Science.gov

Sample records for genome informatics advances

  1. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  2. Creating advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Fridsma, Douglas B

    2016-07-01

    In 2005, AMIA leaders and members concluded that certification of advanced health informatics professionals would offer value to individual practitioners, organizations that hire them, and society at large. AMIA's work to create advanced informatics certification began by leading a successful effort to create the clinical informatics subspecialty for American Board of Medical Specialties board-certified physicians. Since 2012, AMIA has been working to establish advanced health informatics certification (AHIC) for all health informatics practitioners regardless of their primary discipline. In November 2015, AMIA completed the first of 3 key tasks required to establish AHIC, with the AMIA Board of Directors' endorsement of proposed eligibility requirements. This AMIA Board white paper describes efforts to establish AHIC, reports on the current status of AHIC components, and provides a context for the proposed AHIC eligibility requirements.

  3. Farm animal genomics and informatics: an update.

    PubMed

    Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D

    2005-01-01

    Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects.

  4. Critical advances in bridging personal health informatics and clinical informatics.

    PubMed

    Koch, S; Vimarlund, V

    2012-01-01

    To provide a survey over significant developments in the area of linking personal health informatics and clinical informatics, to give insights into critical advances and to discuss open problems and opportunities in this area. A scoping review over the literature published in scientific journals and relevant conference proceedings in the intersection between personal health informatics and clinical informatics over the years 2010 and 2011 was performed. The publications analyzed are related to two main topics, namely "Sharing information and collaborating through personal health records, portals and social networks" and "Integration of personal health systems with clinical information systems". For the first topic, results are presented according to five different themes: "Patient expectations and attitudes", "Real use experiences", "Changes for care providers", "Barriers to adoption" and "Proposed technical infrastructures". For the second topic, two different themes were found, namely "Technical architectures and interoperability" and "Security, safety and privacy issues". Results show a number of gaps between the information needs of patients and the information care provider organizations provide to them as well as the lack of a trusted technical, ethical and regulatory framework regarding information sharing. Despite recent developments in the areas of personal health informatics and clinical informatics both fields have diverging needs. To support both clinical work processes and empower patients to effectively handle self-care, a number of issues remain unsolved. Open issues include privacy and confidentiality, including trusted sharing of health information and building collaborative environments between patients, their families and care providers. There are further challenges to meet around health and technology literacy as well as to overcome structural and organizational barriers. Frameworks for evaluating personal health informatics applications and

  5. Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2013-03-01

    Advances in our understanding of genome structure provide consistent evidence for the existence of a core genome representing species classically defined by phenotype, as well as conditionally dispensable components of the genome that shows extensive variation between individuals of a given species. Generally, conservation of phenotypic features between species reflects conserved features of the genome; however, this is evidently not necessarily always the case as demonstrated by the analysis of the tunicate chordate Oikopleura dioica. In both plants and animals, the methylation activity of DNA and histones continues to present new variables for modifying (eventually) the phenotype of an organism and provides for structural variation that builds on the point mutations, rearrangements, indels, and amplification of retrotransposable elements traditionally considered. The translation of the advances in the structure/function analysis of the genome to industry is facilitated through the capture of research outputs in "toolboxes" that remain accessible in the public domain.

  6. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  7. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  8. Interrogating the druggable genome with structural informatics.

    PubMed

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  9. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research.

    PubMed

    Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J

    2017-01-01

    The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.

  10. Informatics for Nutritional Genetics and Genomics.

    PubMed

    Gao, Yuan; Chen, Jiajia

    2017-01-01

    While traditional nutrition science is focusing on nourishing population, modern nutrition is aiming at benefiting individual people. The goal of modern nutritional research is to promote health, prevent diseases, and improve performance. With the development of modern technologies like bioinformatics, metabolomics, and molecular genetics, this goal is becoming more attainable. In this chapter, we will discuss the new concepts and technologies especially in informatics and molecular genetics and genomics, and how they have been implemented to change the nutrition science and lead to the emergence of new branches like nutrigenomics, nutrigenetics, and nutritional metabolomics.

  11. Applications of the pipeline environment for visual informatics and genomics computations.

    PubMed

    Dinov, Ivo D; Torri, Federica; Macciardi, Fabio; Petrosyan, Petros; Liu, Zhizhong; Zamanyan, Alen; Eggert, Paul; Pierce, Jonathan; Genco, Alex; Knowles, James A; Clark, Andrew P; Van Horn, John D; Ames, Joseph; Kesselman, Carl; Toga, Arthur W

    2011-07-26

    Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power

  12. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  13. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    PubMed Central

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  14. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology

    PubMed Central

    Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron

    2016-01-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094

  16. The Epilepsy Phenome/Genome Project (EPGP) informatics platform

    PubMed Central

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-01-01

    Background The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. Methods EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Results Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. Conclusions The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive

  17. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    PubMed

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  18. Informatics for Unveiling Hidden Genome Signatures

    PubMed Central

    Abe, Takashi; Kanaya, Shigehiko; Kinouchi, Makoto; Ichiba, Yuta; Kozuki, Tokio; Ikemura, Toshimichi

    2003-01-01

    With the increasing amount of available genome sequences, novel tools are needed for comprehensive analysis of species-specific sequence characteristics for a wide variety of genomes. We used an unsupervised neural network algorithm, a self-organizing map (SOM), to analyze di-, tri-, and tetranucleotide frequencies in a wide variety of prokaryotic and eukaryotic genomes. The SOM, which can cluster complex data efficiently, was shown to be an excellent tool for analyzing global characteristics of genome sequences and for revealing key combinations of oligonucleotides representing individual genomes. From analysis of 1- and 10-kb genomic sequences derived from 65 bacteria (a total of 170 Mb) and from 6 eukaryotes (460 Mb), clear species-specific separations of major portions of the sequences were obtained with the di-, tri-, and tetranucleotide SOMs. The unsupervised algorithm could recognize, in most 10-kb sequences, the species-specific characteristics (key combinations of oligonucleotide frequencies) that are signature features of each genome. We were able to classify DNA sequences within one and between many species into subgroups that corresponded generally to biological categories. Because the classification power is very high, the SOM is an efficient and fundamental bioinformatic strategy for extracting a wide range of genomic information from a vast amount of sequences. [Supplemental material is available online at www.genome.org.] PMID:12671005

  19. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  20. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah [DOE JGI

    2016-07-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  1. Informatics Infrastructure for the Materials Genome Initiative

    NASA Astrophysics Data System (ADS)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-08-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  2. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  3. Disease model curation improvements at Mouse Genome Informatics

    PubMed Central

    Bello, Susan M.; Richardson, Joel E.; Davis, Allan P.; Wiegers, Thomas C.; Mattingly, Carolyn J.; Dolan, Mary E.; Smith, Cynthia L.; Blake, Judith A.; Eppig, Janan T.

    2012-01-01

    Optimal curation of human diseases requires an ontology or structured vocabulary that contains terms familiar to end users, is robust enough to support multiple levels of annotation granularity, is limited to disease terms and is stable enough to avoid extensive reannotation following updates. At Mouse Genome Informatics (MGI), we currently use disease terms from Online Mendelian Inheritance in Man (OMIM) to curate mouse models of human disease. While OMIM provides highly detailed disease records that are familiar to many in the medical community, it lacks structure to support multilevel annotation. To improve disease annotation at MGI, we evaluated the merged Medical Subject Headings (MeSH) and OMIM disease vocabulary created by the Comparative Toxicogenomics Database (CTD) project. Overlaying MeSH onto OMIM provides hierarchical access to broad disease terms, a feature missing from the OMIM. We created an extended version of the vocabulary to meet the genetic disease-specific curation needs at MGI. Here we describe our evaluation of the CTD application, the extensions made by MGI and discuss the strengths and weaknesses of this approach. Database URL: http://www.informatics.jax.org/ PMID:22434831

  4. Accelerating the Global Workforce Demand for Nurse Informaticians: Advanced Health Informatics Certification (AHIC).

    PubMed

    Gadd, Cynthia; Delaney, Connie W; de Fátima Marin, Heimar; Greenwood, Karen; Williamson, Jeffrey J

    2016-01-01

    Advances in professional recognition of nursing informatics vary by country but examples exist of training programs moving from curriculum-based education to competency based frameworks to produce highly skilled nursing informaticians. This panel will discuss a significant credentialing project in the United States that should further enhance professional recognition of highly skilled nurses matriculating from NI programs as well as nurses functioning in positions where informatics-induced transformation is occurring. The panel will discuss the professionalization of health informatics by describing core content, training requirements, education needs, and administrative framework applicable for the creation of an Advanced Health Informatics Certification (AHIC).

  5. Advancing Nursing Informatics in the Next Decade: Recommendations from an International Survey.

    PubMed

    Topaz, Maxim; Ronquillo, Charlene; Peltonen, Laura-Maria; Pruinelli, Lisiane; Sarmiento, Raymond Francis; Badger, Martha K; Ali, Samira; Lewis, Adrienne; Georgsson, Mattias; Jeon, Eunjoo; Tayaben, Jude L; Kuo, Chiu-Hsiang; Islam, Tasneem; Sommer, Janine; Jung, Hyunggu; Eler, Gabrielle Jacklin; Alhuwail, Dari

    2016-01-01

    In the summer of 2015, the International Medical Informatics Association Nursing Informatics Special Interest Group (IMIA NISIG) Student Working Group developed and distributed an international survey of current and future trends in nursing informatics. The survey was developed based on current literature on nursing informatics trends and translated into six languages. Respondents were from 31 different countries in Asia, Africa, North and Central America, South America, Europe, and Australia. This paper presents the results of responses to the survey question: "What should be done (at a country or organizational level) to advance nursing informatics in the next 5-10 years?" (n responders = 272). Using thematic qualitative analysis, responses were grouped into five key themes: 1) Education and training; 2) Research; 3) Practice; 4) Visibility; and 5) Collaboration and integration. We also provide actionable recommendations for advancing nursing informatics in the next decade.

  6. Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care

    PubMed Central

    Choi, In Young; Kim, Tae-Min; Kim, Myung Shin; Mun, Seong K.

    2013-01-01

    The advances in electronic medical records (EMRs) and bioinformatics (BI) represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO) aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population. PMID:24465229

  7. Perspectives on clinical informatics: integrating large-scale clinical, genomic, and health information for clinical care.

    PubMed

    Choi, In Young; Kim, Tae-Min; Kim, Myung Shin; Mun, Seong K; Chung, Yeun-Jun

    2013-12-01

    The advances in electronic medical records (EMRs) and bioinformatics (BI) represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO) aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population.

  8. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Quake, Steve [University of Stanford

    2016-07-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  9. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Pop, Mihai [University of Maryland

    2016-07-12

    University of Maryland's Mihai Pop on "Genome Assembly Forensics: Metrics for Assessing Assembly Correctness" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Pop, Mihai

    2011-10-13

    University of Maryland's Mihai Pop on "Genome Assembly Forensics: Metrics for Assessing Assembly Correctness" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  11. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Quake, Steve

    2011-10-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Kronos: a workflow assembler for genome analytics and informatics.

    PubMed

    Taghiyar, M Jafar; Rosner, Jamie; Grewal, Diljot; Grande, Bruno M; Aniba, Radhouane; Grewal, Jasleen; Boutros, Paul C; Morin, Ryan D; Bashashati, Ali; Shah, Sohrab P

    2017-07-01

    The field of next-generation sequencing informatics has matured to a point where algorithmic advances in sequence alignment and individual feature detection methods have stabilized. Practical and robust implementation of complex analytical workflows (where such tools are structured into "best practices" for automated analysis of next-generation sequencing datasets) still requires significant programming investment and expertise. We present Kronos, a software platform for facilitating the development and execution of modular, auditable, and distributable bioinformatics workflows. Kronos obviates the need for explicit coding of workflows by compiling a text configuration file into executable Python applications. Making analysis modules would still require programming. The framework of each workflow includes a run manager to execute the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and log all runtime events. The resulting workflows are highly modular and configurable by construction, facilitating flexible and extensible meta-applications that can be modified easily through configuration file editing. The workflows are fully encoded for ease of distribution and can be instantiated on external systems, a step toward reproducible research and comparative analyses. We introduce a framework for building Kronos components that function as shareable, modular nodes in Kronos workflows. The Kronos platform provides a standard framework for developers to implement custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped with both Docker and Amazon Web Services Machine Images. It is free, open source, and available through the Python Package Index and at https://github.com/jtaghiyar/kronos.

  13. Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics.

    PubMed

    Roberts, Kirk; Boland, Mary Regina; Pruinelli, Lisiane; Dcruz, Jina; Berry, Andrew; Georgsson, Mattias; Hazen, Rebecca; Sarmiento, Raymond F; Backonja, Uba; Yu, Kun-Hsing; Jiang, Yun; Brennan, Patricia Flatley

    2017-04-01

    The field of biomedical informatics experienced a productive 2015 in terms of research. In order to highlight the accomplishments of that research, elicit trends, and identify shortcomings at a macro level, a 19-person team conducted an extensive review of the literature in clinical and consumer informatics. The result of this process included a year-in-review presentation at the American Medical Informatics Association Annual Symposium and a written report (see supplemental data). Key findings are detailed in the report and summarized here. This article organizes the clinical and consumer health informatics research from 2015 under 3 themes: the electronic health record (EHR), the learning health system (LHS), and consumer engagement. Key findings include the following: (1) There are significant advances in establishing policies for EHR feature implementation, but increased interoperability is necessary for these to gain traction. (2) Decision support systems improve practice behaviors, but evidence of their impact on clinical outcomes is still lacking. (3) Progress in natural language processing (NLP) suggests that we are approaching but have not yet achieved truly interactive NLP systems. (4) Prediction models are becoming more robust but remain hampered by the lack of interoperable clinical data records. (5) Consumers can and will use mobile applications for improved engagement, yet EHR integration remains elusive.

  14. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  15. Kronos: a workflow assembler for genome analytics and informatics

    PubMed Central

    Taghiyar, M. Jafar; Rosner, Jamie; Grewal, Diljot; Grande, Bruno M.; Aniba, Radhouane; Grewal, Jasleen; Boutros, Paul C.; Morin, Ryan D.

    2017-01-01

    Abstract Background: The field of next-generation sequencing informatics has matured to a point where algorithmic advances in sequence alignment and individual feature detection methods have stabilized. Practical and robust implementation of complex analytical workflows (where such tools are structured into “best practices” for automated analysis of next-generation sequencing datasets) still requires significant programming investment and expertise. Results: We present Kronos, a software platform for facilitating the development and execution of modular, auditable, and distributable bioinformatics workflows. Kronos obviates the need for explicit coding of workflows by compiling a text configuration file into executable Python applications. Making analysis modules would still require programming. The framework of each workflow includes a run manager to execute the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and log all runtime events. The resulting workflows are highly modular and configurable by construction, facilitating flexible and extensible meta-applications that can be modified easily through configuration file editing. The workflows are fully encoded for ease of distribution and can be instantiated on external systems, a step toward reproducible research and comparative analyses. We introduce a framework for building Kronos components that function as shareable, modular nodes in Kronos workflows. Conclusions: The Kronos platform provides a standard framework for developers to implement custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped with both Docker and Amazon Web Services Machine Images. It is free, open source, and available through the Python Package Index and at https://github.com/jtaghiyar/kronos. PMID:28655203

  16. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  17. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  18. Annotation of plant gene function via combined genomics, metabolomics and informatics.

    PubMed

    Tohge, Takayuki; Fernie, Alisdair R

    2012-06-17

    Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.

  19. Meningococcus genome informatics platform: a system for analyzing multilocus sequence typing data

    PubMed Central

    Katz, Lee S.; Bolen, Chris R.; Harcourt, Brian H.; Schmink, Susanna; Wang, Xin; Kislyuk, Andrey; Taylor, Robert T.; Mayer, Leonard W.; Jordan, I. King

    2009-01-01

    The Meningococcus Genome Informatics Platform (MGIP) is a suite of computational tools for the analysis of multilocus sequence typing (MLST) data, at http://mgip.biology.gatech.edu. MLST is used to generate allelic profiles to characterize strains of Neisseria meningitidis, a major cause of bacterial meningitis worldwide. Neisseria meningitidis strains are characterized with MLST as specific sequence types (ST) and clonal complexes (CC) based on the DNA sequences at defined loci. These data are vital to molecular epidemiology studies of N. meningitidis, including outbreak investigations and population biology. MGIP analyzes DNA sequence trace files, returns individual allele calls and characterizes the STs and CCs. MGIP represents a substantial advance over existing software in several respects: (i) ease of use—MGIP is user friendly, intuitive and thoroughly documented; (ii) flexibility—because MGIP is a website, it is compatible with any computer with an internet connection, can be used from any geographic location, and there is no installation; (iii) speed—MGIP takes just over one minute to process a set of 96 trace files; and (iv) expandability—MGIP has the potential to expand to more loci than those used in MLST and even to other bacterial species. PMID:19468047

  20. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Crow, John

    2012-06-01

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  1. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John [National Center for Genome Resources

    2016-07-12

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  2. Bioinformatics Methods and Tools to Advance Clinical Care. Findings from the Yearbook 2015 Section on Bioinformatics and Translational Informatics.

    PubMed

    Soualmia, L F; Lecroq, T

    2015-08-13

    To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their daily practice. All the recent research and

  3. Advancing Nursing Informatics in the Next 5-10 Years: What Are the Next Steps?

    PubMed

    Ronquillo, Charlene

    2016-01-01

    This panel will explore expert perspectives on what is needed to advance nursing informatics (NI) based on results of an international survey conducted by the IMIA-NISIG Student Group in 2015. This panel will build on results of the survey's thematic analysis findings, highlighting: research, practice, education, collaboration, and visibility, as key areas needing action. Each expert panelist will speak to one of the identified themes in the context of the survey results. Each panelist will then provide perspectives on additional areas of opportunities, potential challenges, and offer actionable recommendations. nursing informatics leaders, educators, policymakers, researchers, clinicians, students.

  4. Competency Recommendations for Advancing Nursing Informatics in the Next Decade: International Survey Results.

    PubMed

    Ronquillo, Charlene; Topaz, Maxim; Pruinelli, Lisiane; Peltonen, Laura-Maria; Nibber, Raji

    2017-01-01

    The IMIA-NIstudents' and emerging professionals' working group conducted a large international survey in 2015 regarding research trends in nursing informatics. The survey was translated into half-a-dozen languages and distributed through 18 international research collaborators' professional connections. The survey focused on the perspectives of nurse informaticians. A total of 272 participants responded to an open ended question concerning recommendations to advance nursing informatics. Five key areas for action were identified through our thematic content analysis: education, research, practice, visibility and collaboration. This chapter discusses these results with implications for nursing competency development. We propose how components of various competency lists might support the key areas for action. We also identify room to further develop existing competency guidelines to support in-service education for practicing nurses, promote nursing informatics visibility, or improve and facilitate collaboration and integration with other professions.

  5. Sharing intellectual and social capital: A partnership to advance informatics and foster consumer centric care.

    PubMed

    Skiba, Diane J; Barton, Amy J; Norton, Michele; McCasky, Teresa; Kimmel, Kathleen

    2006-01-01

    The need to educate the nursing workforce about using informatics tools to provide safe, quality consumer centric care is of utmost importance. A unique and strategic partnership was established to address this challenge. The informatics specialty option at the University of Colorado at Denver and Health Sciences Center School of Nursing has joined forces with McKesson Corporation. The overall goal of this partnership is to provide leadership in the field of nursing informatics and the further development of nursing informatics as a discipline. This paper describes the converging forces that serve as a foundation for the partnership. There are also descriptions of the two partners and their shared goals. This partnership was designed to share intellectual and social capital to advance nursing informatics through educational and research opportunities. The partnership also allows for the use of intellectual capital to brainstorm new developments, designs and to test the usability of new products. This paper reports on the various projects underway in the area of education, scholarship, research and development.

  6. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  8. Evaluation of the Cow Rumen Metagenome; Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies(Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sczyrba, Alex [DOE JGI

    2016-07-12

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  9. Evaluation of the Cow Rumen Metagenome; Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies(Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  11. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A

    2015-11-16

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.

  12. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  13. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.

  14. Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.

    PubMed

    Maojo, Victor; Kulikowski, Casimir A

    2006-01-01

    Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.

  15. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  16. Searching the Mouse Genome Informatics (MGI) Resources for Information on Mouse Biology from Genotype to Phenotype.

    PubMed

    Shaw, David R

    2016-12-08

    The Mouse Genome Informatics (MGI) resource provides the research community with access to information on the genetics, genomics, and biology of the laboratory mouse. Core data in MGI include gene characterization and function, phenotype and disease model descriptions, DNA and protein sequence data, gene expression data, vertebrate homologies, SNPs, mapping data, and links to other bioinformatics databases. Semantic integration is supported through the use of standardized nomenclature, and through the use of controlled vocabularies such as the mouse Anatomical Dictionary, the Mammalian Phenotype Ontology, and the Gene Ontologies. MGI extracts and organizes data from primary literature. MGI data are shared with and widely displayed from other bioinformatics resources. The database is updated weekly with curated annotations, and regularly adds new datasets and features. This unit provides a guide to using the MGI bioinformatics resource. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported

  18. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database

    PubMed Central

    Drabkin, Harold J.; Blake, Judith A.

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations

  19. Recent advances in crustacean genomics.

    PubMed

    Stillman, Jonathon H; Colbourne, John K; Lee, Carol E; Patel, Nipam H; Phillips, Michelle R; Towle, David W; Eads, Brian D; Gelembuik, Greg W; Henry, Raymond P; Johnson, Eric A; Pfrender, Michael E; Terwilliger, Nora B

    2008-12-01

    Crustaceans are a diverse and ancient group of arthropods that have long been studied as interesting model systems in biology, especially for understanding animal evolution and physiology and for environmentally relevant studies. Like many model systems, advances in DNA-sequencing methodologies have led to a large amount of genomics-related projects. The purpose of this article is to highlight the genome projects and functional genomics (transcriptomics) projects that are currently underway in crustacean biology. Specifically, we have surveyed the amount of publicly available DNA sequence data (both genomic and EST data) across all crustacean taxa for which a significant number of DNA sequences have been generated. Several ongoing projects are presented including the ecology of invasive species, thermal physiology, ion and water balance, ecology and evolutionary biology, and developmental biology.

  20. Advances in Genome Biology & Technology

    SciTech Connect

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  1. Using Informatics-, Bioinformatics- and Genomics-Based Approaches for the Molecular Surveillance and Detection of Biothreat Agents

    NASA Astrophysics Data System (ADS)

    Seto, Donald

    The convergence and wealth of informatics, bioinformatics and genomics methods and associated resources allow a comprehensive and rapid approach for the surveillance and detection of bacterial and viral organisms. Coupled with the continuing race for the fastest, most cost-efficient and highest-quality DNA sequencing technology, that is, "next generation sequencing", the detection of biological threat agents by `cheaper and faster' means is possible. With the application of improved bioinformatic tools for the understanding of these genomes and for parsing unique pathogen genome signatures, along with `state-of-the-art' informatics which include faster computational methods, equipment and databases, it is feasible to apply new algorithms to biothreat agent detection. Two such methods are high-throughput DNA sequencing-based and resequencing microarray-based identification. These are illustrated and validated by two examples involving human adenoviruses, both from real-world test beds.

  2. The phytophthora genome initiative database: informatics and analysis for distributed pathogenomic research.

    PubMed

    Waugh, M; Hraber, P; Weller, J; Wu, Y; Chen, G; Inman, J; Kiphart, D; Sobral, B

    2000-01-01

    The Phytophthora Genome Initiative (PGI) is a distributed collaboration to study the genome and evolution of a particularly destructive group of plant pathogenic oomycete, with the goal of understanding the mechanisms of infection and resistance. NCGR provides informatics support for the collaboration as well as a centralized data repository. In the pilot phase of the project, several investigators prepared Phytophthora infestans and Phytophthora sojae EST and Phytophthora sojae BAC libraries and sent them to another laboratory for sequencing. Data from sequencing reactions were transferred to NCGR for analysis and curation. An analysis pipeline transforms raw data by performing simple analyses (i.e., vector removal and similarity searching) that are stored and can be retrieved by investigators using a web browser. Here we describe the database and access tools, provide an overview of the data therein and outline future plans. This resource has provided a unique opportunity for the distributed, collaborative study of a genus from which relatively little sequence data are available. Results may lead to insight into how better to control these pathogens. The homepage of PGI can be accessed at http:www.ncgr.org/pgi, with database access through the database access hyperlink.

  3. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  4. Bioimage informatics for experimental biology.

    PubMed

    Swedlow, Jason R; Goldberg, Ilya G; Eliceiri, Kevin W

    2009-01-01

    Over the past twenty years there have been great advances in light microscopy with the result that multidimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition is reported frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remain largely unsolved. As in the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges, and discuss our own vision for future development of bioimage informatics solutions.

  5. Bridging the Gap from Bench to Bedside--An Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED).

    PubMed

    2015-01-01

    The abundance of heterogeneous biomedical data from a variety of sources demands the development of strategies to address data integration and management issues, so that the data can be used effectively in clinical practices and biomedical research. This research presents an Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED) and provides a roadmap that envisions utilizing the clinical and biomedical resources in our case study. This work describes a data integration approach, proposed by ICGED, with a two-fold purpose: personalized medicine and biomedical data storage and sharing platform. It describes our experiences integrating disease specific clinical and genomics datasets with Data Integration and Analysis Tools (DIAT)--using Informatics for Integrating Biology and the Bedside, and discusses work in progress and future work for extending DIAT, and the development of Risk Assessment and Prediction Tools, Clinical Decision Support Systems and a Bioinformatics Data Warehouse.

  6. Aquatic Plant Genomics: Advances, Applications, and Prospects

    PubMed Central

    Li, Gaojie; Yang, Jingjing

    2017-01-01

    Genomics is a discipline in genetics that studies the genome composition of organisms and the precise structure of genes and their expression and regulation. Genomics research has resolved many problems where other biological methods have failed. Here, we summarize advances in aquatic plant genomics with a focus on molecular markers, the genes related to photosynthesis and stress tolerance, comparative study of genomes and genome/transcriptome sequencing technology. PMID:28900619

  7. Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response

    PubMed Central

    Brown, Eric W.; Detter, Chris; Gerner-Smidt, Peter; Gilmour, Matthew W.; Harmsen, Dag; Hendriksen, Rene S.; Hewson, Roger; Heymann, David L.; Johansson, Karin; Ijaz, Kashef; Keim, Paul S.; Koopmans, Marion; Kroneman, Annelies; Wong, Danilo Lo Fo; Lund, Ole; Palm, Daniel; Sawanpanyalert, Pathom; Sobel, Jeremy; Schlundt, Jørgen

    2012-01-01

    The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide. PMID:23092707

  8. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  9. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    PubMed

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.

  10. Big Heart Data: Advancing Health Informatics through Data Sharing in Cardiovascular Imaging

    PubMed Central

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R.; Young, Alistair A.

    2015-01-01

    The burden of heart disease is rapidly worsening due to increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be re-used beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data re-use, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  11. An information technology emphasis in biomedical informatics education.

    PubMed

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  12. Advances in plant chromosome genomics.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Simková, Hana

    2014-01-01

    Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics.

  13. Advances on Genome Duplication Distances

    NASA Astrophysics Data System (ADS)

    Gagnon, Yves; Savard, Olivier Tremblay; Bertrand, Denis; El-Mabrouk, Nadia

    Given a phylogenetic tree involving Whole Genome Duplication events, we contribute to the problem of computing the rearrangement distance on a branch of a tree linking a duplication node d to a speciation node or a leaf s. In the case of a genome G at s containing exactly two copies of each gene, the genome halving problem is to find a perfectly duplicated genome D at d minimizing the rearrangement distance with G. We generalize the existing exact linear-time algorithm for genome halving to the case of a genome G with missing gene copies. In the case of a known ancestral duplicated genome D, we develop a greedy approach for computing the distance between G and D that is shown time-efficient and very accurate for both the rearrangement and DCJ distances.

  14. Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology.

    PubMed

    Guimarães, Luis; Soares, Siomar; Trost, Eva; Blom, Jochen; Ramos, Rommel; Silva, Artur; Barh, Debmalya; Azevedo, Vasco

    2015-01-01

    Corynebacterium urealyticum is an opportunistic pathogen that normally lives on skin and mucous membranes in humans. This high Gram-positive bacteria can cause acute or encrusted cystitis, encrusted pyelitis, and pyelonephritis in immunocompromised patients. The bacteria is multi-drug resistant, and knowledge about the genes that contribute to its virulence is very limited. Two complete genome sequences were used in this comparative genomic study: C. urealyticum DSM 7109 and C. urealyticum DSM 7111. We used comparative genomics strategies to compare the two strains, DSM 7109 and DSM 7111, and to analyze their metabolic pathways, genome plasticity, and to predict putative antigenic targets. The genomes of these two strains together encode 2,115 non-redundant coding sequences, 1,823 of which are common to both genomes. We identified 188 strain-specific genes in DSM 7109 and 104 strain-specific genes in DSM 7111. The high number of strain-specific genes may be a result of horizontal gene transfer triggered by the large number of transposons in the genomes of these two strains. Screening for virulence factors revealed the presence of the spaDEF operon that encodes pili forming proteins. Therefore, spaDEF may play a pivotal role in facilitating the adhesion of the pathogen to the host tissue. Application of the reverse vaccinology method revealed 19 putative antigenic proteins that may be used in future studies as candidate drug or vaccine targets. The genome features and the presence of virulence factors in genomic islands in the two strains of C. urealyticum provide insights in the lifestyle of this opportunistic pathogen and may be useful in developing future therapeutic strategies.

  15. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Chain, Patrick

    2011-10-13

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on "Metagenome Assembly at the DOE JGI" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Chain, Patrick [DOE JGI at LANL

    2016-07-12

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on "Metagenome Assembly at the DOE JGI" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. Crop genomics: advances and applications

    USDA-ARS?s Scientific Manuscript database

    The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the history of plant domestication and to accelerate crop improvement. Crop plant comparative genomics is being...

  18. Crop genomics: advances and applications.

    PubMed

    Morrell, Peter L; Buckler, Edward S; Ross-Ibarra, Jeffrey

    2011-12-29

    The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the history of plant domestication and to accelerate crop improvement. Crop plant comparative genomics is being transformed by these data and a new generation of experimental and computational approaches. The future of crop improvement will be centred on comparisons of individual plant genomes, and some of the best opportunities may lie in using combinations of new genetic mapping strategies and evolutionary analyses to direct and optimize the discovery and use of genetic variation. Here we review such strategies and insights that are emerging.

  19. Recent advance in carrot genomics

    USDA-ARS?s Scientific Manuscript database

    In recent years there has been an effort towards the development of genomic resources in carrot. The number of available sequences for carrot in public databases has increased recently. This has allowed the design of SSRs markers, COS markers and a high-throughput SNP assay for genotyping. Additiona...

  20. Single Cell Genomics: Advances and Future Perspectives

    PubMed Central

    Macaulay, Iain C.; Voet, Thierry

    2014-01-01

    Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments. PMID:24497842

  1. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  2. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  3. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-02-26

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams.

  4. Advances in Arachis through genomics and biotechnology

    USDA-ARS?s Scientific Manuscript database

    The 5th International Conference of the peanut research community met in Brasilia, Brazil from June 13 through 16, 2011 to discuss “Advances in Arachis through genomics and biotechnology”. Over 100 participated from many countries such as United States, Japan, China, India, Brazil, Argentina, with ...

  5. Advances in Climate Informatics: Accelerating Discovery in Climate Science with Machine Learning

    NASA Astrophysics Data System (ADS)

    Monteleoni, C.

    2015-12-01

    Despite the scientific consensus on climate change, drastic uncertainties remain. The climate system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. Climate data is Big Data, yet the magnitude of data and climate model output increasingly overwhelms the tools currently used to analyze them. Computational innovation is therefore needed. Machine learning is a cutting-edge research area at the intersection of computer science and statistics, focused on developing algorithms for big data analytics. Machine learning has revolutionized scientific discovery (e.g. Bioinformatics), and spawned new technologies (e.g. Web search). The impact of machine learning on climate science promises to be similarly profound. The goal of the novel interdisciplinary field of Climate Informatics is to accelerate discovery in climate science with machine learning, in order to shed light on urgent questions about climate change. In this talk, I will survey my research group's progress in the emerging field of climate informatics. Our work includes algorithms to improve the combined predictions of the IPCC multi-model ensemble, applications to seasonal and subseasonal prediction, and a data-driven technique to detect and define extreme events.

  6. Advances in maize genomics and their value for enhancing genetic gains from breeding.

    PubMed

    Xu, Yunbi; Skinner, Debra J; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L; Crouch, Jonathan H

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products.

  7. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  8. Advances in Genomics of Entomopathogenic Fungi.

    PubMed

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  10. Single Nucleotide Polymorphisms: A Window into the Informatics of the Living Genome

    PubMed Central

    Dunston, Georgia M.; Mason, Tshela E.; Hercules, William; Lindesay, James

    2015-01-01

    Nested in the environment of the nucleus of the cell, the 23 sets of chromosomes that comprise the human genome function as one integrated whole system, orchestrating the expression of thousands of genes underlying the biological characteristics of the cell, individual and the species. The extraction of meaningful information from this complex data set depends crucially upon the lens through which the data are examined. We present a biophysical perspective on genomic information encoded in single nucleotide polymorphisms (SNPs), and introduce metrics for modeling information encoded in the genome. Information, like energy, is considered to be a conserved physical property of the universe. The information structured in SNPs describes the adaptation of a human population to a given environment. The maintained order measured by the information content is associated with entropies, energies, and other state variables for a dynamic system in homeostasis. “Genodynamics” characterizes the state variables for genomic populations that are stable under stochastic environmental stresses. The determination of allelic energies allows the parameterization of specific environmental influences upon individual alleles across populations. The environment drives population-based genome variation. From this vantage point, the genome is modeled as a complex, dynamic information system defined by patterns of SNP alleles and SNP haplotypes. PMID:25635233

  11. Advances in Swine Biomedical Model Genomics

    PubMed Central

    Lunney, Joan K.

    2007-01-01

    This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736

  12. [Biomedical informatics].

    PubMed

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  13. Informatics competencies for nurse practitioners.

    PubMed

    Curran, Christine R

    2003-08-01

    Informatics knowledge and skills are essential if clinicians are to master the large volume of information generated in healthcare today. Thus, it is vital that informatics competencies be defined for nursing and incorporated into both curricula and practice. Staggers, Gassert, and Curran have defined informatics competencies for four general levels of nursing practice. However, informatics competencies by role (eg, those specific for advanced practice nursing) have not been defined and validated. This article presents an initial proposed list of informatics competencies essential for nurse practitioner education and practice. To this list, derived from the work of Staggers et al., 1 has been added informatics competencies related to evidence-based practice. Two nurse informaticists and six nurse practitioners, who are program directors, were involved in the development of the proposed competencies. The next step will be to validate these competencies via research.

  14. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    PubMed Central

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  15. Advances in genomics of bony fish

    PubMed Central

    Jansen, Hans J.; Dirks, Ron P.

    2014-01-01

    In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies. PMID:24291769

  16. Integrating Health Information Technology Safety into Nursing Informatics Competencies.

    PubMed

    Borycki, Elizabeth M; Cummings, Elizabeth; Kushniruk, Andre W; Saranto, Kaija

    2017-01-01

    Nursing informatics competencies are constantly changing in response to advances in the health information technology (HIT) industry and research emerging from the fields of nursing and health informatics. In this paper we build off the work of Staggers and colleagues in defining nursing informatics competencies at five levels: the beginning nurse, the experienced nurse, the nursing informatics specialist, the nursing informatics innovator and the nursing informatics researcher in the area of HIT safety. The work represents a significant contribution to the literature in the area of nursing informatics competency development as it extends nursing informatics competencies to include those focused on the area of technology-induced errors and HIT safety.

  17. Advances in health informatics education: educating students at the intersection of health care and information technology.

    PubMed

    Kushniruk, Andre; Borycki, Elizabeth; Armstrong, Brian; Kuo, Mu-Hsing

    2012-01-01

    The paper describes the authors' work in the area of health informatics (HI) education involving emerging health information technologies. A range of information technologies promise to modernize health care. Foremost among these are electronic health records (EHRs), which are expected to significantly improve and streamline health care practice. Major national and international efforts are currently underway to increase EHR adoption. However, there have been numerous issues affecting the widespread use of such information technology, ranging from a complex array of technical problems to social issues. This paper describes work in the integration of information technologies directly into the education and training of HI students at both the undergraduate and graduate level. This has included work in (a) the development of Web-based computer tools and platforms to allow students to have hands-on access to the latest technologies and (b) development of interdisciplinary educational models that can be used to guide integrating information technologies into HI education. The paper describes approaches that allow for remote hands-on access by HI students to a range of EHRs and related technology. To date, this work has been applied in HI education in a variety of ways. Several approaches for integration of this essential technology into HI education and training are discussed, along with future directions for the integration of EHR technology into improving and informing the education of future health and HI professionals.

  18. Facilitating the iterative design of informatics tools to advance the science of autism.

    PubMed

    Kaufman, David R; Cronin, Patrick; Rozenblit, Leon; Voccola, David; Horton, Amanda; Shine, Alisabeth; Johnson, Stephen B

    2011-01-01

    This paper describes a usability evaluation study of an innovative first generation system (Data Dig) designed to retrieve phenotypic data from the large SFARI data set of 2700 families each of which has one child affected with autism spectrum disorder. The usability methods included a cognitive walkthrough and usability testing. Although the subjects were able to learn to use the system, more than 50 usability problems of varying severity were noted. The problems with the greatest frequency resulted from users being unable to understand meanings of variables, filter categories correctly, use the Boolean filter, and correctly interpret the feedback provided by the system. Subjects had difficulty forming a mental model of the organizational system underlying the database. This precluded them from making informed navigation choices while formulating queries. Clinical research informatics is a new and immensely promising discipline. However in its nascent stage, it lacks a stable interaction paradigm to support a range of users on pertinent tasks. This presents great opportunity for researchers to further this science by harnessing the powers of user-centered iterative design.

  19. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course

    PubMed Central

    Park, Seung; Parwani, Anil; MacPherson, Trevor; Pantanowitz, Liron

    2012-01-01

    Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in “Web 2.0”) in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an

  20. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  1. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  2. Informatic nephrology.

    PubMed

    Musso, Carlos; Aguilera, Jerónimo; Otero, Carlos; Vilas, Manuel; Luna, Daniel; de Quirós, Fernán González Bernaldo

    2013-08-01

    Biomedical informatics in Health (BIH) is the discipline in charge of capturing, handling and using information in health and biomedicine in order to improve the processes involved with assistance and management. Informatic nephrology has appeared as a product of the combination between conventional nephrology with BIH and its development has been considerable in the assistance as well as in the academic field. Regarding the former, there is increasing evidence that informatics technology can make nephrological assistance be better in quality (effective, accessible, safe and satisfying), improve patient's adherence, optimize patient's and practitioner's time, improve physical space and achieve health cost reduction. Among its main elements, we find electronic medical and personal health records, clinical decision support system, tele-nephrology, and recording and monitoring devices. Additionally, regarding the academic field, informatics and Internet contribute to education and research in the nephrological field. In conclusion, informatics nephrology represents a new field which will influence the future of nephrology.

  3. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  4. Scalability of Comparative Analysis, Novel Algorithms and Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Mavrommatis, Kostas [JGI

    2016-07-12

    DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Simpson, Jared [Wellcome Trust Sanger Institute

    2016-07-12

    Wellcome Trust Sanger Institute's Jared Simpson on "Memory efficient sequence analysis using compressed data structures" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  6. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Kyrpides, Nikos

    2011-10-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  7. Scalability of Comparative Analysis, Novel Algorithms and Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Mavrommatis, Kostas

    2011-10-12

    DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on "Memory efficient sequence analysis using compressed data structures" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  9. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Kyrpides, Nikos [DOE JGI

    2016-07-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  11. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Dehal, Paramvir [LBNL

    2016-07-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Advances in genomics for flatfish aquaculture.

    PubMed

    Cerdà, Joan; Manchado, Manuel

    2013-01-01

    Fish aquaculture is considered to be one of the most sustainable sources of protein for humans. Many different species are cultured worldwide, but among them, marine flatfishes comprise a group of teleosts of high commercial interest because of their highly prized white flesh. However, the aquaculture of these fishes is seriously hampered by the scarce knowledge on their biology. In recent years, various experimental 'omics' approaches have been applied to farmed flatfishes to increment the genomic resources available. These tools are beginning to identify genetic markers associated with traits of commercial interest, and to unravel the molecular basis of different physiological processes. This article summarizes recent advances in flatfish genomics research in Europe. We focus on the new generation sequencing technologies, which can produce a massive amount of DNA sequencing data, and discuss their potentials and applications for de novo genome sequencing and transcriptome analysis. The relevance of these methods in nutrigenomics and foodomics approaches for the production of healthy animals, as well as high quality and safety products for the consumer, is also briefly discussed.

  13. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  14. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  15. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  16. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  17. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Paley, Suzanne M; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M; Lee, Thomas J; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry.

  18. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  19. Advances in the translational genomics of neuroblastoma

    PubMed Central

    Bosse, Kristopher R.; Maris, John M.

    2015-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  20. A Web Portal that Enables Collaborative Use of Advanced Medical Image Processing and Informatics Tools through the Biomedical Informatics Research Network (BIRN)

    PubMed Central

    Murphy, Shawn N.; Mendis, Michael E.; Grethe, Jeffrey S.; Gollub, Randy L.; Kennedy, David; Rosen, Bruce R.

    2006-01-01

    Launched in 2001, the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) is an NIH – NCRR initiative that enables researchers to collaborate in an environment for biomedical research and clinical information management, focused particularly upon medical imaging. Although it supports a vast array of programs to transform and calculate upon medical images, three fundamental problems emerged that inhibited collaborations. The first was that the complexity of the programs, and at times legal restrictions, combined to prohibit these programs from being accessible to all members of the teams and indeed the general researcher, although this was a fundamental mission of the BIRN. Second, the calculations that needed to be performed were very complex, and required many steps that often needed to be performed by different groups. Third, many of the analysis programs were not interoperable. These problems combined to created tremendous logistical problems. The solution was to create a portal-based workflow application that allowed the complex, collaborative tasks to take place and enabled new kinds of calculations that had not previously been practical. PMID:17238407

  1. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Canon, Shane

    2011-10-12

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  2. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Canon, Shane [LBNL

    2016-07-12

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  4. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  5. Informatics for Precision Medicine and Healthcare.

    PubMed

    Chen, Jiajia; Lin, Yuxin; Shen, Bairong

    2017-01-01

    The past decade has witnessed great advances in biomedical informatics. Biomedical informatics is an emerging field of healthcare that aims to translate the laboratory observation into clinical practice. Smart healthcare has also developed rapidly with ubiquitous sensor and communication technologies. It is able to capture the online patient-centric phenotypic variables, thus providing a rich information base for translational biomedical informatics. Biomedical informatics and smart healthcare represent two interrelated disciplines. On one hand, biomedical informatics translates the bench discoveries into bedside, and, on the other hand, it is reciprocally informed by clinical data generated from smart healthcare. In this chapter, we will introduce the major strategies and challenges in the application of biomedical informatics technology in precision medicine and healthcare. We highlight how the informatics technology will promote the precision medicine and therefore promise the improvement of healthcare.

  6. Advancing oral medicine through informatics and information technology: a proposed framework and strategy.

    PubMed

    Schleyer, T; Mattsson, U; Ní Ríordáin, R; Brailo, V; Glick, M; Zain, R B; Jontell, M

    2011-04-01

    The implementation of information technology in healthcare is a significant focus for many nations around the world. However, information technology support for clinical care, research and education in oral medicine is currently poorly developed. This situation hampers our ability to transform oral medicine into a 'learning healthcare discipline' in which the divide between clinical practice and research is diminished and, ultimately, eliminated. This paper reviews the needs of and requirements for information technology support of oral medicine and proposes an agenda designed to meet those needs. For oral medicine, this agenda includes analyzing and reviewing current clinical and documentation practices, working toward progressively standardizing clinical data, and helping define requirements for oral medicine systems. IT professionals can contribute by conducting baseline studies about the use of electronic systems, helping develop controlled vocabularies and ontologies, and designing, implementing, and evaluating novel systems centered on the needs of clinicians, researchers and educators. Successfully advancing IT support for oral medicine will require close coordination and collaboration among oral medicine professionals, information technology professionals, system vendors, and funding agencies. If current barriers and obstacles are overcome, practice and research in oral medicine stand ready to derive significant benefits from the application of information technology.

  7. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  8. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  9. Advancing Crop Transformation in the Era of Genome Editing

    USDA-ARS?s Scientific Manuscript database

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to...

  10. Advances in Genetics and Genomics for Sustainable Peanut Production

    USDA-ARS?s Scientific Manuscript database

    Plant breeding, genetics, and genomics have a critical role to play in sustainable agriculture. These technologies are contributing to rapid progress in improving crop productivity, quality, and resistance to pests and diseases. The advances in genetics and genomics are opening new frontiers in pean...

  11. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  12. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Advances in Miniaturized Instruments for Genomics

    PubMed Central

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  14. The Human Genome Project, and recent advances in personalized genomics.

    PubMed

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of "personalized medicine" and "personal genomics" has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the "technological imperative", due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding.

  15. Advances in Arachis genomics for peanut improvement.

    PubMed

    Pandey, Manish K; Monyo, Emmanuel; Ozias-Akins, Peggy; Liang, Xuanquiang; Guimarães, Patricia; Nigam, Shyam N; Upadhyaya, Hari D; Janila, Pasupuleti; Zhang, Xinyou; Guo, Baozhu; Cook, Douglas R; Bertioli, David J; Michelmore, Richard; Varshney, Rajeev K

    2012-01-01

    Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement.

  16. Recent Advances in Medicago truncatula Genomics

    PubMed Central

    Ané, Jean-Michel; Zhu, Hongyan; Frugoli, Julia

    2008-01-01

    Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed. PMID:18288239

  17. Recent Advances in Medicago truncatula Genomics.

    PubMed

    Ané, Jean-Michel; Zhu, Hongyan; Frugoli, Julia

    2008-01-01

    Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.

  18. The Human Genome Project, and recent advances in personalized genomics

    PubMed Central

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient’s health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. PMID:25733939

  19. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  20. Developing an informatics tool to advance supportive care: the Veterans Health Care Administration Palliative Care National Clinical Template.

    PubMed

    Goebel, Joy R; Ahluwalia, Sangeeta C; Chong, Kelly; Shreve, Scott T; Goldzweig, Caroline L; Austin, Colletta; Asch, Steven M; Lorenz, Karl A

    2014-03-01

    Increasing emphasis in performance-based payment, public reporting, and quality improvement (QI) has led to widespread interest in measuring and improving the quality of care. By 2014, hospice programs will be required to report quality data to the federal government or incur financial penalties. With this increased interest in quality reporting comes an opportunity to develop informatics tools to capture data that reflect the complex practices involved in palliative care (PC). Therefore, there is a need to disseminate information on developing tools that facilitate capturing data and fostering improved performance. The Veterans Health Care Administration, a national leader in health information technology (HIT) and PC, established the Quality Improvement Resource Center (QuIRC) to develop innovative HIT tools to standardize and improve PC practices throughout the 153 Department of Veterans Affairs (VA) medical centers nationwide. The aim of the paper is to describe the development of the Palliative Care-National Clinical Template (PC-NCT) for documenting initial PC consults. Domains of quality of life provided the foundation for this template. Principles of user-centered informatics design guided development activities. A national consensus panel of PC experts prioritized quality indicators as targets for QI. An interdisciplinary team of PC providers identified desired aspects of template functionality. QuIRC balanced PC providers' desired aspects of functionality against the feasibility within the VA HIT system. Formal pilot and usability testing contributed to numerous iterations of the PC-NCT currently piloted in five geographically distributed sites. This paper presents a robust approach to developing an informatics tool for PC practice. Data collected via the PC-NCT will bring variations in current practice into view and assist in directing resources at "important targets" for QI. Although the development of HIT tools to quantify PC practice is complex, there

  1. Advances in Faba Bean Genetics and Genomics

    PubMed Central

    O'Sullivan, Donal M.; Angra, Deepti

    2016-01-01

    Vicia faba L, is a globally important grain legume whose main centers of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six) of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favored plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea. However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fueled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP) markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990's and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are discussed. The

  2. Primer in Genetics and Genomics, Article 2-Advancing Nursing Research With Genomic Approaches.

    PubMed

    Lee, Hyunhwa; Gill, Jessica; Barr, Taura; Yun, Sijung; Kim, Hyungsuk

    2017-03-01

    Nurses investigate reasons for variable patient symptoms and responses to treatments to inform how best to improve outcomes. Genomics has the potential to guide nursing research exploring contributions to individual variability. This article is meant to serve as an introduction to the novel methods available through genomics for addressing this critical issue and includes a review of methodological considerations for selected genomic approaches. This review presents essential concepts in genetics and genomics that will allow readers to identify upcoming trends in genomics nursing research and improve research practice. It introduces general principles of genomic research and provides an overview of the research process. It also highlights selected nursing studies that serve as clinical examples of the use of genomic technologies. Finally, the authors provide suggestions about how to apply genomic technology in nursing research along with directions for future research. Using genomic approaches in nursing research can advance the understanding of the complex pathophysiology of disease susceptibility and different patient responses to interventions. Nurses should be incorporating genomics into education, clinical practice, and research as the influence of genomics in health-care research and practice continues to grow. Nurses are also well placed to translate genomic discoveries into improved methods for patient assessment and intervention.

  3. [Genomic Advances in Eating Behavior Disorders].

    PubMed

    Genis-Mendoza, Alma D; Tovilla-Zarate, Carlos Alfonso; Nicolini, Humberto

    2013-12-01

    Eating behavior disorders are a public health issue. The etiology of these types of disorders is unknown, and they may have psychiatric, chemical and biological origins. The aim of this review is to present evidence that shows the contribution of genomic research in the study of eating behavior disorders. It also shows the considerable research that has been undertaken to identify the genes that may participate in the etiology of eating behavior disorders. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Informatics and Autopsy Pathology.

    PubMed

    Levy, Bruce

    2015-06-01

    Many health care providers believe that the autopsy is no longer relevant in high-technology medicine era. This has fueled a decline in the hospital autopsy rate. Although it seems that advanced diagnostic tests answer all clinical questions, studies repeatedly demonstrate that an autopsy uncovers as many undiagnosed conditions today as in the past. The forensic autopsy rate has also declined, although not as precipitously. Pathologists are still performing a nineteenth century autopsy procedure that remains essentially unchanged. Informatics offers several potential answers that will evolve the low-tech autopsy into the high-tech autopsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Advances in biotechnology and genomics of switchgrass

    PubMed Central

    2013-01-01

    Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock. PMID:23663491

  6. Genomic and physiological approaches to advancing forest tree improvement

    Treesearch

    C. Dana Nelson; Kurt H. Johnsen

    2008-01-01

    Summary The recent completion of a draft sequence of the poplar (Populus trichocarpa Torr. & Gray ex Brayshaw) genome has advanced forest tree genetics to an unprecedented level. A "parts list" for a forest tree has been produced, opening up new opportunities for dissecting the interworkings of tree growth and development. In the relatively near future we...

  7. Integrative clinical genomics of advanced prostate cancer

    PubMed Central

    Dan, Robinson; Van Allen, Eliezer M.; Wu, Yi-Mi; Schultz, Nikolaus; Lonigro, Robert J.; Mosquera, Juan-Miguel; Montgomery, Bruce; Taplin, Mary-Ellen; Pritchard, Colin C; Attard, Gerhardt; Beltran, Himisha; Abida, Wassim M.; Bradley, Robert K.; Vinson, Jake; Cao, Xuhong; Vats, Pankaj; Kunju, Lakshmi P.; Hussain, Maha; Feng, Felix Y.; Tomlins, Scott A.; Cooney, Kathleen A.; Smith, David C.; Brennan, Christine; Siddiqui, Javed; Mehra, Rohit; Chen, Yu; Rathkopf, Dana E.; Morris, Michael J.; Solomon, Stephen B.; Durack, Jeremy C.; Reuter, Victor E.; Gopalan, Anuradha; Gao, Jianjiong; Loda, Massimo; Lis, Rosina T.; Bowden, Michaela; Balk, Stephen P.; Gaviola, Glenn; Sougnez, Carrie; Gupta, Manaswi; Yu, Evan Y.; Mostaghel, Elahe A.; Cheng, Heather H.; Mulcahy, Hyojeong; True, Lawrence D.; Plymate, Stephen R.; Dvinge, Heidi; Ferraldeschi, Roberta; Flohr, Penny; Miranda, Susana; Zafeiriou, Zafeiris; Tunariu, Nina; Mateo, Joaquin; Lopez, Raquel Perez; Demichelis, Francesca; Robinson, Brian D.; Schiffman, Marc A.; Nanus, David M.; Tagawa, Scott T.; Sigaras, Alexandros; Eng, Kenneth W.; Elemento, Olivier; Sboner, Andrea; Heath, Elisabeth I.; Scher, Howard I.; Pienta, Kenneth J.; Kantoff, Philip; de Bono, Johann S.; Rubin, Mark A.; Nelson, Peter S.; Garraway, Levi A.; Sawyers, Charles L.; Chinnaiyan, Arul M.

    2015-01-01

    SUMMARY Toward development of a precision medicine framework for metastatic, castration resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53 and PTEN were frequent (40–60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified novel genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin and ZBTB16/PLZF. Aberrations of BRCA2, BRCA1 and ATM were observed at substantially higher frequencies (19.3% overall) than seen in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides evidence that clinical sequencing in mCRPC is feasible and could impact treatment decisions in significant numbers of affected individuals. PMID:26000489

  8. IPHIE: an International Partnership in Health Informatics Education.

    PubMed

    Jaspers, M W; Gardner, R M; Gatewood, L C; Haux, R; Leven, F J; Limburg, M; Ravesloot, J H; Schmidt, D; Wetter, T

    2000-01-01

    Medical informatics contributes significantly to high quality and efficient health care and medical research. The need for well educated professionals in the field of medical informatics therefore is now worldwide recognized. Students of medicine, computer science/informatics are educated in the field of medical informatics and dedicated curricula on medical informatics have emerged. To advance and further develop the beneficial role of medical informatics in the medical field, an international orientation of health and medical informatics students seems an indispensable part of their training. An international orientation and education of medical informatics students may help to accelerate the dissemination of acquired knowledge and skills in the field and the promotion of medical informatics research results on a more global level. Some years ago, the departments of medical informatics of the university of Heidelberg/university of applied sciences Heilbronn and the university of Amsterdam decided to co-operate in the field of medical informatics. Now, this co-operation has grown out to an International Partnership of Health Informatics Education (IPHIE) of 5 universities, i.e. the university of Heidelberg, the university of Heilbronn, the university of Minnesota, the university of Utah and the university of Amsterdam. This paper presents the rationale behind this international partnership, the state of the art of the co-operation and our future plans for expanding this international co-operation.

  9. Advances in genomics for the improvement of quality in coffee.

    PubMed

    Tran, Hue Tm; Lee, L Slade; Furtado, Agnelo; Smyth, Heather; Henry, Robert J

    2016-08-01

    Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Recent advances in targeted genome engineering in mammalian systems.

    PubMed

    Sun, Ning; Abil, Zhanar; Zhao, Huimin

    2012-09-01

    Targeted genome engineering enables researchers to disrupt, insert, or replace a genomic sequence precisely at a predetermined locus. One well-established technology to edit a mammalian genome is known as gene targeting, which is based on the homologous recombination (HR) mechanism. However, the low HR frequency in mammalian cells (except for mice) prevents its wide application. To address this limitation, a custom-designed nuclease is used to introduce a site-specific DNA double-strand break (DSB) on the chromosome and the subsequent repair of the DSB by the HR mechanism or the non-homologous end joining mechanism results in efficient targeted genome modifications. Engineered homing endonucleases (also called meganucleases), zinc finger nucleases, and transcription activator-like effector nucleases represent the three major classes of custom-designed nucleases that have been successfully applied in many different organisms for targeted genome engineering. This article reviews the recent developments of these genome engineering tools and highlights a few representative applications in mammalian systems. Recent advances in gene delivery strategies of these custom-designed nucleases are also briefly discussed.

  11. A survey of informatics approaches to whole-exome and whole-genome clinical reporting in the electronic health record

    PubMed Central

    Tarczy-Hornoch, Peter; Amendola, Laura; Aronson, Samuel J.; Garraway, Levi; Gray, Stacy; Grundmeier, Robert W.; Hindorff, Lucia A.; Jarvik, Gail; Karavite, Dean; Lebo, Matthew; Plon, Sharon E.; Van Allen, Eliezer; Weck, Karen E.; White, Peter S.; Yang, Yaping

    2014-01-01

    Purpose Genome-scale clinical sequencing is being adopted more broadly in medical practice. The National Institutes of Health developed the Clinical Sequencing Exploratory Research (CSER) program to guide implementation and dissemination of best practices for the integration of sequencing into clinical care. This study describes and compares the state of the art of incorporating whole-exome and whole-genome sequencing results into the electronic health record, including approaches to decision support across the six current CSER sites. Methods The CSER Medical Record Working Group collaboratively developed and completed an in-depth survey to assess the communication of genome-scale data into the electronic health record. We summarized commonalities and divergent approaches. Results Despite common sequencing platform (Illumina) adoptions, there is a great diversity of approaches to annotation tools and workflow, as well as to report generation. At all sites, reports are human-readable structured documents available as passive decision support in the electronic health record. Active decision support is in early implementation at two sites. Conclusion The parallel efforts across CSER sites in the creation of systems for report generation and integration of reports into the electronic health record, as well as the lack of standardized approaches to interfacing with variant databases to create active clinical decision support, create opportunities for cross-site and vendor collaborations. PMID:24071794

  12. Nursing informatics, outcomes, and quality improvement.

    PubMed

    Charters, Kathleen G

    2003-08-01

    Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.

  13. Recent advances in tomato functional genomics: utilization of VIGS.

    PubMed

    Sahu, Pranav Pankaj; Puranik, Swati; Khan, Moinuddin; Prasad, Manoj

    2012-10-01

    Tomato unquestionably occupies a significant position in world vegetable production owing to its world-wide consumption. The tomato genome sequencing efforts being recently concluded, it becomes more imperative to recognize important functional genes from this treasure of generated information for improving tomato yield. While much progress has been made in conventional tomato breeding, post-transcriptional gene silencing (PTGS) offers an alternative approach for advancement of tomato functional genomics. In particular, virus-induced gene silencing (VIGS) is increasingly being used as rapid, reliable, and lucrative screening strategy to elucidate gene function. In this review, we focus on the recent advancement made through exploiting the potential of this technique for manipulating different agronomically important traits in tomato by discussing several case studies.

  14. Recent Advances in Microbial Single Cell Genomics Technology and Applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2016-02-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.

  15. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Hugenholtz, Phil [University of Queensland

    2016-07-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong [San Diego Supercomputer Center

    2016-07-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sakakibara, Yasumbumi [Keio University

    2016-07-12

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  18. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Hugenholtz, Phil

    2011-10-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Sakakibara, Yasumbumi

    2011-10-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  20. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Li, Weizhong

    2011-10-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. Advances in genome studies in plants and animals.

    PubMed

    Appels, R; Nystrom-Persson, J; Keeble-Gagnere, G

    2014-03-01

    The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.

  2. Identification of molecular phenotypic descriptors of breast capsular contracture formation using informatics analysis of the whole genome transcriptome.

    PubMed

    Kyle, Daniel J T; Harvey, Alison G; Shih, Barbara; Tan, Kian T; Chaudhry, Iskander H; Bayat, Ardeshir

    2013-01-01

    Breast capsular contracture formation following silicone implant augmentation/reconstruction is a common complication that remains poorly understood. The aim of this study was to identify potential biomarkers implicated in breast capsular contracture formation by using, for the first time, whole genome arrays. Biopsy samples were taken from 18 patients (23 breast capsules) with Baker Grade I-II (Control) and Baker Grade III-IV (Contracted). Whole genome microarrays were performed and six significantly dysregulated genes were selected for further validation with quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. Hematoxylin and eosin was also carried out to compare the histological characteristics of control and contracted samples. Microarray results showed that aggrecan, tissue inhibitor of metalloproteinase 4 (TIMP4), and tumor necrosis factor superfamily (ligand) member 11 were significantly down-regulated in contracted capsules; while matrix metallopeptidase 12, serum amyloid A 1, and interleukin 8 (IL8) were significantly up-regulated. The dysregulation of aggrecan, tumor necrosis factor superfamily (ligand) member 11, TIMP4, and IL8 was validated by quantitative reverse transcriptase polymerase chain reaction (p < 0.05). Immunohistochemistry confirmed an increased protein expression for IL8 and matrix metallopeptidase 12 in contracted capsules (p < 0.05), and decreased protein expression of TIMP4 (p < 0.05). This study has shown, for the first time, a number of unique biomarkers of significance in capsular contracture formation. IL8 and TIMP4 may serve as potential key diagnostic, therapeutic, and prognostic biomarkers in capsular contracture formation. © 2013 by the Wound Healing Society.

  3. *informatics: Identifying and Tracking Informatics Sub-Discipline Terms in the Literature.

    PubMed

    Chen, E S; Sarkar, I N

    2015-01-01

    To identify the breadth of informatics sub-discipline terms used in the literature for enabling subsequent organization and searching by sub-discipline. Titles in five literature sources were analyzed to extract terms for informatics sub-disciplines: 1) United States (U.S.) Library of Congress Online Catalog, 2) English Wikipedia, 3) U.S. National Library of Medicine (NLM) Catalog, 4) PubMed, and 5) PubMed Central. The extracted terms were combined and standardized with those in four vocabulary sources to create an integrated list: 1) Library of Congress Subject Headings (LCSH), 2) Medical Subject Headings (MeSH), 3) U.S. National Cancer Institute Thesaurus (NCIt), and 4) EMBRACE Data and Methods (EDAM). Searches for terms in titles from each literature source were conducted to obtain frequency counts and start years for characterizing established and potentially emerging sub-disciplines. Analysis of 6,949 titles from literature sources and 67 terms from vocabulary sources resulted in an integrated list of 382 terms for informatics sub-disciplines mapped to 292 preferred terms. In the last five decades, "bioinformatics", "medical informatics", "health informatics", "nursing informatics", and "biomedical informatics" were associated with the most literature. In the current decade, potentially emerging sub-disciplines include "disability informatics", "neonatal informatics", and "nanoinformatics" based on literature from the last five years. As the field of informatics continues to expand and advance, keeping up-to-date with historical and current trends will become increasingly challenging. The ability to track the accomplishments and evolution of a particular sub-discipline in the literature could be valuable for supporting informatics research, education, and training.

  4. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. © 2016 American Society of Plant Biologists. All rights reserved.

  5. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation.

    PubMed

    Séroussi, B; Soualmia, L F; Holmes, J H

    2016-11-10

    certification. The pathway to certification is clear and wellestablished for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership.

  6. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  7. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  8. Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine

    NASA Astrophysics Data System (ADS)

    Vizirianakis, Ioannis S.; Amanatiadou, Elsa P.

    The target of personalized medicine to achieve major benefits for all patients in terms of diagnosis and drug delivery can be facilitated by creating a sincere multidisciplinary information-based infrastructure in health care. To this end, nanotechnology, pharmacogenomics, and informatics can advance the utility of personalized medicine, enable clinical translation of genomic knowledge, empower healthcare environment, and finally improve clinical outcomes.

  9. Translational informatics: an industry perspective.

    PubMed

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  10. Translational informatics: an industry perspective

    PubMed Central

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health. PMID:22237867

  11. Predicting treatment outcome in classical Hodgkin lymphoma: genomic advances

    PubMed Central

    2011-01-01

    Classical Hodgkin lymphoma is considered a highly curable disease; however, 20% of patients cannot be cured with standard first-line chemotherapy and have a dismal outcome. Current clinical parameters do not allow accurate risk stratification, and personalized therapies are lacking. In fact, Hodgkin lymphoma (HL) is often over- or undertreated because of this lack of accurate risk stratification. In recent years, the early detection of chemoresistance by fluorodeoxyglucose positron emission tomography has become the most important prognostic tool in the management of HL. However, to date, no prognostic scores or molecular markers are available for the early identification of patients at very high risk of failure of induction therapy. In the last decade, many important advances have been made in understanding the biology of HL. In particular, the development of new molecular profiling technologies, such as SNP arrays, comparative genomic hybridization, and gene-expression profiling, have allowed the identification of new prognostic factors that may be useful for risk stratification and predicting response to chemotherapy. In this review, we focus on the prognostic tools and biomarkers that are available for newly diagnosed HL, and we highlight recent advances in the genomic characterization of classical HL and potential targets for therapy. PMID:21542892

  12. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  13. Consumer Health Informatics: Health Information Technology for Consumers.

    ERIC Educational Resources Information Center

    Jimison, Holly Brugge; Sher, Paul Phillip

    1995-01-01

    Explains consumer health informatics and describes the technology advances, the computer programs that are currently available, and the basic research that addresses both the effectiveness of computer health informatics and its impact on the future direction of health care. Highlights include commercial computer products for consumers and…

  14. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  15. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Copeland, Alex [DOE JGI; Brown, C Titus [Michigan State University

    2016-07-12

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Copeland, Alex; Brown, C Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  18. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas [Bigelow Laboratory

    2016-07-12

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. An Analysis of Educational Informatization Level of Students, Teachers, and Parents: In Korea

    ERIC Educational Resources Information Center

    Kim, JaMee; Lee, WonGyu

    2011-01-01

    Korea is recognized as one of the most advanced countries in terms of informatization. The development of informatization has impacted education, and education informatization has contributed to the improvement of teaching in the classroom. Accordingly, education informatiozation is one of the paramount pedagogical issues in South Korea. This…

  20. Comprehensive Genomic Profiling of Advanced Penile Carcinoma Suggests a High Frequency of Clinically Relevant Genomic Alterations.

    PubMed

    Ali, Siraj M; Pal, Sumanta K; Wang, Kai; Palma, Norma A; Sanford, Eric; Bailey, Mark; He, Jie; Elvin, Julia A; Chmielecki, Juliann; Squillace, Rachel; Dow, Edward; Morosini, Deborah; Buell, Jamie; Yelensky, Roman; Lipson, Doron; Frampton, Garrett M; Howley, Peter; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A

    2016-01-01

    Advanced penile squamous cell carcinoma (PSCC) is associated with poor survival due to the aggressiveness of the disease and lack of effective systemic therapies. Comprehensive genomic profiling (CGP) was performed to identify clinically relevant genomic alterations (CRGAs). DNA was extracted from 40 μm of formalin-fixed, paraffin-embedded sections in patients with advanced PSCC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 692× for 3,769 exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. CRGAs were defined as genomic alterations (GAs) linked to targeted therapies on the market or under evaluation in mechanism-driven clinical trials. Twenty male patients with a median age of 60 years (range, 46-87 years) were assessed. Seventeen (85%) cases were stage IV and three cases (15%) were stage III. CGP revealed 109 GAs (5.45 per tumor), 44 of which were CRGAs (2.2 per tumor). At least one CRGA was detected in 19 (95%) cases, and the most common CRGAs were CDKN2A point mutations and homozygous deletion (40%), NOTCH1 point mutations and rearrangements (25%), PIK3CA point mutations and amplification (25%), EGFR amplification (20%), CCND1 amplification (20%), BRCA2 insertions/deletions (10%), RICTOR amplifications (10%), and FBXW7 point mutations (10%). CGP identified CRGAs in patients with advanced PSCC, including EGFR amplification and PIK3CA alterations, which can lead to the rational administration of targeted therapy and subsequent benefit for these patients. Few treatment options exist for patients with advanced penile squamous cell carcinoma (PSCC). Outcomes are dismal with platinum-based chemotherapy, with median survival estimated at 1 year or less across multiple series. Biological studies of patients with PSCC to date have principally focused on human papillomavirus status, but few studies have elucidated molecular drivers of the disease. To this end

  1. Comprehensive Genomic Profiling of Advanced Penile Carcinoma Suggests a High Frequency of Clinically Relevant Genomic Alterations

    PubMed Central

    Pal, Sumanta K.; Wang, Kai; Palma, Norma A.; Sanford, Eric; Bailey, Mark; He, Jie; Elvin, Julia A.; Chmielecki, Juliann; Squillace, Rachel; Dow, Edward; Morosini, Deborah; Buell, Jamie; Yelensky, Roman; Lipson, Doron; Frampton, Garrett M.; Howley, Peter; Ross, Jeffrey S.; Stephens, Philip J.; Miller, Vincent A.

    2016-01-01

    Background. Advanced penile squamous cell carcinoma (PSCC) is associated with poor survival due to the aggressiveness of the disease and lack of effective systemic therapies. Comprehensive genomic profiling (CGP) was performed to identify clinically relevant genomic alterations (CRGAs). Materials and Methods. DNA was extracted from 40 μm of formalin-fixed, paraffin-embedded sections in patients with advanced PSCC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 692× for 3,769 exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. CRGAs were defined as genomic alterations (GAs) linked to targeted therapies on the market or under evaluation in mechanism-driven clinical trials. Results. Twenty male patients with a median age of 60 years (range, 46–87 years) were assessed. Seventeen (85%) cases were stage IV and three cases (15%) were stage III. CGP revealed 109 GAs (5.45 per tumor), 44 of which were CRGAs (2.2 per tumor). At least one CRGA was detected in 19 (95%) cases, and the most common CRGAs were CDKN2A point mutations and homozygous deletion (40%), NOTCH1 point mutations and rearrangements (25%), PIK3CA point mutations and amplification (25%), EGFR amplification (20%), CCND1 amplification (20%), BRCA2 insertions/deletions (10%), RICTOR amplifications (10%), and FBXW7 point mutations (10%). Conclusion. CGP identified CRGAs in patients with advanced PSCC, including EGFR amplification and PIK3CA alterations, which can lead to the rational administration of targeted therapy and subsequent benefit for these patients. Implications for Practice: Few treatment options exist for patients with advanced penile squamous cell carcinoma (PSCC). Outcomes are dismal with platinum-based chemotherapy, with median survival estimated at 1 year or less across multiple series. Biological studies of patients with PSCC to date have principally focused on human papillomavirus status

  2. Advances in Pig Genomics and Functional Gene Discovery

    PubMed Central

    2003-01-01

    Advances in pig gene identification, mapping and functional analysis have continued to make rapid progress. The porcine genetic linkage map now has nearly 3000 loci, including several hundred genes, and is likely to expand considerably in the next few years, with many more genes and amplified fragment length polymorphism (AFLP) markers being added to the map. The physical genetic map is also growing rapidly and has over 3000 genes and markers. Several recent quantitative trait loci (QTL) scans and candidate gene analyses have identified important chromosomal regions and individual genes associated with traits of economic interest. The commercial pig industry is actively using this information and traditional performance information to improve pig production by marker-assisted selection (MAS). Research to study the co-expression of thousands of genes is now advancing and methods to combine these approaches to aid in gene discovery are under way. The pig's role in xenotransplantation and biomedical research makes the study of its genome important for the study of human disease. This review will briefly describe advances made, directions for future research and the implications for both the pig industry and human health. PMID:18629119

  3. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  4. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  5. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics.

    PubMed

    Lehner, Thomas; Senthil, Geetha; Addington, Anjené M

    2015-01-01

    After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery. Published by Elsevier Inc.

  6. Advances in Exercise, Fitness, and Performance Genomics in 2012

    PubMed Central

    Pérusse, Louis; Rankinen, Tuomo; Hagberg, James M.; Loos, Ruth J. F.; Roth, Stephen M.; Sarzynski, Mark A.; Wolfarth, Bernd; Bouchard, Claude

    2013-01-01

    A small number of excellent papers on exercise genomics issues have been published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index (BMI) or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. Serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the ENCODE project. PMID:23470294

  7. Advances in exercise, fitness, and performance genomics in 2012.

    PubMed

    Pérusse, Louis; Rankinen, Tuomo; Hagberg, James M; Loos, Ruth J F; Roth, Stephen M; Sarzynski, Mark A; Wolfarth, Bernd; Bouchard, Claude

    2013-05-01

    A small number of excellent articles on exercise genomics issues were published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. The serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the Encyclopedia of DNA Elements project.

  8. Chapter 17: bioimage informatics for systems pharmacology.

    PubMed

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T C

    2013-04-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  9. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Lu, Lu; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-04-01

    Background: Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with na ve mapping approaches in AIL populations is that the individual is not an exchangeable unit. Methodology/Principal Findings: The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance: GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. The effect of

  10. Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification

    NASA Astrophysics Data System (ADS)

    Mulholland, Gregory J.; Paradiso, Sean P.

    2016-05-01

    The process of taking a new material from invention to deployment can take 20 years or more. Since the announcement of the Materials Genome Initiative in 2011, new attention has been paid to accelerating this timeframe to address key challenges in industries from energy, to biomedical materials, to catalysis, to polymers, particularly in the development of new materials discovery techniques. Materials informatics, or algorithmically analyzing materials data at scale to gain novel insight, has been lauded as a path forward in this regard. An equal challenge to discovery, however, is the acceleration from discovery to market. In this paper, we address application of an informatics approach to materials selection, manufacturing, and qualification and identify key opportunities and challenges in each of these areas with a focus on reducing time to market for new advanced materials technologies.

  11. The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment

    PubMed Central

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  12. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    PubMed

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind.

  13. Investigating Informatics Activity, Control, and Training Needs in Large, Medium, and Small Health Departments.

    PubMed

    Bakota, Eric; Arnold, Ryan; Yang, Biru

    2016-01-01

    A recent National Association of City & County Health Officials survey shed light on informatics workforce development needs. Local health departments (LHDs) of various jurisdictional sizes and control over informatics may differ on training needs and activity. Understanding the precise nature of this variation will allow stakeholders to appropriately develop workforce development tools to advance the field. To understand the informatics training needs for LHDs of different jurisdictional sizes. Survey responses were analyzed by comparing training needs and LHD population size. Larger health departments consistently reported having greater informatics-related capacity and informatics-related training needs. Quantitative data analysis was identified as a primary need for large LHDs. In addition, LHDs that report higher control of informatics/information technology were able to engage in more informatics activities. Smaller LHDs need additional resources to improve informatics-related capacity and engagement with the field.

  14. Investigating Informatics Activity, Control, and Training Needs in Large, Medium, and Small Health Departments

    PubMed Central

    Arnold, Ryan; Yang, Biru

    2016-01-01

    Introduction: A recent National Association of City & County Health Officials survey shed light on informatics workforce development needs. Local health departments (LHDs) of various jurisdictional sizes and control over informatics may differ on training needs and activity. Understanding the precise nature of this variation will allow stakeholders to appropriately develop workforce development tools to advance the field. Objective: To understand the informatics training needs for LHDs of different jurisdictional sizes. Methods: Survey responses were analyzed by comparing training needs and LHD population size. Results: Larger health departments consistently reported having greater informatics-related capacity and informatics-related training needs. Quantitative data analysis was identified as a primary need for large LHDs. In addition, LHDs that report higher control of informatics/information technology were able to engage in more informatics activities. Conclusion: Smaller LHDs need additional resources to improve informatics-related capacity and engagement with the field. PMID:27684621

  15. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    PubMed

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  16. Origins of Medical Informatics

    PubMed Central

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in the 1960s and medical informatics was identified as a new specialty in the 1970s. PMID:3544507

  17. High throughput screening informatics.

    PubMed

    Ling, Xuefeng Bruce

    2008-03-01

    High throughput screening (HTS), an industrial effort to leverage developments in the areas of modern robotics, data analysis and control software, liquid handling devices, and sensitive detectors, has played a pivotal role in the drug discovery process, allowing researchers to efficiently screen millions of compounds to identify tractable small molecule modulators of a given biological process or disease state and advance them into high quality leads. As HTS throughput has significantly increased the volume, complexity, and information content of datasets, lead discovery research demands a clear corporate strategy for scientific computing and subsequent establishment of robust enterprise-wide (usually global) informatics platforms, which enable complicated HTS work flows, facilitate HTS data mining, and drive effective decision-making. The purpose of this review is, from the data analysis and handling perspective, to examine key elements in HTS operations and some essential data-related activities supporting or interfacing the screening process, and outline properties that various enabling software should have. Additionally, some general advice for corporate managers with system procurement responsibilities is offered.

  18. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  19. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel

    2016-07-12

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  20. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  1. Informatics at the National Institues of Health

    PubMed Central

    Hendee, William R.

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information science, and computer science undergirding biomedical informatics, engineering, and imaging. This investment should be made primarily through the National Institutes of Health (NIH). However, the NIH is not structured to support such disciplines as biomedical informatics, engineering, and imaging that cross boundaries between disease- and organ-oriented institutes. The solution to this dilemma is the creation of a new institute or center at the NIH devoted to biomedical imaging, engineering, and informatics. Bills are being introduced into the 106th Congress to authorize such an entity. The pathway is long and arduous, from the introduction of bills in the House and Senate to the realization of new opportunities for biomedical informatics, engineering, and imaging at the NIH. There are many opportunities for medical informaticians to contribute to this realization. PMID:10428000

  2. What is biomedical informatics?

    PubMed

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  3. Biomedical informatics: precious scientific resource and public policy dilemma.

    PubMed Central

    Lindberg, Donald A. B.

    2003-01-01

    Biomedical informatics includes the application of computers, information networks and systems, and a growing body of scientific understanding to a range of problems. As skill in this field increases and as progress in virtually all modern biomedical science becomes more data intensive, informatics becomes a precious resource. Applications areas include access to knowledge, discovery in genomics, medical records, mathematical modeling, and bioengineering. At the same time, progress in informatics is deeply dependent on resolution of four major public policy issues: digital intellectual property rights, genetic testing protection, medical data privacy, and the role of biomedical data in the context of information warfare and homeland security. PMID:12813915

  4. Biomedical informatics: precious scientific resource and public policy dilemma.

    PubMed

    Lindberg, Donald A B

    2003-01-01

    Biomedical informatics includes the application of computers, information networks and systems, and a growing body of scientific understanding to a range of problems. As skill in this field increases and as progress in virtually all modern biomedical science becomes more data intensive, informatics becomes a precious resource. Applications areas include access to knowledge, discovery in genomics, medical records, mathematical modeling, and bioengineering. At the same time, progress in informatics is deeply dependent on resolution of four major public policy issues: digital intellectual property rights, genetic testing protection, medical data privacy, and the role of biomedical data in the context of information warfare and homeland security.

  5. Lost and found in behavioral informatics.

    PubMed

    Haendel, Melissa A; Chesler, Elissa J

    2012-01-01

    From early anatomical lesion studies to the molecular and cellular methods of today, a wealth of technologies have provided increasingly sophisticated strategies for identifying and characterizing the biological basis of behaviors. Bioinformatics is a growing discipline that has emerged from the practical needs of modern biology, and the history of systematics and ontology in data integration and scientific knowledge construction. This revolution in biology has resulted in a capability to couple the rich molecular, anatomical, and psychological assays with advances in data dissemination and integration. However, behavioral science poses unique challenges for biology and medicine, and many unique resources have been developed to take advantage of the strategies and technologies of an informatics approach. The collective developments of this diverse and interdisciplinary field span the fundamentals of database development and data integration, ontology development, text mining, genetics, genomics, high-throughput analytics, image analysis and archiving, and numerous others. For the behavioral sciences, this provides a fundamental shift in our ability to associate and dissociate behavioral processes and relate biological and behavioral entities, thereby pinpointing the biological basis of behavior.

  6. On the future of genomic data.

    PubMed

    Kahn, Scott D

    2011-02-11

    Many of the challenges in genomics derive from the informatics needed to store and analyze the raw sequencing data that is available from highly multiplexed sequencing technologies. Because single week-long sequencing runs today can produce as much data as did entire genome centers a few years ago, the need to process terabytes of information has become de rigueur for many labs engaged in genomic research. The availability of deep (and large) genomic data sets raises concerns over information access, data security, and subject/patient privacy that must be addressed for the field to continue its rapid advances.

  7. The Saccharomyces Genome Database: Advanced Searching Methods and Data Mining.

    PubMed

    Cherry, J Michael

    2015-12-02

    At the core of the Saccharomyces Genome Database (SGD) are chromosomal features that encode a product. These include protein-coding genes and major noncoding RNA genes, such as tRNA and rRNA genes. The basic entry point into SGD is a gene or open-reading frame name that leads directly to the locus summary information page. A keyword describing function, phenotype, selective condition, or text from abstracts will also provide a door into the SGD. A DNA or protein sequence can be used to identify a gene or a chromosomal region using BLAST. Protein and DNA sequence identifiers, PubMed and NCBI IDs, author names, and function terms are also valid entry points. The information in SGD has been gathered and is maintained by a group of scientific biocurators and software developers who are devoted to providing researchers with up-to-date information from the published literature, connections to all the major research resources, and tools that allow the data to be explored. All the collected information cannot be represented or summarized for every possible question; therefore, it is necessary to be able to search the structured data in the database. This protocol describes the YeastMine tool, which provides an advanced search capability via an interactive tool. The SGD also archives results from microarray expression experiments, and a strategy designed to explore these data using the SPELL (Serial Pattern of Expression Levels Locator) tool is provided.

  8. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease.

    PubMed

    Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A G

    2016-01-01

    The inheritance pattern of Parkinson's disease (PD) is likely multifactorial (owing to the interplay of genetic predisposition and environmental factors). Many pharmacogenetic studies have tried to establish a possible role of candidate genes in PD risk. Several studies have focused on the influence of genes in the response to antiparkinsonian drugs and in the risk of developing side-effects of these drugs. This review presents an overview of current knowledge, with particular emphasis on the most recent advances, both in case-control association studies on the role of candidate genes in the risk for PD as well as pharmacogenetic studies on the role of genes in the development of side effects of antiparkinsonian drugs. The most reliable results should be derived from meta-analyses of case-control association studies on candidate genes involving large series of PD patients and controls, and from genome-wide association studies (GWAS). Prospective studies of large samples involving several genes with a detailed history of exposure to environmental factors in the same cohort of subjects, should be useful to clarify the role of genes in the risk for PD. The results of studies on the role of genes in the development of side-effects of antiparkinsonian drugs should, at this stage, only be considered preliminary.

  9. Nursing Informatics Pioneers Continue to Influence the Profession: A Sustainable Impact.

    PubMed

    Newbold, Susan K; Brixey, Juliana J

    2016-01-01

    The American Medical Informatics Association (AMIA) established the Nursing Informatics History Project to recognize the pioneers of nursing informatics. Fundamental to the pioneers was dissemination of knowledge. The purpose of this review was to identify contributions to the field of nursing informatics as peer-reviewed manuscripts for the years 2010-2015 and indexed in PubMed. Results indicate that many of the pioneers continue to have manuscripts indexed in PubMed. It is anticipated this project will be extended to identify other types of contributions made by the pioneers in the advancement of nursing informatics.

  10. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-01-01

    Abstract Background Advanced intercross lines (AIL) are segregating populations created using a multigeneration breeding protocol for fine mapping complex traits in mice and other organisms. Applying quantitative trait locus (QTL) mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of family structure in AIL populations in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with a na ve mapping approach in such AIL populations is that the individual is not an exchangeable unit given the family structure. Methodology/Principal Findings The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. RAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome- ide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels in our AIL population, which are corrected by use of GRAIP. We also show that GRAIP detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance GRAIP determines appropriate genome-wide significance thresholds

  11. Massive open online course for health informatics education.

    PubMed

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  12. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  13. Pathology informatics fellowship training: Focus on molecular pathology

    PubMed Central

    Mandelker, Diana; Lee, Roy E.; Platt, Mia Y.; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K. F.; Klepeis, Veronica E.; Mahowald, Michael; Lane, William J.; Beckwith, Bruce A.; Baron, Jason M.; McClintock, David S.; Kuo, Frank C.; Lebo, Matthew S.; Gilbertson, John R.

    2014-01-01

    Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists. PMID:24843823

  14. A Paradigm for Medical Informatics

    PubMed Central

    Glaser, John P.

    1982-01-01

    This paper presents a model of the discipline of Medical Informatics. The components of the model are defined and described, and the use of the model in Medical Informatics research, and curriculum development, is discussed.

  15. How advances in genomics are changing patient care.

    PubMed

    Bancroft, Elizabeth K

    2013-12-01

    The completion of the Human Genome Project has led to a greater understanding of the role of genetics/genomics in the development of all common diseases, which is leading to the routine integration of genetics and genomics into all aspects of health care. This change in practice presents new challenges for health care professionals. This article provides an overview of how genetics/genomics has the potential to improve health care within many different clinical scenarios, and highlights the key issues for nurses working in a variety of settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    PubMed

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  17. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  18. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-04

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens

  19. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  20. Current and future trends in imaging informatics for oncology

    PubMed Central

    Levy, Mia A.; Rubin, Daniel L.

    2014-01-01

    Clinical imaging plays an essential role in cancer care and research for diagnosis, prognosis and treatment response assessment. Major advances have been made over the last several decades in imaging informatics to support medical imaging. More recent informatics advances focus on the special needs of oncologic imaging, yet gaps still remain. We review the current state, limitations, and future trends in imaging informatics for oncology care including clinical and clinical research systems. We review information systems to support cancer clinical workflows including oncologist ordering of radiology studies, radiologist review and reporting of image findings, and oncologist review and integration of imaging information for clinical decision making. We discuss informatics approaches to oncologic imaging including but not limited to controlled terminologies, image annotation, and image processing algorithms. With the ongoing development of novel imaging modalities and imaging biomarkers, we expect these systems will continue to evolve and mature. PMID:21799326

  1. Current and future trends in imaging informatics for oncology.

    PubMed

    Levy, Mia A; Rubin, Daniel L

    2011-01-01

    Clinical imaging plays an essential role in cancer care and research for diagnosis, prognosis, and treatment response assessment. Major advances in imaging informatics to support medical imaging have been made during the last several decades. More recent informatics advances focus on the special needs of oncologic imaging, yet gaps still remain. We review the current state, limitations, and future trends in imaging informatics for oncology care including clinical and clinical research systems. We review information systems to support cancer clinical workflows including oncologist ordering of radiology studies, radiologist review and reporting of image findings, and oncologist review and integration of imaging information for clinical decision making. We discuss informatics approaches to oncologic imaging including, but not limited to, controlled terminologies, image annotation, and image-processing algorithms. With the ongoing development of novel imaging modalities and imaging biomarkers, we expect these systems will continue to evolve and mature.

  2. Whole genome amplification - Review of applications and advances

    SciTech Connect

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  3. Recent advances in genome-based polyketide discovery.

    PubMed

    Helfrich, Eric J N; Reiter, Silke; Piel, Jörn

    2014-10-01

    Polyketides are extraordinarily diverse secondary metabolites of great pharmacological value and with interesting ecological functions. The post-genomics era has led to fundamental changes in natural product research by inverting the workflow of secondary metabolite discovery. As opposed to traditional bioactivity-guided screenings, genome mining is an in silico method to screen and analyze sequenced genomes for natural product biosynthetic gene clusters. Since genes for known compounds can be recognized at the early computational stage, genome mining presents an opportunity for dereplication. This review highlights recent progress in bioinformatics, pathway engineering and chemical analytics to extract the biosynthetic secrets hidden in the genome of both well-known natural product sources as well as previously neglected bacteria.

  4. Informatics in the Doctor of Nursing Practice Curriculum

    PubMed Central

    Jenkins, Melinda; Wilson, Marisa; Ozbolt, Judy

    2007-01-01

    In 2006, The American Association of Colleges of Nursing approved a new doctoral degree for clinical leaders, the Doctor of Nursing Practice. These new advanced practice leaders will need sophisticated skills in informatics to acquire and use data, information, and knowledge in their roles. This paper proposes a foundational course for all Doctor of Nursing Practice students and some strategies for integrating informatics throughout the curriculum. PMID:18693859

  5. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    PubMed

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  6. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    PubMed Central

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species. PMID:28025636

  7. Case-based medical informatics.

    PubMed

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-11-08

    The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching

  8. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  9. Recent advances in genomics and transcriptomics of cnidarians.

    PubMed

    Technau, Ulrich; Schwaiger, Michaela

    2015-12-01

    The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  11. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2015-01-01

    Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

  12. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  13. Rethinking radiology informatics.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Informatics innovations of the past 30 years have improved radiology quality and efficiency immensely. Radiologists are groundbreaking leaders in clinical information technology (IT), and often radiologists and imaging informaticists created, specified, and implemented these technologies, while also carrying the ongoing burdens of training, maintenance, support, and operation of these IT solutions. Being pioneers of clinical IT had advantages of local radiology control and radiology-centric products and services. As health care businesses become more clinically IT savvy, however, they are standardizing IT products and procedures across the enterprise, resulting in the loss of radiologists' local control and flexibility. Although this inevitable consequence may provide new opportunities in the long run, several questions arise. What will happen to the informatics expertise within the radiology domain? Will radiology's current and future concerns be heard and their needs addressed? What should radiologists do to understand, obtain, and use informatics products to maximize efficiency and provide the most value and quality for patients and the greater health care community? This article will propose some insights and considerations as we rethink radiology informatics.

  14. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  15. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  16. Recent advances in microbial single cell genomics technology and applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2015-12-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. I will present several new developments of this exciting technology, which improve genomic data recovery from individual cells and allow its integration with cell's phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the biology of the "microbial dark matter" inhabiting marine and terrestrial subsurface environments.

  17. [Advances of genome and secondary metabolism in Streptomyces].

    PubMed

    Wu, Xue-Chang; Miao, Ke-Pai; Qian, Kai-Xian

    2005-11-01

    Streptomycetes are Gram-positive, soil-inhabiting bacteria of Actinomycetales. These organisms exhibit complex life cycle and secondary metabolic pathways, and produce many economically important secondary metabolites. This review presented recent progress in Streptomycetes chromosome structure,genomics and the research of secondary metabolic pathway in Streptomyces. As more genomic sequences become available, it wiil be greatly facilitated to elucidate metabolic and regulatory networks and gain the over-production of desired metabolites or create the novel production of commercially important compounds.

  18. Pathology Informatics Essentials for Residents

    PubMed Central

    Karcher, Donald S.; Harrison, James H.; Sinard, John H.; Riben, Michael W.; Boyer, Philip J.; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:28725772

  19. Advancing genomic research and reducing health disparities: what can nurse scholars do?

    PubMed

    Jaja, Cheedy; Gibson, Robert; Quarles, Shirley

    2013-06-01

    Advances in genomic research are improving our understanding of human diseases and evoking promise of an era of genomic medicine. It is unclear whether genomic medicine may exacerbate or attenuate extant racial group health disparities. We delineate how nurse scholars could engage in the configuration of an equitable genomic medicine paradigm. We identify as legitimate subjects for nursing scholarship the scientific relevance, ethical, and public policy implications for employing racial categories in genomic research in the context of reducing extant health disparities. Since genomic research is largely population specific, current classification of genomic data will center on racial and ethnic groups. Nurse scholars should be involved in clarifying how putative racial group differences should be elucidated in light of the current orthodoxy that genomic solutions may alleviate racial health disparities. Nurse scholars are capable of employing their expertise in concept analysis to elucidate how race is used as a variable in scientific research, and to use knowledge brokering to delineate how race variables that imply human ancestry could be utilized in genomic research pragmatically in the context of health disparities. In an era of genomic medicine, nurse scholars should recognize and understand the challenges and complexities of genomics and race and their relevance to health care and health disparities. © 2013 Sigma Theta Tau International.

  20. Advancing Genomic Research and Reducing Health Disparities: What Can Nurse Scholars Do?

    PubMed Central

    Jaja, Cheedy; Gibson, Robert; Quarles, Shirley

    2012-01-01

    Purpose Advances in genomic research are improving our understanding of human diseases and evoking promise of an era of genomic medicine. It is unclear whether genomic medicine may exacerbate or attenuate extant racial group health disparities. We delineate how nurse scholars could engage in the configuration of an equitable genomic medicine paradigm. Organizing Construct We identify as legitimate subjects for nursing scholarship the scientific relevance, ethical, and public policy implications for employing racial categories in genomic research in the context of reducing extant health disparities. Findings Since genomic research is largely population specific, current classification of genomic data will center on racial and ethnic groups. Nurse scholars should be involved in clarifying how putative racial group differences should be elucidated in light of the current orthodoxy that genomic solutions may alleviate racial health disparities. Conclusions Nurse scholars are capable of employing their expertise in concept analysis to elucidate how race is used as a variable in scientific research, and to use knowledge brokering to delineate how race variables that imply human ancestry could be utilized in genomic research pragmatically in the context of health disparities. Clinical Relevance In an era of genomic medicine, nurse scholars should recognize and understand the challenges and complexities of genomics and race and their relevance to health care and health disparities. PMID:23452096

  1. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Advances in European sea bass genomics and future perspectives.

    PubMed

    Louro, Bruno; Power, Deborah M; Canario, Adelino V M

    2014-12-01

    Only recently available sequenced and annotated teleost fish genomes were restricted to a few model species, none of which were for aquaculture. The application of marker assisted selection for improved production traits had been largely restricted to the salmon industry and genetic and Quantitative Trait Loci (QTL) maps were available for only a few species. With the advent of next generation sequencing the landscape is rapidly changing and today the genomes of several aquaculture species have been sequenced. The European sea bass, Dicentrarchus labrax, is a good example of a commercially important aquaculture species in Europe for which in the last decade a wealth of genomic resources, including a chromosomal scale genome assembly, physical and linkage maps as well as relevant QTL have been generated. The current challenge is to stimulate the uptake of the resources by the industry so that the full potential of this scientific endeavor can be exploited and produce benefits for producers and the public alike. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  4. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  5. What is health informatics?

    PubMed

    Sullivan, F

    2001-10-01

    Health informatics is a relatively recent jargon term for a subject that may be of great interest to health services researchers and policy makers. Most countries with highly developed health systems are investing heavily in computer hardware and software in the expectation of higher quality for lower costs. Recent systematic reviews have indeed demonstrated the health benefits of a range of electronic tools, particularly in the areas of prevention and therapeutic monitoring. However, there remains a relative lack of published evaluations of informatics tools and methods. Uncritical adoption of new systems based on the pressures of technological push continue to discredit policy makers who have had to commit significant resources despite inadequate information on what can be realistically expected from a proposed system. There are great opportunities for researchers interested in evaluation to fill the vacuum left by informaticists who are too busy writing their next line of code.

  6. Guideposts to the Future—An Agenda for Nursing Informatics

    PubMed Central

    McCormick, Kathleen A.; Delaney, Connie J.; Brennan, Patricia Flatley; Effken, Judith A.; Kendrick, Kathie; Murphy, Judy; Skiba, Diane J.; Warren, Judith J.; Weaver, Charlotte A.; Weiner, Betsy; Westra, Bonnie L.

    2007-01-01

    As new directions and priorities emerge in health care, nursing informatics leaders must prepare to guide the profession appropriately. To use an analogy, where a road bends or changes directions, guideposts indicate how drivers can stay on course. The AMIA Nursing Informatics Working Group (NIWG) produced this white paper as the product of a meeting convened: 1) to describe anticipated nationwide changes in demographics, health care quality, and health care informatics; 2) to assess the potential impact of genomic medicine and of new threats to society; 3) to align AMIA NIWG resources with emerging priorities; and 4) to identify guideposts in the form of an agenda to keep the NIWG on course in light of new opportunities. The anticipated societal changes provide opportunities for nursing informatics. Resources described below within the Department of Health and Human Services (HHS) and the National Committee for Health and Vital Statistics (NCVHS) can help to align AMIA NIWG with emerging priorities. The guideposts consist of priority areas for action in informatics, nursing education, and research. Nursing informatics professionals will collaborate as full participants in local, national, and international efforts related to the guideposts in order to make significant contributions that empower patients and providers for safer health care. PMID:17068358

  7. Patient-controlled encrypted genomic data: an approach to advance clinical genomics.

    PubMed

    Trakadis, Yannis J

    2012-07-20

    The revolution in DNA sequencing technologies over the past decade has made it feasible to sequence an individual's whole genome at a relatively low cost. The potential value of the information generated by genomic technologies for medicine and society is enormous. However, in order for exome sequencing, and eventually whole genome sequencing, to be implemented clinically, a number of major challenges need to be overcome. For instance, obtaining meaningful informed-consent, managing incidental findings and the great volume of data generated (including multiple findings with uncertain clinical significance), re-interpreting the genomic data and providing additional counselling to patients as genetic knowledge evolves are issues that need to be addressed. It appears that medical genetics is shifting from the present "phenotype-first" medical model to a "data-first" model which leads to multiple complexities. This manuscript discusses the different challenges associated with integrating genomic technologies into clinical practice and describes a "phenotype-first" approach, namely, "Individualized Mutation-weighed Phenotype Search", and its benefits. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab based on both the patient's phenotype and his/her entire genomic data. It simplifies "informed-consent" for clinical use of genomic technologies and helps to protect the patient's autonomy and privacy. Overall, this approach could potentially render widespread use of genomic technologies, in the immediate future, practical, ethical and clinically useful. The "Individualized Mutation-weighed Phenotype Search" approach allows for an incremental integration of genomic technologies into clinical practice. It ensures that we do not over-medicalize genomic data but, rather, continue our current medical model which is based on serving the patient's concerns. Service should not be solely driven by technology but rather by

  8. Patient-controlled encrypted genomic data: an approach to advance clinical genomics

    PubMed Central

    2012-01-01

    Background The revolution in DNA sequencing technologies over the past decade has made it feasible to sequence an individual’s whole genome at a relatively low cost. The potential value of the information generated by genomic technologies for medicine and society is enormous. However, in order for exome sequencing, and eventually whole genome sequencing, to be implemented clinically, a number of major challenges need to be overcome. For instance, obtaining meaningful informed-consent, managing incidental findings and the great volume of data generated (including multiple findings with uncertain clinical significance), re-interpreting the genomic data and providing additional counselling to patients as genetic knowledge evolves are issues that need to be addressed. It appears that medical genetics is shifting from the present “phenotype-first” medical model to a “data-first” model which leads to multiple complexities. Discussion This manuscript discusses the different challenges associated with integrating genomic technologies into clinical practice and describes a “phenotype-first” approach, namely, “Individualized Mutation-weighed Phenotype Search”, and its benefits. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab based on both the patient’s phenotype and his/her entire genomic data. It simplifies “informed-consent” for clinical use of genomic technologies and helps to protect the patient’s autonomy and privacy. Overall, this approach could potentially render widespread use of genomic technologies, in the immediate future, practical, ethical and clinically useful. Summary The “Individualized Mutation-weighed Phenotype Search” approach allows for an incremental integration of genomic technologies into clinical practice. It ensures that we do not over-medicalize genomic data but, rather, continue our current medical model which is based on serving the patient’s concerns

  9. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori.

    PubMed

    Xia, Qingyou; Li, Sheng; Feng, Qili

    2014-01-01

    Significant progress has been achieved in silkworm (Bombyx mori) research since the last review on this insect was published in this journal in 2005. In this article, we review the new and exciting progress and discoveries that have been made in B. mori during the past 10 years, which include the construction of a fine genome sequence and a genetic variation map, the evolution of genomes, the advent of functional genomics, the genetic basis of silk production, metamorphic development, immune response, and the advances in genetic manipulation. These advances, which were accelerated by the genome sequencing project, have promoted B. mori as a model organism not only for lepidopterans but also for general biology.

  10. Operationalizing the TANIC and NICA-L3/L4 Tools to Improve Informatics Competencies.

    PubMed

    Sipes, Carolyn; McGonigle, Dee; Hunter, Kathy; Hebda, Toni; Hill, Taryn; Lamblin, Jean

    2016-01-01

    Two tools were developed for nurses to self-assess different levels of informatics competencies. The TANIC is used for all nurses to self-assess; the NICA-L3/L4 is a tool for the informatics nurse specialist (INS) to self-assess skill levels. There are 167 informatics items in the TANIC and 178 advanced informatics items in the NICA-L3/L4. These tools were piloted; the results presented here. Based on the evaluation, the tools have been integrated into informatics courses at the BSN and MSN programs at Chamberlain College of Nursing, and presented in two AACN webinars and other national conferences. Numerous requests have been honored to provide the tools for other schools of nursing to use in their courses, including DNP programs. Other requests include those from CNIOs and managers to include in their job descriptions for informatics nurses.

  11. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  12. Biomedical informatics: changing what physicians need to know and how they learn.

    PubMed

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  13. Advances in mRNA Silencing and Transgene Expression: a Gateway to Functional Genomics in Schistosomes

    PubMed Central

    Tchoubrieva, Elissaveta B.; Kalinna, Bernd H.

    2013-01-01

    The completion of the WHO Schistosoma Genome Project in 2008, although not fully annotated, provides a golden opportunity to actively pursue fundamental research on the parasites genome. This analysis will aid identification of targets for drugs, vaccines and markers for diagnostic tools as well as for studying the biological basis of drug resistance, infectivity and pathology. For the validation of drug and vaccine targets, the genomic sequence data is only of use if functional analyses can be conducted (in the parasite itself). Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing and rapid advances have been made in gene silencing and transgenesis of schistosomes. PMID:21415884

  14. Recent advances in cloning herpesviral genomes as infectious bacterial artificial chromosomes.

    PubMed

    Zhou, Fuchun; Gao, Shou-Jiang

    2011-02-01

    Herpesviruses are common but important pathogens in humans and animals. These viruses have large complex genomes encoding genes with diverse functions in different phases of their life cycle and associated diseases. In the last decade, genomes of herpesviruses cloned as infectious bacterial artificial chromosomes (BACs) have become powerful tools for delineating the functions of viral genes and understanding the pathogenesis of their associated diseases. Here we review the history of herpesviral genetics and recent advances in methods for cloning herpesviral genomes as infectious BACs.

  15. The exploration of the exhibition informatization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  16. Consumer Health Informatics--integrating patients, providers, and professionals online.

    PubMed

    Klein-Fedyshin, Michele S

    2002-01-01

    Consumer Health Informatics (CHI) means different things to patients, health professionals, and health care systems. A broader perspective on this new and rapidly developing field will enable us to understand and better apply its advances. This article provides an overview of CHI discussing its evolution and driving forces, along with advanced applications such as Personal Health Records, Internet transmission of personal health data, clinical e-mail, online pharmacies, and shared decision-making tools. Consumer Health Informatics will become integrated with medical care, electronic medical records, and patient education to impact the whole process and business of health care.

  17. Next generation informatics for big data in precision medicine era.

    PubMed

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of "big data" and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical informatics and Healthcare, in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014), and 2) the first workshop on Translational biomedical and clinical informatics, in conjunction with the 8th International Conference on Systems Biology and the 4th Translational Bioinformatics Conference (ISB/TBC 2014). This thematic issue of BioData Mining presents a series of selected papers from these two international workshops, aiming to address the data mining needs in the informatics field due to the deluge of "big data" generated by next generation biotechnologies such as next generation sequencing, metabolomics, and proteomics, as well as the structured and unstructured biomedical and healthcare data from electronic health records. We are grateful for the BioData Mining's willingness to produce this forward-looking thematic issue.

  18. A primer on precision medicine informatics.

    PubMed

    Sboner, Andrea; Elemento, Olivier

    2016-01-01

    In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    PubMed Central

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  20. Technological Ecosystems in Health Informatics: A Brief Review Article

    PubMed Central

    WU, Zhongmei; ZHANG, Xiuxiu; CHEN, Ying; ZHANG, Yan

    2016-01-01

    Background: The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. Methods: We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. Results: The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Conclusion: Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting. PMID:27957459

  1. The 2005 Australian Informatics Competition

    ERIC Educational Resources Information Center

    Clark, David

    2006-01-01

    This article describes the Australian Informatics Competition (AIC), a non-programming competition aimed at identifying students with potential in programming and algorithmic design. It is the first step in identifying students to represent Australia at the International Olympiad in Informatics. The main aim of the AIC is to increase awareness of…

  2. Training Residents in Medical Informatics.

    ERIC Educational Resources Information Center

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  3. Recent advances in the genomic and molecular biology of Giardia.

    PubMed

    Ortega-Pierres, M Guadalupe; Jex, Aaron R; Ansell, Brendan R E; Svärd, Staffan G

    2017-09-06

    Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Robust tools for analyzing gene function in this parasite have been developed and a range of genetic tools are now available. These together with public databases have provided insights on the function of different genes in Giardia. In this review we provide a current perspective on different molecular aspects of Giardia related to genomics, regulation of encystation, trophozoite transcriptional responses to physiological and xenobiotic (drug-induced) stress, and mechanisms of drug resistance. We also examine recent insights that have contributed to gain knowledge in the study of VSPs, antigenic variation, epigenetics, DNA repair and in the direct manipulation of gene function in Giardia, with a particular focus on the inducible Cre/loxP system. Copyright © 2017. Published by Elsevier B.V.

  4. Advances in Exercise, Fitness, and Performance Genomics in 2014

    PubMed Central

    Loos, Ruth J. F.; Hagberg, James M.; Pérusse, Louis; Roth, Stephen M.; Sarzynski, Mark A.; Wolfarth, Bernd; Rankinen, Tuomo; Bouchard, Claude

    2015-01-01

    This is the annual review of the exercise genomics literature in which we report on the highest quality papers published in 2014. We identified a number of noteworthy papers across a number of fields. In 70 to 89 years old, only 19% of ACE II homozygotes exhibited significant improvement in gait speed in response to a year-long physical activity program compared to 30% of ACE D-allele carriers. New studies continue to support the notion that the genetic susceptibility to obesity, as evidenced by a genomic risk score (GRS; based on multiple SNPs), is attenuated by 40-50% in individuals who are physically active, compare to those who are sedentary. One study reported that the polygenic risk for hypertriglyceridemia was reduced by 30-40% in individuals with high cardiorespiratory fitness. One report showed that there was a significant interaction of a type 2 diabetes GRS with physical activity, with active individuals having the lowest risk of developing diabetes. The protective effect of was most pronounced in the low GRS tertile (HR=0.82). The interaction observed with the diabetes GRS appeared to be dependent on a genetic susceptibility to insulin resistance and not insulin secretion. A significant interaction between PPARα sequence variants and physical activity levels on cardiometabolic risk was observed, with higher activity levels associated with lower risk only in carriers of specific genotypes and haplotypes. The review concludes with a discussion of the importance of replication studies when very large population or intervention discovery studies are not feasible or are cost prohibitive. PMID:25706296

  5. Informatics applied to cytology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2008-01-01

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory. PMID:19495402

  6. Informatics applied to cytology.

    PubMed

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2008-12-29

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory.

  7. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    PubMed Central

    2011-01-01

    Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome

  8. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    PubMed

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  9. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.

  10. Integration of Novel Materials and Advanced Genomic Technologies into New Vaccine Design.

    PubMed

    Liao, Wenzhen; Zhang, Tian-Tian; Gao, Liqian; Lee, Su Seong; Xu, Jie; Zhang, Han; Yang, Zhaogang; Liu, Zhaoyu; Li, Wen

    2017-01-01

    Designing new vaccines is one of the most challenging tasks for public health to prevent both infectious and chronic diseases. Even though many research scientists have spent great efforts in improving the specificity, sensitivity and safety of current available vaccines, there are still much space on how to effectively combine different biomaterials and technologies to design universal or personalized vaccines. Traditionally, vaccines were made based on empirical approaches designed to mimic immunity induced by natural infection. Either live attenuated or killed whole microorganisms were used as vaccines. With the development of biomaterial science, DNA/RNA, recombinant vector, adjuvant and nanoparticles greatly expand the category of vaccines. More importantly, with the tremendous advances of new technologies including genomics, proteomics and immunomics, the paradigm of vaccine design has shifted from microbiological to sequence-based approaches. This ever-growing large amount of genomic data and new genomic approaches such as comparative genomics, reverse vaccinology and pan-genomics, will play critical roles in novel vaccine design and enable development of more effective vaccines to cure and control both chronic and infectious diseases. In this review, we summarize current various vaccine materials, advanced technologies and combinational strategies to integrate biomaterials and advanced technologies for vaccine design, which we hope will provide some very useful guidelines and perspectives for the vaccine design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Medical informatics: past, present, future.

    PubMed

    Haux, Reinhold

    2010-09-01

    To reflect about medical informatics as a discipline. To suggest significant future research directions with the purpose of stimulating further discussion. Exploring and discussing important developments in medical informatics from the past and in the present by way of examples. Reflecting on the role of IMIA, the International Medical Informatics Association, in influencing the discipline. Medical informatics as a discipline is still young. Today, as a cross-sectional discipline, it forms one of the bases for medicine and health care. As a consequence considerable responsibility rests on medical informatics for improving the health of people, through its contributions to high-quality, efficient health care and to innovative research in biomedicine and related health and computer sciences. Current major research fields can be grouped according to the organization, application, and evaluation of health information systems, to medical knowledge representation, and to the underlying signal and data analyses and interpretations. Yet, given the fluid nature of many of the driving forces behind progress in information processing methods and their technologies, progress in medicine and health care, and the rapidly changing needs, requirements and expectations of human societies, we can expect many changes in future medical informatics research. Future research fields might range from seamless interactivity with automated data capture and storage, via informatics diagnostics and therapeutics, to living labs with data analysis methodology, involving sensor-enhanced ambient environments. The role of IMIA, the International Medical Informatics Association, for building a cooperative, strongly connected, and research-driven medical informatics community worldwide can hardly be underestimated. Health care continuously changes as the underlying science and practice of health are in continuous transformation. Medical informatics as a discipline is strongly affected by these

  12. Nursing Informatics Competency Assessment for the Nurse Leader: The Delphi Study.

    PubMed

    Collins, Sarah; Yen, Po-Yin; Phillips, Andrew; Kennedy, Mary K

    2017-04-01

    The aim of this study was to identify nursing informatics competencies perceived as relevant and required by nurse leaders. To participate as a full partner in healthcare leadership among rapidly advancing health information technologies (HITs), nurse leaders must attain knowledge of informatics competencies related to their clinical leadership roles and responsibilities. Despite this increased need to engage in HIT-related decision making, a gap remains in validated informatics competencies specific to the needs of nurse leaders. An environmental scan and 3-round survey using Delphi methods used with nurse leaders for competency identification were used. Between 26 and 41 participants responded to each Delphi round. Most nurse leaders acquired HIT knowledge through on-the-job training. We identified 74 competencies from an initial list of 108 competencies. This work can advance nursing practice to move beyond "on-the-job informatics training" to a more competency-based model of nursing informatics education and practice.

  13. Evaluation of biomedical informatics innovations and their impact on public health.

    PubMed

    Sarkar, I N

    2012-01-01

    This issue of Methods of Information in Medicine contains four feature articles that are focused on the theme of evaluation. Evaluation approaches are increasingly essential in the assessment of determining the potential impact of contemporary informatics innovations. The featured articles offer practical perspectives to determining the impact of advancements. Internationally, there are significant advances being made across biomedical informatics and its related sub-disciplines. As with any scientific discipline, it is important for practitioners to be able to relate the potential importance of findings. To this end, it is especially important for biomedical informaticians to convey, in a quantifiable and comparable form, the significance of the informatics findings -not only to peers but also to those across the biomedical research spectrum. As such, the feature articles in this issue describe the evaluation of core infrastructure and fundamental informatics innovations as well as evaluation of informatics-based resources that are a core aspect of public health initiatives.

  14. Research Strategies for Biomedical and Health Informatics

    PubMed Central

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  15. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.

    PubMed

    Siggens, L; Ekwall, K

    2014-09-01

    The organization of the genome into functional units, such as enhancers and active or repressed promoters, is associated with distinct patterns of DNA and histone modifications. The Encyclopedia of DNA Elements (ENCODE) project has advanced our understanding of the principles of genome, epigenome and chromatin organization, identifying hundreds of thousands of potential regulatory regions and transcription factor binding sites. Part of the ENCODE consortium, GENCODE, has annotated the human genome with novel transcripts including new noncoding RNAs and pseudogenes, highlighting transcriptional complexity. Many disease variants identified in genome-wide association studies are located within putative enhancer regions defined by the ENCODE project. Understanding the principles of chromatin and epigenome organization will help to identify new disease mechanisms, biomarkers and drug targets, particularly as ongoing epigenome mapping projects generate data for primary human cell types that play important roles in disease. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  16. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data.

  17. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    PubMed Central

    Kim, Ji Yeon; Gudewicz, Thomas M.; Dighe, Anand S.; Gilbertson, John R.

    2010-01-01

    Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the “pathology informatics curriculum wiki”, an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki. PMID:20805963

  18. Advancing Genetic Testing for Deafness with Genomic Technology

    PubMed Central

    Shearer, A. Eliot; Black-Ziegelbein, E. Ann; Hildebrand, Michael S.; Eppsteiner, Robert W.; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C.; Sloan, Christina M.; Happe, Scott; Howard, Susanna D.; Novak, Barbara; DeLuca, Adam P.; Taylor, Kyle R.; Scheetz, Todd E.; Braun, Terry A.; Casavant, Thomas L.; Kimberling, William J.; LeProust, Emily M.; Smith, Richard J.H.

    2013-01-01

    Background Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we test 100 persons with presumed genetic NSHL and in so doing establish sequencing requirements for maximum sensitivity and define MPS quality score metrics that obviate Sanger validation of variants. Methods We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance-computing cluster for bioinformatics analysis. Results To obtain maximum variant sensitivity with this platform 3.2–6.3 million total mapped sequencing reads per sample are required. Quality score analysis showed that Sanger validation is not required for 95% of variants. Our overall diagnostic rate was 42% but varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. Conclusions These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas. PMID:23804846

  19. Functional genomics of seed dormancy in wheat: advances and prospects.

    PubMed

    Gao, Feng; Ayele, Belay T

    2014-01-01

    Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur prior to harvest. As it causes substantial loss in grain yield and quality, preharvest sprouting is an ever-present major constraint to the production of wheat. The significance of the problem emphasizes the need to incorporate an intermediate level of dormancy into elite wheat cultivars, and this requires detailed dissection of the mechanisms underlying the regulation of seed dormancy and preharvest sprouting. Seed dormancy research in wheat often involves after-ripening, a period of dry storage during which seeds lose dormancy, or comparative analysis of seeds derived from dormant and non-dormant cultivars. The increasing development in wheat genomic resources along with the application of transcriptomics, proteomics, and metabolomics approaches in studying wheat seed dormancy have extended our knowledge of the mechanisms acting at transcriptional and post-transcriptional levels. Recent progresses indicate that some of the molecular mechanisms are associated with hormonal pathways, epigenetic regulations, targeted oxidative modifications of seed mRNAs and proteins, redox regulation of seed protein thiols, and modulation of translational activities. Given that preharvest sprouting is closely associated with seed dormancy, these findings will significantly contribute to the designing of efficient strategies for breeding preharvest sprouting tolerant wheat.

  20. Advances in exercise, fitness, and performance genomics in 2010.

    PubMed

    Hagberg, James M; Rankinen, Tuomo; Loos, Ruth J F; Pérusse, Louis; Roth, Stephen M; Wolfarth, Bernd; Bouchard, Claude

    2011-05-01

    This review of the exercise genomics literature emphasizes the strongest articles published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin-converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the V˙O2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits are known to influence physical activity behavior. However, physical activity seems to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity after exposure to regular exercise. SNPs in the cAMP-responsive element binding position 1 (CREB1) gene were associated with training-induced HR response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed. © 2011 by the American College of Sports Medicine

  1. Trends in publication of nursing informatics research.

    PubMed

    Kim, Hyeoneui; Ohno-Machado, Lucila; Oh, Janet; Jiang, Xiaoqian

    2014-01-01

    We analyzed 741 journal articles on nursing informatics published in 7 biomedical/nursing informatics journals and 6 nursing journals from 2005 to 2013 to begin to understand publication trends in nursing informatics research and identify gaps. We assigned a research theme to each article using AMIA 2014 theme categories and normalized the citation counts using time from publication. Overall, nursing informatics research covered a broad spectrum of research topics in biomedical informatics and publication topics seem to be well aligned with the high priority research agenda identified by the nursing informatics community. The research themes with highest volume of publication were Clinical Workflow and Human Factors, Consumer Informatics and Personal Health Records, and Clinical Informatics, for which an increasing trend in publication was noted. Articles on Informatics Education and Workforce Development; Data Mining, NLP, Information Extraction; and Clinical Informatics showed steady and high volume of citations.

  2. Trends in Publication of Nursing Informatics Research

    PubMed Central

    Kim, Hyeoneui; Ohno-Machado, Lucila; Oh, Janet; Jiang, Xiaoqian

    2014-01-01

    We analyzed 741 journal articles on nursing informatics published in 7 biomedical/nursing informatics journals and 6 nursing journals from 2005 to 2013 to begin to understand publication trends in nursing informatics research and identify gaps. We assigned a research theme to each article using AMIA 2014 theme categories and normalized the citation counts using time from publication. Overall, nursing informatics research covered a broad spectrum of research topics in biomedical informatics and publication topics seem to be well aligned with the high priority research agenda identified by the nursing informatics community. The research themes with highest volume of publication were Clinical Workflow and Human Factors, Consumer Informatics and Personal Health Records, and Clinical Informatics, for which an increasing trend in publication was noted. Articles on Informatics Education and Workforce Development; Data Mining, NLP, Information Extraction; and Clinical Informatics showed steady and high volume of citations. PMID:25954387

  3. Bioimage Informatics for Big Data.

    PubMed

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment.

  4. Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease.

    PubMed

    Kullo, Iftikhar J; Fan, Jin; Pathak, Jyotishman; Savova, Guergana K; Ali, Zeenat; Chute, Christopher G

    2010-01-01

    There is significant interest in leveraging the electronic medical record (EMR) to conduct genome-wide association studies (GWAS). A biorepository of DNA and plasma was created by recruiting patients referred for non-invasive lower extremity arterial evaluation or stress ECG. Peripheral arterial disease (PAD) was defined as a resting/post-exercise ankle-brachial index (ABI) less than or equal to 0.9, a history of lower extremity revascularization, or having poorly compressible leg arteries. Controls were patients without evidence of PAD. Demographic data and laboratory values were extracted from the EMR. Medication use and smoking status were established by natural language processing of clinical notes. Other risk factors and comorbidities were ascertained based on ICD-9-CM codes, medication use and laboratory data. Of 1802 patients with an abnormal ABI, 115 had non-atherosclerotic vascular disease such as vasculitis, Buerger's disease, trauma and embolism (phenocopies) based on ICD-9-CM diagnosis codes and were excluded. The PAD cases (66+/-11 years, 64% men) were older than controls (61+/-8 years, 60% men) but had similar geographical distribution and ethnic composition. Among PAD cases, 1444 (85.6%) had an abnormal ABI, 233 (13.8%) had poorly compressible arteries and 10 (0.6%) had a history of lower extremity revascularization. In a random sample of 95 cases and 100 controls, risk factors and comorbidities ascertained from EMR-based algorithms had good concordance compared with manual record review; the precision ranged from 67% to 100% and recall from 84% to 100%. This study demonstrates use of the EMR to ascertain phenocopies, phenotype heterogeneity and relevant covariates to enable a GWAS of PAD. Biorepositories linked to EMR may provide a relatively efficient means of conducting GWAS.

  5. Recent advances in genome mining of secondary metabolites in Aspergillus terreus

    PubMed Central

    Guo, Chun-Jun; Wang, Clay C. C.

    2014-01-01

    Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of interesting biological activities. Recent advances in genome sequencing and techniques in genetic manipulation have enabled researchers to study the biosynthetic genes of these SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and territram, with interesting bioactivities. This review will cover recent progress in genome mining of SMs identified in this fungus. The identification and characterization of the gene cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed in depth. PMID:25566227

  6. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  7. An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance.

    PubMed

    Kaur, Parwinder; Bayer, Philipp E; Milec, Zbyněk; Vrána, Jan; Yuan, Yuxuan; Appels, Rudi; Edwards, David; Batley, Jacqueline; Nichols, Phillip; Erskine, William; Doležel, Jaroslav

    2017-01-23

    Subterranean clover is an important annual forage legume, whose diploidy and inbreeding nature make it an ideal model for genomic analysis in Trifolium. We reported a draft genome assembly of the subterranean clover TSUd_r1.1. Here we evaluate genome mapping on nanochannel arrays and generation of a transcriptome atlas across tissues to advance the assembly and gene annotation. Using a BioNano-based assembly spanning 512 Mb (93% genome coverage), we validated the draft assembly, anchored unplaced contigs and resolved misassemblies. Multiple contigs (264) from the draft assembly coalesced into 97 super-scaffolds (43% of genome). Sequences longer than >1 Mb increased from 40 to 189 Mb giving 1.4-fold increase in N50 with total genome in pseudomolecules improved from 73 to 80%. The advanced assembly was re-annotated using transcriptome atlas data to contain 31,272 protein-coding genes capturing >96% of the gene content. Functional characterisation and GO enrichment confirmed gene expression for response to water deprivation, flavonoid biosynthesis, and embryo development ending in seed dormancy, reflecting adaptation to the harsh Mediterranean environment. Comparative analyses across Papilionoideae identified 24,893 Trifolium-specific and 6,325 subterranean-clover-specific genes that could be mined further for traits such as geocarpy and grazing tolerance. Eight key traits, including persistence, improved livestock health by isoflavonoid production in addition to important agro-morphological traits, were fine-mapped on the high density SNP linkage map anchored to the assembly. This new genomic information is crucial to identify loci governing traits allowing marker-assisted breeding, comparative mapping and identification of tissue-specific gene promoters for biotechnological improvement of forage legumes. This article is protected by copyright. All rights reserved.

  8. The origins of informatics.

    PubMed Central

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803

  9. The origins of informatics.

    PubMed

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine.

  10. Next-Generation Sequencing Informatics: Challenges and Strategies for Implementation in a Clinical Environment.

    PubMed

    Roy, Somak; LaFramboise, William A; Nikiforov, Yuri E; Nikiforova, Marina N; Routbort, Mark J; Pfeifer, John; Nagarajan, Rakesh; Carter, Alexis B; Pantanowitz, Liron

    2016-09-01

    -Next-generation sequencing (NGS) is revolutionizing the discipline of laboratory medicine, with a deep and direct impact on patient care. Although it empowers clinical laboratories with unprecedented genomic sequencing capability, NGS has brought along obvious and obtrusive informatics challenges. Bioinformatics and clinical informatics are separate disciplines with typically a small degree of overlap, but they have been brought together by the enthusiastic adoption of NGS in clinical laboratories. The result has been a collaborative environment for the development of novel informatics solutions. Sustaining NGS-based testing in a regulated clinical environment requires institutional support to build and maintain a practical, robust, scalable, secure, and cost-effective informatics infrastructure. -To discuss the novel NGS informatics challenges facing pathology laboratories today and offer solutions and future developments to address these obstacles. -The published literature pertaining to NGS informatics was reviewed. The coauthors, experts in the fields of molecular pathology, precision medicine, and pathology informatics, also contributed their experiences. -The boundary between bioinformatics and clinical informatics has significantly blurred with the introduction of NGS into clinical molecular laboratories. Next-generation sequencing technology and the data derived from these tests, if managed well in the clinical laboratory, will redefine the practice of medicine. In order to sustain this progress, adoption of smart computing technology will be essential. Computational pathologists will be expected to play a major role in rendering diagnostic and theranostic services by leveraging "Big Data" and modern computing tools.

  11. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    PubMed Central

    Delmont, Tom O.

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes. PMID:27069789

  12. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies.

    PubMed

    Delmont, Tom O; Eren, A Murat

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today's microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  13. Information Technology for Clinical, Translational and Comparative Effectiveness Research. Findings from the Yearbook 2015 Section on Clinical Research Informatics.

    PubMed

    Daniel, C; Choquet, R

    2015-08-13

    To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their daily practice. All the recent research and

  14. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  15. BING: biomedical informatics pipeline for Next Generation Sequencing.

    PubMed

    Kriseman, Jeffrey; Busick, Christopher; Szelinger, Szabolcs; Dinu, Valentin

    2010-06-01

    High throughput parallel genomic sequencing (Next Generation Sequencing, NGS) shifts the bottleneck in sequencing processes from experimental data production to computationally intensive informatics-based data analysis. This manuscript introduces a biomedical informatics pipeline (BING) for the analysis of NGS data that offers several novel computational approaches to 1. image alignment, 2. signal correlation, compensation, separation, and pixel-based cluster registration, 3. signal measurement and base calling, 4. quality control and accuracy measurement. These approaches address many of the informatics challenges, including image processing, computational performance, and accuracy. These new algorithms are benchmarked against the Illumina Genome Analysis Pipeline. BING is the one of the first software tools to perform pixel-based analysis of NGS data. When compared to the Illumina informatics tool, BING's pixel-based approach produces a significant increase in the number of sequence reads, while reducing the computational time per experiment and error rate (<2%). This approach has the potential of increasing the density and throughput of NGS technologies.

  16. Dental Informatics in India: Time to Embrace the Change

    PubMed Central

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  17. Promoting patient safety through informatics-based nursing education.

    PubMed

    Bakken, Suzanne; Cook, Sarah Sheets; Curtis, Lesly; Desjardins, Karen; Hyun, Sookyung; Jenkins, Melinda; John, Ritamarie; Klein, W Ted; Paguntalan, Jossie; Roberts, W Dan; Soupios, Michael

    2004-08-01

    The Institute of Medicine (IOM) Committee on Quality of Health Care in America identified the critical role of information technology in designing safe and effective health care. In addition to technical aspects such as regional or national health information infrastructures, to achieve this goal, healthcare professionals must receive the requisite training during basic and advanced educational programs. In this article, we describe a two-pronged strategy to promote patient safety through an informatics-based approach to nursing education at the Columbia University School of Nursing: (1) use of a personal digital assistant (PDA) to document clinical encounters and to retrieve patient safety-related information at the point of care, and (2) enhancement of informatics competencies of students and faculty. These approaches may be useful to others wishing to promote patient safety through using informatics methods and technologies in healthcare curricula.

  18. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area.

  19. Improving human forensics through advances in genetics, genomics and molecular biology.

    PubMed

    Kayser, Manfred; de Knijff, Peter

    2011-03-01

    Forensic DNA profiling currently allows the identification of persons already known to investigating authorities. Recent advances have produced new types of genetic markers with the potential to overcome some important limitations of current DNA profiling methods. Moreover, other developments are enabling completely new kinds of forensically relevant information to be extracted from biological samples. These include new molecular approaches for finding individuals previously unknown to investigators, and new molecular methods to support links between forensic sample donors and criminal acts. Such advances in genetics, genomics and molecular biology are likely to improve human forensic case work in the near future.

  20. ACGT: advancing clinico-genomic trials on cancer - four years of experience.

    PubMed

    Martin, Luis; Anguita, Alberto; Graf, Norbert; Tsiknakis, Manolis; Brochhausen, Mathias; Rüping, Stefan; Bucur, Anca; Sfakianakis, Stelios; Sengstag, Thierry; Buffa, Francesca; Stenzhorn, Holger

    2011-01-01

    The challenges regarding seamless integration of distributed, heterogeneous and multilevel data arising in the context of contemporary, post-genomic clinical trials cannot be effectively addressed with current methodologies. An urgent need exists to access data in a uniform manner, to share information among different clinical and research centers, and to store data in secure repositories assuring the privacy of patients. Advancing Clinico-Genomic Trials (ACGT) was a European Commission funded Integrated Project that aimed at providing tools and methods to enhance the efficiency of clinical trials in the -omics era. The project, now completed after four years of work, involved the development of both a set of methodological approaches as well as tools and services and its testing in the context of real-world clinico-genomic scenarios. This paper describes the main experiences using the ACGT platform and its tools within one such scenario and highlights the very promising results obtained.

  1. Health Professionals' Views of Informatics Education

    PubMed Central

    Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228

  2. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics.

    PubMed

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-12-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. Copyright © 2013. Production and hosting by Elsevier Ltd.

  3. Hands-on Workshops as An Effective Means of Learning Advanced Technologies Including Genomics, Proteomics and Bioinformatics

    PubMed Central

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J.; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-01-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. PMID:24316330

  4. Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2012-03-01

    The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.

  5. Evaluating the AMIA-OHSU 10x10 program to train healthcare professionals in medical informatics.

    PubMed

    Feldman, Sue S; Hersh, William

    2008-11-06

    The promise of health information technology (HIT) has led to calls for a larger and better trained workforce in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for healthcare professionals to be trained in informatics. One such evolution is the American Medical Informatics Associations (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIAs goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed.

  6. Using Informatics to Improve the Care of Patients Susceptible to Malignant Hyperthermia.

    PubMed

    Denholm, Bonnie G

    2016-04-01

    Perioperative nurses and nurse leaders should understand how to apply a nursing informatics framework and informatics concepts to strengthen data interpretation, transitions in care, and engagement with patients susceptible to malignant hyperthermia (MH) and their family members. Patient outcomes can be improved when informatics solutions facilitate identifying risks, clinical decision making in a crisis situation, retrieving priority information during transitions of care, and involving patients in planning care. Incorporating informatics solutions into existing quality improvement processes can help evaluate knowledge and preparedness related to managing care for a patient in an MH crisis. Informatics solutions can also help enhance interoperability by evaluating workflow related to transitions in care. Perioperative nurses and nurse leaders should advocate for diligence in submitting reports of MH-suspected events to databases. Improved data collection and data sharing enhance aggregated standardized data sets, which can advance research and increase the quality of evidence available with which to guide practice.

  7. Evaluating the AMIA-OHSU 10x10 Program to Train Healthcare Professionals in Medical Informatics

    PubMed Central

    Feldman, Sue S.; Hersh, William

    2008-01-01

    The promise of health information technology (HIT) has led to calls for a larger and better trained work-force in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for health-care professionals to be trained in informatics. One such evolution is the American Medical Informatics Association’s (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIA’s goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed. PMID:18999199

  8. Recent advances in genome editing and creation of genetically modified pigs.

    PubMed

    Butler, James R; Ladowski, Joseph M; Martens, Gregory R; Tector, Matthew; Tector, A Joseph

    2015-11-01

    The field of xenotransplantation is benefiting greatly from recent advances in genetic engineering. The efficiency and pace with which new model animals are being created has dramatically sped progress towards clinical relevance. Endonuclease-driven genome editing now allows for the efficient generation of targeted genetic alterations. Herein we review the available methods of genetic engineering that have been successfully employed to create genetically modified pigs.

  9. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.

    PubMed

    Ceasar, S Antony; Rajan, Vinothkumar; Prykhozhij, Sergey V; Berman, Jason N; Ignacimuthu, S

    2016-09-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology.

  10. Advances in Genomic Profiling and Analysis of 3D Chromatin Structure and Interaction.

    PubMed

    Tang, Binhua; Cheng, Xiaolong; Xi, Yunlong; Chen, Zixin; Zhou, Yufan; Jin, Victor X

    2017-09-08

    Recent sequence-based profiling technologies such as high-throughput sequencing to detect fragment nucleotide sequence (Hi-C) and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) have revolutionized the field of three-dimensional (3D) chromatin architecture. It is now recognized that human genome functions as folded 3D chromatin units and looping paradigm is the basic principle of gene regulation. To better interpret the 3D data dramatically accumulating in past five years and to gain deep biological insights, huge efforts have been made in developing novel quantitative analysis methods. However, the full understanding of genome regulation requires thorough knowledge in both genomic technologies and their related data analyses. We summarize the recent advances in genomic technologies in identifying the 3D chromatin structure and interaction, and illustrate the quantitative analysis methods to infer functional domains and chromatin interactions, and further elucidate the emerging single-cell Hi-C technique and its computational analysis, and finally discuss the future directions such as advances of 3D chromatin techniques in diseases.

  11. The role of informatics in patient-centered care and personalized medicine.

    PubMed

    Hanna, Matthew G; Pantanowitz, Liron

    2017-06-01

    The practice of cytopathology has dramatically changed due to advances in genomics and information technology. Cytology laboratories have accordingly become increasingly dependent on pathology informatics support to meet the emerging demands of precision medicine. Pathology informatics deals with information technology in the laboratory, and the impact of this technology on workflow processes and staff who interact with these tools. This article covers the critical role that laboratory information systems, electronic medical records, and digital imaging plays in patient-centered personalized medicine. The value of integrated diagnostic reports, clinical decision support, and the use of whole-slide imaging to better evaluate cytology samples destined for molecular testing is discussed. Image analysis that offers more precise and quantitative measurements in cytology is addressed, as well as the role of bioinformatics tools to cope with Big Data from next-generation sequencing. This article also highlights the barriers to the widespread adoption of these disruptive technologies due to regulatory obstacles, limited commercial solutions, poor interoperability, and lack of standardization. Cancer Cytopathol 2017;125(6 suppl):494-501. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Medical Informatics and the Science of Cognition

    PubMed Central

    Patel, Vimla L.; Kaufman, David R.

    1998-01-01

    Recent developments in medical informatics research have afforded possibilities for great advances in health care delivery. These exciting opportunities also present formidable challenges to the implementation and integration of technologies in the workplace. As in most domains, there is a gulf between technologic artifacts and end users. Since medical practice is a human endeavor, there is a need for bridging disciplines to enable clinicians to benefit from rapid technologic advances. This in turn necessitates a broadening of disciplinary boundaries to consider cognitive and social factors pertaining to the design and use of technology. The authors argue for a place of prominence for cognitive science. Cognitive science provides a framework for the analysis and modeling of complex human performance and has considerable applicability to a range of issues in informatics. Its methods have been employed to illuminate different facets of design and implementation. This approach has also yielded insights into the mechanisms and processes involved in collaborative design. Cognitive scientific methods and theories are illustrated in the context of two examples that examine human-computer interaction in medical contexts and computer-mediated collaborative processes. The framework outlined in this paper can be used to refine the process of iterative design, end-user training, and productive practice. PMID:9824797

  13. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.

    PubMed

    Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

    2009-06-01

    Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.

  14. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    PubMed

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. © 2015 American Cancer Society.

  15. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  16. Using informatics to capture older adults’ wellness

    PubMed Central

    Demiris, George; Thompson, Hilaire J.; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2014-01-01

    Purpose The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults’ wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. Methods A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Results Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Conclusion Informatics can advance health care for older adults and support a holistic assessment of older adults’ wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events

  17. The Impact of Imaging Informatics Fellowships.

    PubMed

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists.

  18. Driving the Profession of Health Informatics: The Australasian College of Health Informatics.

    PubMed

    Pearce, Christopher; Veil, Klaus; Williams, Peter; Cording, Andrew; Liaw, Siaw-Teng; Grain, Heather

    2015-01-01

    Across the world, bodies representing health informatics or promoting health informatics are either societies of common interest or universities with health informatics courses/departments. Professional colleges in Health Informatics (similar to the idea of professional colleges in other health fields) are few and far between. The Australasian College of Health Informatics has been in existence since 2001, and has an increasing membership of nearly 100 fellows and members, acting as a national focal point for the promotion of Health Informatics in Australasia. Describing the activities of the college, this article demonstrates a need for increasing professionalization of Health informatics beyond the current structures.

  19. Returning genome sequences to research participants: Policy and practice.

    PubMed

    Wright, Caroline F; Middleton, Anna; Barrett, Jeffrey C; Firth, Helen V; FitzPatrick, David R; Hurles, Matthew E; Parker, Michael

    2017-02-24

    Despite advances in genomic science stimulating an explosion of literature around returning health-related findings, the possibility of returning entire genome sequences to individual research participants has not been widely considered. Through direct involvement in large-scale translational genomics studies, we have identified a number of logistical challenges that would need to be overcome prior to returning individual genome sequence data, including verifying that the data belong to the requestor and providing appropriate informatics support. In addition, we identify a number of ethico-legal issues that require careful consideration, including returning data to family members, mitigating against unintended consequences, and ensuring appropriate governance. Finally, recognising that there is an opportunity cost to addressing these issues, we make some specific pragmatic suggestions for studies that are considering whether to share individual genomic datasets with individual study participants. If data are shared, research should be undertaken into the personal, familial and societal impact of receiving individual genome sequence data.

  20. Returning genome sequences to research participants: Policy and practice

    PubMed Central

    2017-01-01

    Despite advances in genomic science stimulating an explosion of literature around returning health-related findings, the possibility of returning entire genome sequences to individual research participants has not been widely considered. Through direct involvement in large-scale translational genomics studies, we have identified a number of logistical challenges that would need to be overcome prior to returning individual genome sequence data, including verifying that the data belong to the requestor and providing appropriate informatics support. In addition, we identify a number of ethico-legal issues that require careful consideration, including returning data to family members, mitigating against unintended consequences, and ensuring appropriate governance. Finally, recognising that there is an opportunity cost to addressing these issues, we make some specific pragmatic suggestions for studies that are considering whether to share individual genomic datasets with individual study participants. If data are shared, research should be undertaken into the personal, familial and societal impact of receiving individual genome sequence data. PMID:28317033

  1. Findings from the Section on Bioinformatics and Translational Informatics.

    PubMed

    Dauchel, H; Lecroq, T

    2016-11-10

    To summarize excellent current research and propose a selection of best papers published in 2015 in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. We provide a synopsis of the articles selected for the IMIA Yearbook 2016, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,566 articles and the evaluation results were merged for retaining 14 articles for peer-review. The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles focusing this year on data management of large-scale datasets and genomic medicine that are mainly new method-based papers. Three articles explore the high potential of the re-analysis of previously collected data, here from The Cancer Genome Atlas project (TCGA) and one article presents an original analysis of genomic data from sub-Saharan Africa populations. The current research activities in Bioinformatics and Translational Informatics with application in the health domain continues to explore new algorithms and statistical models to manage and interpret large-scale genomic datasets. From population wide genome sequencing for cataloging genomic variants to the comprehension of functional impact on pathways and molecular interactions regarding a given pathology, making sense of large genomic data requires a necessary effort to address the issue of clinical translation for precise diagnostic and personalized medicine.

  2. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  3. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    PubMed Central

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  4. Recent Advances in Understanding the Role of Nutrition in Human Genome Evolution12

    PubMed Central

    Ye, Kaixiong; Gu, Zhenglong

    2011-01-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics. PMID:22332091

  5. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    PubMed

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented.

  6. The evolution of medical informatics in China: A retrospective study and lessons learned.

    PubMed

    Lei, Jianbo; Meng, Qun; Li, Yuefeng; Liang, Minghui; Zheng, Kai

    2016-08-01

    In contrast to China's giant health information technology (HIT) market and tremendous investments in hospital information systems the contributions of Chinese scholars in medical informatics to the global community are very limited. China would like to have a more important position in the global medical informatics community. A better understanding of the differences between medical informatics research and education in China and the discipline that emerged abroad will better inform Chinese scholars to develop right strategies to advance the field in China and help identify an appropriate means to collaborate more closely with medical informatics scholars globally. For the first time, this paper divides the evolution of medical informatics in China into four stages based on changes in the core content of research, the educational orientation and other developmental characteristics. The four stages are infancy, incubation, primary establishment and formal establishment. This paper summarizes and reviews major supporting journals and publications, as well as major organizations. Finally, we analyze the main problems that exist in the current disciplinary development in China related to medical informatics research and education and offer suggestions for future improvement. The evolution of medical informatics shows a strong and traditional concentration on medical library/bibliographic information rather than medical (hospital information or patient information) information. Misdirected-concentration, a lack of formal medical informatics trained teaching staff and mistakenly positioning medical informatics as an undergraduate discipline are some of the problems inhibiting the development of medical informatics in China. These lessons should be shared and learned for the global community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia

    PubMed Central

    Kugelman, Jeffrey R.; Wiley, Michael R.; Mate, Suzanne; Ladner, Jason T.; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W.; Minogue, Timothy; Schoepp, Randal J.; Schaecher, Kurt E.; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa; Park, Daniel J.; Sabeti, Pardis C.; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.

    2015-01-01

    To support Liberia’s response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014–February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low. PMID:26079255

  8. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals

    PubMed Central

    Gunawardena, Sharmini; Karunaweera, Nadira D.

    2015-01-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals. PMID:25943157

  9. Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia.

    PubMed

    Kugelman, Jeffrey R; Wiley, Michael R; Mate, Suzanne; Ladner, Jason T; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W; Minogue, Timothy; Schoepp, Randal J; Schaecher, Kurt E; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa; Park, Daniel J; Sabeti, Pardis C; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Palacios, Gustavo

    2015-07-01

    To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.

  10. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals.

    PubMed

    Gunawardena, Sharmini; Karunaweera, Nadira D

    2015-05-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.

  11. Uses of informatics to solve real world problems in veterinary medicine.

    PubMed

    Santamaria, Suzanne L; Zimmerman, Kurt L

    2011-01-01

    Veterinary informatics is the science of structuring, analyzing, and leveraging information in an effort to advance animal health, disease surveillance, research, education, and business practices. Reference and terminology standards are core components of the informatics infrastructure. This paper focuses on three current activities that use reference standards in veterinary informatics: (1) the construction of a messaging standard in a national animal health laboratory network, (2) the creation of breed and species terminology lists for livestock disease surveillance, and (3) the development of a standardized diagnoses list for small animal practices. These and other endeavors will benefit from research conducted to identify innovative and superior tools, methods, and techniques. The authors believe there are many areas requiring study and special focus in order to advance veterinary informatics, and this paper highlights some of the needs and challenges surrounding these areas.

  12. Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013.

    PubMed

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P; Kirshenbaum, Lorrie; Blaxall, Burns C; Terzic, Andre; Hall, Jennifer L

    2014-07-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, preclinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multimodality imaging, and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context.

  13. A nursing informatics research agenda for 2008-18: contextual influences and key components.

    PubMed

    Bakken, Suzanne; Stone, Patricia W; Larson, Elaine L

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on 3 specific aspects of context--genomic health care, shifting research paradigms, and social (Web 2.0) technologies--that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008-18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context.

  14. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  15. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  16. Personal Chemical Exposure informatics

    EPA Science Inventory

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  17. Personal Chemical Exposure informatics

    EPA Science Inventory

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  18. Advanced Processing for Biomedical Informatics (APBI)

    DTIC Science & Technology

    2009-10-01

    keratin 5 ( epidermolysis bullosa simplex, Dowling- Meara/Kobner/Weber- Cockayne types) KRT5 3 852 6.25E-06 6.66E-05 9.36 5.87 -11.2 1555154_a_at...05 8.97 4.61 -20.6 1555814_a_at ras homolog gene family, member A RHOA 3 87 1.62E-06 4.16E-05 11.14 6.78 -20.5 209351_at keratin 14 ( epidermolysis ... bullosa simplex, Dowling- Meara, Koebner) KRT14 38 61 1.93E-06 4.16E-05 10.28 5.97 -19.8 201367_s_at zinc finger protein 36, C3H type-like 2

  19. Genomic alterations in advanced gastric cancer endoscopic biopsy samples using targeted next-generation sequencing.

    PubMed

    Ge, Sai; Li, Beifang; Li, Yanyan; Li, Zhongwu; Liu, Zhentao; Chen, Zuhua; Wu, Jian; Gao, Jing; Shen, Lin

    2017-01-01

    Gastric cancer (GC) remains the second tumor caused death threat worldwide, and personalized medicine for GC is far from expectation. Finding novel, recurrently mutated genes through next-generation sequencing (NGS) is a powerful and productive approach. However, previous genomic data for GC are based on surgical resected samples while a large proportion of advanced gastric cancer (AGC) patients have already missed the chance for operation. The aim of this study is to assess frequent genomic alteration in AGC via biopsy samples. Here we performed targeted genomic sequencing of 78 AGC patients' tumor biopsies along with matched lymphocyte samples based on a 118 cancer related gene panel. In total, we observed 301 somatic nonsynonymous genomic alterations in 92 different genes, as well as 37 copy number gain events among 15 different genes (fold change 2-12), and validated the fold changes of ERBB2 copy number gains with IHC and FISH test showed an accuracy of 81.8%. Previously reported driver genes for gastric cancer (TP53, KMT2D, KMT2B, EGFR, PIK3CA, GNAQ, and ARID1A), and several unreported mutations (TGFBR2, RNF213, NF1, NSD1, and LRP2) showed high non-silent mutation prevalence (7.7%-34.6%). When comparing intestinal-type gastric cancer (IGC) with diffuse-type gastric cancer (DGC), TP53 and GNAQ appear to be more frequently mutated in IGC (P=0.028 and P=0.023, respectively), whereas LRP2, BRCA2 and FGFR3 mutations are not observed in IGC, but have 12.8%, 7.7% and 7.7% mutation rates, respectively, in DGC patients. Patients with one or more mutations in adherens junction pathway (CREBBP, EP300, CDH1, CTNNB1, EGFR, MET, TGFBR2 and ERBB2) or TGF-β signaling pathway (CREBBP, EP300, MYST4, KRAS and TGFBR2) showed significantly better overall survival (P=0.007 and P=0.014, respectively), consistent with The Cancer Genome Atlas (TCGA) cohort data. Importantly, 57 (73.1%) patients harbored at least one genomic alteration with potential treatments, making NGS-based drug

  20. Comprehensive Genomic Profiling of Advanced Esophageal Squamous Cell Carcinomas and Esophageal Adenocarcinomas Reveals Similarities and Differences.

    PubMed

    Wang, Kai; Johnson, Adrienne; Ali, Siraj M; Klempner, Samuel J; Bekaii-Saab, Tanios; Vacirca, Jeffrey L; Khaira, Depinder; Yelensky, Roman; Chmielecki, Juliann; Elvin, Julia A; Lipson, Doron; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S

    2015-10-01

    Esophageal squamous cell carcinomas (ESCCs) and esophageal adenocarcinomas (EACs) account for >95% of esophageal malignancies and represent a major global health burden. ESCC is the dominant histology globally but represents a minority of U.S. cases, with EAC accounting for the majority of U.S. The patient outcomes for advanced ESCC and EAC are poor, and new therapeutic options are needed. Using a sensitive sequencing assay, we compared the genomic profiles of ESCC and EAC with attention to identification of therapeutically relevant genomic alterations. Next-generation sequencing-based comprehensive genomic profiling was performed on hybridization-captured, adaptor ligation-based libraries to a median coverage depth of >650× for all coding exons of 315 cancer-related genes plus selected introns from 28 genes frequently rearranged in cancer. Results from a single sample were evaluated for all classes of genomic alterations (GAs) including point mutations, short insertions and deletions, gene amplifications, homozygous deletions, and fusions/rearrangements. Clinically relevant genomic alterations (CRGAs) were defined as alterations linked to approved drugs and those under evaluation in mechanism-driven clinical trials. There were no significant differences by sex for either tumor type, and the median age for all patients was 63 years. All ESCCs and EACs were at an advanced stage at the time of sequencing. All 71 ESCCs and 231 EACs featured GAs on profiling, with 522 GAs in ESCC (7.4 per sample) and 1,303 GAs in EAC (5.6 per sample). The frequency of clinically relevant GAs in ESCC was 94% (2.6 per sample) and 93% in EAC (2.7 per sample). CRGAs occurring more frequently in EAC included KRAS (23% EAC vs. 6% ESCC) and ERBB2 (23% EAC vs. 3% ESCC). ESCC samples were enriched for CRGA in PIK3CA (24% ESCC vs. 10% EAC), PTEN (11% ESCC vs. 4% EAC), and NOTCH1 (17% ESCC vs. 3% EAC). Other GAs that differed significantly between histologic tumor types included SMAD4 (14% EAC

  1. Deep Learning for Health Informatics.

    PubMed

    Ravi, Daniele; Wong, Charence; Deligianni, Fani; Berthelot, Melissa; Andreu-Perez, Javier; Lo, Benny; Yang, Guang-Zhong

    2017-01-01

    With a massive influx of multimodality data, the role of data analytics in health informatics has grown rapidly in the last decade. This has also prompted increasing interests in the generation of analytical, data driven models based on machine learning in health informatics. Deep learning, a technique with its foundation in artificial neural networks, is emerging in recent years as a powerful tool for machine learning, promising to reshape the future of artificial intelligence. Rapid improvements in computational power, fast data storage, and parallelization have also contributed to the rapid uptake of the technology in addition to its predictive power and ability to generate automatically optimized high-level features and semantic interpretation from the input data. This article presents a comprehensive up-to-date review of research employing deep learning in health informatics, providing a critical analysis of the relative merit, and potential pitfalls of the technique as well as its future outlook. The paper mainly focuses on key applications of deep learning in the fields of translational bioinformatics, medical imaging, pervasive sensing, medical informatics, and public health.

  2. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  3. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  4. Partnership to promote interprofessional education and practice for population and public health informatics: A case study.

    PubMed

    Rajamani, Sripriya; Westra, Bonnie L; Monsen, Karen A; LaVenture, Martin; Gatewood, Laël Cranmer

    2015-01-01

    Team-based healthcare delivery models, which emphasize care coordination, patient engagement, and utilization of health information technology, are emerging. To achieve these models, expertise in interprofessional education, collaborative practice across professions, and informatics is essential. This case study from informatics programs in the Academic Health Center (AHC) at the University of Minnesota and the Office of Health Information Technology (OHIT) at the Minnesota Department of Health presents an academic-practice partnership, which focuses on both interprofessionalism and informatics. Outcomes include the Minnesota Framework for Interprofessional Biomedical Health Informatics, comprising collaborative curriculum development, teaching and research, practicums to promote competencies, service to advance biomedical health informatics, and collaborative environments to facilitate a learning health system. Details on these Framework categories are presented. Partnership success is due to interprofessional connections created with emphasis on informatics and to committed leadership across partners. A limitation of this collaboration is the need for formal agreements outlining resources and roles, which are vital for sustainability. This partnership addresses a recommendation on the future of interprofessionalism: that both education and practice sectors be attuned to each other's expectations and evolving trends. Success strategies and lessons learned from collaborations, such as that of the AHC-OHIT that promote both interprofessionalism and informatics, need to be shared.

  5. Integration of Telemedicine in Graduate Medical Informatics Education

    PubMed Central

    Demiris, George

    2003-01-01

    An essential part of health informatics is telemedicine, the use of advanced telecommunications technologies to bridge distance and support health care delivery and education. This report discusses the integration of telemedicine into a medical informatics curriculum and, specifically, a framework for a telemedicine course. Within this framework, the objectives and exit competencies are presented and course sections are described: definitions, introduction to technical aspects of telemedicine, evolution of telemedicine and its impact on health care delivery, success and failure factors, and legal and ethical issues. The emphasis is on literature review tools, practical exposure to products and applications, and problem-based learning. Given the rapid advances in the telecommunication field, keeping the course material up to date becomes a challenge for the instructor who at the same time aims to equip students with the knowledge and tools they will need in their future role as decision makers to detect a need for, design, implement, maintain, or evaluate a telemedicine application. PMID:12668696

  6. Clinical Implementation of Integrated Genomic Profiling in Patients with Advanced Cancers.

    PubMed

    Borad, Mitesh J; Egan, Jan B; Condjella, Rachel M; Liang, Winnie S; Fonseca, Rafael; Ritacca, Nicole R; McCullough, Ann E; Barrett, Michael T; Hunt, Katherine S; Champion, Mia D; Patel, Maitray D; Young, Scott W; Silva, Alvin C; Ho, Thai H; Halfdanarson, Thorvardur R; McWilliams, Robert R; Lazaridis, Konstantinos N; Ramanathan, Ramesh K; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Cuyugan, Lori; McDonald, Jacquelyn; Adkins, Jonathan; Mastrian, Stephen D; Valdez, Riccardo; Jaroszewski, Dawn E; Von Hoff, Daniel D; Craig, David W; Stewart, A Keith; Carpten, John D; Bryce, Alan H

    2016-12-23

    DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1-3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.

  7. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.

  8. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  9. Advancing our understanding of functional genome organisation through studies in the fission yeast.

    PubMed

    Olsson, Ida; Bjerling, Pernilla

    2011-02-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.

  10. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.).

    PubMed

    Parween, Sabiha; Nawaz, Kashif; Roy, Riti; Pole, Anil K; Venkata Suresh, B; Misra, Gopal; Jain, Mukesh; Yadav, Gitanjali; Parida, Swarup K; Tyagi, Akhilesh K; Bhatia, Sabhyata; Chattopadhyay, Debasis

    2015-08-11

    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.

  11. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.)

    PubMed Central

    Parween, Sabiha; Nawaz, Kashif; Roy, Riti; Pole, Anil K.; Venkata Suresh, B.; Misra, Gopal; Jain, Mukesh; Yadav, Gitanjali; Parida, Swarup K.; Tyagi, Akhilesh K.; Bhatia, Sabhyata; Chattopadhyay, Debasis

    2015-01-01

    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes. PMID:26259924

  12. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.

    PubMed

    Cui, Miao; Lin, Che-Yi; Su, Yi-Hsien

    2017-06-12

    Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Recent advances in the genome-wide study of DNA replication origins in yeast

    PubMed Central

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction. PMID:25745419

  14. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.

    PubMed

    Jiang, Dewei; Zhu, Wei; Wang, Yunchuan; Sun, Chang; Zhang, Ke-Qin; Yang, Jinkui

    2013-12-01

    Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.

  15. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  16. Nursing informatics competences still challenging nurse educators.

    PubMed

    Rajalahti, Elina; Saranto, Kaija

    2012-01-01

    In recent years nursing documentation has been one of the most important development areas of nursing informatics (NI) in Finland. The purpose of this study is to describe the development of the nurse educators' competences in nursing documentation during a project called eNNI. The eNNI project (2008-2010) was a cooperative project by nurse educators and working life experts. The goal of the project was to implement the national documentation model and thereby improve operational processes at workplaces. The study includes pre- and post-test questioning of NI applications with a web-based questionnaire (n=136). The data were analyzed with distribution, cross-tabulations and average tests and descriptive statistic multivariate method. According to the results, the ICT skills of the nurse educators were good at the end of the project, and they had good information literacy competence. On the other hand, their advanced NI skills left room for improvement.

  17. Performance support concepts for Web-based informatics instruction.

    PubMed Central

    Goodwin, L.

    1997-01-01

    Duke University first offered World Wide Web (WWW) based courses in Nursing Informatics in January of 1997. The first class enrolled 18 nurses who were completing either a Post-Master's Certificate Program or were near completion of their Master's degree. Courses were designed around principles of advanced nursing practice, performance support, mastery learning, and virtual learning communities. Extensive learning assessment included traditional papers, real-world application projects, and a variety of pre and post-test measurements. PMID:9357715

  18. The Role of Genomic Profiling in Advanced Breast Cancer: The Two Faces of Janus

    PubMed Central

    Eralp, Yesim

    2016-01-01

    Recent advances in genomic technology have led to considerable improvement in our understanding of the molecular basis that underpins breast cancer biology. Through the use of comprehensive whole genome genomic profiling by next-generation sequencing, an unprecedented bulk of data on driver mutations, key genomic rearrangements, and mechanisms on tumor evolution has been generated. These developments have marked the beginning of a new era in oncology called “personalized or precision medicine.” Elucidation of biologic mechanisms that underpin carcinogenetic potential and metastatic behavior has led to an inevitable explosion in the development of effective targeted agents, many of which have gained approval over the past decade. Despite energetic efforts and the enormous support gained within the oncology community, there are many obstacles in the clinical implementation of precision medicine. Other than the well-known biologic markers, such as ER and Her-2/neu, no proven predictive marker exists to determine the responsiveness to a certain biologic agent. One of the major issues in this regard is teasing driver mutations among the background noise within the bulk of coexisting passenger mutations. Improving bioinformatics tools through electronic models, enhanced by improved insight into pathway dependency may be the step forward to overcome this problem. Next, is the puzzle on spatial and temporal tumoral heterogeneity, which remains to be solved by ultra-deep sequencing and optimizing liquid biopsy techniques. Finally, there are multiple logistical and financial issues that have to be meticulously tackled in order to optimize the use of “precision medicine” in the real-life setting. PMID:27547031

  19. Bioimage informatics for understanding spatiotemporal dynamics of cellular processes.

    PubMed

    Yang, Ge

    2013-01-01

    The inner environment of the cell is highly dynamic and heterogeneous yet exquisitely organized. Successful completion of cellular processes within this environment depends on the right molecules or molecular complexes to function at the right place at the right time. Understanding spatiotemporal behaviors of cellular processes is therefore essential to understanding their molecular mechanisms at the systems level. These behaviors are usually visualized and recorded using imaging techniques. However, to infer from them systems-level molecular mechanisms, computational analysis and understanding of recorded image data is crucial, not only for acquiring quantitative behavior measurements but also for comprehending complex interactions among the molecules or molecular complexes involved. The technology of computational analysis and understanding of biological images is often referred to simply as bioimage informatics. This article introduces fundamentals of bioimage informatics for understanding spatiotemporal dynamics of cellular processes and reviews recent advances on this topic. Basic bioimage informatics concepts and techniques for characterizing spatiotemporal cell dynamics are introduced first. Studies on specific cellular processes such as cell migration and signal transduction are then used as examples to analyze and summarize recent advances, with the focus on transforming quantitative measurements of spatiotemporal cellular behaviors into knowledge of underlying molecular mechanisms. Despite the advances made, substantial technological challenges remain, especially in representation of spatiotemporal cellular behaviors and inference of systems-level molecular mechanisms. These challenges are briefly discussed. Overall, understanding spatiotemporal cell dynamics will provide critical insights into how specific cellular processes as well as the entire inner cellular environment are dynamically organized and regulated.

  20. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  1. Clinical health informatics education for a 21st Century World.

    PubMed

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education.

  2. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  3. The Biodiversity Informatics Potential Index.

    PubMed

    Ariño, Arturo H; Chavan, Vishwas; King, Nick

    2011-01-01

    Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most nonparticipant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. The BIP Index could potentially help in (a) identifying countries most likely to contribute to filling gaps in digitized

  4. An innovative capstone health care informatics clinical residency: Interprofessional team collaboration.

    PubMed

    Custis, Laura M; Hawkins, Shelley Y; Thomason, Tanna R

    2017-03-01

    Integrated information systems and wireless technology have been increasingly incorporated into health care organizations with the premise that information technology will promote safe, high-quality, cost-effective patient care. With the advancement of technology, the level of expertise necessary to assume health care information technology roles has escalated. The purpose of this article is to describe a clinical residency project whereby students in a graduate degree health care informatics program successfully fulfilled program competencies through a faculty-lead research project focused on the use of home telehealth with a group of heart failure patients. Through the use of Donabedian's framework of structure, process, and outcomes, the health care informatics students completed essential learning activities deemed essential for transition into the role of an informatics specialist. Health care informatics educational leaders are encouraged to adapt this template of applied learning into their practices.

  5. Instantiating informatics in nursing practice for integrated patient centred holistic models of care: a discussion paper.

    PubMed

    Hussey, Pamela A; Kennedy, Margaret Ann

    2016-05-01

    A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.

  6. MBAT: A scalable informatics system for unifying digital atlasing workflows

    PubMed Central

    2010-01-01

    Background Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. Results The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. Conclusions MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible

  7. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  8. SMART on FHIR Genomics: facilitating standardized clinico-genomic apps.

    PubMed

    Alterovitz, Gil; Warner, Jeremy; Zhang, Peijin; Chen, Yishen; Ullman-Cullere, Mollie; Kreda, David; Kohane, Isaac S

    2015-11-01

    Supporting clinical decision support for personalized medicine will require linking genome and phenome variants to a patient's electronic health record (EHR), at times on a vast scale. Clinico-genomic data standards will be needed to unify how genomic variant data are accessed from different sequencing systems. A specification for the basis of a clinic-genomic standard, building upon the current Health Level Seven International Fast Healthcare Interoperability Resources (FHIR®) standard, was developed. An FHIR application protocol interface (API) layer was attached to proprietary sequencing platforms and EHRs in order to expose gene variant data for presentation to the end-user. Three representative apps based on the SMART platform were built to test end-to-end feasibility, including integration of genomic and clinical data. Successful design, deployment, and use of the API was demonstrated and adopted by HL7 Clinical Genomics Workgroup. Feasibility was shown through development of three apps by various types of users with background levels and locations. This prototyping work suggests that an entirely data (and web) standards-based approach could prove both effective and efficient for advancing personalized medicine. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study.

    PubMed

    Ross, Jeffrey S; Gay, Laurie M; Nozad, Sahar; Wang, Kai; Ali, Siraj M; Boguniewicz, Ann; Khaira, Depinder; Johnson, Adrienne; Elvin, Julia A; Vergilio, Jo-Anne; Suh, James; Miller, Vincent A; Stephens, Philip J

    2016-01-01

    Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC. From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials. Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmuc

  10. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  11. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  12. Informatics competencies for healthcare professionals: the Technology Informatics Guiding Education Reform (TIGER) Initiative model.

    PubMed

    Hebda, Toni L; Calderone, Terri L

    2012-01-01

    A growing awareness exists that informatics competencies are essential skills for healthcare professionals today, yet the development of these competencies lags behind the need. The Technology Informatics Guiding Education Reform (TIGER) Initiative represents a comprehensive, interdisciplinary effort that is well suited to the integration of informatics into education, practice, administration, and research environments. This article briefly discusses the background and significance of the TIGER Initiative and why it may be used as a model to instill informatics among the healthcare professionals globally.

  13. Public Health and Epidemiology Informatics: Recent Research and Trends in the United States.

    PubMed

    Dixon, B E; Kharrazi, H; Lehmann, H P

    2015-08-13

    To survey advances in public health and epidemiology informatics over the past three years. We conducted a review of English-language research works conducted in the domain of public health informatics (PHI), and published in MEDLINE between January 2012 and December 2014, where information and communication technology (ICT) was a primary subject, or a main component of the study methodology. Selected articles were synthesized using a thematic analysis using the Essential Services of Public Health as a typology. Based on themes that emerged, we organized the advances into a model where applications that support the Essential Services are, in turn, supported by a socio-technical infrastructure that relies on government policies and ethical principles. That infrastructure, in turn, depends upon education and training of the public health workforce, development that creates novel or adapts existing infrastructure, and research that evaluates the success of the infrastructure. Finally, the persistence and growth of infrastructure depends on financial sustainability. Public health informatics is a field that is growing in breadth, depth, and complexity. Several Essential Services have benefited from informatics, notably, "Monitor Health," "Diagnose & Investigate," and "Evaluate." Yet many Essential Services still have not yet benefited from advances such as maturing electronic health record systems, interoperability amongst health information systems, analytics for population health management, use of social media among consumers, and educational certification in clinical informatics. There is much work to be done to further advance the science of PHI as well as its impact on public health practice.

  14. Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics.

    PubMed

    Burgess, Diane G; Xu, Jie; Freeling, Michael

    2015-10-01

    The plant gene model remains largely an extrapolation from animals, with the cis functional unit, the gene, cast as a dynamic looping structure. Molecular genetics with model plants continues to make advances; highlighted here are quantitative-occupancy results from the Arabidopsis thaliana (Arabidopsis) Phytochrome-Interacting bHLH transcription Factors (PIF) quartet. Compared to this complex snapshot, results from chromatin occupancy and other Encyclopedia of DNA Elements (ENCODE)-like approaches increase our transcription factor-motif cognate library, but regulation cannot by itself be inferred from binding. Complementary published Arabidopsis conserved noncoding sequence lists are compared, evaluated, merged, and released. Comparative genomic approaches have identified a cis modifier of a gene's expression-hypothetically, a transposon-based 'rheostat'-that works in all cells, times and places.

  15. [Septic shock in ICU: advanced therapeutics, immunoparalysis and genomics. State of the art].

    PubMed

    Arriagada S, Daniela; Donoso F, Alejandro; Cruces R, Pablo; Díaz R, Franco

    2014-08-01

    New and important concepts have emerged for the advanced management of the child with septic shock in the recent decades. Attending physicians in the Pediatric intensive care unit must be fully aware of them to improve patient care in the critical care unit. It should be considered the use of immune therapy only in selected groups of patients. Continuous renal replacement therapies are well tolerated and their early use prevents deleterious fluid overload. Removal of inflammatory mediators by using high volume hemofiltration may play a role in hyperdynamic septic patients. The use of plasmapheresis is recommended in patients with thrombocytopenia-associated multiple organ failure. Extracorporeal support use should be considered in those with refractory septic shock despite goals directed therapy. The immunoparalysis has been associated with nosocomial infections and late mortality. The information from genetic markers may allow early intervention and preventive genomics-based medicine.

  16. Glutamine Synthetase in Legumes: Recent Advances in Enzyme Structure and Functional Genomics

    PubMed Central

    Betti, Marco; García-Calderón, Margarita; Pérez-Delgado, Carmen M.; Credali, Alfredo; Estivill, Guillermo; Galván, Francisco; Vega, José M.; Márquez, Antonio J.

    2012-01-01

    Glutamine synthetase (GS) is the key enzyme involved in the assimilation of ammonia derived either from nitrate reduction, N2 fixation, photorespiration or asparagine breakdown. A small gene family is encoding for different cytosolic (GS1) or plastidic (GS2) isoforms in legumes. We summarize here the recent advances carried out concerning the quaternary structure of GS, as well as the functional relationship existing between GS2 and processes such as nodulation, photorespiration and water stress, in this latter case by means of proline production. Functional genomic analysis using GS2-minus mutant reveals the key role of GS2 in the metabolic control of the plants and, more particularly, in carbon metabolism. PMID:22942686

  17. Bovine babesiosis in the 21st century: advances in biology and functional genomics.

    PubMed

    Gohil, Sejal; Herrmann, Susann; Günther, Svenja; Cooke, Brian M

    2013-02-01

    Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  18. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients

    NASA Astrophysics Data System (ADS)

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-02-01

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml-1). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  19. Limited Genomic Heterogeneity of Circulating Melanoma Cells in Advanced Stage Patients

    PubMed Central

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Ed; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-01-01

    Purpose Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design Blood samples from 40 metastatic melanoma patients and 10 normal blood donors (NBD) were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAb) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification (WGA) and copy number variation (CNV) analysis. Results Based on CSPG4 expression and nuclear size, 1 to 250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5 to 371.5 CMCs/ml). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this population may contribute to develop effective therapeutic strategies. PMID:25574741

  20. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients.

    PubMed

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S; Kolatkar, Anand; Kendall, Jude T; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-01-09

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml(-1)). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  1. Cognitive hacking and intelligence and security informatics

    NASA Astrophysics Data System (ADS)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  2. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    PubMed

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-07-15

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  3. Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization.

    PubMed

    Kasahara, Kotaro; Taguchi, Takahiro; Yamasaki, Ichiro; Kamada, Masayuki; Yuri, Kazunari; Shuin, Taro

    2002-08-01

    In this study, we examined nine cases of advanced Japanese prostate cancer by comparative genomic hybridization (CGH) to detect chromosomal imbalances across the entire genome and to identify several new regions likely to contain genes important to the development and progression of this disease. These cases had been previously examined for numerical chromosomal aberrations by fluorescence in situ hybridization (FISH). By CGH, the following regions were found to be over-represented (gains), with fluorescence ratio values higher than the threshold: 4p, 6p, 8q, 11q, 12q, 15q, 16p, 17q, 20, and 21 (>4 cases); underrepresentation (losses) involved: 1q, 4q, 5q, 6q, 13q, 14q, and 22 (>4 cases). The shortest regions of overlap (SRO) of gains were noted at 8q24.1 through q24.3, 12q23, and 17q23 through q24 (>5 cases). The SRO of losses were seen at 5q14 through q21, 6q16.1 through q21, 13q21.3 through q22, and 14q21 (>5 cases). Notably, the gain of chromosomes 8 and 12 by CGH was in agreement with the FISH data, suggesting that the gain of chromosomes 8 and 12 may play an important role in prostate carcinogenesis. The genes on the SRO regions were also discussed in relation to oncogenes and bone metastases.

  4. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications.

    PubMed

    Veeraraghavan, Jamunarani; Ma, Jiacheng; Hu, Yiheng; Wang, Xiao-Song

    2016-07-01

    Gene fusions have long been considered principally as the oncogenic events of hematologic malignancies, but have recently gained wide attention in solid tumors due to several milestone discoveries and the advancement of deep sequencing technologies. With the progress in deep sequencing studies of breast cancer transcriptomes and genomes, the discovery of recurrent and pathological gene fusions in breast cancer is on the focus. Recently, driven by new deep sequencing studies, several recurrent or pathological gene fusions have been identified in breast cancer, including ESR1-CCDC170, SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1-YAP1 etc. More important, most of these gene fusions are preferentially identified in the more aggressive breast cancers, such as luminal B, basal-like, or endocrine-resistant breast cancer, suggesting recurrent gene fusions as additional key driver events in these tumors other than the known drivers such as the estrogen receptor. In this paper, we have comprehensively summarized the newly identified recurrent or pathological gene fusion events in breast cancer, reviewed the contributions of new genomic and deep sequencing technologies to new fusion discovery and the integrative bioinformatics tools to analyze these data, highlighted the biological relevance and clinical implications of these fusion discoveries, and discussed future directions of gene fusion research in breast cancer.

  5. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  6. Foundational biomedical informatics research in the clinical and translational science era: a call to action.

    PubMed

    Payne, Philip R O; Embi, Peter J; Niland, Joyce

    2010-01-01

    Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.

  7. Perspectives from nurse managers on informatics competencies.

    PubMed

    Yang, Li; Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits.

  8. Perspectives from Nurse Managers on Informatics Competencies

    PubMed Central

    Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Background and Purpose. Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. Methods. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Results. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. Conclusion. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits. PMID:24790565

  9. The emerging role of educational informatics.

    PubMed

    Weiner, Elizabeth E; Trangenstein, Patricia A

    2009-01-01

    Initial growth in the field of nursing informatics has centered primarily on the clinical setting. Much has been written about the systems developed and evaluated and possible new roles that one can play in the clinical environment. The educational arena has not fared as well. Early attention has been focused on the integration of educational technology or on competency-based skills in informatics according to program levels of students. This paper will focus on the emerging role of educational informatics. Examples will provide nurses with a better understanding of the roles played by the educational informaticist in crafting the science of nursing informatics to produce better nursing education outcomes.

  10. The cancer translational research informatics platform

    PubMed Central

    McConnell, Patrick; Dash, Rajesh C; Chilukuri, Ram; Pietrobon, Ricardo; Johnson, Kimberly; Annechiarico, Robert; Cuticchia, A Jamie

    2008-01-01

    Background Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™) has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform) tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security. Results caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data. Conclusion Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes. PMID:19108734

  11. Bioimage informatics: a new area of engineering biology.

    PubMed

    Peng, Hanchuan

    2008-09-01

    In recent years, the deluge of complicated molecular and cellular microscopic images creates compelling challenges for the image computing community. There has been an increasing focus on developing novel image processing, data mining, database and visualization techniques to extract, compare, search and manage the biological knowledge in these data-intensive problems. This emerging new area of bioinformatics can be called 'bioimage informatics'. This article reviews the advances of this field from several aspects, including applications, key techniques, available tools and resources. Application examples such as high-throughput/high-content phenotyping and atlas building for model organisms demonstrate the importance of bioimage informatics. The essential techniques to the success of these applications, such as bioimage feature identification, segmentation and tracking, registration, annotation, mining, image data management and visualization, are further summarized, along with a brief overview of the available bioimage databases, analysis tools and other resources.

  12. A 400,000-year-old mitochondrial genome questions phylogenetic relationships amongst archaic hominins: using the latest advances in ancient genomics, the mitochondrial genome sequence of a 400,000-year-old hominin has been deciphered.

    PubMed

    Orlando, Ludovic

    2014-06-01

    By combining state-of-the-art approaches in ancient genomics, Meyer and co-workers have reconstructed the mitochondrial sequence of an archaic hominin that lived at Sierra de Atapuerca, Spain about 400,000 years ago. This achievement follows recent advances in molecular anthropology that delivered the genome sequence of younger archaic hominins, such as Neanderthals and Denisovans. Molecular phylogenetic reconstructions placed the Atapuercan as a sister group to Denisovans, although its morphology suggested closer affinities with Neanderthals. In addition to possibly challenging our interpretation of the fossil record, this study confirms that genomic information can be recovered from extremely damaged DNA molecules, even in the presence of significant levels of human contamination. Together with the recent characterization of a 700,000-year-old horse genome, this study opens the Middle Pleistocene to genomics, thereby extending the scope of ancient DNA to the last million years. © 2014 WILEY Periodicals, Inc.

  13. A pan-Canadian Health Informatics Education Strategy

    PubMed Central

    Lau, Francis; Bell, Heidi

    2003-01-01

    Despite the fact that health informatics (HI) educational opportunities in Canada have increased by 40% over the last 3 years, there are few opportunities for advanced research or credentialing at the MSc and PhD levels. Existing programs are also not easily accessible to working health care professionals, who require flexible, non-traditional delivery options for basic to advanced HI training. This strategy report proposes an overall vision, 3 goals, 4 tactical initiatives and a set of action items to improve the effectiveness of HI education in Canada. PMID:14728200

  14. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  15. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    PubMed

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  16. Education and research in INFOBIOMED, the European Network of Excellence in Biomedical Informatics.

    PubMed

    de la Calle, Guillermo; van Mulligen, Erik M; Molero, Eva; Perez-Rey, David; Martín, Luis; Crespo, José; Maojo, Victor

    2007-10-11

    During the last three years several initiatives have been deployed within INFOBIOMED, the European Network of Excellence (NoE) in Biomedical Informatics, for promoting research and education. In the context of genomic medicine, four research pilots were designed. To address the informational complexities of such research problems, new educational approaches are needed.

  17. Genomics and the Human Genome Project: implications for psychiatry.

    PubMed

    Kelsoe, John R

    2004-11-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project has approached human genetics on a scale not previously seen in biology. This has been made possible by dramatic advances in high throughput technology and bio-informatics. Tools such as gene chips and micro-arrays have spawned an entirely new strategy to examine the function and expression of genes in a massively parallel fashion. Together these tools have dramatically advanced our knowledge about the human genome. They promise powerful new approaches to complex genetic traits such as psychiatric illness. The goals and progress of the Human Genome Project and the technology involved are reviewed. The implications of this science for psychiatric genetics are discussed.

  18. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  19. Mobile healthcare informatics.

    PubMed

    Siau, Keng; Shen, Zixing

    2006-06-01

    Advances in wireless technology give pace to the rapid development of mobile applications. The coming mobile revolution will bring dramatic and fundamental changes to our daily life. It will influence the way we live, the way we do things, and the way we take care of our health. For the healthcare industry, mobile applications provide a new frontier in offering better care and services to patients, and a more flexible and mobile way of communicating with suppliers and patients. Mobile applications will provide important real time data for patients, physicians, insurers, and suppliers. In addition, it will revolutionalize the way information is managed in the healthcare industry and redefine the doctor - patient communication. This paper discusses different aspects of mobile healthcare. Specifically, it presents mobile applications in healthcare, and discusses possible challenges facing the development of mobile applications. Obstacles in developing mobile healthcare applications include mobile device limitations, wireless networking problems, infrastructure constraints, security concerns, and user distrust. Research issues in resolving or alleviating these problems are also discussed in the paper.

  20. Measuring nursing informatics competencies of practicing nurses in Korea: Nursing Informatics Competencies Questionnaire.

    PubMed

    Chung, Seon Yoon; Staggers, Nancy

    2014-12-01

    Informatics competencies are a necessity for contemporary nurses. However, few researchers have investigated informatics competencies for practicing nurses. A full set of Informatics competencies, an instrument to measure these competencies, and potential influencing factors have yet to be identified for practicing nurses. The Nursing Informatics Competencies Questionnaire was designed, tested for psychometrics, and used to measure beginning and experienced levels of practice. A pilot study using 54 nurses ensured item comprehension and clarity. Internal consistency and face and content validity were established. A cross-sectional survey was then conducted on 230 nurses in Seoul, Korea, to determine construct validity, describe a complete set of informatics competencies, and explore possible influencing factors on existing informatics competencies. Principal components analysis, descriptive statistics, and multiple regression were used for data analysis. Principal components analysis gives support for the Nursing Informatics Competencies Questionnaire construct validity. Survey results indicate that involvement in a managerial position and self-directed informatics-related education may be more influential for improving informatics competencies, whereas general clinical experience and workplace settings are not. This study provides a foundation for understanding how informatics competencies might be integrated throughout nurses' work lives and how to develop appropriate strategies to support nurses in their informatics practice in clinical settings.

  1. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  2. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  3. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  4. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  5. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  6. The Impact of Medical Informatics on Librarianship.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  7. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  8. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  9. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  10. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  11. The evolution of bioinformatics in toxicology: advancing toxicogenomics.

    PubMed

    Afshari, Cynthia A; Hamadeh, Hisham K; Bushel, Pierre R

    2011-03-01

    As one reflects back through the past 50 years of scientific research, a significant accomplishment was the advance into the genomic era. Basic research scientists have uncovered the genetic code and the foundation of the most fundamental building blocks for the molecular activity that supports biological structure and function. Accompanying these structural and functional discoveries is the advance of techniques and technologies to probe molecular events, in time, across environmental and chemical exposures, within individuals, and across species. The field of toxicology has kept pace with advances in molecular study, and the past 50 years recognizes significant growth and explosive understanding of the impact of the compounds and environment to basic cellular and molecular machinery. The advancement of molecular techniques applied in a whole-genomic capacity to the study of toxicant effects, toxicogenomics, is no doubt a significant milestone for toxicological research. Toxicogenomics has also provided an avenue for advancing a joining of multidisciplinary sciences including engineering and informatics in traditional toxicological research. This review will cover the evolution of the field of toxicogenomics in the context of informatics integration its current promise, and limitations.

  12. Genome-wide association for methamphetamine sensitivity in an advanced intercross mouse line.

    PubMed

    Parker, C C; Cheng, R; Sokoloff, G; Palmer, A A

    2012-02-01

    Sensitivity to the locomotor stimulant effects of methamphetamine (MA) is a heritable trait that utilizes neurocircuitry also associated with the rewarding effects of drugs. We used the power of a C57BL/6J × DBA/2J F(2) intercross (n = 676) and the precision of a C57BL/6J × DBA/2J F(8) advanced intercross line (Aap: B6, D2-G8; or F(8) AIL; n = 552) to identify and narrow quantitative trait loci (QTLs) associated with sensitivity to the locomotor stimulant effects of MA. We used the program QTLRel to simultaneously map QTL in the F(2) and F(8) AIL mice. We identified six genome-wide significant QTLs associated with locomotor activity at baseline and seven genome-wide significant QTLs associated with MA-induced locomotor activation. The average per cent decrease in QTL width between the F(2) and the integrated analysis was 65%. Additionally, these QTLs showed a distinct temporal specificity within each session that allowed us to further refine their locations, and identify one QTL with a 1.8-LOD support interval of 1.47 Mb. Next, we utilized publicly available bioinformatics resources to exploit strain-specific sequence data and strain- and region-specific expression data to identify candidate genes. These results illustrate the power of AILs in conjunction with sequence and gene expression data to investigate the genetic underpinnings of behavioral and other traits. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  13. Clinical informatics in critical care.

    PubMed

    Martich, G Daniel; Waldmann, Carl S; Imhoff, Michael

    2004-01-01

    Health care information systems have the potential to enable better care of patients in much the same manner as the widespread use of the automobile and telephone did in the early 20th century. The car and phone were rapidly accepted and embraced throughout the world when these breakthroughs occurred. However, the automation of health care with use of computerized information systems has not been as widely accepted and implemented as computer technology use in all other sectors of the global economy. In this article, the authors examine the need, risks, and rewards of clinical informatics in health care as well as its specific relationship to critical care medicine.

  14. [Current perspectives in nursing informatics].

    PubMed

    Marin, Heimar de Fátima; Cunha, Isabel Cristina Kowal Olm

    2006-01-01

    Nursing Informatics is the area of knowledge that studies the application of technological resources in teaching, in practice, in care, and in the management of care. Resources such as voice recognition, knowledge base, genoma project and even Internet have offered to Nursing a gama of possibilities for a better professional performance and better nursing care to the patient/client. This text reports and exemplifies how these resources are impacting and presenting new oportunities for teaching, research and specially for nursing care, still warns for the importance of humanized care in a high-tech scenario.

  15. Medical informatics between technology, philosophy and science.

    PubMed

    Masic, Izet

    2004-01-01

    Medical (health) informatics occupies the central place in all the segments of modern medicine in the past thirty years--in practical work, education and scientific research. In all that, computers have taken over the most important role and are used intensively for the development of the health information systems. Following activities develop within the area of health informatics: health-documentation, health-statistics, health-informatics and biomedical scientific and professional information. The medical informatics as the separate medical discipline very quickly gets developed, both in Bosnia and Herzegovina. In our country, the medical informatics is a separate subject for the last ten years, regarding to the Medical curriculum at the biomedical faculties in Bosnia and Herzegovina is in accordance with the project of the education related to Bologna declaration and the project EURO MEDICINA.

  16. What informatics is and isn't.

    PubMed

    Friedman, Charles P

    2013-01-01

    The term informatics is currently enveloped in chaos. One way to clarify the meaning of informatics is to identify the competencies associated with training in the field, but this approach can conceal the whole that the competencies atomistically describe. This work takes a different approach by offering three higher-level visions of what characterizes the field, viewing informatics as: (1) cross-training between basic informational sciences and an application domain, (2) the relentless pursuit of making people better at what they do, and (3) a field encompassing four related types of activities. Applying these perspectives to describe what informatics is, one can also conclude that informatics is not: tinkering with computers, analysis of large datasets per se, employment in circumscribed health IT workforce roles, the practice of health information management, or anything done using a computer.

  17. Five Periods in Development of Medical Informatics

    PubMed Central

    Masic, Izet

    2014-01-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  18. The European community and its standardization efforts in medical informatics

    NASA Astrophysics Data System (ADS)

    Mattheus, Rudy A.

    1992-07-01

    A summary of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given. CEN is the European standardization institute, TC 251 deals with medical informatics. Standardization is a condition for the wide scale use of health care and medical informatics and for the creation of a common market. In the last two years, three important categories-- namely, the Commission of the European Communities with their programs and the mandates, the medical informaticians through their European professional federation, and the national normalization institutes through the European committee--have shown to be aware of this problem and have taken actions. As a result, a number of AIM (Advanced Informatics in Medicine), CEC sponsored projects, the CEC mandates to CEN and EWOS, the EFMI working group on standardization, the technical committee of CEN, and the working groups and project teams of CEN and EWOS are working on the subject. On overview of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given, including their relation to other work.

  19. Health informatics 3.0.

    PubMed

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  20. Australian Nursing Informatics Competency Project.

    PubMed

    Foster, Joanne; Bryce, Julianne

    2009-01-01

    A study of Australian nurses on their use of information technology in the workplace was undertaken by the Australian Nursing Federation (ANF) in 2007. This study of over 4000 nurses highlighted that nurses recognise benefits to adopting more information technology in the workplace although there are significant barriers to their use. It also identified gross deficits in the capacity of the nursing workforce to engage in the digital processing of information. Following the release of the study last year, the ANF commenced work on a number of key recommendations from the report in order to overcome identified barriers and provide opportunities for nurses to better utilise information technology and information management systems. One of these recommendations was to seek research funding to develop national information technology and information management competency standards for nurses. This project has now received Federal Government funding to undertake this development. This project is being developed in collaboration with the ANF and the Queensland University of Technology. This paper will discuss the methodology, development and publication of the Australian Nursing Informatics Competency Standards Project which is currently underway and due for completion in May 2009. The Australian Nursing Informatics Competencies will be presented at the conference.

  1. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    PubMed Central

    Shelden, Megan C.; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance. PMID:23717314

  2. Genome-wide association for fear conditioning in an advanced intercross mouse line.

    PubMed

    Parker, Clarissa C; Sokoloff, Greta; Cheng, Riyan; Palmer, Abraham A

    2012-05-01

    Fear conditioning (FC) may provide a useful model for some components of post-traumatic stress disorder (PTSD). We used a C57BL/6J × DBA/2J F(2) intercross (n = 620) and a C57BL/6J × DBA/2J F(8) advanced intercross line (n = 567) to fine-map quantitative trait loci (QTL) associated with FC. We conducted an integrated genome-wide association analysis in QTLRel and identified five highly significant QTL affecting freezing to context as well as four highly significant QTL associated with freezing to cue. The average percent decrease in QTL width between the F(2) and the integrated analysis was 59.2%. Next, we exploited bioinformatic sequence and expression data to identify candidate genes based on the existence of non-synonymous coding polymorphisms and/or expression QTLs. We identified numerous candidate genes that have been previously implicated in either fear learning in animal models (Bcl2, Btg2, Dbi, Gabr1b, Lypd1, Pam and Rgs14) or PTSD in humans (Gabra2, Oprm1 and Trkb); other identified genes may represent novel findings. The integration of F(2) and AIL data maintains the advantages of studying FC in model organisms while significantly improving resolution over previous approaches.

  3. [New Classification for Advanced Colorectal Cancer Using CancerPlex®Genomic Tests].

    PubMed

    Kameyama, Hitoshi; Shimada, Yoshifumi; Ichikawa, Hiroshi; Nagahashi, Masayuki; Sakata, Jun; Kobayashi, Takashi; Nogami, Hitoshi; Maruyama, Satoshi; Takii, Yasumasa; Okuda, Shujiro; Ling, Yiwei; Izutsu, Hiroshi; Kodama, Keisuke; Nakada, Mitsutaka; Wakai, Toshifumi

    2016-11-01

    Recently, targeted drugs have been developed for the treatment of colorectal cancer(CRC). Among targets, it is well known that KRAS mutations are associated with resistance to epidermal growth factor receptor(EGFR)monoclonal antibodies. However, response rates using anti-EGFR monotherapy for CRC were less than 20-30% in previous clinical studies. Thus, because the RAS/MAP2K/MAPK and PI3K/AKT pathways are associated with CRC resistance to chemotherapy, we analyzed gene mutations in Stage IV CRC patients using a genomic test(CancerPlex®). Medical records were reviewed for 112 patients who received treatment for CRC between 2007 and 2015 in Niigata University Medical and Dental Hospital or Niigata Cancer Center Hospital. There were 66 male and 46 female patients, and their median age was 62.5(range, 30-86) years. Cluster analyses were performed in 110 non-hypermutated Japanese CRC patients using Euclidean distance and Ward's clustering method, and 6 typical groups were identified. Among these, patients with all wild-type actionable genes benefited from anti-EGFR therapies. The expense of targeted drugs warrants consideration of cost-effectiveness during treatment decision-making for advanced CRC patients. To this end, based on the genetic information on CRC, it is possible to develop precision medicine using CancerPlex®.

  4. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    PubMed Central

    Xiao, Wenming; Wu, Leihong; Yavas, Gokhan; Simonyan, Vahan; Ning, Baitang; Hong, Huixiao

    2016-01-01

    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune

  5. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers.

    PubMed

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A

    2015-10-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted "panel" sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate "drivers." Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions.

  6. Cancer whole-genome sequencing: present and future.

    PubMed

    Nakagawa, H; Wardell, C P; Furuta, M; Taniguchi, H; Fujimoto, A

    2015-12-03

    Recent explosive advances in next-generation sequencing technology and computational approaches to massive data enable us to analyze a number of cancer genome profiles by whole-genome sequencing (WGS). To explore cancer genomic alterations and their diversity comprehensively, global and local cancer genome-sequencing projects, including ICGC and TCGA, have been analyzing many types of cancer genomes mainly by exome sequencing. However, there is limited information on somatic mutations in non-coding regions including untranslated regions, introns, regulatory elements and non-coding RNAs, and rearrangements, sometimes producing fusion genes, and pathogen detection in cancer genomes remain widely unexplored. WGS approaches can detect these unexplored mutations, as well as coding mutations and somatic copy number alterations, and help us to better understand the whole landscape of cancer genomes and elucidate functions of these unexplored genomic regions. Analysis of cancer genomes using the present WGS platforms is still primitive and there are substantial improvements to be made in sequencing technologies, informatics and computer resources. Taking account of the extreme diversity of cancer genomes and phenotype, it is also required to analyze much more WGS data and integrate these with multi-omics data, functional data and clinical-pathological data in a large number of sample sets to interpret them more fully and efficiently.

  7. An Approach for All in Pharmacy Informatics Education.

    PubMed

    Fox, Brent I; Flynn, Allen; Clauson, Kevin A; Seaton, Terry L; Breeden, Elizabeth

    2017-03-25

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal.

  8. An Approach for All in Pharmacy Informatics Education

    PubMed Central

    Flynn, Allen; Clauson, Kevin A.; Seaton, Terry L.; Breeden, Elizabeth

    2017-01-01

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal. PMID:28381898

  9. A Framework for the Biomedical Informatics Curriculum

    PubMed Central

    Johnson, Stephen B.

    2003-01-01

    The problem of developing a curriculum for biomedical informatics is highly dependent on how we choose to define and practice the field. Numerous authors have questioned how to position biomedical informatics along the continuum of formal, empirical and engineering disciplines. A concern with current educational programs in biomedical informatics is that students finish without a clear understanding of the relation between theory and practice, or worse, with the impression that the field does not possess any theoretical basis. In this paper, we propose that biomedical informatics curricula explicitly address skills and competencies at three levels: formal, empirical, and applied. We posit that that knowledge of formalization is necessary to build testable empirical models, and that model-driven approaches are necessary for deploying information systems that can be evaluated in a meaningful way. A curricular framework is proposed that identifies a set of methods, techniques and theories that have broad applicability within the domain of biomedicine, and which can span a wide range of application areas: bioinformatics, imaging informatics, clinical informatics and public health informatics. A stronger linkage between theory and practice will result in students who are empowered to create effective and lasting solutions to biomedical problems. PMID:14728189

  10. A framework for the biomedical informatics curriculum.

    PubMed

    Johnson, Stephen B

    2003-01-01

    The problem of developing a curriculum for biomedical informatics is highly dependent on how we choose to define and practice the field. Numerous authors have questioned how to position biomedical informatics along the continuum of formal, empirical and engineering disciplines. A concern with current educational programs in biomedical informatics is that students finish without a clear understanding of the relation between theory and practice, or worse, with the impression that the field does not possess any theoretical basis. In this paper, we propose that biomedical informatics curricula explicitly address skills and competencies at three levels: formal, empirical, and applied. We posit that that knowledge of formalization is necessary to build testable empirical models, and that model-driven approaches are necessary for deploying information systems that can be evaluated in a meaningful way. A curricular framework is proposed that identifies a set of methods, techniques and theories that have broad applicability within the domain of biomedicine, and which can span a wide range of application areas: bioinformatics, imaging informatics, clinical informatics and public health informatics. A stronger linkage between theory and practice will result in students who are empowered to create effective and lasting solutions to biomedical problems.

  11. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    PubMed

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its

  12. A National Agenda for Public Health Informatics

    PubMed Central

    Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin

    2001-01-01

    The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561

  13. Career development initiatives in biomedical health informatics.

    PubMed

    Wagholikar, Amol

    2012-01-01

    The disciplines of biomedical engineering and health informatics complement each other. These two scientific fields sometimes strive independently to deliver better health care services. The rapid evolution in data-intensive methods has made practitioners to think about reviewing the educational needs of the biomedical health informatics workforces. This paper discusses the changing skills requirements in biomedical health informatics discipline. The author reports on the challenges faced by IEEE Engineering in Medicine and Biology (EMBS) in the context of continuous career development of the EMBS members. This paper discusses Queensland chapter's initiative towards an integrated career development to address challenges faced by IEEE EMBS.

  14. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    PubMed

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  15. Biochemical informatics methods for diagnosis and disease management.

    PubMed

    Hudson, Samuel E

    2007-01-01

    New technological advances are beginning to have a direct impact on many aspects of healthcare, including screening, diagnosis, treatment, and disease management. A multidisciplinary approach permits the development of sophisticated patient-centered models that rely on bioinformatics, molecular biology, analytical and biochemistry, and healthcare informatics. In the work described here, a decision support model based on neural networks is used to combine results from laboratory tests with clinical parameters to produce a prognostic model for metastatic carcinoma. In addition, techniques for drug design and development are presented that can lead to medications that target specific cancer cells.

  16. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  17. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  18. Development, Implementation, and Evaluation of Health Informatics Masters Program at KSAU-HS University, Saudi Arabia

    ERIC Educational Resources Information Center

    Majid, Altuwaijri

    2007-01-01

    The Saudi health sector has witnessed a significant progress in recent decades with some Saudi hospitals receiving international recognition. However, this progress has not been accompanied by the same advancement in the health informatics field whose applications have become a necessity for hospitals in order to achieve important objectives such…

  19. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  20. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  1. Bioimage Informatics in the context of Drosophila research.

    PubMed

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development.

  2. The state and profile of open source software projects in health and medical informatics.

    PubMed

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  3. Consumer Informatics in Chronic Illness

    PubMed Central

    Tetzlaff, Linda

    1997-01-01

    Abstract Objective: To explore the informatic requirements in the home care of chronically ill patients. Design: A number of strategies were deployed to help evoke a picture of home care informatics needs: A detailed questionnaire evaluating informational needs and assessing programmable technologies was distributed to a clinic population of parents of children with cancer. Open ended questionnaires were distributed to medical staff and parents soliciting a list of questions asked of medical staff. Parent procedure training was observed to evaluate the training dialog, and parents were observed interacting with a prototype information and education computer offering. Results: Parents' concerns ranged from the details of managing day to day, to conceptual information about disease and treatment, to management of psychosocial problems. They sought information to solve problems and to provide emotional support, which may create conflicts of interest when the material is threatening. Whether they preferred to be informed by a doctor, nurse, or another parent depended on the nature of the information. Live interaction was preferred to video, which was preferred to text for all topics. Respondents used existing technologies in a straightforward way but were enthusiastic about the proposed use of computer technology to support home care. Multimedia solutions appear to complement user needs and preferences. Conclusion: Consumers appear positively disposed toward on-line solutions. On-line systems can offer breadth, depth and timeliness currently unattainable. Patients should be involved in the formation and development process in much the same way that users are involved in usercentered computer interface design. A generic framework for patient content is presented that could be applied across multiple disorders. PMID:9223035

  4. Nursing Informatics Competencies: Psychometric Validation, Dissemination, and Maintenance of Self-Assessment Tool for Nurse Leaders.

    PubMed

    Collins, Sarah

    2016-01-01

    Due to rapid advances in technology, HIT competencies for nursing leaders require frequent attention and updating from experts in the field to ensure relevance to nursing leaders' work. This workshop will target nursing informatics researchers and leaders to: 1) learn methods and findings from a study validating a Self-Assessment Scale for Nursing Informatics Competencies for Nurse Leaders, 2) generate awareness of the Self-Assessment scale, 3) discuss strategies for maintenance of competencies overtime and 4) identify strategies to engage nursing leaders in this pursuit.

  5. Biomedical informatics in Switzerland: need for action.

    PubMed

    Lovis, Christian; Blaser, Jürg

    2015-01-01

    Biomedical informatics (BMI) is an umbrella scientific field that covers many domains, as defined several years ago by the International Medical Informatics Association and the American Medical Informatics Association, two leading players in the field. For example, one of the domains of BMI is clinical informatics, which has been formally recognised as a medical subspecialty by the American Board of Medical Specialty since 2011. Most OECD (Organisation for Economic Co-operation and Development) countries offer very strong curricula in the field of BMI, strong research and development funding with clear tracks and, for most of them, inclusion of BMI in the curricula of health professionals, but BMI remains only marginally recognised in Switzerland. Recent major changes, however, such as the future federal law on electronic patient records, the personalised health initiative or the growing empowerment of citizens towards their health data, are adding much weight to the need for BMI capacity-building in Switzerland.

  6. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association.

    PubMed

    Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B

    2003-01-01

    The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  7. Big data from small samples: Informatics of next-generation sequencing in cytopathology.

    PubMed

    Roy-Chowdhuri, Sinchita; Roy, Somak; Monaco, Sara E; Routbort, Mark J; Pantanowitz, Liron

    2016-12-05

    The rapid adoption of next-generation sequencing (NGS) in clinical molecular laboratories has redefined the practice of cytopathology. Instead of simply being used as a diagnostic tool, cytopathology has evolved into a practice providing important genomic information that guides clinical management. The recent emphasis on maximizing limited-volume cytology samples for ancillary molecular studies, including NGS, requires cytopathologists not only to be more involved in specimen collection and processing techniques but also to be aware of downstream testing and informatics issues. For the integration of molecular informatics into the clinical workflow, it is important to understand the computational components of the NGS workflow by which raw sequence data are transformed into clinically actionable genomic information and to address the challenges of having a robust and sustainable informatics infrastructure for NGS-based testing in a clinical environment. Adapting to needs ranging from specimen procurement to report delivery is crucial for the optimal utilization of cytology specimens to accommodate requests from clinicians to improve patient care. This review presents a broad overview of the various aspects of informatics in the context of NGS-based testing of cytology specimens. Cancer Cytopathol 2016. © 2016 American Cancer Society.

  8. From classification to epilepsy ontology and informatics.

    PubMed

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-07-01

    The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multidimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) Common Data Elements, the International Classification of Diseases (ICD) systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence-based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multimodal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity, and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. Wiley Periodicals, Inc. © 2012 International

  9. From Classification to Epilepsy Ontology and Informatics

    PubMed Central

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-01-01

    Summary The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multi-dimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the NIH/NINDS Common Data Elements, the ICD systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multi-modal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  10. Evolution of Trends in European Medical Informatics

    PubMed Central

    I. Mihalas, George

    2014-01-01

    This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618

  11. Nursing Informatics Education: Latino America & Caribe.

    PubMed

    Hullin, Carol

    2016-01-01

    The objective of this panel is to share the current status of Nursing Informatics education at the national (Chile) and regional level. All the panelists are involved in different educational programs by face to face, online and small workshops. The scope is to anyone who is interested in the education in nursing informatics in Spanish, since the entire panelists participate in the design & development of educational programs from certificate, diploma, bachelor, master and PhD curriculums.

  12. Biodiversity informatics: organizing and linking information across the spectrum of life.

    PubMed

    Sarkar, Indra Neil

    2007-09-01

    Biological knowledge can be inferred from three major levels of information: molecules, organisms and ecologies. Bioinformatics is an established field that has made significant advances in the development of systems and techniques to organize contemporary molecular data; biodiversity informatics is an emerging discipline that strives to develop methods to organize knowledge at the organismal level extending back to the earliest dates of recorded natural history. Furthermore, while bioinformatics studies generally focus on detailed examinations of key 'model' organisms, biodiversity informatics aims to develop over-arching hypotheses that span the entire tree of life. Biodiversity informatics is presented here as a discipline that unifies biological information from a range of contemporary and historical sources across the spectrum of life using organisms as the linking thread. The present review primarily focuses on the use of organism names as a universal metadata element to link and integrate biodiversity data across a range of data sources.

  13. Bridging the Gap: A Collaborative Approach to Health Information Management and Informatics Education.

    PubMed

    Dorsey, A D; Clements, K; Garrie, R L; Houser, S H; Berner, E S

    2015-01-01

    Health Information Management (HIM) and Health Informatics (HI) were very separate professions when they were first formed. However, with the increasing adoption of electronic health records, the interests of the two fields have become more aligned. To describe the evolution of a joint master's program in health informatics(HI) and health information management (HIM). After analyzing workforce needs, and reviewing both CAHIIM accreditation requirements and existing curricular offerings in separate programs in HIM and HI, a joint program was developed. An HI master's program with a core curriculum for all students and tracks in Data Analytics, User Experience and Advanced Practice HIM was developed. A model for a comprehensive examination, based on the CAHIIM competencies, to be administered prior to and after the core curriculum was also developed. A core and track curriculum that incorporates HIM education as part of the Master of Science of Health Informatics provides a feasible roadmap for the future as HIM and HI become more closely aligned.

  14. Leveraging Health Informatics to a Foster Smart Systems Response to Health Disparities and Health Equity Challenges.

    PubMed

    Jay Carney, Timothy; Kong, Amanda Y

    2017-02-15

    Informaticians are challenged to design health IT solutions for complex problems like health disparities but are only achieving mixed results in demonstrating a direct impact on health outcomes. This presentation of collective intelligence and the corresponding terms of smart health, knowledge ecosystem, enhanced health disparities informatics capacities, knowledge exchange, big-data, and situational awareness are means of demonstrating the complex challenges informatics professional face in trying to model, measure, and manage an intelligence and a smart systems response to health disparities. A critical piece in our understanding of collective intelligence for public and population health rests in our understanding of any public and population health as a living and evolving network of individuals, organizations, and resources. This discussion represents a step in advancing the conversation of what a smart response to health disparities should represent and how informatics can drive the design of intelligent systems to assist in eliminating health disparities and achieving health equity.

  15. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies.

  16. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference.

    PubMed

    Massoudi, Barbara L; Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health.

  17. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    PubMed Central

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  18. Informatics at the National Institutes of Health: a call to action.

    PubMed

    Hendee, W R

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information science, and computer science undergirding biomedical informatics, engineering, and imaging. This investment should be made primarily through the National Institutes of Health (NIH). However, the NIH is not structured to support such disciplines as biomedical informatics, engineering, and imaging that cross boundaries between disease- and organ-oriented institutes. The solution to this dilemma is the creation of a new institute or center at the NIH devoted to biomedical imaging, engineering, and informatics. Bills are being introduced into the 106th Congress to authorize such an entity. The pathway is long and arduous, from the introduction of bills in the House and Senate to the realization of new opportunities for biomedical informatics, engineering, and imaging at the NIH. There are many opportunities for medical informaticians to contribute to this realization.

  19. MIRASS: medical informatics research activity support system using information mashup network.

    PubMed

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  20. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future.

    PubMed

    Sood, Salej; Kumar, Anil; Babu, B Kalyana; Gaur, Vikram S; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.

  1. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2014-07-01

    vendor assembly identifier is shown. 9 Analysis of Whole genome data: Karyotype computed from genome data Our collaborators at ISB have...aneuploidies, none of which is shared by two or more subclones. Figure 6. Computed karyotype . For each chromosome, we depict (bottom to top) the

  2. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2014-07-01

    Whole genome data: Karyotype computed from genome data We have developed a method for precise identification of aneuploidies at high resolution...9, 12 and 13. Conversely, we observed an extra copy (triploidy) of chr7 and most of chr19. Figure 4. Computed karyotype . For each chromosome, we

  3. Genomic Methods Take the Plunge: Recent Advances in High-Throughput Sequencing of Marine Mammals.

    PubMed

    Cammen, Kristina M; Andrews, Kimberly R; Carroll, Emma L; Foote, Andrew D; Humble, Emily; Khudyakov, Jane I; Louis, Marie; McGowen, Michael R; Olsen, Morten Tange; Van Cise, Amy M

    2016-11-01

    The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of NMOs utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on NMOs. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. CRISPR/Cas9: an advanced tool for editing plant genomes.

    PubMed

    Samanta, Milan Kumar; Dey, Avishek; Gayen, Srimonta

    2016-10-01

    To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.

  5. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    PubMed

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic

  6. Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2017-01-01

    -Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  7. Biomedical informatics: we are what we publish.

    PubMed

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  8. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers

    PubMed Central

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S. Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A.

    2015-01-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted “panel” sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate “drivers.” Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions. PMID:27148575

  9. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.

    PubMed

    Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe

    2017-02-01

    Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology. © 2016 John Wiley & Sons Ltd.

  10. Advances in translational bioinformatics and population genomics in the Asia-Pacific.

    PubMed

    Ranganathan, Shoba; Tongsima, Sissades; Chan, Jonathan; Tan, Tin Wee; Schönbach, Christian

    2012-01-01

    The theme of the 2012 International Conference on Bioinformatics (InCoB) in Bangkok, Thailand was "From Biological Data to Knowledge to Technological Breakthroughs." Besides providing a forum for life scientists and bioinformatics researchers in the Asia-Pacific region to meet and interact, the conference also hosted thematic sessions on the Pan-Asian Pacific Genome Initiative and immunoinformatics. Over the seven years of conference papers published in BMC Bioinformatics and four years in BMC Genomics, we note that there is increasing interest in the applications of -omics technologies to the understanding of diseases, as a forerunner to personalized genomic medicine.

  11. Digital Libraries and Recent Medical Informatics Research. Findings from the IMIA Yearbook of Medical Informatics 2001.

    PubMed

    Ammenwerth, E; Knaup, P; Maier, C; Mludek, V; Singer, R; Skonetzki, S; Wolff, A C; Haux, R; Kulikowski, C

    2001-05-01

    The Yearbook of Medical Informatics is published annually by the International Medical Informatics Association (IMIA) and contains a selection of recent excellent papers on medical informatics research (http://www.med.uni-heidelberg.de/mi/yearbook/index.htm). The special topic of the just published Yearbook 2001 is "Digital Libraries and Medicine". Digital libraries have changed dramatically and will continue to change the way we work with medical knowledge. The selected papers present recent research and new results on digital libraries. As usual, the Yearbook 2001 also contains a variety of papers on other subjects relevant to medical informatics, such as Electronic Patient Records, Health Information Systems, Health and Clinical Management, Decision Support Systems, Education, as well as Image and Signal Processing. This paper will briefly introduce the contributions covering digital libraries and will show how medical informatics research contributes to this important topic.

  12. Public Health and Epidemiology Informatics: Recent Research and Trends in the United States

    PubMed Central

    Dixon, B. E.; Kharrazi, H.

    2015-01-01

    Summary Objectives To survey advances in public health and epidemiology informatics over the past three years. Methods We conducted a review of English-language research works conducted in the domain of public health informatics (PHI), and published in MEDLINE between January 2012 and December 2014, where information and communication technology (ICT) was a primary subject, or a main component of the study methodology. Selected articles were synthesized using a thematic analysis using the Essential Services of Public Health as a typology. Results Based on themes that emerged, we organized the advances into a model where applications that support the Essential Services are, in turn, supported by a socio-technical infrastructure that relies on government policies and ethical principles. That infrastructure, in turn, depends upon education and training of the public health workforce, development that creates novel or adapts existing infrastructure, and research that evaluates the success of the infrastructure. Finally, the persistence and growth of infrastructure depends on financial sustainability. Conclusions Public health informatics is a field that is growing in breadth, depth, and complexity. Several Essential Services have benefited from informatics, notably, “Monitor Health,” “Diagnose & Investigate,” and “Evaluate.” Yet many Essential Services still have not yet benefited from advances such as maturing electronic health record systems, interoperability amongst health information systems, analytics for population health management, use of social media among consumers, and educational certification in clinical informatics. There is much work to be done to further advance the science of PHI as well as its impact on public health practice. PMID:26293869

  13. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  14. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  15. X-Informatics: Practical Semantic Science

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  16. A Paradigm for Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Borne, K. D.; Eastman, T. E.

    2006-05-01

    Informatics can be defined as the discipline of structuring, storing, accessing, and distributing information describing complex systems. In the fields of Bioinformatics and Geoinformatics, specific tools have been developed through wide community requirements analysis and consensus. In Geoinformatics, the GIS toolset is nearly universal. In Bioinformatics, tools such as BLAST and FASTA are commonly used. One of the key enablers of these science research and analysis systems is a nearly universal acceptance (hence, standardization) of the basic data unit in each field. In Bioinformatics, the gene sequence is the basic data unit. In GIS, the basic unit is gridded data consisting of points, vectors, and polygons. We believe that the time has come for a robust Space Science Informatics field of research, parallel to that of Bioinformatics in the fields of Biology and Medicine, and to that of Geoinformatics in the fields of Geography and Earth Science. In particular, we are investigating the specific case of Astroinformatics as a new paradigm for science research in Astronomy. Any Space Science Informatics discipline must include common methods and standards for spatio-temporal data, metadata, taxonomies, ontologies, data structures, data integration, data cleansing and preparation, data transmission and handling, and more. The need for informatics is driven and motivated by the flood of data coming now and the avalanche of data coming soon within all of our science disciplines. The two traditional approaches to science research (experiment and theory) are making room now for this third stream of research - informatics - which is data-driven and information-centric. We discuss the modalities of space science data that form the basis of informatics: raster (images), spectroscopic, time series, distribution functions, and catalogs. We then discuss specific concepts for Astroinformatics. Finally, we present our emerging view of how a field of Space Science Informatics

  17. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    DOE PAGES

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.; ...

    2016-02-18

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation ofmore » gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.« less

  18. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    SciTech Connect

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.; Tuskan, Gerald A.; Yang, Xiaohan

    2016-02-18

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.

  19. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.

    PubMed

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J; Tuskan, Gerald A; Yang, Xiaohan

    2016-04-01

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    PubMed

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  1. Advances in Aspergillus secondary metabolite research in the post-genomic era

    PubMed Central

    Sanchez, James F.; Somoza, Amber D.; Keller, Nancy P.

    2015-01-01

    This review studies the impact of whole genome sequencing on Aspergillus secondary metabolite research. There has been a proliferation of many new, intriguing discoveries since sequencing data became widely available. What is more, the genomes disclosed the surprising finding that there are many more secondary metabolite biosynthetic pathways than laboratory research had suggested. Activating these pathways has been met with some success, but many more dormant genes remain to be awakened. PMID:22228366

  2. MI-Lab - A Laboratory Environment for Medical Informatics Students.

    PubMed

    Brandt, Karsten; Löbe, Matthias; Schaaf, Michael; Jahn, Franziska; Winter, Alfred; Stäubert, Sebastian

    2016-01-01

    Medical research and health care highly depend on the use of information technology. There is a wide range of application systems (patient administration system, laboratory information system, communication server etc.) and heterogeneous data types (administrative data, clinical data, laboratory data, image data, genomic data etc.). Students and researchers do not often have the possibility to use productive application systems of e.g. hospitals or medical practices to gain practical experiences or examine new components and technologies. Therefore, the aim of this project is to develop a dedicated laboratory environment for patient health care and clinical research. Essential application systems were identified and a suitable architecture was designed for this purpose. It is accompanied by a teaching plan that considers learning modules for bachelor and master degrees in medical informatics. We implemented the laboratory environment called MI-Lab with multiple free and open source software components. All components are installed on virtual machines and/or Docker containers. This modular architecture creates a flexible system which can be deployed in various scenarios. The preliminary evaluation results suggests that laboratory environments like MI-Lab work well in teaching practical aspects of medical informatics and are widely accepted by students.

  3. [The research advances and applications of genome editing in hereditary eye diseases].

    PubMed

    Cai, S W; Zhang, Y; Hou, M Z; Liu, Y; Li, X R

    2017-05-11

    Genome editing is a cutting-edge technology that generates DNA double strand breaks at the specific genomic DNA sequence through nuclease recognition and cleavage, and then achieves insertion, replacement, or deletion of the target gene via endogenous DNA repair mechanisms, such as non-homologous end joining, homology directed repair, and homologous recombination. So far, more than 600 human hereditary eye diseases and systemic hereditary diseases with ocular phenotypes have been found. However, most of these diseases are of incompletely elucidated pathogenesis and without effective therapies. Genome editing technology can precisely target and alter the genomes of animals, establish animal models of the hereditary diseases, and elucidate the relationship between the target gene and the disease phenotype, thereby providing a powerful approach to studying the pathogenic mechanisms underlying the hereditary eye diseases. In addition, correction of gene mutations by the genome editing brings a new hope to gene therapy for the hereditary eye diseases. This review introduces the molecular characteristics of 4 major enzymes used in the genome editing, including homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9), and summarizes the current applications of this technology in investigating the pathogenic mechanisms underlying the hereditary eye diseases. (Chin J Ophthalmol, 2017, 53: 386-371).

  4. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future.

  5. Cyanobacterial KnowledgeBase (CKB), a Compendium of Cyanobacterial Genomes and Proteomes

    PubMed Central

    Mohandass, Shylajanaciyar; Varadharaj, Sangeetha; Thilagar, Sivasudha; Abdul Kareem, Kaleel Ahamed; Dharmar, Prabaharan; Gopalakrishnan, Subramanian; Lakshmanan, Uma

    2015-01-01

    Cyanobacterial KnowledgeBase (CKB) is a free access database that contains the genomic and proteomic information of 74 fully sequenced cyanobacterial genomes belonging to seven orders. The database also contains tools for sequence analysis. The Species report and the gene report provide details about each species and gene (including sequence features and gene ontology annotations) respectively. The database also includes cyanoBLAST, an advanced tool that facilitates comparative analysis, among cyanobacterial genomes and genomes of E. coli (prokaryote) and Arabidopsis (eukaryote). The database is developed and maintained by the Sub-Distributed Informatics Centre (sponsored by the Department of Biotechnology, Govt. of India) of the National Facility for Marine Cyanobacteria, a facility dedicated to marine cyanobacterial research. CKB is freely available at http://nfmc.res.in/ckb/index.html. PMID:26305368

  6. [Informatics in the Croatian health care system].

    PubMed

    Kern, Josipa; Strnad, Marija

    2005-01-01

    Informatization process of the Croatian health care system started relatively early. Computer processing of data of persons not covered by health insurance started in 1968 in Zagreb. Remetinec Health Center served as a model of computer data processing (CDP) in primary health care and Sveti Duh General Hospital in inpatient CDP, whereas hospital administration and health service were first introduced to Zagreb University Hospital Center and Sestre Milosrdnice University Hospital. At Varazdin Medical Center CDP for health care services started in 1970. Several registries of chronic diseases have been established: cancer, psychosis, alcoholism, and hospital registries as well as pilot registries of lung tuberculosis patients and diabetics. Health statistics reports on healthcare services, work accidents and sick-leaves as well as on hospital mortality started to be produced by CDP in 1977. Besides alphanumeric data, the modern information technology (IT) can give digital images and signals. Communication in health care system demands a standardized format of all information, especially for telemedicine. In 2000, Technical Committee for Standardization in Medical Informatics was founded in Croatia, in order to monitor the activities of the International Standardization Organization (ISO) and Comite Européen de Normalisation (CEN), and to implement their international standards in the Croatian standardization procedure. The HL7 Croatia has also been founded to monitor developments in the communication standard HL7. So far, the Republic of Croatia has a number of acts regulating informatization in general and consequently the informatization of the health care system (Act on Personal Data Confidentiality, Act on Digital Signature, Act of Standardization) enacted. The ethical aspect of data security and data protection has been covered by the Code of Ethics for medical informaticians. It has been established by the International Medical Informatics Association (IMIA

  7. Comprehensive embryo analysis of advanced maternal age-related aneuploidies and mosaicism by short comparative genomic hybridization.

    PubMed

    Rius, Mariona; Daina, Gemma; Obradors, Albert; Ramos, Laia; Velilla, Esther; Fernández, Sílvia; Martínez-Passarell, Olga; Benet, Jordi; Navarro, Joaquima

    2011-01-01

    The short comparative genomic hybridization (short-CGH) method was used to perform a comprehensive cytogenetic study of isolated blastomeres from advanced maternal age embryos, discarded after fluorescent in situ hybridization (FISH) preimplantation genetic screening (PGS), detecting aneuploidies (38.5% of which corresponded to chromosomes not screened by 9-chromosome FISH), structural aberrations (31.8%), and mosaicism (77.3%). The short-CGH method was subsequently applied in one PGS, achieving a twin pregnancy. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. INFOBIOMED: European Network of Excellence on Biomedical Informatics to Support Individualised Healthcare

    PubMed Central

    Maojo, Victor; de la Calle, Guillermo; Martín-Sánchez, Fernando; Díaz, Carlos; Sanz, Ferran

    2005-01-01

    INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included. PMID:16779328

  9. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  10. The experience of informatics nurses in Taiwan.

    PubMed

    Liu, Chia-Hui; Lee, Ting-Ting; Mills, Mary Etta

    2015-01-01

    Despite recent progress in information technology, health care institutions are constantly confronted with the need to adapt to the resulting new processes of information management and use. Facilitating an effective technology implementation requires dedication from informatics nurses (INs) to bridge the gap between clinical care and technology. The purpose of this study was to explore the working experiences of INs, and alternatives to assist the growth and development of the specialty. This qualitative study recruited 8 participants, and data were collected in 2009 by use of interview guides related to work roles, responsibilities, competencies, and challenges. The emerged themes included (a) diversified roles and functions, (b) vague job description, (c) no decision-making authority, (d) indispensable management support, and (e) searching resources for work fulfillment. Findings indicate that for organizations where nursing informatics development is ongoing, the IN role should be clearly defined as a specialist with identified support resources and decision-making authority. Nursing informatics interest groups should further develop training and certification programs to validate the professional image of the role. Concepts of nursing informatics should be included seamlessly throughout the educational curricula and informatics competency-based courses designed to strengthen student's technology use and data management capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Military Research Needs in Biomedical Informatics

    PubMed Central

    Reifman, Jaques; Gilbert, Gary R.; Fagan, Lawrence; Satava, Richard

    2002-01-01

    The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies. PMID:12223503

  12. [Medical informatics--today and tomorrow].

    PubMed

    Dezelić, Gjuro

    2007-09-01

    The status of medical informatics, a comparatively new biomedical discipline beginning to develop in the second half of the 20th century, is described at the transition into the 21st century. The appearance of new information and communication technologies, among which Internet nas special importance, was a major impulse to the development of medical informatics in its different fields. Health information systems are integrating, while at the same time, by distribution of their parts, they become available to the individual healthcare user. These processes put the problems of interoperability and standardization into the focus of contemporary medical informatics. The electronic health record is recognized as a key instrument of modern healthcare systems, and its development and implementation are being planned at many places. Whereas the research and application of medical decision support systems are stagnating, new disciplines have emerged such as telemedicine, cybermedicine and bioinformatics. The perspectives of the future development of medical informatics are described. In the appendix, a chronology of the development of medical informatics from its beginning to the present time is given.

  13. Towards health informatics 3.0. Editorial.

    PubMed

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  14. IMIA Accreditation of Health Informatics Programs.

    PubMed

    Hasman, A

    2012-01-01

    To develop a procedure for accrediting health informatics programs. Development of a procedure for accreditation. Test of the accreditation procedure via a trial including four or five health informatics programs. A site visit committee consisting of three members evaluates the program based on a self-assessment report written by the program and the experiences and observations of the site visit committee during the site visit. A procedure for accreditation has been developed. The instructions for health informatics programs have been written and a checklist for the site visit committee members is available. In total six subjects are considered, each one consisting of one or more facets. Each facet is judged using its corresponding criterion. Five health informatics programs volunteered. One health informatics program in Finland has already been visited and a report has been produced by the site visit committee. The next site visits are in June and July 2012. The site visit in Finland showed that English summaries of master theses are not enough to get a first impression of the methods used in the thesis. A table of contents is also needed. This information then can be used to select theses written in a language other than English for discussion. The accreditation procedure document with instructions about writing the self-assessment report was very well structured and the instructions were clear according to the Finnish program. The site visit team could work well with the checklist. Self-assessment report model was very well structured and the instructions were clear.

  15. Medical Informatics Education & Research in Greece.

    PubMed

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  16. Biomedical informatics training at Stanford in the 21st century.

    PubMed

    Altman, Russ B; Klein, Teri E

    2007-02-01

    The Stanford Biomedical Informatics training program began with a focus on clinical informatics, and has now evolved into a general program of biomedical informatics training, including clinical informatics, bioinformatics and imaging informatics. The program offers PhD, MS, distance MS, certificate programs, and is now affiliated with an undergraduate major in biomedical computation. Current dynamics include (1) increased activity in informatics within other training programs in biology and the information sciences (2) increased desire among informatics students to gain laboratory experience, (3) increased demand for computational collaboration among biomedical researchers, and (4) interaction with the newly formed Department of Bioengineering at Stanford University. The core focus on research training-the development and application of novel informatics methods for biomedical research-keeps the program centered in the midst of this period of growth and diversification.

  17. Advances in genome editing technology and its promising application in evolutionary and ecological studies

    PubMed Central

    2014-01-01

    Genetic modification has long provided an approach for “reverse genetics”, analyzing gene function and linking DNA sequence to phenotype. However, traditional genome editing technologies have not kept pace with the soaring progress of the genome sequencing era, as a result of their inefficiency, time-consuming and labor-intensive methods. Recently, invented genome modification technologies, such as ZFN (Zinc Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), and CRISPR/Cas9 nuclease (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 nuclease) can initiate genome editing easily, precisely and with no limitations by organism. These new tools have also offered intriguing possibilities for conducting functional large-scale experiments. In this review, we begin with a brief introduction of ZFN, TALEN, and CRISPR/Cas9 technologies, then generate an extensive prediction of effective TALEN and CRISPR/Cas9 target sites in the genomes of a broad range of taxonomic species. Based on the evidence, we highlight the potential and practicalities of TALEN and CRISPR/Cas9 editing in non-model organisms, and also compare the technologies and test interesting issues such as the functions of candidate domesticated, as well as candidate genes in life-environment interactions. When accompanied with a high-throughput sequencing platform, we forecast their potential revolutionary impacts on evolutionary and ecological research, which may offer an exciting prospect for connecting the gap between DNA sequence and phenotype in the near future. PMID:25414792

  18. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    PubMed

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future.

  19. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  20. ASHP national survey on informatics: assessment of the adoption and use of pharmacy informatics in U.S. hospitals--2007.

    PubMed

    Pedersen, Craig A; Gumpper, Karl F

    2008-12-01

    Results of the 2007 ASHP national survey on informatics are presented. All types and sizes of hospitals in the United States were included in the sample of 4112 pharmacy directors surveyed using an online data collection tool. The survey included over 300 data elements and was designed to assess the adoption and use of pharmacy informatics and technology within the medication-use process. In this national probability sample survey, the response rate was 25.9%. Hospitals appear to be moving toward an enterprise approach to information technology adoption and away from a best-of-breed approach. Although nearly half of hospitals have components of an electronic medical record (EMR), a complete digital hospital with a fully implemented EMR is far in the future, with only 5.9% of hospitals being fully digital (without paper records). An estimated 12.0% of hospitals use computerized prescriber-order-entry systems with decision support, 24.1% use bar-code medication administration, and 44.0% use intelligent infusion devices (smart pumps). Many of these technologies were not optimally configured, and significant advances must be made for hospitals to fully realize the benefits of these technologies. Hospitals have implemented many technologies in drug distribution, with 82.8% of hospitals having automated dispensing cabinets, 10.1% having robots, and 12.7% having carousel systems to manage inventory. Finally, most hospitals reported plans to adopt most of these technologies. This survey found that informatics and medication-use system technologies are widely present in all steps of the medication-use process. These technologies touch all health care professionals in the hospital and demonstrate the significant responsibility the pharmacy department holds for these technologies.