, LMICs can discuss standards and inter-operability more openly and have greater potential for success. Lastly, since cellphones are pervasive in developing countries, they can be leveraged as access points for delivering and documenting health services in remote under-served areas. Mobile health or mHealth gives LMICs a unique opportunity to leapfrog through most issues that have plagued health informatics in developed countries. By employing this proposed roadmap, LMICs can now develop capacity for health informatics using appropriate and cost-effective technologies.

  15. Emerging medical informatics research trends detection based on MeSH terms.

    PubMed

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  16. Machine learning in materials informatics: recent applications and prospects

    DOE PAGES

    Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam; ...

    2017-12-13

    Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists ormore » can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as “descriptors”, may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven “materials informatics” strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.« less

  17. Machine learning in materials informatics: recent applications and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam

    Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists ormore » can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as “descriptors”, may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven “materials informatics” strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.« less

  18. The nursing informatics workforce: who are they and what do they do?

    PubMed

    Murphy, Judy

    2011-01-01

    Nursing informatics has evolved into an integral part of health care delivery and a differentiating factor in the selection, implementation, and evaluation of health IT that supports safe, high-quality, patient-centric care. New nursing informatics workforce data reveal changing dynamics in clinical experience, job responsibilities, applications, barriers to success, information, and compensation and benefits. In addition to the more traditional informatics nurse role, a new position has begun to emerge in the health care C-suite with the introduction of the chief nursing informatics officer (CNIO). The CNIO is the senior informatics nurse guiding the implementation and optimization of HIT systems for an organization. With their fused clinical and informatics background, informatics nurses and CNIOs are uniquely positioned to help with "meaningful use" initiatives which are so important to changing the face of health care in the United States.

  19. Improving Bridging from Informatics Practice to Theory.

    PubMed

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  20. Gnome View: A tool for visual representation of human genome data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelkey, J.E.; Thomas, G.S.; Thurman, D.A.

    1993-02-01

    GnomeView is a tool for exploring data generated by the Human Gemone Project. GnomeView provides both graphical and textural styles of data presentation: employs an intuitive window-based graphical query interface: and integrates its underlying genome databases in such a way that the user can navigate smoothly across databases and between different levels of data. This paper describes GnomeView and discusses how it addresses various genome informatics issues.

  1. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    PubMed

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.

  2. IMIA Educational Recommendations and Nursing Informatics.

    PubMed

    Mantas, John; Hasman, Arie

    2017-01-01

    The updated version of the IMIA educational recommendations has given an adequate guidelines platform for developing educational programs in Biomedical and Health Informatics at all levels of education, vocational training, and distance learning. This chapter will provide a brief introduction of the recommendations pinpointing aspects for developing and assessing educational programs. We will provide a review of the existing feedback we have acquired during the IMIA site visits of accrediting educational programs at a worldwide level and discuss implementations issues. A brief overview of existing academic programs in Europe, North America and in other regions, especially for programs related to Nursing and to Nursing Informatics is provided. Finally, we will draw conclusions as how the IMIA recommendations may be required to be fitted into the specific needs of the Nursing Informatics and the needs of the Nursing professionals when they apply the recommendations to their academic and/or hospital/professional environments.

  3. Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.

    PubMed

    Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei

    2018-04-27

    In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.

  4. On Contributing to the Progress of Medical Informatics as Publisher.

    PubMed

    Haux, R; Geissbuhler, A; Holmes, J; Jaulent, M-C; Koch, S; Kulikowski, C A; Lehmann, C U; McCray, A T; Séroussi, B; Soualmia, L F; van Bemmel, J H

    2017-08-01

    May 1st, 2017, will mark Dieter Bergemann's 80th birthday. As Chief Executive Officer and Owner of Schattauer Publishers from 1983 to 2016, the biomedical and health informatics community owes him a great debt of gratitude. The past and present editors of Methods of Information in Medicine, the IMIA Yearbook of Medical Informatics, and Applied Clinical Informatics want to honour and thank Dieter Bergemann by providing a brief biography that emphasizes his contributions, by reviewing his critical role as an exceptionally supportive publisher for Schattauer's three biomedical and health informatics periodicals, and by sharing some personal anecdotes. Over the past 40 years, Dieter Bergemann has been an influential, if behind-the-scenes, driving force in biomedical and health informatics publications, helping to ensure success in the dissemination of our field's research and practice. Georg Thieme Verlag KG Stuttgart.

  5. Implementation of the CDC translational informatics platform - from genetic variants to the national Swedish Rheumatology Quality Register

    PubMed Central

    2013-01-01

    Background Sequencing of the human genome and the subsequent analyses have produced immense volumes of data. The technological advances have opened new windows into genomics beyond the DNA sequence. In parallel, clinical practice generate large amounts of data. This represents an underused data source that has much greater potential in translational research than is currently realized. This research aims at implementing a translational medicine informatics platform to integrate clinical data (disease diagnosis, diseases activity and treatment) of Rheumatoid Arthritis (RA) patients from Karolinska University Hospital and their research database (biobanks, genotype variants and serology) at the Center for Molecular Medicine, Karolinska Institutet. Methods Requirements engineering methods were utilized to identify user requirements. Unified Modeling Language and data modeling methods were used to model the universe of discourse and data sources. Oracle11g were used as the database management system, and the clinical development center (CDC) was used as the application interface. Patient data were anonymized, and we employed authorization and security methods to protect the system. Results We developed a user requirement matrix, which provided a framework for evaluating three translation informatics systems. The implementation of the CDC successfully integrated biological research database (15172 DNA, serum and synovial samples, 1436 cell samples and 65 SNPs per patient) and clinical database (5652 clinical visit) for the cohort of 379 patients presents three profiles. Basic functionalities provided by the translational medicine platform are research data management, development of bioinformatics workflow and analysis, sub-cohort selection, and re-use of clinical data in research settings. Finally, the system allowed researchers to extract subsets of attributes from cohorts according to specific biological, clinical, or statistical features. Conclusions Research and

  6. The Top 100 Articles in the Medical Informatics: a Bibliometric Analysis.

    PubMed

    Nadri, Hamed; Rahimi, Bahlol; Timpka, Toomas; Sedghi, Shahram

    2017-08-19

    The number of citations that a research paper receives can be used as a measure of its scientific impact. The objective of this study was to identify and to examine the characteristics of top 100 cited articles in the field of Medical Informatics based on data acquired from the Thomson Reuters' Web of Science (WOS) in October, 2016. The data was collected using two procedures: first we included articles published in the 24 journals listed in the "Medical Informatics" category; second, we retrieved articles using the key words: "informatics", "medical informatics", "biomedical informatics", "clinical informatics" and "health informatics". After removing duplicate records, articles were ranked by the number of citations they received. When the 100 top cited articles had been identified, we collected the following information for each record: all WOS database citations, year of publication, journal, author names, authors' affiliation, country of origin and topics indexed for each record. Citations for the top 100 articles ranged from 346 to 7875, and citations per year ranged from 11.12 to 525. The majority of articles were published in the 2000s (n=43) and 1990s (n=38). Articles were published across 10 journals, most commonly Statistics in medicine (n=71) and Medical decision making (n=28). The articles had an average of 2.47 authors. Statistics and biostatistics modeling was the most common topic (n=71), followed by artificial intelligence (n=12), and medical errors (n=3), other topics included data mining, diagnosis, bioinformatics, information retrieval, and medical imaging. Our bibliometric analysis illustrated a historical perspective on the progress of scientific research on Medical Informatics. Moreover, the findings of the current study provide an insight on the frequency of citations for top cited articles published in Medical Informatics as well as quality of the works, journals, and the trends steering Medical Informatics.

  7. PearlTrees web-based interface for teaching informatics in the radiology residency

    NASA Astrophysics Data System (ADS)

    Licurse, Mindy Y.; Cook, Tessa S.

    2014-03-01

    Radiology and imaging informatics education have rapidly evolved over the past few decades. With the increasing recognition that future growth and maintenance of radiology practices will rely heavily on radiologists with fundamentally sound informatics skills, the onus falls on radiology residency programs to properly implement and execute an informatics curriculum. In addition, the American Board of Radiology may choose to include even more informatics on the new board examinations. However, the resources available for didactic teaching and guidance most especially at the introductory level are widespread and varied. Given the breadth of informatics, a centralized web-based interface designed to serve as an adjunct to standardized informatics curriculums as well as a stand-alone for other interested audiences is desirable. We present the development of a curriculum using PearlTrees, an existing web-interface based on the concept of a visual interest graph that allows users to collect, organize, and share any URL they find online as well as to upload photos and other documents. For our purpose, the group of "pearls" includes informatics concepts linked by appropriate hierarchal relationships. The curriculum was developed using a combination of our institution's current informatics fellowship curriculum, the Practical Imaging Informatics textbook1 and other useful online resources. After development of the initial interface and curriculum has been publicized, we anticipate that involvement by the informatics community will help promote collaborations and foster mentorships at all career levels.

  8. Informatics and Standards for Nanomedicine Technology

    PubMed Central

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  9. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    PubMed Central

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  10. Things to come: postmodern digital knowledge management and medical informatics.

    PubMed

    Matheson, N W

    1995-01-01

    The overarching informatics grand challenge facing society is the creation of knowledge management systems that can acquire, conserve, organize, retrieve, display, and distribute what is known today in a manner that informs and educates, facilitates the discovery and creation of new knowledge, and contributes to the health and welfare of the planet. At one time the private, national, and university libraries of the world collectively constituted the memory of society's intellectual history. In the future, these new digital knowledge management systems will constitute human memory in its entirety. The current model of multiple local collections of duplicated resources will give way to specialized sole-source servers. In this new environment all scholarly scientific knowledge should be public domain knowledge: managed by scientists, organized for the advancement of knowledge, and readily available to all. Over the next decade, the challenge for the field of medical informatics and for the libraries that serve as the continuous memory for the biomedical sciences will be to come together to form a new organization that will lead to the development of postmodern digital knowledge management systems for medicine. These systems will form a portion of the evolving world brain of the 21st century.

  11. Health Informatics 3.0 and other increasingly dispersed technologies require even greater trust: promoting safe evidence-based health informatics. Contribution of the IMIA Working Group on Technology Assessment & Quality Development in Health Informatics.

    PubMed

    Rigby, M; Ammenwerth, E; Talmon, J; Nykänen, P; Brender, J; de Keizer, N

    2011-01-01

    Health informatics is generally less committed to a scientific evidence-based approach than any other area of health science, which is an unsound position. Introducing the new Web 3.0 paradigms into health IT applications can unleash a further great potential, able to integrate and distribute data from multiple sources. The counter side is that it makes the user and the patient evermore dependent on the 'black box' of the system, and the re-use of the data remote from the author and initial context. Thus anticipatory consideration of uses, and proactive analysis of evidence of effects, are imperative, as only when a clinical technology can be proven to be trustworthy and safe should it be implemented widely - as is the case with other health technologies. To argue for promoting evidence-based health informatics as systems become more powerful and pro-active yet more dispersed and remote; and evaluation as the means of generating the necessary scientific evidence base. To present ongoing IMIA and EFMI initiatives in this field. Critical overview of recent developments in health informatics evaluation, alongside the precedents of other health technologies, summarising current initiatives and the new challenges presented by Health Informatics 3.0. Web 3.0 should be taken as an opportunity to move health informatics from being largely unaccountable to one of being an ethical and responsible science-based domain. Recent and planned activities of the EFMI and IMIA working groups have significantly progressed key initiatives. Concurrent with the emergence of Web 3.0 as a means of new-generation diffuse health information systems comes an increasing need for an evidence-based culture in health informatics.

  12. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  13. Comparative Effectiveness Research, Genomics-Enabled Personalized Medicine, and Rapid Learning Health Care: A Common Bond

    PubMed Central

    Ginsburg, Geoffrey S.; Kuderer, Nicole M.

    2012-01-01

    Despite stunning advances in our understanding of the genetics and the molecular basis for cancer, many patients with cancer are not yet receiving therapy tailored specifically to their tumor biology. The translation of these advances into clinical practice has been hindered, in part, by the lack of evidence for biomarkers supporting the personalized medicine approach. Most stakeholders agree that the translation of biomarkers into clinical care requires evidence of clinical utility. The highest level of evidence comes from randomized controlled clinical trials (RCTs). However, in many instances, there may be no RCTs that are feasible for assessing the clinical utility of potentially valuable genomic biomarkers. In the absence of RCTs, evidence generation will require well-designed cohort studies for comparative effectiveness research (CER) that link detailed clinical information to tumor biology and genomic data. CER also uses systematic reviews, evidence-quality appraisal, and health outcomes research to provide a methodologic framework for assessing biologic patient subgroups. Rapid learning health care (RLHC) is a model in which diverse data are made available, ideally in a robust and real-time fashion, potentially facilitating CER and personalized medicine. Nonetheless, to realize the full potential of personalized care using RLHC requires advances in CER and biostatistics methodology and the development of interoperable informatics systems, which has been recognized by the National Cancer Institute's program for CER and personalized medicine. The integration of CER methodology and genomics linked to RLHC should enhance, expedite, and expand the evidence generation required for fully realizing personalized cancer care. PMID:23071236

  14. Recent Advances in Genome Editing Using CRISPR/Cas9.

    PubMed

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding.

  15. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  16. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    PubMed

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  17. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M; Kalet, I; McNutt, T

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussionmore » in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  18. Clinical Research Informatics: Challenges, Opportunities and Definition for an Emerging Domain

    PubMed Central

    Embi, Peter J.; Payne, Philip R.O.

    2009-01-01

    Objectives Clinical Research Informatics, an emerging sub-domain of Biomedical Informatics, is currently not well defined. A formal description of CRI including major challenges and opportunities is needed to direct progress in the field. Design Given the early stage of CRI knowledge and activity, we engaged in a series of qualitative studies with key stakeholders and opinion leaders to determine the range of challenges and opportunities facing CRI. These phases employed complimentary methods to triangulate upon our findings. Measurements Study phases included: 1) a group interview with key stakeholders, 2) an email follow-up survey with a larger group of self-identified CRI professionals, and 3) validation of our results via electronic peer-debriefing and member-checking with a group of CRI-related opinion leaders. Data were collected, transcribed, and organized for formal, independent content analyses by experienced qualitative investigators, followed by an iterative process to identify emergent categorizations and thematic descriptions of the data. Results We identified a range of challenges and opportunities facing the CRI domain. These included 13 distinct themes spanning academic, practical, and organizational aspects of CRI. These findings also informed the development of a formal definition of CRI and supported further representations that illustrate areas of emphasis critical to advancing the domain. Conclusions CRI has emerged as a distinct discipline that faces multiple challenges and opportunities. The findings presented summarize those challenges and opportunities and provide a framework that should help inform next steps to advance this important new discipline. PMID:19261934

  19. The UAB Informatics Institute and 2016 CEGS N-GRID de-identification shared task challenge.

    PubMed

    Bui, Duy Duc An; Wyatt, Mathew; Cimino, James J

    2017-11-01

    Clinical narratives (the text notes found in patients' medical records) are important information sources for secondary use in research. However, in order to protect patient privacy, they must be de-identified prior to use. Manual de-identification is considered to be the gold standard approach but is tedious, expensive, slow, and impractical for use with large-scale clinical data. Automated or semi-automated de-identification using computer algorithms is a potentially promising alternative. The Informatics Institute of the University of Alabama at Birmingham is applying de-identification to clinical data drawn from the UAB hospital's electronic medical records system before releasing them for research. We participated in a shared task challenge by the Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-GRID) at the de-identification regular track to gain experience developing our own automatic de-identification tool. We focused on the popular and successful methods from previous challenges: rule-based, dictionary-matching, and machine-learning approaches. We also explored new techniques such as disambiguation rules, term ambiguity measurement, and used multi-pass sieve framework at a micro level. For the challenge's primary measure (strict entity), our submissions achieved competitive results (f-measures: 87.3%, 87.1%, and 86.7%). For our preferred measure (binary token HIPAA), our submissions achieved superior results (f-measures: 93.7%, 93.6%, and 93%). With those encouraging results, we gain the confidence to improve and use the tool for the real de-identification task at the UAB Informatics Institute. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Developing Informatics Tools and Strategies for Consumer-centered Health Communication

    PubMed Central

    Keselman, Alla; Logan, Robert; Smith, Catherine Arnott; Leroy, Gondy; Zeng-Treitler, Qing

    2008-01-01

    As the emphasis on individuals' active partnership in health care grows, so does the public's need for effective, comprehensible consumer health resources. Consumer health informatics has the potential to provide frameworks and strategies for designing effective health communication tools that empower users and improve their health decisions. This article presents an overview of the consumer health informatics field, discusses promising approaches to supporting health communication, and identifies challenges plus direction for future research and development. The authors' recommendations emphasize the need for drawing upon communication and social science theories of information behavior, reaching out to consumers via a range of traditional and novel formats, gaining better understanding of the public's health information needs, and developing informatics solutions for tailoring resources to users' needs and competencies. This article was written as a scholarly outreach and leadership project by members of the American Medical Informatics Association's Consumer Health Informatics Working Group. PMID:18436895

  1. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Kyrpides, Nikos [DOE JGI

    2018-05-30

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  2. System for Informatics in the Molecular Pathology Laboratory: An Open-Source End-to-End Solution for Next-Generation Sequencing Clinical Data Management.

    PubMed

    Kang, Wenjun; Kadri, Sabah; Puranik, Rutika; Wurst, Michelle N; Patil, Sushant A; Mujacic, Ibro; Benhamed, Sonia; Niu, Nifang; Zhen, Chao Jie; Ameti, Bekim; Long, Bradley C; Galbo, Filipo; Montes, David; Iracheta, Crystal; Gamboa, Venessa L; Lopez, Daisy; Yourshaw, Michael; Lawrence, Carolyn A; Aisner, Dara L; Fitzpatrick, Carrie; McNerney, Megan E; Wang, Y Lynn; Andrade, Jorge; Volchenboum, Samuel L; Furtado, Larissa V; Ritterhouse, Lauren L; Segal, Jeremy P

    2018-04-24

    Next-generation sequencing (NGS) diagnostic assays increasingly are becoming the standard of care in oncology practice. As the scale of an NGS laboratory grows, management of these assays requires organizing large amounts of information, including patient data, laboratory processes, genomic data, as well as variant interpretation and reporting. Although several Laboratory Information Systems and/or Laboratory Information Management Systems are commercially available, they may not meet all of the needs of a given laboratory, in addition to being frequently cost-prohibitive. Herein, we present the System for Informatics in the Molecular Pathology Laboratory, a free and open-source Laboratory Information System/Laboratory Information Management System for academic and nonprofit molecular pathology NGS laboratories, developed at the Genomic and Molecular Pathology Division at the University of Chicago Medicine. The System for Informatics in the Molecular Pathology Laboratory was designed as a modular end-to-end information system to handle all stages of the NGS laboratory workload from test order to reporting. We describe the features of the system, its clinical validation at the Genomic and Molecular Pathology Division at the University of Chicago Medicine, and its installation and testing within a different academic center laboratory (University of Colorado), and we propose a platform for future community co-development and interlaboratory data sharing. Copyright © 2018. Published by Elsevier Inc.

  3. Enhancing "Mathematics for Informatics" and its Correlation with Student Pass Rates

    ERIC Educational Resources Information Center

    Divjak, B.; Erjavec, Z.

    2008-01-01

    In this article, changes in "Mathematics for Informatics" at the Faculty of Organisation and Informatics in the University of Zagreb are described, and correlated with students pass rates. Students at the Faculty work in an interdisciplinary field, studying Informatics within a business context. The main reason for introducing the…

  4. IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

    PubMed Central

    Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan

    2009-01-01

    Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385

  5. The Recurrence Relations in Teaching Students of Informatics

    ERIC Educational Resources Information Center

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  6. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A

    2015-11-16

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Developing a Capstone Course within a Health Informatics Program

    PubMed Central

    Hackbarth, Gary; Cata, Teuta; Cole, Laura

    2012-01-01

    This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students’ logs confirms that students’ areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150

  8. Nursing Informatics Training in Undergraduate Nursing Programs in Peru.

    PubMed

    Condor, Daniel F; Sanchez Alvarez, Katherine; Bidman, Austin A

    2018-01-01

    Nursing informatics training has been progressively developing as a field in Latin America, each country with diverse approaches to its implementation. In Peru, this process has not yet taken place, so it is necessary to determine how universities are performing in this regard. We conducted a search to describe if universities provide training in computer nursing or similar. There are 72 universities offering professional nursing training, with only 24% of these providing any specific course in nursing informatics. Training undergraduates in nursing informatics improves the skillset of licensed nurses.

  9. [The Role and Function of Informatics Nurses in Information Technology Decision-Making].

    PubMed

    Lee, Tso-Ying

    2017-08-01

    The medical environment has changed greatly with the coming of the information age, and, increasingly, the operating procedures for medical services have been altered in keeping with the trend toward mobile, paperless services. Informatization has the potential to improve the working efficiency of medical personnel, enhance patient care safety, and give medical organizations a positive image. Informatics nurses play an important role in the decision-making processes that accompany informatization. As one of the decision-making links in the information technology lifecycle, this role affects the success of the development and operation of information systems. The present paper examines the functions and professional knowledge that informatics nurses must possess during the technology lifecycle, the four stages of which include: planning, analysis, design/development/revision, and implementation/assessment/support/maintenance. The present paper further examines the decision-making shortcomings and errors that an informatics nurses may make during the decision-making process. We hope that this paper will serve as an effective and useful reference for informatics nurses during the informatization decision-making process.

  10. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Canon, Shane

    2018-01-24

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  11. Informatics for Peru in the new millennium.

    PubMed

    Karras, B T; Kimball, A M; Gonzales, V; Pautler, N A; Alarcón, J; Garcia, P J; Fuller, S

    2001-01-01

    As efforts continue to narrow the digital divide between the North and South, a new biomedical and health informatics training effort has been launched in Peru. This report describes the first year of work on this collaborative effort between the University of Washington (Seattle) Universidad Peruana Cayetano Heredia and Universidad Nacional de San Marcos (Peru) To describe activities in the first year of a new International Research and Training Program in Biomedical and Health Informatics. Descriptive analysis of key activities including an assessment of electronic environment through observation and survey, an in country short course with quantitative evaluation, and first round of recruitment of Peruvian scholars for long-term training in Seattle. A two-week short course on informatics was held in the country. Participants' success in learning was demonstrated through pretest/posttest. A systematic assessment of electronic environment in Peru was carried out and two scholars for long-term training were enrolled at the University of Washington, Seattle. Initial activity in the collaborative training effort has been high. Of particular importance in this environment is orchestration of efforts among interested parties with similar goals in Peru, and integration of informatics skills into ongoing large-scale research projects in country.

  12. Discovering anomalous events from urban informatics data

    NASA Astrophysics Data System (ADS)

    Jayarajah, Kasthuri; Subbaraju, Vigneshwaran; Weerakoon, Dulanga; Misra, Archan; Tam, La Thanh; Athaide, Noel

    2017-05-01

    Singapore's "smart city" agenda is driving the government to provide public access to a broader variety of urban informatics sources, such as images from traffic cameras and information about buses servicing different bus stops. Such informatics data serves as probes of evolving conditions at different spatiotemporal scales. This paper explores how such multi-modal informatics data can be used to establish the normal operating conditions at different city locations, and then apply appropriate outlier-based analysis techniques to identify anomalous events at these selected locations. We will introduce the overall architecture of sociophysical analytics, where such infrastructural data sources can be combined with social media analytics to not only detect such anomalous events, but also localize and explain them. Using the annual Formula-1 race as our candidate event, we demonstrate a key difference between the discriminative capabilities of different sensing modes: while social media streams provide discriminative signals during or prior to the occurrence of such an event, urban informatics data can often reveal patterns that have higher persistence, including before and after the event. In particular, we shall demonstrate how combining data from (i) publicly available Tweets, (ii) crowd levels aboard buses, and (iii) traffic cameras can help identify the Formula-1 driven anomalies, across different spatiotemporal boundaries.

  13. Meeting the challenges--the role of medical informatics in an ageing society.

    PubMed

    Koch, Sabine

    2006-01-01

    The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.

  14. Informatics tools to improve clinical research study implementation.

    PubMed

    Brandt, Cynthia A; Argraves, Stephanie; Money, Roy; Ananth, Gowri; Trocky, Nina M; Nadkarni, Prakash M

    2006-04-01

    There are numerous potential sources of problems when performing complex clinical research trials. These issues are compounded when studies are multi-site and multiple personnel from different sites are responsible for varying actions from case report form design to primary data collection and data entry. We describe an approach that emphasizes the use of a variety of informatics tools that can facilitate study coordination, training, data checks and early identification and correction of faulty procedures and data problems. The paper focuses on informatics tools that can help in case report form design, procedures and training and data management. Informatics tools can be used to facilitate study coordination and implementation of clinical research trials.

  15. Metropolis revisited: the evolving role of librarians in informatics education for the health professions

    PubMed Central

    King, Samuel B.; Lapidus, Mariana

    2015-01-01

    Objective: The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to “Metropolis Redux: The Unique Importance of Library Skills in Informatics,” a 2004 survey of informatics programs. Methods: An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Results: Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Conclusions: Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Implications: Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself. PMID:25552939

  16. Metropolis revisited: the evolving role of librarians in informatics education for the health professions.

    PubMed

    King, Samuel B; Lapidus, Mariana

    2015-01-01

    The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to "Metropolis Redux: The Unique Importance of Library Skills in Informatics," a 2004 survey of informatics programs. An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself.

  17. An Accessible Proteogenomics Informatics Resource for Cancer Researchers.

    PubMed

    Chambers, Matthew C; Jagtap, Pratik D; Johnson, James E; McGowan, Thomas; Kumar, Praveen; Onsongo, Getiria; Guerrero, Candace R; Barsnes, Harald; Vaudel, Marc; Martens, Lennart; Grüning, Björn; Cooke, Ira R; Heydarian, Mohammad; Reddy, Karen L; Griffin, Timothy J

    2017-11-01

    Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry-based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub. Cancer Res; 77(21); e43-46. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Biomedical and Health Informatics Education – the IMIA Years

    PubMed Central

    2016-01-01

    Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405

  19. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Hugenholtz, Phil

    2018-02-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  20. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  1. Middle East and North African Health Informatics Association (MENAHIA): Building Sustainable Collaboration.

    PubMed

    Al-Shorbaji, Najeeb; Househ, Mowafa; Taweel, Adel; Alanizi, Abdullah; Mohammed, Bennani Othmani; Abaza, Haitham; Bawadi, Hala; Rasuly, Hamayon; Alyafei, Khalid; Fernandez-Luque, Luis; Shouman, Mohamed; El-Hassan, Osama; Hussein, Rada; Alshammari, Riyad; Mandil, Salah; Shouman, Sarah; Taheri, Shahrad; Emara, Tamer; Dalhem, Wasmiya; Al-Hamdan, Zaid; Serhier, Zineb

    2018-04-22

    There has been a growing interest in Health Informatics applications, research, and education within the Middle East and North African Region over the past twenty years. People of this region share similar cultural and religious values, primarily speak the Arabic language, and have similar health care related issues, which are in dire need of being addressed. Health Informatics efforts, organizations, and initiatives within the region have been largely under-represented within, but not ignored by, the International Medical Informatics Association (IMIA). Attempts to create bonds and collaboration between the different organizations of the region have remained scattered, and often, resulted in failure despite the fact that the need for a united health informatics collaborative within the region has never been more crucial than today. During the 2017 MEDINFO, held in Hangzhou, China, a new organization, the Middle East and North African Health Informatics Association (MENAHIA) was conceived as a regional non-governmental organization to promote and facilitate health informatics uptake within the region endorsing health informatics research and educational initiatives of the 22 countries represented within the region. This paper provides an overview of the collaboration and efforts to date in forming MENAHIA and displays the variety of initiatives that are already occurring within the MENAHIA region, which MENAHIA will help, endorse, support, share, and improve within the international forum of health informatics. Georg Thieme Verlag KG Stuttgart.

  2. Bits and bytes: the future of radiology lies in informatics and information technology.

    PubMed

    Brink, James A; Arenson, Ronald L; Grist, Thomas M; Lewin, Jonathan S; Enzmann, Dieter

    2017-09-01

    Advances in informatics and information technology are sure to alter the practice of medical imaging and image-guided therapies substantially over the next decade. Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large. This article focuses primarily on areas where this IT transformation is likely to have a profound effect on the practice of radiology. • Clinical decision support ensures consistent and appropriate resource utilization. • Big data enables correlation of health information across multiple domains. • Data mining advances the quality of medical decision-making. • Business analytics allow radiologists to maximize the benefits of imaging resources.

  3. Advances in the translational genomics of neuroblastoma

    PubMed Central

    Bosse, Kristopher R.; Maris, John M.

    2015-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  4. A strategic vision for telemedicine and medical informatics in space flight

    NASA Technical Reports Server (NTRS)

    Williams, D. R.; Bashshur, R. L.; Pool, S. L.; Doarn, C. R.; Merrell, R. C.; Logan, J. S.

    2000-01-01

    This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.

  5. A strategic vision for telemedicine and medical informatics in space flight.

    PubMed

    Williams, D R; Bashshur, R L; Pool, S L; Doarn, C R; Merrell, R C; Logan, J S

    2000-01-01

    This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.

  6. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  7. Advances in Engineering the Fly Genome with the CRISPR-Cas System

    PubMed Central

    Bier, Ethan; Harrison, Melissa M.; O’Connor-Giles, Kate M.; Wildonger, Jill

    2018-01-01

    Drosophila has long been a premier model for the development and application of cutting-edge genetic approaches. The CRISPR-Cas system now adds the ability to manipulate the genome with ease and precision, providing a rich toolbox to interrogate relationships between genotype and phenotype, to delineate and visualize how the genome is organized, to illuminate and manipulate RNA, and to pioneer new gene drive technologies. Myriad transformative approaches have already originated from the CRISPR-Cas system, which will likely continue to spark the creation of tools with diverse applications. Here, we provide an overview of how CRISPR-Cas gene editing has revolutionized genetic analysis in Drosophila and highlight key areas for future advances. PMID:29301946

  8. RN, CIO: an executive informatics career.

    PubMed

    Staggers, Nancy; Lasome, Caterina E M

    2005-01-01

    The Chief Information Officer (CIO) position is a viable new career track for clinical informaticists. Nurses, especially informatics nurses, are uniquely positioned for the CIO role because of their operational knowledge of clinical processes, communication skills, systems thinking abilities, and knowledge about information structures and processes. This article describes essential knowledge and skills for the CIO executive position. Competencies not typical to nurses can be learned and developed, particularly strategic visioning and organizational finesse. This article concludes by describing career development steps toward the CIO position: leadership and management; healthcare operations; organizational finesse; and informatics knowledge, processes, methods, and structures.

  9. A core curriculum for clinical fellowship training in pathology informatics

    PubMed Central

    McClintock, David S.; Levy, Bruce P.; Lane, William J.; Lee, Roy E.; Baron, Jason M.; Klepeis, Veronica E.; Onozato, Maristela L.; Kim, JiYeon; Dighe, Anand S.; Beckwith, Bruce A.; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R.

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including

  10. An Assessment of Imaging Informatics for Precision Medicine in Cancer.

    PubMed

    Chennubhotla, C; Clarke, L P; Fedorov, A; Foran, D; Harris, G; Helton, E; Nordstrom, R; Prior, F; Rubin, D; Saltz, J H; Shalley, E; Sharma, A

    2017-08-01

    Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine. Georg Thieme Verlag KG Stuttgart.

  11. [Role of self-leadership in the relationship between organizational culture and informatics competency].

    PubMed

    Kim, Myoung Soo

    2009-10-01

    The purpose of this study was to identify the moderating and mediating effects of self-leadership in the relationship between organizational culture and nurses' informatics competency. Participants in this study were 297 nurses from the cities of Busan and Ulsan. The scales of organizational culture, self-leadership and informatics competency for nurses were used in this study. Descriptive statistics, Pearson correlation coefficient, stepwise multiple regression were used for data analysis. Nursing informatics competency of the participants was relatively low with a mean score 3.02. There were significant positive correlations between subcategories of perceived organizational culture, self-leadership and nursing informatics competency. Self-leadership was a moderator and a mediator between organizational culture and informatics competency. Based on the results of this study, self-leadership promotion strategies to improve nursing informatics competency are needed.

  12. Teaching Informatics to Prelicensure, RN-to-BSN, and Graduate Level Students.

    PubMed

    Vottero, Beth

    Teaching nursing informatics to students in associate, baccalaureate, RN-BSN, and graduate nursing programs poses challenges for curriculum design, as well as developing appropriate instruction and assessment methods. The current state of nursing informatics education provides opportunities for unique instructional design and assessment techniques. Key course content is provided with suggestions for teaching informatics that focus on leveling for prelicensure, RN-BSN, and graduate nursing programs.

  13. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    PubMed

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  14. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  15. Evolution of Trends in European Medical Informatics

    PubMed Central

    I. Mihalas, George

    2014-01-01

    This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618

  16. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial.

    PubMed

    Aung, Kyaw L; Fischer, Sandra E; Denroche, Robert E; Jang, Gun-Ho; Dodd, Anna; Creighton, Sean; Southwood, Bernadette; Liang, Sheng-Ben; Chadwick, Dianne; Zhang, Amy; O'Kane, Grainne M; Albaba, Hamzeh; Moura, Shari; Grant, Robert C; Miller, Jessica K; Mbabaali, Faridah; Pasternack, Danielle; Lungu, Ilinca M; Bartlett, John M S; Ghai, Sangeet; Lemire, Mathieu; Holter, Spring; Connor, Ashton A; Moffitt, Richard A; Yeh, Jen Jen; Timms, Lee; Krzyzanowski, Paul M; Dhani, Neesha; Hedley, David; Notta, Faiyaz; Wilson, Julie M; Moore, Malcolm J; Gallinger, Steven; Knox, Jennifer J

    2018-03-15

    Purpose: To perform real-time whole genome sequencing (WGS) and RNA sequencing (RNASeq) of advanced pancreatic ductal adenocarcinoma (PDAC) to identify predictive mutational and transcriptional features for better treatment selection. Experimental Design: Patients with advanced PDAC were prospectively recruited prior to first-line combination chemotherapy. Fresh tumor tissue was acquired by image-guided percutaneous core biopsy for WGS and RNASeq. Laser capture microdissection was performed for all cases. Primary endpoint was feasibility to report WGS results prior to first disease assessment CT scan at 8 weeks. The main secondary endpoint was discovery of patient subsets with predictive mutational and transcriptional signatures. Results: Sixty-three patients underwent a tumor biopsy between December 2015 and June 2017. WGS and RNASeq were successful in 62 (98%) and 60 (95%), respectively. Genomic results were reported at a median of 35 days (range, 19-52 days) from biopsy, meeting the primary feasibility endpoint. Objective responses to first-line chemotherapy were significantly better in patients with the classical PDAC RNA subtype compared with those with the basal-like subtype ( P = 0.004). The best progression-free survival was observed in those with classical subtype treated with m-FOLFIRINOX. GATA6 expression in tumor measured by RNA in situ hybridization was found to be a robust surrogate biomarker for differentiating classical and basal-like PDAC subtypes. Potentially actionable genetic alterations were found in 30% of patients. Conclusions: Prospective genomic profiling of advanced PDAC is feasible, and our early data indicate that chemotherapy response differs among patients with different genomic/transcriptomic subtypes. Clin Cancer Res; 24(6); 1344-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Informatic innovations in glycobiology: relevance to drug discovery.

    PubMed

    Mamitsuka, Hiroshi

    2008-02-01

    The recent development and applications of tree-based informatics on glycans have accelerated the biological analysis on glycans, particularly from structural viewpoints. We review three major aspects of recent informatics innovations on glycan structures: maturity of well-organized databases on glycan structures linking with other biological information, implementation of glycan structure matching algorithms and extensive development of methods for mining frequent patterns from glycan structures.

  18. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia.

    PubMed

    Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-10-01

    Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.

  19. Current Status for Teaching Nursing Informatics in Denmark, Canada, and Australia.

    PubMed

    Madsen, Inge; Cummings, Elizabeth; Borycki, Elizabeth M

    2015-01-01

    Nursing schools in Denmark, Canada, and Australia are all currently involved in integrating nursing informatics in the nursing bachelor programme. This paper gives a brief update on the current situation of nursing informatics education for bachelor level nurses in each of the three countries. Whilst there are differences in the curriculum in each county, it is important to share knowledge about undergraduate nursing informatics worldwide to ensure consistency.

  20. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  1. Visibility of medical informatics regarding bibliometric indices and databases

    PubMed Central

    2011-01-01

    Background The quantitative study of the publication output (bibliometrics) deeply influences how scientific work is perceived (bibliometric visibility). Recently, new bibliometric indices and databases have been established, which may change the visibility of disciplines, institutions and individuals. This study examines the effects of the new indices on the visibility of Medical Informatics. Methods By objective criteria, three sets of journals are chosen, two representing Medical Informatics and a third addressing Internal Medicine as a benchmark. The availability of index data (index coverage) and the aggregate scores of these corpora are compared for journal-related (Journal impact factor, Eigenfactor metrics, SCImago journal rank) and author-related indices (Hirsch-index, Egghes G-index). Correlation analysis compares the dependence of author-related indices. Results The bibliometric visibility depended on the research focus and the citation database: Scopus covers more journals relevant for Medical Informatics than ISI/Thomson Reuters. Journals focused on Medical Informatics' methodology were negatively affected by the Eigenfactor metrics, while the visibility profited from an interdisciplinary research focus. The correlation between Hirsch-indices computed on citation databases and the Internet was strong. Conclusions The visibility of smaller technology-oriented disciplines like Medical Informatics is changed by the new bibliometric indices and databases possibly leading to suitably changed publication strategies. Freely accessible author-related indices enable an easy and adequate individual assessment. PMID:21496230

  2. A short history of medical informatics in bosnia and herzegovina.

    PubMed

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  3. The life and death of URLs in five biomedical informatics journals.

    PubMed

    Carnevale, Randy J; Aronsky, Dominik

    2007-04-01

    To determine the decay rate of Uniform Record Locators (URLs) in the reference section of biomedical informatics journals. URL references were collected from printed journal articles of the first and middle issues of 1999-2004 and electronically available in-press articles in January 2005. We limited this set to five biomedical informatics journals: Artificial Intelligence in Medicine, International Journal of Medical Informatics, Journal of the American Medical Informatics Association: JAMIA, Methods of Information in Medicine, and Journal of Biomedical Informatics. During a 1-month period, URL access attempts were performed eight times a day at regular intervals. Of the 19,108 references extracted from 606 printed and 86 in-press articles, 1112 (5.8%) references contained a URL. Of the 1049 unique URLs, 726 (69.2%) were alive, 230 (21.9%) were dead, and 93 (8.9%) were comatose. URLs from in-press articles included 212 URLs, of which 169 (79.7%) were alive, 21 (9.9%) were dead, and 22 (10.4%) were comatose. The average annual decay, or link rot, rate was 5.4%. The URL decay rate in biomedical informatics journals is high. A commonly accepted strategy for the permanent archival of digital information referenced in scholarly publications is urgently needed.

  4. Characteristics of Information Systems and Business Informatics Study Programs

    ERIC Educational Resources Information Center

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  5. Recent advances in understanding the role of nutrition in human genome evolution.

    PubMed

    Ye, Kaixiong; Gu, Zhenglong

    2011-11-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics.

  6. Big data: the next frontier for innovation in therapeutics and healthcare.

    PubMed

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2014-05-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the '-omics', wherein an individual's genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into 'big data' informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. 'Big data' informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient '-omics' data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of 'big data' informatics for clinical pharmacology.

  7. Big data: the next frontier for innovation in therapeutics and healthcare

    PubMed Central

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2015-01-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the “-omics”, wherein an individual’s genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into “big data” informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. “Big data” informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient “-omics” data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of “big data” informatics for clinical pharmacology. PMID:24702684

  8. A Repository of Codes of Ethics and Technical Standards in Health Informatics

    PubMed Central

    Zaïane, Osmar R.

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725

  9. Human genome program report. Part 2, 1996 research abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  10. Human Genome Program Report. Part 2, 1996 Research Abstracts

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  11. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    PubMed

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  12. The Anesthesiologist-Informatician: A Survey of Physicians Board-Certified in Both Anesthesiology and Clinical Informatics.

    PubMed

    Poterack, Karl A; Epstein, Richard H; Dexter, Franklin

    2018-03-12

    All 36 physicians board-certified in both anesthesiology and clinical informatics as of January 1, 2016, were surveyed via e-mail, with 26 responding. Although most (25/26) generally expressed satisfaction with the clinical informatics boards, and view informatics expertise as important to anesthesiology, most (24/26) thought it unlikely or highly unlikely that substantial numbers of anesthesiology residents would pursue clinical informatics fellowships. Anesthesiologists wishing to qualify for the clinical informatics board examination under the practice pathway need to devote a substantive amount of worktime to informatics. There currently are options outside of formal fellowship training to acquire the knowledge to pass.

  13. A national survey on the current status of informatics residency education in pharmacy.

    PubMed

    Blash, Anthony; Saltsman, Connie L; Steil, Condit

    2017-11-01

    Upon completion of their post-graduate training, pharmacy informatics residents need to be prepared to interact with clinical and technology experts in the new healthcare environment. This study describes pharmacy informatics residency programs within the United States. Preliminary information for all pharmacy informatics residency programs was accessed from program webpages. An email was sent out to programs asking them to respond to a six-item questionnaire. This questionnaire was designed to elicit information on attributes of the program, behaviors of the preceptors and residents, and attitudes of the residency directors. Of 22 pharmacy informatics residencies identified, nineteen (86%) participated. Twenty (91%) were second post-graduate year (PGY2) residencies. Ten (45%) were accredited by the American Society of Health-System Pharmacists (ASHP), while eight (36%) were candidates for accreditation. Hospital (17/22, 77%) and administrative offices (3/22, 14%) were the predominant training sites for pharmacy informatics residents. Large institutions were the predominant training environment for the pharmacy informatics resident, with 19 of 22 (86%) institutions reporting a licensed bed count of 500 or more. The median (range) number of informatics preceptors at a site was six to eight. Regarding barriers to pharmacy informatics residency education, residency directors reported that residents did not feel prepared based on the limited availability of curricular offerings. In the United States, relatively few residencies are explicitly focused on pharmacy informatics. Most of these are accredited and hospital affiliated, especially with large institutions (>500 beds). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Merging genomic and phenomic data for research and clinical impact.

    PubMed

    Shublaq, Nour W; Coveney, Peter V

    2012-01-01

    Driven primarily by advances in genomics, pharmacogenomics and systems biology technologies, large amounts of genomic and phenomic data are today being collected on individuals worldwide. Integrative analysis, mining, and computer modeling of these data, facilitated by information technology, have led to the development of predictive, preventive, and personalized medicine. This transformative approach holds the potential inter alia to enable future general practitioners and physicians to prescribe the right drug to the right patient at the right dosage. For such patient-specific medicine to be adopted as standard clinical practice, publicly accumulated knowledge of genes, proteins, molecular functional annotations, and interactions need to be unified and with electronic health records including phenotypic information, most of which still reside as paper-based records in hospitals. We review the state-of-the-art in terms of electronic data capture and medical data standards. Some of these activities are drawn from research projects currently being performed within the European Virtual Physiological Human (VPH) initiative; all are being monitored by the VPH INBIOMEDvision Consortium. Various ethical, legal and societal issues linked with privacy will increasingly arise in the post-genomic era. This will require a closer interaction between the bioinformatics/systems biology and medical informatics/healthcare communities. Planning for how individuals will own their personal health records is urgently needed, as the cost of sequencing a whole human genome will soon be less than U.S. $100. We discuss some of the issues that will need to be addressed by society as a result of this revolution in healthcare.

  15. Training in pathology informatics: implementation at the University of Pittsburgh.

    PubMed

    Harrison, James H; Stewart, Jimmie

    2003-08-01

    Pathology informatics is generally recognized as an important component of pathology training, but the scope, form, and goals of informatics training vary substantially between pathology residency programs. The Training and Education Committee of the Association for Pathology Informatics (API TEC) has developed a standard set of knowledge and skills objectives that are recommended for inclusion in pathology informatics training and may serve to standardize and formalize training programs in this area. The University of Pittsburgh (Pittsburgh, Pa) core rotation in pathology informatics includes most of these goals and is offered as an implementation model for pathology informatics training. The core rotation in pathology informatics is a 3-week, full-time rotation including didactic sessions and hands-on laboratories. Topics include general desktop computing and the Internet, but the primary focus of the rotation is vocabulary and concepts related to enterprise and pathology information systems, pathology practice, and research. The total contact time is 63 hours, and a total of 19 faculty and staff contribute. Pretests and posttests are given at the start and end of the rotation. Performance and course evaluation data were collected for 3 years (a total of 21 residents). The rotation implements 84% of the knowledge objectives and 94% of the skills objectives recommended by the API TEC. Residents scored an average of about 20% on the pretest and about 70% on the posttest for an average increase during the course of 50%. Posttest scores did not correlate with pretest scores or self-assessed computer skill level. The size of the pretest/posttest difference correlated negatively with the pretest scores and self-assessed computing skill level. Pretest scores were generally low regardless of whether residents were familiar with desktop computing and productivity applications, indicating that even residents who are computer "savvy" have limited knowledge of pathology

  16. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Alex; Brown, C. Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Copeland, Alex; Brown, C. Titus

    2018-04-27

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  18. Including information technology project management in the nursing informatics curriculum.

    PubMed

    Sockolow, Paulina; Bowles, Kathryn H

    2008-01-01

    Project management is a critical skill for nurse informaticists who are in prominent roles developing and implementing clinical information systems. It should be included in the nursing informatics curriculum, as evidenced by its inclusion in informatics competencies and surveys of important skills for informaticists. The University of Pennsylvania School of Nursing includes project management in two of the four courses in the master's level informatics minor. Course content includes the phases of the project management process; the iterative unified process methodology; and related systems analysis and project management skills. During the introductory course, students learn about the project plan, requirements development, project feasibility, and executive summary documents. In the capstone course, students apply the system development life cycle and project management skills during precepted informatics projects. During this in situ experience, students learn, the preceptors benefit, and the institution better prepares its students for the real world.

  19. A Short History of Medical Informatics in Bosnia and Herzegovina

    PubMed Central

    Masic, Izet

    2014-01-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal “Acta Informatica Medica (Acta Inform Med”, indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24648621

  20. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  1. Women in biomedical engineering and health informatics.

    PubMed

    McGregor, Carolyn; Frize, Monique

    2008-01-01

    A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.

  2. The Open Microscopy Environment: open image informatics for the biological sciences

    NASA Astrophysics Data System (ADS)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  3. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong

    2018-02-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. A UML-based meta-framework for system design in public health informatics.

    PubMed

    Orlova, Anna O; Lehmann, Harold

    2002-01-01

    The National Agenda for Public Health Informatics calls for standards in data and knowledge representation within public health, which requires a multi-level framework that links all aspects of public health. The literature of public health informatics and public health informatics application were reviewed. A UML-based systems analysis was performed. Face validity of results was evaluated in analyzing the public health domain of lead poisoning. The core class of the UML-based system of public health is the Public Health Domain, which is associated with multiple Problems, for which Actors provide Perspectives. Actors take Actions that define, generate, utilize and/or evaluate Data Sources. The life cycle of the domain is a sequence of activities attributed to its problems that spirals through multiple iterations and realizations within a domain. The proposed Public Health Informatics Meta-Framework broadens efforts in applying informatics principles to the field of public health

  5. The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.

    PubMed

    Masic, Izet

    2009-01-01

    NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  6. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer.

    PubMed

    Xia, Shu; Kohli, Manish; Du, Meijun; Dittmar, Rachel L; Lee, Adam; Nandy, Debashis; Yuan, Tiezheng; Guo, Yongchen; Wang, Yuan; Tschannen, Michael R; Worthey, Elizabeth; Jacob, Howard; See, William; Kilari, Deepak; Wang, Xuexia; Hovey, Raymond L; Huang, Chiang-Ching; Wang, Liang

    2015-06-30

    Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locus-specific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p < 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer.

  7. BigQ: a NoSQL based framework to handle genomic variants in i2b2.

    PubMed

    Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo

    2015-12-29

    Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.

  8. Commentaries on “Informatics and Medicine: From Molecules to Populations”

    PubMed Central

    Altman, R. B.; Balling, R.; Brinkley, J. F.; Coiera, E.; Consorti, F.; Dhansay, M. A.; Geissbuhler, A.; Hersh, W.; Kwankam, S. Y.; Lorenzi, N. M.; Martin-Sanchez, F.; Mihalas, G. I.; Shahar, Y.; Takabayashi, K.; Wiederhold, G.

    2009-01-01

    Summary Objective To discuss interdisciplinary research and education in the context of informatics and medicine by commenting on the paper of Kuhn et al. “Informatics and Medicine: From Molecules to Populations”. Method Inviting an international group of experts in biomedical and health informatics and related disciplines to comment on this paper. Results and Conclusions The commentaries include a wide range of reasoned arguments and original position statements which, while strongly endorsing the educational needs identified by Kuhn et al., also point out fundamental challenges that are very specific to the unusual combination of scientific, technological, personal and social problems characterizing biomedical informatics. They point to the ultimate objectives of managing difficult human health problems, which are unlikely to yield to technological solutions alone. The psychological, societal, and environmental components of health and disease are emphasized by several of the commentators, setting the stage for further debate and constructive suggestions. PMID:18690363

  9. Antecedents of the People and Organizational Aspects of Medical Informatics

    PubMed Central

    Lorenzi, Nancy M.; Riley, Robert T.; Blyth, Andrew J. C.; Southon, Gray; Dixon, Bradley J.

    1997-01-01

    Abstract People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area—like medical informatics itself—is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena. PMID:9067874

  10. Nursing Informatics Competency Program

    ERIC Educational Resources Information Center

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  11. Formal logic rewrite system bachelor in teaching mathematical informatics

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Jendryscik, Radek

    2017-07-01

    The article presents capabilities of the formal rewrite logic system - Bachelor - for teaching theoretical computer science (mathematical informatics). The system Bachelor enables constructivist approach to teaching and therefore it may enhance the learning process in hard informatics essential disciplines. It brings not only detailed description of formal rewrite process but also it can demonstrate algorithmical principles for logic formulae manipulations.

  12. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  13. The Renewed Promise of Medical Informatics

    PubMed Central

    2016-01-01

    Summary The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field. PMID:27199195

  14. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-05-20

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.

  15. The Health Information Technology Competencies Tool: Does It Translate for Nursing Informatics in the United States?

    PubMed

    Sipes, Carolyn; Hunter, Kathleen; McGonigle, Dee; West, Karen; Hill, Taryn; Hebda, Toni

    2017-12-01

    Information technology use in healthcare delivery mandates a prepared workforce. The initial Health Information Technology Competencies tool resulted from a 2-year transatlantic effort by experts from the US and European Union to identify approaches to develop skills and knowledge needed by healthcare workers. It was determined that competencies must be identified before strategies are established, resulting in a searchable database of more than 1000 competencies representing five domains, five skill levels, and more than 250 roles. Health Information Technology Competencies is available at no cost and supports role- or competency-based queries. Health Information Technology Competencies developers suggest its use for curriculum planning, job descriptions, and professional development.The Chamberlain College of Nursing informatics research team examined Health Information Technology Competencies for its possible application to our research and our curricular development, comparing it originally with the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools, which examine informatics competencies at four levels of nursing practice. Additional analysis involved the 2015 Nursing Informatics: Scope and Standards of Practice. Informatics is a Health Information Technology Competencies domain, so clear delineation of nursing-informatics competencies was expected. Researchers found TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 differed from Health Information Technology Competencies 2016 in focus, definitions, ascribed competencies, and defined levels of expertise. When Health Information Technology Competencies 2017 was compared against the nursing informatics scope and standards, researchers found an increase in the number of informatics competencies but not to a significant degree. This is not surprising

  16. EPA'S TOXICOGENOMICS PARTNERSHIPS ACROSS GOVERNMENT, ACADEMIA AND INDUSTRY

    EPA Science Inventory

    Genomics, proteomics and metabonomics technologies are transforming the science of toxicology, and concurrent advances in computing and informatics are providing management and analysis solutions for this onslaught of toxicogenomic data. EPA has been actively developing an intra...

  17. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools.

    PubMed

    Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  18. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  19. The Jubilee of Medical Informatics in Bosnia and Herzegovina - 20 Years Anniversary

    PubMed Central

    Masic, Izet

    2009-01-01

    CONFLICT OF INTEREST: NONE DECLARED Last two years, the health informatics profession celebrated five jubilees in Bosnia and Herzegovina: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“, fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24133382

  20. Evaluation of the Effects of Flipped Learning of a Nursing Informatics Course.

    PubMed

    Oh, Jina; Kim, Shin-Jeong; Kim, Sunghee; Vasuki, Rajaguru

    2017-08-01

    This study evaluated the effects of flipped learning in a nursing informatics course. Sixty-four undergraduate students attending a flipped learning nursing informatics course at a university in South Korea participated in this study in 2013. Of these, 43 students participated at University A, and 46 students participated at University B, as a comparison group. Three levels of Kirkpatrick's evaluation model were used: level one (the students' satisfaction), level two (achievement on the course outcomes), and level three (self-perceived nursing informatics competencies). Students of the flipped learning course reported positive effects above the middle degree of satisfaction (level one) and achieved the course outcomes (level two). In addition, self-perceived nursing informatics competencies (level three) of the flipped learning group were higher than those of the comparison group. A flipped learning nursing informatics course is an effective teaching strategy for preparing new graduate nurses in the clinical setting. [J Nurs Educ. 2017;56(8):477-483.]. Copyright 2017, SLACK Incorporated.

  1. Rheumatology Informatics System for Effectiveness: A National Informatics-Enabled Registry for Quality Improvement.

    PubMed

    Yazdany, Jinoos; Bansback, Nick; Clowse, Megan; Collier, Deborah; Law, Karen; Liao, Katherine P; Michaud, Kaleb; Morgan, Esi M; Oates, James C; Orozco, Catalina; Reimold, Andreas; Simard, Julia F; Myslinski, Rachel; Kazi, Salahuddin

    2016-12-01

    The Rheumatology Informatics System for Effectiveness (RISE) is a national electronic health record (EHR)-enabled registry. RISE passively collects data from EHRs of participating practices, provides advanced quality measurement and data analytic capacities, and fulfills national quality reporting requirements. Here we report the registry's architecture and initial data, and we demonstrate how RISE is being used to improve the quality of care. RISE is a certified Centers for Medicare and Medicaid Services Qualified Clinical Data Registry, allowing collection of data without individual patient informed consent. We analyzed data between October 1, 2014 and September 30, 2015 to characterize initial practices and patients captured in RISE. We also analyzed medication use among rheumatoid arthritis (RA) patients and performance on several quality measures. Across 55 sites, 312 clinicians contributed data to RISE; 72% were in group practice, 21% in solo practice, and 7% were part of a larger health system. Sites contributed data on 239,302 individuals. Among the subset with RA, 34.4% of patients were taking a biologic or targeted synthetic disease-modifying antirheumatic drug (DMARD) at their last encounter, and 66.7% were receiving a nonbiologic DMARD. Examples of quality measures include that 55.2% had a disease activity score recorded, 53.6% a functional status score, and 91.0% were taking a DMARD in the last year. RISE provides critical infrastructure for improving the quality of care in rheumatology and is a unique data source to generate new knowledge. Data validation and mapping are ongoing and RISE is available to the research and clinical communities to advance rheumatology. © 2016, American College of Rheumatology.

  2. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.

  3. Informatics competencies for nurse leaders: protocol for a scoping review.

    PubMed

    Kassam, Iman; Nagle, Lynn; Strudwick, Gillian

    2017-12-14

    Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. A patient-focused framework integrating self-management and informatics.

    PubMed

    Knight, Elizabeth P; Shea, Kimberly

    2014-03-01

    This article introduces a framework to (a) guide chronic illness self-management interventions through the integration of self-management and nursing informatics, (b) focus self-management research, and (c) promote ethical, patient-empowering technology use by practicing nurses. Existing theory and research focusing on chronic illness, self-management, health-enabling technology, and nursing informatics were reviewed and examined and key concepts were identified. A care paradigm focusing on concordance, rather than compliance, served as the overall guiding principle. This framework identifies key relationships among self-management (patient behaviors), health force (patient characteristics), and patient-defined goals. The role of health-enabling technology supporting these relationships is explored in the context of nursing informatics. The Empowerment Informatics framework can guide intervention design and evaluation and support practicing nurses' ethical use of technology as part of self-management support. Nurses worldwide provide support to patients who are living with chronic illnesses. As pressures related to cost and access to care increase, technology-enabled self-management interventions will become increasingly common. This patient-focused framework can guide nursing practice using technology that prioritizes patient needs. © 2013 Sigma Theta Tau International.

  5. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  6. Assessing the current state of dental informatics in saudi arabia: the new frontier.

    PubMed

    Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa

    2014-01-01

    Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.

  7. Panel: Eco-informatics and decision making managing our natural resources

    USGS Publications Warehouse

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  8. The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies

    PubMed Central

    Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.

    2014-01-01

    Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630

  9. Interdisciplinary innovations in biomedical and health informatics graduate education.

    PubMed

    Demiris, G

    2007-01-01

    Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.

  10. Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience

    PubMed Central

    van Mulligen, Erik M.; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A.; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    Objective The European INFOBIOMED Network of Excellence 1 recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Design A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a ‘brokerage service’ which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. Measurements This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. Results The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. Conclusion The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians. PMID:18096914

  11. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    PubMed

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  12. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    NASA Astrophysics Data System (ADS)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  13. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  14. An informatics research agenda to support precision medicine: seven key areas.

    PubMed

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  15. EPA SCIENCE FORUM - EPA'S TOXICOGENOMICS PARTNERSHIPS ACROSS GOVERNMENT, ACADEMIA AND INDUSTRY

    EPA Science Inventory

    Over the past decade genomics, proteomics and metabonomics technologies have transformed the science of toxicology, and concurrent advances in computing and informatics have provided management and analysis solutions for this onslaught of toxicogenomic data. EPA has been actively...

  16. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas

    2018-02-06

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. A current perspective on medical informatics and health sciences librarianship

    PubMed Central

    Perry, Gerald J.; Roderer, Nancy K.; Assar, Soraya

    2005-01-01

    Objective: The article offers a current perspective on medical informatics and health sciences librarianship. Narrative: The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Summary: Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as “boundary spanners,” incorporating human factors that unite technology with health care delivery. PMID:15858622

  18. A current perspective on medical informatics and health sciences librarianship.

    PubMed

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  19. Quo Vadis, Informatics Education?--Towards a More Up-to-Date Informatics Education

    ERIC Educational Resources Information Center

    Zsakó, László; Horváth, Gyozo

    2017-01-01

    Informatics education has been in a cul-de-sac for several years (not only in Hungary), being less and less able to meet the needs of the industry and higher education. In addition, the latest PISA survey shows that--to put it a little strongly--the majority of the x-, y- and z generations are digital illiterates. The aim of this paper to examine…

  20. Creativity as a Key Driver for Designing Context Sensitive Health Informatics.

    PubMed

    Zhou, Chunfang; Nøhr, Christian

    2017-01-01

    In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.

  1. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. History of Romanian Medical Informatics: Learning from the Past to Reshape the Future.

    PubMed

    Mihalas, George I; Stoicu-Tivadar, Lacramioara

    2018-04-22

     The paper presents a review of the history of medical informatics in Romania, starting from the pioneering works, relating the present, and foreseeing the future.  Major milestones of the development of this field have not been simply enumerated, but described within the specific socio-political frame, grasping the entire context over the last four decades in Romania. Two main perspectives have been traced: education and training in medical informatics and implementations in healthcare.  Four distinctive historical periods are identified and the major events of each period are described in a critical manner. The history of the Romanian Society of Medical Informatics is presented in a separate chapter. The last section is dedicated to the present state of the field in Romania.  The history of Romanian Medical Informatics spans many years and is rich in content. The Romanian Society of Medical Informatics is mainly the result of the efforts undertaken by an enthusiastic and sound professional community, trying to continue the tradition, to achieve new goals, and to work as an active member of the international biomedical/health informatics community. Georg Thieme Verlag KG Stuttgart.

  3. Understanding the Essence of Caring from the Lived Experiences of Filipino Informatics Nurses.

    PubMed

    Macabasag, Romeo Luis A; Diño, Michael Joseph S

    2018-04-01

    Caring is considered a unique concept in nursing because it subsumes all intrinsic attributes of nursing as a human helping discipline. Scholars have argued that caring is usually seen as an encounter between nurses and patients, but how about nurses with minimal or absent nurse-patient encounters, like informatics nurses? In this study, we explored the meaning of the phenomenon of caring to present lived experiences of caring, namely caring as actions of coming in between; caring as expressed within embodied relations; and caring and the path traversed by informatics nurses. The informatics nurse-cyborg-patient triad speaks of Filipino informatics nurses' insightful understanding of the phenomenon of caring.

  4. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  5. Open Access Publishing in the Field of Medical Informatics.

    PubMed

    Kuballa, Stefanie

    2017-05-01

    The open access paradigm has become an important approach in today's information and communication society. Funders and governments in different countries stipulate open access publications of funded research results. Medical informatics as part of the science, technology and medicine disciplines benefits from many research funds, such as National Institutes of Health in the US, Wellcome Trust in UK, German Research Foundation in Germany and many more. In this study an overview of the current open access programs and conditions of major journals in the field of medical informatics is presented. It was investigated whether there are suitable options and how they are shaped. Therefore all journals in Thomson Reuters Web of Science that were listed in the subject category "Medical Informatics" in 2014 were examined. An Internet research was conducted by investigating the journals' websites. It was reviewed whether journals offer an open access option with a subsequent check of conditions as for example the type of open access, the fees and the licensing. As a result all journals in the field of medical informatics that had an impact factor in 2014 offer an open access option. A predominantly consistent pricing range was determined with an average fee of 2.248 € and a median fee of 2.207 €. The height of a journals' open access fee did not correlate with the height of its Impact Factor. Hence, medical informatics journals have recognized the trend of open access publishing, though the vast majority of them are working with the hybrid method. Hybrid open access may however lead to problems in questions of double dipping and the often stipulated gold open access.

  6. Informatics: essential infrastructure for quality assessment and improvement in nursing.

    PubMed Central

    Henry, S B

    1995-01-01

    In recent decades there have been major advances in the creation and implementation of information technologies and in the development of measures of health care quality. The premise of this article is that informatics provides essential infrastructure for quality assessment and improvement in nursing. In this context, the term quality assessment and improvement comprises both short-term processes such as continuous quality improvement (CQI) and long-term outcomes management. This premise is supported by 1) presentation of a historical perspective on quality assessment and improvement; 2) delineation of the types of data required for quality assessment and improvement; and 3) description of the current and potential uses of information technology in the acquisition, storage, transformation, and presentation of quality data, information, and knowledge. PMID:7614118

  7. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    PubMed

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  8. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. © The Author(s) 2016. Published by Oxford University Press.

  9. The Effectiveness of Hands-on Health Informatics Skills Exercises in the Multidisciplinary Smart Home Healthcare and Health Informatics Training Laboratories.

    PubMed

    Sapci, A H; Sapci, H A

    2017-10-01

    This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.

  10. About the Beginnings of Medical Informatics in Europe

    PubMed Central

    Roger France, Francis

    2014-01-01

    The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  11. Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years.

    PubMed

    Yergens, D W; Tam-Tham, H; Minty, E P

    2016-06-30

    The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of "big data", decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is constantly evolving as new software and algorithms

  12. Clinical Implementation of Integrated Genomic Profiling in Patients with Advanced Cancers.

    PubMed

    Borad, Mitesh J; Egan, Jan B; Condjella, Rachel M; Liang, Winnie S; Fonseca, Rafael; Ritacca, Nicole R; McCullough, Ann E; Barrett, Michael T; Hunt, Katherine S; Champion, Mia D; Patel, Maitray D; Young, Scott W; Silva, Alvin C; Ho, Thai H; Halfdanarson, Thorvardur R; McWilliams, Robert R; Lazaridis, Konstantinos N; Ramanathan, Ramesh K; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Cuyugan, Lori; McDonald, Jacquelyn; Adkins, Jonathan; Mastrian, Stephen D; Valdez, Riccardo; Jaroszewski, Dawn E; Von Hoff, Daniel D; Craig, David W; Stewart, A Keith; Carpten, John D; Bryce, Alan H

    2016-12-23

    DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1-3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.

  13. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe

    2015-12-26

    Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed bymore » identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.« less

  14. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    PubMed

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  15. Twenty Years of Society of Medical Informatics of B&H and the Journal Acta Informatica Medica

    PubMed Central

    Masic, Izet

    2012-01-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of “Distance learning” in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina. PMID:23322947

  16. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    PubMed

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  17. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics.

    PubMed

    Lehner, Thomas; Senthil, Geetha; Addington, Anjené M

    2015-01-01

    After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery. Published by Elsevier Inc.

  18. Advances in Exercise, Fitness, and Performance Genomics in 2012

    PubMed Central

    Pérusse, Louis; Rankinen, Tuomo; Hagberg, James M.; Loos, Ruth J. F.; Roth, Stephen M.; Sarzynski, Mark A.; Wolfarth, Bernd; Bouchard, Claude

    2013-01-01

    A small number of excellent papers on exercise genomics issues have been published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index (BMI) or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. Serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the ENCODE project. PMID:23470294

  19. Advances in exercise, fitness, and performance genomics in 2012.

    PubMed

    Pérusse, Louis; Rankinen, Tuomo; Hagberg, James M; Loos, Ruth J F; Roth, Stephen M; Sarzynski, Mark A; Wolfarth, Bernd; Bouchard, Claude

    2013-05-01

    A small number of excellent articles on exercise genomics issues were published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. The serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the Encyclopedia of DNA Elements project.

  20. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  1. Development of national competency-based learning objectives "Medical Informatics" for undergraduate medical education.

    PubMed

    Röhrig, R; Stausberg, J; Dugas, M

    2013-01-01

    The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.

  2. A survey of public health and consumer health informatics programmes and courses in Canadian universities and colleges.

    PubMed

    Arocha, Jose F; Hoffman-Goetz, Laurie

    2012-12-01

    As information technology becomes more widely used by people for health-care decisions, training in consumer and public health informatics will be important for health practitioners working directly with the public. Using information from 74 universities and colleges across Canada, we searched websites and online calendars for programmes (undergraduate, graduate) regarding availability and scope of education in programmes, courses and topics geared to public health and/or consumer health informatics. Of the 74 institutions searched, 31 provided some content relevant to health informatics (HI) and 8 institutions offered full HI-related programmes. Of these 8 HI programmes, only 1 course was identified with content relevant to public health informatics and 1 with content about consumer health informatics. Some institutions (n  =  22) - which do not offer HI-degree programmes - provide health informatics-related courses, including one on consumer health informatics. We found few programmes, courses or topic areas within courses in Canadian universities and colleges that focus on consumer or public health informatics education. Given the increasing emphasis on personal responsibility for health and health-care decision-making, skills training for health professionals who help consumers navigate the Internet should be considered in health informatics education.

  3. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  4. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals

    PubMed Central

    Gunawardena, Sharmini; Karunaweera, Nadira D.

    2015-01-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals. PMID:25943157

  5. Citation analysis in journal rankings: medical informatics in the library and information science literature.

    PubMed Central

    Vishwanatham, R

    1998-01-01

    Medical informatics is an interdisciplinary field. Medical informatics articles will be found in the literature of various disciplines including library and information science publications. The purpose of this study was to provide an objectively ranked list of journals that publish medical informatics articles relevant to library and information science. Library Literature, Library and Information Science Abstracts, and Social Science Citation Index were used to identify articles published on the topic of medical informatics and to identify a ranked list of journals. This study also used citation analysis to identify the most frequently cited journals relevant to library and information science. PMID:9803294

  6. MBAT: a scalable informatics system for unifying digital atlasing workflows.

    PubMed

    Lee, Daren; Ruffins, Seth; Ng, Queenie; Sane, Nikhil; Anderson, Steve; Toga, Arthur

    2010-12-22

    Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible tiered plug-in architecture, MBAT

  7. Clinical Research Informatics for Big Data and Precision Medicine.

    PubMed

    Weng, C; Kahn, M G

    2016-11-10

    To reflect on the notable events and significant developments in Clinical Research Informatics (CRI) in the year of 2015 and discuss near-term trends impacting CRI. We selected key publications that highlight not only important recent advances in CRI but also notable events likely to have significant impact on CRI activities over the next few years or longer, and consulted the discussions in relevant scientific communities and an online living textbook for modern clinical trials. We also related the new concepts with old problems to improve the continuity of CRI research. The highlights in CRI in 2015 include the growing adoption of electronic health records (EHR), the rapid development of regional, national, and global clinical data research networks for using EHR data to integrate scalable clinical research with clinical care and generate robust medical evidence. Data quality, integration, and fusion, data access by researchers, study transparency, results reproducibility, and infrastructure sustainability are persistent challenges. The advances in Big Data Analytics and Internet technologies together with the engagement of citizens in sciences are shaping the global clinical research enterprise, which is getting more open and increasingly stakeholder-centered, where stakeholders include patients, clinicians, researchers, and sponsors.

  8. It’s Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence

    PubMed Central

    McIntosh, Leslie D.; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252

  9. Milestones: Critical Elements in Clinical Informatics Fellowship Programs

    PubMed Central

    Lehmann, Christoph U.; Munger, Benson

    2016-01-01

    Summary Background Milestones refer to points along a continuum of a competency from novice to expert. Resident and fellow assessment and program evaluation processes adopted by the ACGME include the mandate that programs report the educational progress of residents and fellows twice annually utilizing Milestones developed by a specialty specific ACGME working group of experts. Milestones in clinical training programs are largely unmapped to specific assessment tools. Residents and fellows are mainly assessed using locally derived assessment instruments. These assessments are then reviewed by the Clinical Competency Committee which assigns and reports trainee ratings using the specialty specific reporting Milestones. Methods and Results The challenge and opportunity facing the nascent specialty of Clinical Informatics is how to optimally utilize this framework across a growing number of accredited fellowships. The authors review how a mapped milestone framework, in which each required sub-competency is mapped to a single milestone assessment grid, can enable the use of milestones for multiple uses including individualized learning plans, fellow assessments, and program evaluation. Furthermore, such a mapped strategy will foster the ability to compare fellow progress within and between Clinical Informatics Fellowships in a structured and reliable fashion. Clinical Informatics currently has far less variability across programs and thus could easily utilize a more tightly defined set of milestones with a clear mapping to sub-competencies. This approach would enable greater standardization of assessment instruments and processes across programs while allowing for variability in how those sub-competencies are taught. Conclusions A mapped strategy for Milestones offers significant advantages for Clinical Informatics programs. PMID:27081414

  10. Informatics and machine learning to define the phenotype.

    PubMed

    Basile, Anna Okula; Ritchie, Marylyn DeRiggi

    2018-03-01

    For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.

  11. The Omaha System as a Structured Instrument for Bridging Nursing Informatics With Public Health Nursing Education: A Feasibility Study.

    PubMed

    Eardley, Debra L; Krumwiede, Kelly A; Secginli, Selda; Garner, Linda; DeBlieck, Conni; Cosansu, Gulhan; Nahcivan, Nursen O

    2018-06-01

    Advancements in healthcare systems include adoption of health information technology to ensure healthcare quality. Educators are challenged to determine strategies to integrate health information technology into nursing curricula for building a nursing workforce competent with electronic health records, standardized terminology, evidence-based practice, and evaluation. Nursing informatics, a growing specialty field, comprises health information technology relative to the profession of nursing. It is essential to integrate nursing informatics across nursing curricula to effectively position competent graduates in technology-laden healthcare environments. Nurse scholars developed and evaluated a nursing informatics case study assignment used in undergraduate level public health nursing courses. The assignment included an unfolding scenario followed by electronic health record charting using standardized terminology to guide the nursing process. The assignment was delivered either online or in class. Seventy-two undergraduate students completed the assignment and a posttest. Fifty-one students completed a satisfaction survey. Results indicated that students who completed the assignment online demonstrated a higher level of content mastery than those who completed the assignment in class. Content mastery was based on posttest results, which evaluated students' electronic health record charting for the nursing assessment, evidence-based interventions, and evaluations. This innovative approach may be valuable to educators in response to the National Academy of Sciences recommendations for healthcare education reform.

  12. Collaborative Genomics Study Advances Precision Oncology

    Cancer.gov

    A collaborative study conducted by two Office of Cancer Genomics (OCG) initiatives highlights the importance of integrating structural and functional genomics programs to improve cancer therapies, and more specifically, contribute to precision oncology treatments for children.

  13. Medical informatics education: an alternative pathway for training informationists

    PubMed Central

    Hersh, William

    2002-01-01

    Recognition of the growing complexity of health information needs has led to a call for the creation of a new health care professional, the informationist. Controversy exists as to the role of such individuals and what their training should be. A library science degree, augmented with clinical background or experience, is one pathway. Another to consider is training in medical informatics. With the right coursework, individuals trained in medical informatics should be equally well qualified to assume the role of informationists. PMID:11838463

  14. Enabling comparative effectiveness research with informatics: show me the data!

    PubMed

    Safdar, Nabile M; Siegel, Eliot; Erickson, Bradley J; Nagy, Paul

    2011-09-01

    Both outcomes researchers and informaticians are concerned with information and data. As such, some of the central challenges to conducting successful comparative effectiveness research can be addressed with informatics solutions. Specific informatics solutions which address how data in comparative effectiveness research are enriched, stored, shared, and analyzed are reviewed. Imaging data can be made more quantitative, uniform, and structured for researchers through the use of lexicons and structured reporting. Secure and scalable storage of research data is enabled through data warehouses and cloud services. There are a number of national efforts to help researchers share research data and analysis tools. There is a diverse arsenal of informatics tools designed to meet the needs of comparative effective researchers. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  15. Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years

    PubMed Central

    Tam-Tham, H.; Minty, E. P.

    2016-01-01

    Summary Background The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. Methods A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. Results The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of “big data”, decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Conclusion Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is

  16. Comprehensive Environmental Informatics System (CEIS) Integrating Crew and Vehicle Environmental Health

    NASA Technical Reports Server (NTRS)

    Nall, Mark E.

    2006-01-01

    Integrated Vehicle Health Management (IVHM) systems have been pursued as highly integrated systems that include smart sensors, diagnostic and prognostics software for assessments of real-time and life-cycle vehicle health information. Inclusive to such a system is the requirement to monitor the environmental health within the vehicle and the occupants of the vehicle. In this regard an enterprise approach to informatics is used to develop a methodology entitled, Comprehensive Environmental Informatics System (CEIS). The hardware and software technologies integrated into this system will be embedded in the vehicle subsystems, and maintenance operations, to provide both real-time and life-cycle health information of the environment within the vehicle cabin and of its occupants. This comprehensive information database will enable informed decision making and logistics management. One key element of the CEIS is interoperability for data acquisition and archive between environment and human system monitoring. With comprehensive components the data acquired in this system will use model based reasoning systems for subsystem and system level managers, advanced on-board and ground-based mission and maintenance planners to assess system functionality. Knowledge databases of the vehicle health state will be continuously updated and reported for critical failure modes, and routinely updated and reported for life cycle condition trending. Sufficient intelligence, including evidence-based engineering practices which are analogous to evidencebased medicine practices, will be included in the CEIS to result in more rapid recognition of off-nominal operation to enable quicker corrective actions. This will result from better information (rather than just data) for improved crew/operator situational awareness, which will produce significant vehicle and crew safety improvements, as well as increasing the chance for mission success, future mission planning as well as training. Other

  17. Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program

    PubMed Central

    Levy, Bruce P.; McClintock, David S.; Lee, Roy E.; Lane, William J.; Klepeis, Veronica E.; Baron, Jason M.; Onozato, Maristela L.; Kim, JiYeon; Brodsky, Victor; Beckwith, Bruce; Kuo, Frank; Gilbertson, John R.

    2012-01-01

    Background: Pathology Informatics is a new field; a field that is still defining itself even as it begins the formalization, accreditation, and board certification process. At the same time, Pathology itself is changing in a variety of ways that impact informatics, including subspecialization and an increased use of data analysis. In this paper, we examine how these changes impact both the structure of Pathology Informatics fellowship programs and the fellows’ goals within those programs. Materials and Methods: As part of our regular program review process, the fellows evaluated the value and effectiveness of our existing fellowship tracks (Research Informatics, Clinical Two-year Focused Informatics, Clinical One-year Focused Informatics, and Clinical 1 + 1 Subspecialty Pathology and Informatics). They compared their education, informatics background, and anticipated career paths and analyzed them for correlations between those parameters and the fellowship track chosen. All current and past fellows of the program were actively involved with the project. Results: Fellows’ anticipated career paths correlated very well with the specific tracks in the program. A small set of fellows (Clinical – one or two year – Focused Informatics tracks) anticipated clinical careers primarily focused in informatics (Director of Informatics). The majority of the fellows, however, anticipated a career practicing in a Pathology subspecialty, using their informatics training to enhance that practice (Clinical 1 + 1 Subspecialty Pathology and Informatics Track). Significantly, all fellows on this track reported they would not have considered a Clinical Two-year Focused Informatics track if it was the only track offered. The Research and the Clinical One-year Focused Informatics tracks each displayed unique value for different situations. Conclusions: It seems a “one size fits all” fellowship structure does not fit the needs of the majority of potential Pathology Informatics

  18. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  19. The Chief Clinical Informatics Officer (CCIO): AMIA Task Force Report on CCIO Knowledge, Education, and Skillset Requirements.

    PubMed

    Kannry, Joseph; Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    The emerging operational role of the "Chief Clinical Informatics Officer" (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science.

  20. The Sequenced Angiosperm Genomes and Genome Databases.

    PubMed

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  1. The Sequenced Angiosperm Genomes and Genome Databases

    PubMed Central

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology. PMID:29706973

  2. Biodiversity informatics: managing and applying primary biodiversity data.

    PubMed Central

    Soberón, Jorge; Peterson, A Townsend

    2004-01-01

    Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management. PMID:15253354

  3. Clinical Application of Genomic Profiling With Circulating Tumor DNA for Management of Advanced Non-Small-cell Lung Cancer in Asia.

    PubMed

    Loong, Herbert H; Raymond, Victoria M; Shiotsu, Yukimasa; Chua, Daniel T T; Teo, Peter M L; Yung, Tony; Skrzypczak, Stan; Lanman, Richard B; Mok, Tony S K

    2018-05-07

    Genomic profiling of cell-free circulating tumor DNA (ctDNA) is a potential alternative to repeat invasive biopsy in patients with advanced cancer. We report the first real-world cohort of comprehensive genomic assessments of patients with non-small-cell lung cancer (NSCLC) in a Chinese population. We performed a retrospective analysis of patients with advanced or metastatic NSCLC whose physician requested ctDNA-based genomic profiling using the Guardant360 platform from January 2016 to June 2017. Guardant360 includes all 4 major types of genomic alterations (point mutations, insertion-deletion alterations, fusions, and amplifications) in 73 genes. Genomic profiling was performed in 76 patients from Hong Kong during the 18-month study period (median age, 59.5 years; 41 men and 35 women). The histologic types included adenocarcinoma (n = 10), NSCLC, not otherwise specified (n = 58), and squamous cell carcinoma (n = 8). In the adenocarcinoma and NSCLC, not otherwise specified, combined group, 62 of the 68 patients (91%) had variants identified (range, 1-12; median, 3), of whom, 26 (42%) had ≥ 1 of the 7 National Comprehensive Cancer Network-recommended lung adenocarcinoma genomic targets. Concurrent detection of driver and resistance mutations were identified in 6 of 13 patients with EGFR driver mutations and in 3 of 5 patients with EML4-ALK fusions. All 8 patients with squamous cell carcinoma had multiple variants identified (range, 1-20; median, 6), including FGFR1 amplification and ERBB2 (HER2) amplification. PIK3CA amplification occurred in combination with either FGFR1 or ERBB2 (HER2) amplification or alone. Genomic profiling using ctDNA analysis detected alterations in most patients with advanced-stage NSCLC, with targetable aberrations and resistance mechanisms identified. This approach has demonstrated its feasibility in Asia. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance

    USDA-ARS?s Scientific Manuscript database

    The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic informat...

  5. The State of Information and Communication Technology and Health Informatics in Ghana

    PubMed Central

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  6. A 400,000-year-old mitochondrial genome questions phylogenetic relationships amongst archaic hominins: using the latest advances in ancient genomics, the mitochondrial genome sequence of a 400,000-year-old hominin has been deciphered.

    PubMed

    Orlando, Ludovic

    2014-06-01

    By combining state-of-the-art approaches in ancient genomics, Meyer and co-workers have reconstructed the mitochondrial sequence of an archaic hominin that lived at Sierra de Atapuerca, Spain about 400,000 years ago. This achievement follows recent advances in molecular anthropology that delivered the genome sequence of younger archaic hominins, such as Neanderthals and Denisovans. Molecular phylogenetic reconstructions placed the Atapuercan as a sister group to Denisovans, although its morphology suggested closer affinities with Neanderthals. In addition to possibly challenging our interpretation of the fossil record, this study confirms that genomic information can be recovered from extremely damaged DNA molecules, even in the presence of significant levels of human contamination. Together with the recent characterization of a 700,000-year-old horse genome, this study opens the Middle Pleistocene to genomics, thereby extending the scope of ancient DNA to the last million years. © 2014 WILEY Periodicals, Inc.

  7. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  8. Job Profiles of Biomedical Informatics Graduates. Results of a Graduate Survey.

    PubMed

    Ammenwerth, E; Hackl, W O

    2015-01-01

    Biomedical informatics programs exist in many countries. Some analyses of the skills needed and of recommendations for curricular content for such programs have been published. However, not much is known of the job profiles and job careers of their graduates. To analyse the job profiles and job careers of 175 graduates of the biomedical informatics bachelor and master program of the Tyrolean university UMIT. Survey of all biomedical informatics students who graduated from UMIT between 2001 and 2013. Information is available for 170 graduates. Eight percent of graduates are male. Of all bachelor graduates, 86% started a master program. Of all master graduates, 36% started a PhD. The job profiles are quite diverse: at the time of the survey, 35% of all master graduates worked in the health IT industry, 24% at research institutions, 9% in hospitals, 9% as medical doctors, 17% as informaticians outside the health care sector, and 6% in other areas. Overall, 68% of the graduates are working as biomedical informaticians. The results of the survey indicate a good job situation for the graduates. The job opportunities for biomedical informaticians who graduated with a bachelor or master degree from UMIT seem to be quite good. The majority of graduates are working as biomedical informaticians. A larger number of comparable surveys of graduates from other biomedical informatics programs would help to enhance our knowledge about careers in biomedical informatics.

  9. The imaging 3.0 informatics scorecard.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Cancer Genomics: Integrative and Scalable Solutions in R / Bioconductor | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This proposal develops scalable R / Bioconductor software infrastructure and data resources to integrate complex, heterogeneous, and large cancer genomic experiments. The falling cost of genomic assays facilitates collection of multiple data types (e.g., gene and transcript expression, structural variation, copy number, methylation, and microRNA data) from a set of clinical specimens. Furthermore, substantial resources are now available from large consortium activities like The Cancer Genome Atlas (TCGA).

  11. Advances in Miniaturized Instruments for Genomics

    PubMed Central

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  12. The Western New York regional electronic health record initiative: Healthcare informatics use from the registered nurse perspective.

    PubMed

    Sackett, Kay M; Erdley, W Scott; Jones, Janice

    2006-01-01

    This paper describes a select population of Western New York (WNY) Registered Nurses' (RN) perspectives on the use of healthcare informatics and the adoption of a regional electronic health record (EHR). A three part class assignment on healthcare informatics used a Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis, and a Healthcare Informatics Schemata: A paradigm shift over time(c) timeline to determine RN perspectives about healthcare informatics use at their place of employment. Qualitative analysis of 41 RNs who completed the SWOT analysis provided positive and negative themes related to perceptions about healthcare informatics and EHR use at their place of employment. 29 healthcare organizations were aggregated by year on the timeline from 1950 through 2000. Information suggests that, RNs have the capacity to positively drive the adoption of EHRs and healthcare informatics in WNY.

  13. Affective medicine. A review of affective computing efforts in medical informatics.

    PubMed

    Luneski, A; Konstantinidis, E; Bamidis, P D

    2010-01-01

    Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as "computing that relates to, arises from, or deliberately influences emotions". AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field.

  14. An informatics research agenda to support precision medicine: seven key areas

    PubMed Central

    Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-01-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452

  15. Building the foundations of an informatics agenda for global health - 2011 workshop report.

    PubMed

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants' experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further

  16. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    PubMed

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful

  17. The Informatics Challenges Facing Biobanks: A Perspective from a United Kingdom Biobanking Network

    PubMed Central

    Groves, Martin; Jordan, Lee B.; Stobart, Hilary; Purdie, Colin A.; Thompson, Alastair M

    2015-01-01

    The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process. PMID:26418270

  18. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    PubMed Central

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  19. Examining the Relationship Between Nursing Informatics Competency and the Quality of Information Processing.

    PubMed

    Al-Hawamdih, Sajidah; Ahmad, Muayyad M

    2018-03-01

    The purpose of this study was to examine nursing informatics competency and the quality of information processing among nurses in Jordan. The study was conducted in a large hospital with 380 registered nurses. The hospital introduced the electronic health record in 2010. The measures used in this study were personal and job characteristics, self-efficacy, Self-Assessment Nursing Informatics Competencies, and Health Information System Monitoring Questionnaire. The convenience sample consisted of 99 nurses who used the electronic health record for at least 3 months. The analysis showed that nine predictors explained 22% of the variance in the quality of information processing, whereas the statistically significant predictors were nursing informatics competency, clinical specialty, and years of nursing experience. There is a need for policies that advocate for every nurse to be educated in nursing informatics and the quality of information processing.

  20. Evidence-based Patient Choice and Consumer health informatics in the Internet age

    PubMed Central

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961

  1. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  2. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    PubMed

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  3. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  4. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approaches, CCG aims to accelerate structural, functional and computational research to explore cancer mechanisms, discover new cancer targets, and develop new therapeutics.

  5. Building an educated health informatics workforce--the New Zealand experience.

    PubMed

    Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena

    2013-01-01

    New Zealand has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New Zealand government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New Zealanders by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New Zealand (HINZ) and the academic community in New Zealand are attempting to remedy this by raising awareness of health informatics at the "grass roots" level of the existing workforce via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops started in early 2013, reaching out to clinical and other staff in post around New Zealand.

  6. Information and informatics literacy: skills, timing, and estimates of competence.

    PubMed

    Scott, C S; Schaad, D C; Mandel, L S; Brock, D M; Kim, S

    2000-01-01

    Computing and biomedical informatics technologies are providing almost instantaneous access to vast amounts of possibly relevant information. Although students are entering medical school with increasingly sophisticated basic technological skills, medical educators must determine what curricular enhancements are needed to prepare learners for the world of electronic information. The purpose was to examine opinions of academic affairs and informatics administrators, curriculum deans and recently matriculated medical students about prematriculation competence and medical education learning expectations. Two surveys were administered: an Information Literacy Survey for curriculum/informatics deans and a Computing Skills Survey for entering medical students. Results highlight differences of opinion about entering competencies. They also indicate that medical school administrators believe that most basic information skills fall within the domain of undergraduate medical education. Further investigations are needed to determine precise entry-level skills and whether information literacy will increase as a result of rising levels of technical competence.

  7. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doveton, John H.; Watney, W. Lynn

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  8. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  9. Using the Internet to Teach Health Informatics: A Case Study

    PubMed Central

    Holt, Alec; Gillies, John

    2001-01-01

    Background It is becoming increasingly important for health professionals to have an understanding of health informatics. Education in this area must support not only undergraduate students but also the many workers who graduated before informatics education was available in the undergraduate program. To be successful, such a program must allow currently-employed students with significant work and family commitments to enroll. Objectives The aim was to successfully create and teach a distance program in health informatics for the New Zealand environment. Methods Our students are primarily health professionals in full time employment. About 50% are doctors, about 25% nurses, and the rest include dentists, physiotherapists, and medical managers. Course material was delivered via the World Wide Web and CD-ROM. Communication between students and faculty, both synchronous and asynchronous, was carried out via the Internet. Results We have designed and taught a postgraduate Diploma of Health Informatics program using the Internet as a major communication medium. The course has been running since July 1998 and the first 10 students graduated in July 2000. About 45 students are currently enrolled in the course; we have had a dropout rate of 15% and a failure rate of 5%. Comparable dropout figures are hard to obtain, but a recent review has suggested that failure-to-complete rates of 30% to 33% may be expected. Conclusions Internet technology has provided an exciting educational challenge and opportunity. Providing a web-based health informatics course has not been without its frustrations and problems, including software compatibility issues, bandwidth limitations, and the rapid change in software and hardware. Despite these challenges, the use of Internet technology has been interesting for both staff and students, and a worthwhile alternative for delivering educational material and advice to students working from their own homes. PMID:11720968

  10. From information technology to informatics: the information revolution in dental education.

    PubMed

    Schleyer, Titus K; Thyvalikakath, Thankam P; Spallek, Heiko; Dziabiak, Michael P; Johnson, Lynn A

    2012-01-01

    The capabilities of information technology (IT) have advanced precipitously in the last fifty years. Many of these advances have enabled new and beneficial applications of IT in dental education. However, conceptually, IT use in dental schools is only in its infancy. Challenges and opportunities abound for improving how we support clinical care, education, and research with IT. In clinical care, we need to move electronic dental records beyond replicating paper, connect information on oral health to that on systemic health, facilitate collaborative care through teledentistry, and help clinicians apply evidence-based dentistry and preventive management strategies. With respect to education, we should adopt an evidence-based approach to IT use for teaching and learning, share effective educational content and methods, leverage technology-mediated changes in the balance of power between faculty and students, improve technology support for clinical teaching, and build an information infrastructure centered on learners and organizations. In research, opportunities include reusing clinical care data for research studies, helping advance computational methods for research, applying generalizable research tools in dentistry, and reusing research data and scientific workflows. In the process, we transition from a focus on IT-the mere technical aspects of applying computer technology-to one on informatics: the what, how, and why of managing information.

  11. From Information Technology to Informatics: The Information Revolution in Dental Education

    PubMed Central

    Schleyer, Titus K.; Thyvalikakath, Thankam P.; Spallek, Heiko; Dziabiak, Michael P.; Johnson, Lynn A.

    2014-01-01

    The capabilities of information technology (IT) have advanced precipitously in the last fifty years. Many of these advances have enabled new and beneficial applications of IT in dental education. However, conceptually, IT use in dental schools is only in its infancy. Challenges and opportunities abound for improving how we support clinical care, education, and research with IT. In clinical care, we need to move electronic dental records beyond replicating paper, connect information on oral health to that on systemic health, facilitate collaborative care through teledentistry, and help clinicians apply evidence-based dentistry and preventive management strategies. With respect to education, we should adopt an evidence-based approach to IT use for teaching and learning, share effective educational content and methods, leverage technology-mediated changes in the balance of power between faculty and students, improve technology support for clinical teaching, and build an information infrastructure centered on learners and organizations. In research, opportunities include reusing clinical care data for research studies, helping advance computational methods for research, applying generalizable research tools in dentistry, and reusing research data and scientific workflows. In the process, we transition from a focus on IT—the mere technical aspects of applying computer technology—to one on informatics: the what, how, and why of managing information. PMID:22262557

  12. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  13. Mapping the literature of nursing informatics.

    PubMed

    Guenther, Johanna T

    2006-04-01

    This study was part of the Medical Library Association's Nursing and Allied Health Resources Section's project to map the nursing literature. It identified core journals in nursing informatics and the journals referenced in them and analyzed coverage of those journals in selected indexes. Five core journals were chosen and analyzed for 1996, 1997, and 1998. The references in the core journal articles were examined for type and number of formats cited during the selected time period. Bradford's Law of Scattering divided the journals into frequency zones. The time interval, 1990 to 1998, produced 71% of the references. Internet references could not be tracked by date before 1990. Twelve journals were the most productive, 119 journals were somewhat productive, and 897 journals were the least productive. Journal of the American Medical Informatics Association was the most prolific core journal. The 1998 journal references were compared in CINAHL, PubMed/MEDLINE, Science Citation Index, and OCLC Article First. PubMed/MEDLINE had the highest indexing score.

  14. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru

    PubMed Central

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-01

    Background New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results Forty-three participants enrolled in the course – 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1–5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success. PMID:18194533

  15. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    PubMed

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  16. Integrating medical informatics into the medical undergraduate curriculum.

    PubMed

    Khonsari, L S; Fabri, P J

    1997-01-01

    The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).

  17. SYMBIOmatics: synergies in Medical Informatics and Bioinformatics--exploring current scientific literature for emerging topics.

    PubMed

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-03-08

    The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science.

  18. Understanding the use of geographical information systems (GIS) in health informatics research: A review.

    PubMed

    Shaw, Nicola; McGuire, Suzanne

    2017-06-23

    The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.

  19. Incorporating healthcare informatics into the strategic planning process in nursing education.

    PubMed

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  20. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    PubMed

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.