Science.gov

Sample records for genome informatics advances

  1. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  2. Farm animal genomics and informatics: an update

    PubMed Central

    Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D.

    2005-01-01

    Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects. PMID:16275782

  3. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  4. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  5. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.

  6. The Epilepsy Phenome/Genome Project (EPGP) informatics platform

    PubMed Central

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-01-01

    Background The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. Methods EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Results Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. Conclusions The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive

  7. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah [DOE JGI

    2016-07-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  8. Informatics Infrastructure for the Materials Genome Initiative

    NASA Astrophysics Data System (ADS)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-08-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  9. Informatics Infrastructure for the Materials Genome Initiative

    NASA Astrophysics Data System (ADS)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-07-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  10. Directions for clinical research and genomic research into the next decade: implications for informatics.

    PubMed

    Rindfleisch, T C; Brutlag, D L

    1998-01-01

    Medical informatics is defined largely by its host disciplines in clinical and biological medicine, and to project the agenda for informatics into the next decade, the health community must envision the broad context of biomedical research. This paper is a sketch of this vision, taking into account pressures from changes in the U.S. health care system, the need for more objective information on which to base health care decisions, and the accelerating progress and clinical impact of genomics research. The lessons of modern genomics research demonstrate the power of computing and communication tools to facilitate rapid progress through the adoption of open community standards for information exchange and collaboration. While aspects of this vision are speculative, it seems clear that the core agenda for informatics must be the development of interoperating systems that can facilitate the secure gathering, interchange, and analysis of high-quality information and can gain leverage from worldwide collaboration in advancing and applying new medical knowledge. PMID:9760387

  11. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  12. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  13. Accelerating the Global Workforce Demand for Nurse Informaticians: Advanced Health Informatics Certification (AHIC).

    PubMed

    Gadd, Cynthia; Delaney, Connie W; de Fátima Marin, Heimar; Greenwood, Karen; Williamson, Jeffrey J

    2016-01-01

    Advances in professional recognition of nursing informatics vary by country but examples exist of training programs moving from curriculum-based education to competency based frameworks to produce highly skilled nursing informaticians. This panel will discuss a significant credentialing project in the United States that should further enhance professional recognition of highly skilled nurses matriculating from NI programs as well as nurses functioning in positions where informatics-induced transformation is occurring. The panel will discuss the professionalization of health informatics by describing core content, training requirements, education needs, and administrative framework applicable for the creation of an Advanced Health Informatics Certification (AHIC). PMID:27332309

  14. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Quake, Steve [University of Stanford

    2016-07-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  15. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Pop, Mihai [University of Maryland

    2016-07-12

    University of Maryland's Mihai Pop on "Genome Assembly Forensics: Metrics for Assessing Assembly Correctness" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Pop, Mihai

    2011-10-13

    University of Maryland's Mihai Pop on "Genome Assembly Forensics: Metrics for Assessing Assembly Correctness" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. Perspectives on clinical informatics: integrating large-scale clinical, genomic, and health information for clinical care.

    PubMed

    Choi, In Young; Kim, Tae-Min; Kim, Myung Shin; Mun, Seong K; Chung, Yeun-Jun

    2013-12-01

    The advances in electronic medical records (EMRs) and bioinformatics (BI) represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO) aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population.

  18. Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care

    PubMed Central

    Choi, In Young; Kim, Tae-Min; Kim, Myung Shin; Mun, Seong K.

    2013-01-01

    The advances in electronic medical records (EMRs) and bioinformatics (BI) represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO) aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population. PMID:24465229

  19. Advancing Nursing Informatics in the Next Decade: Recommendations from an International Survey.

    PubMed

    Topaz, Maxim; Ronquillo, Charlene; Peltonen, Laura-Maria; Pruinelli, Lisiane; Sarmiento, Raymond Francis; Badger, Martha K; Ali, Samira; Lewis, Adrienne; Georgsson, Mattias; Jeon, Eunjoo; Tayaben, Jude L; Kuo, Chiu-Hsiang; Islam, Tasneem; Sommer, Janine; Jung, Hyunggu; Eler, Gabrielle Jacklin; Alhuwail, Dari

    2016-01-01

    In the summer of 2015, the International Medical Informatics Association Nursing Informatics Special Interest Group (IMIA NISIG) Student Working Group developed and distributed an international survey of current and future trends in nursing informatics. The survey was developed based on current literature on nursing informatics trends and translated into six languages. Respondents were from 31 different countries in Asia, Africa, North and Central America, South America, Europe, and Australia. This paper presents the results of responses to the survey question: "What should be done (at a country or organizational level) to advance nursing informatics in the next 5-10 years?" (n responders = 272). Using thematic qualitative analysis, responses were grouped into five key themes: 1) Education and training; 2) Research; 3) Practice; 4) Visibility; and 5) Collaboration and integration. We also provide actionable recommendations for advancing nursing informatics in the next decade.

  20. Advancing Nursing Informatics in the Next Decade: Recommendations from an International Survey.

    PubMed

    Topaz, Maxim; Ronquillo, Charlene; Peltonen, Laura-Maria; Pruinelli, Lisiane; Sarmiento, Raymond Francis; Badger, Martha K; Ali, Samira; Lewis, Adrienne; Georgsson, Mattias; Jeon, Eunjoo; Tayaben, Jude L; Kuo, Chiu-Hsiang; Islam, Tasneem; Sommer, Janine; Jung, Hyunggu; Eler, Gabrielle Jacklin; Alhuwail, Dari

    2016-01-01

    In the summer of 2015, the International Medical Informatics Association Nursing Informatics Special Interest Group (IMIA NISIG) Student Working Group developed and distributed an international survey of current and future trends in nursing informatics. The survey was developed based on current literature on nursing informatics trends and translated into six languages. Respondents were from 31 different countries in Asia, Africa, North and Central America, South America, Europe, and Australia. This paper presents the results of responses to the survey question: "What should be done (at a country or organizational level) to advance nursing informatics in the next 5-10 years?" (n responders = 272). Using thematic qualitative analysis, responses were grouped into five key themes: 1) Education and training; 2) Research; 3) Practice; 4) Visibility; and 5) Collaboration and integration. We also provide actionable recommendations for advancing nursing informatics in the next decade. PMID:27332175

  1. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  2. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John [National Center for Genome Resources

    2016-07-12

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  3. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Crow, John

    2012-06-01

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  4. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  5. Recent Advances in Cotton Genomics

    PubMed Central

    Zhang, Hong-Bin; Li, Yaning; Wang, Baohua; Chee, Peng W.

    2008-01-01

    Genome research promises to promote continued and enhanced plant genetic improvement. As a world's leading crop and a model system for studies of many biological processes, genomics research of cottons has advanced rapidly in the past few years. This article presents a comprehensive review on the recent advances of cotton genomics research. The reviewed areas include DNA markers, genetic maps, mapped genes and QTLs, ESTs, microarrays, gene expression profiling, BAC and BIBAC libraries, physical mapping, genome sequencing, and applications of genomic tools in cotton breeding. Analysis of the current status of each of the genome research areas suggests that the areas of physical mapping, QTL fine mapping, genome sequencing, nonfiber and nonovule EST development, gene expression profiling, and association studies between gene expression and fiber trait performance should be emphasized currently and in near future to accelerate utilization of the genomics research achievements for enhancing cotton genetic improvement. PMID:18288253

  6. Evaluation of the Cow Rumen Metagenome; Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies(Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sczyrba, Alex [DOE JGI

    2016-07-12

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. Evaluation of the Cow Rumen Metagenome; Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies(Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  9. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future.

  10. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU. PMID:24687712

  11. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  12. Exploring novel candidate genes from the Mouse Genome Informatics database: Potential implications for avian migration research.

    PubMed

    Contina, Andrea; Bridge, Eli S; Kelly, Jeffrey F

    2016-07-01

    To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies.

  13. Exploring novel candidate genes from the Mouse Genome Informatics database: Potential implications for avian migration research.

    PubMed

    Contina, Andrea; Bridge, Eli S; Kelly, Jeffrey F

    2016-07-01

    To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies. PMID:27061206

  14. Whole-genome CNV analysis: advances in computational approaches

    PubMed Central

    Pirooznia, Mehdi; Goes, Fernando S.; Zandi, Peter P.

    2015-01-01

    Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development. PMID:25918519

  15. Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.

    PubMed

    Maojo, Victor; Kulikowski, Casimir A

    2006-01-01

    Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.

  16. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  17. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported

  18. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    PubMed

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  19. Advances in Genome Biology & Technology

    SciTech Connect

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  20. Using Informatics-, Bioinformatics- and Genomics-Based Approaches for the Molecular Surveillance and Detection of Biothreat Agents

    NASA Astrophysics Data System (ADS)

    Seto, Donald

    The convergence and wealth of informatics, bioinformatics and genomics methods and associated resources allow a comprehensive and rapid approach for the surveillance and detection of bacterial and viral organisms. Coupled with the continuing race for the fastest, most cost-efficient and highest-quality DNA sequencing technology, that is, "next generation sequencing", the detection of biological threat agents by `cheaper and faster' means is possible. With the application of improved bioinformatic tools for the understanding of these genomes and for parsing unique pathogen genome signatures, along with `state-of-the-art' informatics which include faster computational methods, equipment and databases, it is feasible to apply new algorithms to biothreat agent detection. Two such methods are high-throughput DNA sequencing-based and resequencing microarray-based identification. These are illustrated and validated by two examples involving human adenoviruses, both from real-world test beds.

  1. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations. PMID:24943525

  2. The phytophthora genome initiative database: informatics and analysis for distributed pathogenomic research.

    PubMed

    Waugh, M; Hraber, P; Weller, J; Wu, Y; Chen, G; Inman, J; Kiphart, D; Sobral, B

    2000-01-01

    The Phytophthora Genome Initiative (PGI) is a distributed collaboration to study the genome and evolution of a particularly destructive group of plant pathogenic oomycete, with the goal of understanding the mechanisms of infection and resistance. NCGR provides informatics support for the collaboration as well as a centralized data repository. In the pilot phase of the project, several investigators prepared Phytophthora infestans and Phytophthora sojae EST and Phytophthora sojae BAC libraries and sent them to another laboratory for sequencing. Data from sequencing reactions were transferred to NCGR for analysis and curation. An analysis pipeline transforms raw data by performing simple analyses (i.e., vector removal and similarity searching) that are stored and can be retrieved by investigators using a web browser. Here we describe the database and access tools, provide an overview of the data therein and outline future plans. This resource has provided a unique opportunity for the distributed, collaborative study of a genus from which relatively little sequence data are available. Results may lead to insight into how better to control these pathogens. The homepage of PGI can be accessed at http:www.ncgr.org/pgi, with database access through the database access hyperlink.

  3. Bridging the Gap from Bench to Bedside--An Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED).

    PubMed

    2015-01-01

    The abundance of heterogeneous biomedical data from a variety of sources demands the development of strategies to address data integration and management issues, so that the data can be used effectively in clinical practices and biomedical research. This research presents an Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED) and provides a roadmap that envisions utilizing the clinical and biomedical resources in our case study. This work describes a data integration approach, proposed by ICGED, with a two-fold purpose: personalized medicine and biomedical data storage and sharing platform. It describes our experiences integrating disease specific clinical and genomics datasets with Data Integration and Analysis Tools (DIAT)--using Informatics for Integrating Biology and the Bedside, and discusses work in progress and future work for extending DIAT, and the development of Risk Assessment and Prediction Tools, Clinical Decision Support Systems and a Bioinformatics Data Warehouse.

  4. Bridging the Gap from Bench to Bedside--An Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED).

    PubMed

    2015-01-01

    The abundance of heterogeneous biomedical data from a variety of sources demands the development of strategies to address data integration and management issues, so that the data can be used effectively in clinical practices and biomedical research. This research presents an Informatics Infrastructure for Integrating Clinical, Genomics and Environmental Data (ICGED) and provides a roadmap that envisions utilizing the clinical and biomedical resources in our case study. This work describes a data integration approach, proposed by ICGED, with a two-fold purpose: personalized medicine and biomedical data storage and sharing platform. It describes our experiences integrating disease specific clinical and genomics datasets with Data Integration and Analysis Tools (DIAT)--using Informatics for Integrating Biology and the Bedside, and discusses work in progress and future work for extending DIAT, and the development of Risk Assessment and Prediction Tools, Clinical Decision Support Systems and a Bioinformatics Data Warehouse. PMID:26262353

  5. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  6. Bioimage informatics for experimental biology.

    PubMed

    Swedlow, Jason R; Goldberg, Ilya G; Eliceiri, Kevin W

    2009-01-01

    Over the past twenty years there have been great advances in light microscopy with the result that multidimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition is reported frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remain largely unsolved. As in the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges, and discuss our own vision for future development of bioimage informatics solutions.

  7. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  8. Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response

    PubMed Central

    Brown, Eric W.; Detter, Chris; Gerner-Smidt, Peter; Gilmour, Matthew W.; Harmsen, Dag; Hendriksen, Rene S.; Hewson, Roger; Heymann, David L.; Johansson, Karin; Ijaz, Kashef; Keim, Paul S.; Koopmans, Marion; Kroneman, Annelies; Wong, Danilo Lo Fo; Lund, Ole; Palm, Daniel; Sawanpanyalert, Pathom; Sobel, Jeremy; Schlundt, Jørgen

    2012-01-01

    The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide. PMID:23092707

  9. Big Heart Data: Advancing Health Informatics through Data Sharing in Cardiovascular Imaging

    PubMed Central

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R.; Young, Alistair A.

    2015-01-01

    The burden of heart disease is rapidly worsening due to increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be re-used beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data re-use, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  10. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    PubMed

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  11. Global health informatics education.

    PubMed

    Hovenga, E J

    2000-01-01

    Health informatics education has evolved since the 1960s with a strong research foundation primarily in medical schools across the USA and Europe. By 1989 health informatics education was provided in some form by at least 20 countries representing five continents. This continues to progress, in Europe with the help of a number of special projects, via the integration of informatics into pre registration health professional courses, undergraduate and post graduate course work and research degree programs. Each program is unique in terms or content and structure reflecting the many foundation disciplines which contribute or are incorporated in the health informatics discipline. Nursing informatics education is not as widespread. Indeed the evidence suggests a poor uptake of informatics by this profession. Advances in computer based educational technologies are making innovative modes of educational delivery possible and are facilitating a shift towards learner centred, flexible and life long learning. Greater cooperation between Universities is recommended. PMID:10947666

  12. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Chain, Patrick

    2011-10-13

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on "Metagenome Assembly at the DOE JGI" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Chain, Patrick [DOE JGI at LANL

    2016-07-12

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on "Metagenome Assembly at the DOE JGI" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  14. Advancing the framework: use of health data--a report of a working conference of the American Medical Informatics Association.

    PubMed

    Bloomrosen, Meryl; Detmer, Don

    2008-01-01

    The fields of health informatics and biomedical research increasingly depend on the availability of aggregated health data. Yet, despite over fifteen years of policy work on health data issues, the United States (U.S.) lacks coherent policy to guide users striving to navigate the ethical, political, technical, and economic challenges associated with health data use. In 2007, building on more than a decade of previous work, the American Medical Informatics Association (AMIA) convened a panel of experts to stimulate discussion about and action on a national framework for health data use. This initiative is being carried out in the context of rapidly accelerating advances in the fields of health informatics and biomedical research, many of which are dependent on the availability of aggregated health data. Use of these data poses complex challenges that must be addressed by public policy. This paper highlights the results of the meeting, presents data stewardship as a key building block in the national framework, and outlines stewardship principles for the management of health information. The authors also introduce a taxonomy developed to focus definitions and terminology in the evolving field of health data applications. Finally, they identify areas for further policy analysis and recommend that public and private sector organizations elevate consideration of a national framework on the uses of health data to a top priority.

  15. Recent advance in carrot genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been an effort towards the development of genomic resources in carrot. The number of available sequences for carrot in public databases has increased recently. This has allowed the design of SSRs markers, COS markers and a high-throughput SNP assay for genotyping. Additiona...

  16. Development of an integrated genome informatics, data management and workflow infrastructure: A toolbox for the study of complex disease genetics

    PubMed Central

    2004-01-01

    The genetic dissection of complex disease remains a significant challenge. Sample-tracking and the recording, processing and storage of high-throughput laboratory data with public domain data, require integration of databases, genome informatics and genetic analyses in an easily updated and scaleable format. To find genes involved in multifactorial diseases such as type 1 diabetes (T1D), chromosome regions are defined based on functional candidate gene content, linkage information from humans and animal model mapping information. For each region, genomic information is extracted from Ensembl, converted and loaded into ACeDB for manual gene annotation. Homology information is examined using ACeDB tools and the gene structure verified. Manually curated genes are extracted from ACeDB and read into the feature database, which holds relevant local genomic feature data and an audit trail of laboratory investigations. Public domain information, manually curated genes, polymorphisms, primers, linkage and association analyses, with links to our genotyping database, are shown in Gbrowse. This system scales to include genetic, statistical, quality control (QC) and biological data such as expression analyses of RNA or protein, all linked from a genomics integrative display. Our system is applicable to any genetic study of complex disease, of either large or small scale. PMID:15601538

  17. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  18. Imaging Informatics: 25 Years of Progress.

    PubMed

    Agrawal, J P; Erickson, B J; Kahn, C E

    2016-06-30

    The science and applications of informatics in medical imaging have advanced dramatically in the past 25 years. This article provides a selective overview of key developments in medical imaging informatics. Advances in standards and technologies for compression and transmission of digital images have enabled Picture Archiving and Communications Systems (PACS) and teleradiology. Research in speech recognition, structured reporting, ontologies, and natural language processing has improved the ability to generate and analyze the reports of imaging procedures. Informatics has provided tools to address workflow and ergonomic issues engendered by the growing volume of medical image information. Research in computeraided detection and diagnosis of abnormalities in medical images has opened new avenues to improve patient care. The growing number of medical-imaging examinations and their large volumes of information create a natural platform for "big data" analytics, particularly when joined with high-dimensional genomic data. Radiogenomics investigates relationships between a disease's genetic and gene-expression characteristics and its imaging phenotype; this emerging field promises to help us better understand disease biology, prognosis, and treatment options. The next 25 years offer remarkable opportunities for informatics and medical imaging together to lead to further advances in both disciplines and to improve health.

  19. Imaging Informatics: 25 Years of Progress.

    PubMed

    Agrawal, J P; Erickson, B J; Kahn, C E

    2016-01-01

    The science and applications of informatics in medical imaging have advanced dramatically in the past 25 years. This article provides a selective overview of key developments in medical imaging informatics. Advances in standards and technologies for compression and transmission of digital images have enabled Picture Archiving and Communications Systems (PACS) and teleradiology. Research in speech recognition, structured reporting, ontologies, and natural language processing has improved the ability to generate and analyze the reports of imaging procedures. Informatics has provided tools to address workflow and ergonomic issues engendered by the growing volume of medical image information. Research in computeraided detection and diagnosis of abnormalities in medical images has opened new avenues to improve patient care. The growing number of medical-imaging examinations and their large volumes of information create a natural platform for "big data" analytics, particularly when joined with high-dimensional genomic data. Radiogenomics investigates relationships between a disease's genetic and gene-expression characteristics and its imaging phenotype; this emerging field promises to help us better understand disease biology, prognosis, and treatment options. The next 25 years offer remarkable opportunities for informatics and medical imaging together to lead to further advances in both disciplines and to improve health. PMID:27362590

  20. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  1. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  2. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  3. Advances in Genomics of Entomopathogenic Fungi.

    PubMed

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. PMID:27131323

  4. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  5. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  6. Advances in Climate Informatics: Accelerating Discovery in Climate Science with Machine Learning

    NASA Astrophysics Data System (ADS)

    Monteleoni, C.

    2015-12-01

    Despite the scientific consensus on climate change, drastic uncertainties remain. The climate system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. Climate data is Big Data, yet the magnitude of data and climate model output increasingly overwhelms the tools currently used to analyze them. Computational innovation is therefore needed. Machine learning is a cutting-edge research area at the intersection of computer science and statistics, focused on developing algorithms for big data analytics. Machine learning has revolutionized scientific discovery (e.g. Bioinformatics), and spawned new technologies (e.g. Web search). The impact of machine learning on climate science promises to be similarly profound. The goal of the novel interdisciplinary field of Climate Informatics is to accelerate discovery in climate science with machine learning, in order to shed light on urgent questions about climate change. In this talk, I will survey my research group's progress in the emerging field of climate informatics. Our work includes algorithms to improve the combined predictions of the IPCC multi-model ensemble, applications to seasonal and subseasonal prediction, and a data-driven technique to detect and define extreme events.

  7. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    PubMed Central

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  8. Advances in genomics of bony fish

    PubMed Central

    Jansen, Hans J.; Dirks, Ron P.

    2014-01-01

    In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies. PMID:24291769

  9. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course

    PubMed Central

    Park, Seung; Parwani, Anil; MacPherson, Trevor; Pantanowitz, Liron

    2012-01-01

    Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in “Web 2.0”) in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an

  10. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  11. Advances in genomics for flatfish aquaculture.

    PubMed

    Cerdà, Joan; Manchado, Manuel

    2013-01-01

    Fish aquaculture is considered to be one of the most sustainable sources of protein for humans. Many different species are cultured worldwide, but among them, marine flatfishes comprise a group of teleosts of high commercial interest because of their highly prized white flesh. However, the aquaculture of these fishes is seriously hampered by the scarce knowledge on their biology. In recent years, various experimental 'omics' approaches have been applied to farmed flatfishes to increment the genomic resources available. These tools are beginning to identify genetic markers associated with traits of commercial interest, and to unravel the molecular basis of different physiological processes. This article summarizes recent advances in flatfish genomics research in Europe. We focus on the new generation sequencing technologies, which can produce a massive amount of DNA sequencing data, and discuss their potentials and applications for de novo genome sequencing and transcriptome analysis. The relevance of these methods in nutrigenomics and foodomics approaches for the production of healthy animals, as well as high quality and safety products for the consumer, is also briefly discussed.

  12. Scalability of Comparative Analysis, Novel Algorithms and Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Mavrommatis, Kostas [JGI

    2016-07-12

    DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Dehal, Paramvir [LBNL

    2016-07-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  14. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Simpson, Jared [Wellcome Trust Sanger Institute

    2016-07-12

    Wellcome Trust Sanger Institute's Jared Simpson on "Memory efficient sequence analysis using compressed data structures" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  15. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on "Memory efficient sequence analysis using compressed data structures" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  16. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Kyrpides, Nikos [DOE JGI

    2016-07-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  18. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Kyrpides, Nikos

    2011-10-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  19. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  20. Advances in health informatics education: educating students at the intersection of health care and information technology.

    PubMed

    Kushniruk, Andre; Borycki, Elizabeth; Armstrong, Brian; Kuo, Mu-Hsing

    2012-01-01

    The paper describes the authors' work in the area of health informatics (HI) education involving emerging health information technologies. A range of information technologies promise to modernize health care. Foremost among these are electronic health records (EHRs), which are expected to significantly improve and streamline health care practice. Major national and international efforts are currently underway to increase EHR adoption. However, there have been numerous issues affecting the widespread use of such information technology, ranging from a complex array of technical problems to social issues. This paper describes work in the integration of information technologies directly into the education and training of HI students at both the undergraduate and graduate level. This has included work in (a) the development of Web-based computer tools and platforms to allow students to have hands-on access to the latest technologies and (b) development of interdisciplinary educational models that can be used to guide integrating information technologies into HI education. The paper describes approaches that allow for remote hands-on access by HI students to a range of EHRs and related technology. To date, this work has been applied in HI education in a variety of ways. Several approaches for integration of this essential technology into HI education and training are discussed, along with future directions for the integration of EHR technology into improving and informing the education of future health and HI professionals.

  1. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  2. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  3. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  4. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  5. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Canon, Shane [LBNL

    2016-07-12

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Health informatics.

    PubMed

    Imhoff, M; Webb, A; Goldschmidt, A

    2001-01-01

    Health informatics is the development and assessment of methods and systems for the acquisition, processing and interpretation of patient data with the help of knowledge from scientific research. This definition implies that health informatics is not tied to the application of computers but more generally to the entire management of information in healthcare. The focus is the patient and the process of care. The apparent information overload and the imperfection of medical decision making motivate the use of information systems for medical decision support. Health informatics provides tools to control processes in healthcare, acquire medical knowledge and communicate information between all people and organisations involved with healthcare. Although the development of medical information systems may often lag behind the available possibilities, the technological state of the current medical information systems is better than it is generally held to be. Health informatics should help healthcare professionals to provide better and more cost-effective care and enable healthcare systems to be more efficient and to adapt better to our patients' needs. Health informatics may reshape the way we deliver care to meet the demands of the future.

  7. Informatics and the clinical laboratory.

    PubMed

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  8. Advancing Crop Transformation in the Era of Genome Editing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to...

  9. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  10. Advances in Miniaturized Instruments for Genomics

    PubMed Central

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  11. The Human Genome Project, and recent advances in personalized genomics.

    PubMed

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of "personalized medicine" and "personal genomics" has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the "technological imperative", due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding.

  12. The Human Genome Project, and recent advances in personalized genomics

    PubMed Central

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient’s health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. PMID:25733939

  13. Recent advances in malaria genomics and epigenomics.

    PubMed

    Kirchner, Sebastian; Power, B Joanne; Waters, Andrew P

    2016-01-01

    Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines. PMID:27605022

  14. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  15. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  16. Technological advances and genomics in metazoan parasites.

    PubMed

    Knox, D P

    2004-02-01

    Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.

  17. Advances in Faba Bean Genetics and Genomics.

    PubMed

    O'Sullivan, Donal M; Angra, Deepti

    2016-01-01

    Vicia faba L, is a globally important grain legume whose main centers of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six) of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favored plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea. However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fueled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP) markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990's and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are discussed. The

  18. Advances in Faba Bean Genetics and Genomics

    PubMed Central

    O'Sullivan, Donal M.; Angra, Deepti

    2016-01-01

    Vicia faba L, is a globally important grain legume whose main centers of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six) of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favored plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea. However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fueled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP) markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990's and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are discussed. The

  19. Advances in Faba Bean Genetics and Genomics

    PubMed Central

    O'Sullivan, Donal M.; Angra, Deepti

    2016-01-01

    Vicia faba L, is a globally important grain legume whose main centers of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six) of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favored plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea. However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fueled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP) markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990's and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are discussed. The

  20. Genome Mapping in Plant Comparative Genomics.

    PubMed

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  1. Advances in biotechnology and genomics of switchgrass

    PubMed Central

    2013-01-01

    Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock. PMID:23663491

  2. Advances in exercise, fitness, and performance genomics.

    PubMed

    Rankinen, Tuomo; Roth, Stephen M; Bray, Molly S; Loos, Ruth; Pérusse, Louis; Wolfarth, Bernd; Hagberg, James M; Bouchard, Claude

    2010-05-01

    An annual review publication of the most significant articles in exercise, fitness, and performance genomics begins with this article, which covers 2 yr, 2008 and 2009. The review emphasizes the strongest articles as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. With this avowed focus on the highest quality articles, only a small number of published articles are reviewed. Among the most significant findings reported here are a brief overview of the first genome-wide association study of the genetic differences between exercisers and nonexercisers. In addition, the latest results on the actinin alpha 3 (ACTN3) R577X nonsense polymorphism are reviewed, emphasizing that no definitive conclusion can be reached at this time. Recent studies that have dealt with mitochondrial DNA haplogroups and endurance performance are described. Published reports indicating that physical activity may attenuate the effect of the fat mass and obesity associated (FTO) gene risk allele on body mass index are reviewed. Articles that have tested the contributions of specific genes to the response of glucose and insulin metabolism traits to regular exercise or physical activity level are considered and found to be generally inconclusive at this stage. Studies examining ethnic differences in the response of blood lipids and lipoproteins to exercise training cannot unequivocally relate these to apolipoprotein E (APOE) genotypes. Hemodynamic changes with exercise training were reported to be associated to sequence variation in kinesin heavy chain (KIF5B), but no replication study is available as of yet. We conclude from this first installment that exercise scientists need to prioritize high-quality research designs and that replication studies with large sample sizes are urgently needed.

  3. Biodiversity informatics.

    PubMed

    Johnson, Norman F

    2007-01-01

    Biodiversity informatics is an emerging field that applies information management tools to the management and analysis of species-occurrence, taxonomic character, and image data. A wide and growing range of tools is available for both curators and researchers. The development and implementation of formal data exchange standards and query protocols have made it possible to integrate data holdings from collections around the world. The current technological environment is summarized; protocols, standards, and tools for data management, sharing, and integration are reviewed; and methods and tools for analyzing species-occurrence and character data are examined. Direct access to primary data and imagery has the power to transform the means by which taxonomy is practiced and its results disseminated to the general community.

  4. Advances in genomics for the improvement of quality in coffee.

    PubMed

    Tran, Hue Tm; Lee, L Slade; Furtado, Agnelo; Smyth, Heather; Henry, Robert J

    2016-08-01

    Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry. PMID:26919810

  5. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong [San Diego Supercomputer Center

    2016-07-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Hugenholtz, Phil [University of Queensland

    2016-07-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sakakibara, Yasumbumi [Keio University

    2016-07-12

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Li, Weizhong

    2011-10-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  9. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Hugenholtz, Phil

    2011-10-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  11. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.

  12. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  13. Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine

    NASA Astrophysics Data System (ADS)

    Vizirianakis, Ioannis S.; Amanatiadou, Elsa P.

    The target of personalized medicine to achieve major benefits for all patients in terms of diagnosis and drug delivery can be facilitated by creating a sincere multidisciplinary information-based infrastructure in health care. To this end, nanotechnology, pharmacogenomics, and informatics can advance the utility of personalized medicine, enable clinical translation of genomic knowledge, empower healthcare environment, and finally improve clinical outcomes.

  14. Integrating Informatics Content into the Nursing Curriculum.

    PubMed

    Weiner, Elizabeth; Trangenstein, Patricia; Gordon, Jeffry; McNew, Ryan

    2016-01-01

    Contemporary nursing curricula require that nursing informatics content be integrated across the various levels of the programs that are offered. Many such programs face national accreditation requirements that typically relate more to technology than to informatics. International standards vary in these requirements. How can nursing programs meet these vastly different criteria yet continue to level informatics content that follows quality curriculum standards? This presentation describes one approach across programs that considers already developed competencies in nursing informatics while also taking into consideration the various roles that the graduates will have to assume in advanced practice nursing roles. Levels discussed include the baccalaureate, master's, doctorate in nursing practice, and the traditional Doctor of Philosophy degrees. PMID:27332211

  15. Beyond fruit-flies: population genomic advances in non-Drosophila arthropods.

    PubMed

    Hasselmann, Martin; Ferretti, Luca; Zayed, Amro

    2015-11-01

    Understanding the evolutionary processes driving the adaptive differentiation of populations is of broad interest in biology. Genome-wide nucleotide polymorphisms provide the basis for population genetic studies powered by advances in high-throughput sequencing technologies. These advances have led to an extension of genome projects to a variety of non-genetic model organisms, broadening our view on the evolution of gene families and taxonomic-restricted novelties. Here, we review the progress of genome projects in non-Drosophila arthropods, focusing on advances in the analysis of large-scale polymorphism data and functional genomics and examples of population genomic studies.

  16. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  17. An Analysis of Educational Informatization Level of Students, Teachers, and Parents: In Korea

    ERIC Educational Resources Information Center

    Kim, JaMee; Lee, WonGyu

    2011-01-01

    Korea is recognized as one of the most advanced countries in terms of informatization. The development of informatization has impacted education, and education informatization has contributed to the improvement of teaching in the classroom. Accordingly, education informatiozation is one of the paramount pedagogical issues in South Korea. This…

  18. Consumer Health Informatics: Health Information Technology for Consumers.

    ERIC Educational Resources Information Center

    Jimison, Holly Brugge; Sher, Paul Phillip

    1995-01-01

    Explains consumer health informatics and describes the technology advances, the computer programs that are currently available, and the basic research that addresses both the effectiveness of computer health informatics and its impact on the future direction of health care. Highlights include commercial computer products for consumers and…

  19. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  20. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas [Bigelow Laboratory

    2016-07-12

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Copeland, Alex [DOE JGI; Brown, C Titus [Michigan State University

    2016-07-12

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  2. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Copeland, Alex; Brown, C Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Nursing informatics: the future now.

    PubMed

    Mamta

    2014-01-01

    Technological advancements in the health care field have always impacted the health care practices. Nursing practice has also been greatly influenced by the technology. In the recent years, use of information technology including computers, handheld digital devices, internet has advanced the nursing by bridging the gap from nursing as an art to nursing as science. In every sphere of nursing practice, nursing research, nursing education and nursing informatics play a very important role. If used properly it is a way to save time, helping to provide quality nursing care and increases the proficiency of nursing personnel. PMID:25924417

  5. Advances in exercise, fitness, and performance genomics in 2012.

    PubMed

    Pérusse, Louis; Rankinen, Tuomo; Hagberg, James M; Loos, Ruth J F; Roth, Stephen M; Sarzynski, Mark A; Wolfarth, Bernd; Bouchard, Claude

    2013-05-01

    A small number of excellent articles on exercise genomics issues were published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. The serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the Encyclopedia of DNA Elements project.

  6. Prospects for advancing defense to cereal rusts through genetical genomics.

    PubMed

    Ballini, Elsa; Lauter, Nick; Wise, Roger

    2013-01-01

    Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.

  7. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  8. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  9. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  10. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    PubMed

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  11. The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment

    PubMed Central

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  12. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  13. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel

    2016-07-12

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  14. Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification

    NASA Astrophysics Data System (ADS)

    Mulholland, Gregory J.; Paradiso, Sean P.

    2016-05-01

    The process of taking a new material from invention to deployment can take 20 years or more. Since the announcement of the Materials Genome Initiative in 2011, new attention has been paid to accelerating this timeframe to address key challenges in industries from energy, to biomedical materials, to catalysis, to polymers, particularly in the development of new materials discovery techniques. Materials informatics, or algorithmically analyzing materials data at scale to gain novel insight, has been lauded as a path forward in this regard. An equal challenge to discovery, however, is the acceleration from discovery to market. In this paper, we address application of an informatics approach to materials selection, manufacturing, and qualification and identify key opportunities and challenges in each of these areas with a focus on reducing time to market for new advanced materials technologies.

  15. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  16. Chapter 17: bioimage informatics for systems pharmacology.

    PubMed

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T C

    2013-04-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  17. Chapter 17: Bioimage Informatics for Systems Pharmacology

    PubMed Central

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T. C.

    2013-01-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies. PMID:23633943

  18. Investigating Informatics Activity, Control, and Training Needs in Large, Medium, and Small Health Departments

    PubMed Central

    Arnold, Ryan; Yang, Biru

    2016-01-01

    Introduction: A recent National Association of City & County Health Officials survey shed light on informatics workforce development needs. Local health departments (LHDs) of various jurisdictional sizes and control over informatics may differ on training needs and activity. Understanding the precise nature of this variation will allow stakeholders to appropriately develop workforce development tools to advance the field. Objective: To understand the informatics training needs for LHDs of different jurisdictional sizes. Methods: Survey responses were analyzed by comparing training needs and LHD population size. Results: Larger health departments consistently reported having greater informatics-related capacity and informatics-related training needs. Quantitative data analysis was identified as a primary need for large LHDs. In addition, LHDs that report higher control of informatics/information technology were able to engage in more informatics activities. Conclusion: Smaller LHDs need additional resources to improve informatics-related capacity and engagement with the field. PMID:27684621

  19. Origins of Medical Informatics

    PubMed Central

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in the 1960s and medical informatics was identified as a new specialty in the 1970s. PMID:3544507

  20. High throughput screening informatics.

    PubMed

    Ling, Xuefeng Bruce

    2008-03-01

    High throughput screening (HTS), an industrial effort to leverage developments in the areas of modern robotics, data analysis and control software, liquid handling devices, and sensitive detectors, has played a pivotal role in the drug discovery process, allowing researchers to efficiently screen millions of compounds to identify tractable small molecule modulators of a given biological process or disease state and advance them into high quality leads. As HTS throughput has significantly increased the volume, complexity, and information content of datasets, lead discovery research demands a clear corporate strategy for scientific computing and subsequent establishment of robust enterprise-wide (usually global) informatics platforms, which enable complicated HTS work flows, facilitate HTS data mining, and drive effective decision-making. The purpose of this review is, from the data analysis and handling perspective, to examine key elements in HTS operations and some essential data-related activities supporting or interfacing the screening process, and outline properties that various enabling software should have. Additionally, some general advice for corporate managers with system procurement responsibilities is offered.

  1. Clinical informatics sub-specialty board certification.

    PubMed

    Lehmann, Christoph U; Shorte, Vanessa; Gundlapalli, Adi V

    2013-11-01

    Increased funding for health information technology and the advance of electronic health records in hospitals and practices have created the need for a new specialist: the clinical informatician. Clinical informatics was recognized in 2011 as the latest subspecialty in medicine by the American Board of Medical Specialties. This article reviews the need for this new specialty as well as the steps necessary for its creation. The content and training requirements for clinical informatics are discussed as well as eligibility criteria for taking the board examination. Training programs as well as board preparation are addressed along with the expected impact that this new field will have on the practice of medicine.

  2. Discoveries and advances in plant and animal genomics.

    PubMed

    Appels, Rudi; Nystrom, Johan; Webster, Hollie; Keeble-Gagnere, Gabriel

    2015-03-01

    Plant and animal genomics is a broad area of research with respect to the biological issues covered because it continues to deal with the structure and function of genetic material underpinning all organisms. This mini-review utilizes the plenary lectures from the Plant and Animal Genome Conference as a basis for summarizing the trends in the genome-level studies of organisms.

  3. Informatics at the National Institues of Health

    PubMed Central

    Hendee, William R.

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information science, and computer science undergirding biomedical informatics, engineering, and imaging. This investment should be made primarily through the National Institutes of Health (NIH). However, the NIH is not structured to support such disciplines as biomedical informatics, engineering, and imaging that cross boundaries between disease- and organ-oriented institutes. The solution to this dilemma is the creation of a new institute or center at the NIH devoted to biomedical imaging, engineering, and informatics. Bills are being introduced into the 106th Congress to authorize such an entity. The pathway is long and arduous, from the introduction of bills in the House and Senate to the realization of new opportunities for biomedical informatics, engineering, and imaging at the NIH. There are many opportunities for medical informaticians to contribute to this realization. PMID:10428000

  4. Lost and found in behavioral informatics.

    PubMed

    Haendel, Melissa A; Chesler, Elissa J

    2012-01-01

    From early anatomical lesion studies to the molecular and cellular methods of today, a wealth of technologies have provided increasingly sophisticated strategies for identifying and characterizing the biological basis of behaviors. Bioinformatics is a growing discipline that has emerged from the practical needs of modern biology, and the history of systematics and ontology in data integration and scientific knowledge construction. This revolution in biology has resulted in a capability to couple the rich molecular, anatomical, and psychological assays with advances in data dissemination and integration. However, behavioral science poses unique challenges for biology and medicine, and many unique resources have been developed to take advantage of the strategies and technologies of an informatics approach. The collective developments of this diverse and interdisciplinary field span the fundamentals of database development and data integration, ontology development, text mining, genetics, genomics, high-throughput analytics, image analysis and archiving, and numerous others. For the behavioral sciences, this provides a fundamental shift in our ability to associate and dissociate behavioral processes and relate biological and behavioral entities, thereby pinpointing the biological basis of behavior.

  5. Nursing Informatics Pioneers Continue to Influence the Profession: A Sustainable Impact.

    PubMed

    Newbold, Susan K; Brixey, Juliana J

    2016-01-01

    The American Medical Informatics Association (AMIA) established the Nursing Informatics History Project to recognize the pioneers of nursing informatics. Fundamental to the pioneers was dissemination of knowledge. The purpose of this review was to identify contributions to the field of nursing informatics as peer-reviewed manuscripts for the years 2010-2015 and indexed in PubMed. Results indicate that many of the pioneers continue to have manuscripts indexed in PubMed. It is anticipated this project will be extended to identify other types of contributions made by the pioneers in the advancement of nursing informatics.

  6. [Technological advances in single-cell genomic analyses].

    PubMed

    Pan, Xing-Hua; Zhu, Hai-Ying; Marjani, Sadie L

    2011-01-01

    The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.

  7. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  8. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  9. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  10. Pathology informatics fellowship training: Focus on molecular pathology

    PubMed Central

    Mandelker, Diana; Lee, Roy E.; Platt, Mia Y.; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K. F.; Klepeis, Veronica E.; Mahowald, Michael; Lane, William J.; Beckwith, Bruce A.; Baron, Jason M.; McClintock, David S.; Kuo, Frank C.; Lebo, Matthew S.; Gilbertson, John R.

    2014-01-01

    Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists. PMID:24843823

  11. What Is Primary Care Informatics?

    PubMed Central

    de Lusignan, Simon

    2003-01-01

    Primary care informatics is an emerging academic discipline that remains undefined. The unique nature of primary care necessitates the development of its own informatics discipline. A definition of primary care informatics is proposed, which encompasses the distinctive nature of primary care. The core concepts and theory that should underpin it are described. Primary care informatics is defined as a science and as a subset of health informatics. The proposed definition is intended to focus the development of a generalizable core theory for this informatics subspecialty. PMID:12668690

  12. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  13. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  14. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  15. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-01

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens

  16. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-01

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens

  17. Recent advances in genome-based polyketide discovery.

    PubMed

    Helfrich, Eric J N; Reiter, Silke; Piel, Jörn

    2014-10-01

    Polyketides are extraordinarily diverse secondary metabolites of great pharmacological value and with interesting ecological functions. The post-genomics era has led to fundamental changes in natural product research by inverting the workflow of secondary metabolite discovery. As opposed to traditional bioactivity-guided screenings, genome mining is an in silico method to screen and analyze sequenced genomes for natural product biosynthetic gene clusters. Since genes for known compounds can be recognized at the early computational stage, genome mining presents an opportunity for dereplication. This review highlights recent progress in bioinformatics, pathway engineering and chemical analytics to extract the biosynthetic secrets hidden in the genome of both well-known natural product sources as well as previously neglected bacteria.

  18. Whole genome amplification - Review of applications and advances

    SciTech Connect

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  19. Recent advances in genomics and transcriptomics of cnidarians.

    PubMed

    Technau, Ulrich; Schwaiger, Michaela

    2015-12-01

    The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago. PMID:26421490

  20. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  1. Emerging technologies advancing forage and turf grass genomics.

    PubMed

    Kopecký, David; Studer, Bruno

    2014-01-01

    Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications. PMID:24309540

  2. Emerging technologies advancing forage and turf grass genomics.

    PubMed

    Kopecký, David; Studer, Bruno

    2014-01-01

    Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications.

  3. Advances in European sea bass genomics and future perspectives.

    PubMed

    Louro, Bruno; Power, Deborah M; Canario, Adelino V M

    2014-12-01

    Only recently available sequenced and annotated teleost fish genomes were restricted to a few model species, none of which were for aquaculture. The application of marker assisted selection for improved production traits had been largely restricted to the salmon industry and genetic and Quantitative Trait Loci (QTL) maps were available for only a few species. With the advent of next generation sequencing the landscape is rapidly changing and today the genomes of several aquaculture species have been sequenced. The European sea bass, Dicentrarchus labrax, is a good example of a commercially important aquaculture species in Europe for which in the last decade a wealth of genomic resources, including a chromosomal scale genome assembly, physical and linkage maps as well as relevant QTL have been generated. The current challenge is to stimulate the uptake of the resources by the industry so that the full potential of this scientific endeavor can be exploited and produce benefits for producers and the public alike.

  4. Recent advances in microbial single cell genomics technology and applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2015-12-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. I will present several new developments of this exciting technology, which improve genomic data recovery from individual cells and allow its integration with cell's phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the biology of the "microbial dark matter" inhabiting marine and terrestrial subsurface environments.

  5. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  6. Informatics in Infection Control.

    PubMed

    Lin, Michael Y; Trick, William E

    2016-09-01

    Informatics tools are becoming integral to routine infection control activities. Informatics has the potential to improve infection control outcomes in surveillance, prevention, and connections with public health. Surveillance activities include fully or semiautomated surveillance of infections, surveillance of device use, and hospital/ward outbreak investigation. Prevention activities include awareness of multidrug-resistant organism carriage on admission, enhanced interfacility communication, identifying inappropriate infection precautions, reducing device use, and antimicrobial stewardship. Public health activities include electronic communicable disease reporting, syndromic surveillance, and regional outbreak detection. The challenge for infection control personnel is in translating the knowledge gained from electronic surveillance systems into action.

  7. Advancing Genomic Research and Reducing Health Disparities: What Can Nurse Scholars Do?

    PubMed Central

    Jaja, Cheedy; Gibson, Robert; Quarles, Shirley

    2012-01-01

    Purpose Advances in genomic research are improving our understanding of human diseases and evoking promise of an era of genomic medicine. It is unclear whether genomic medicine may exacerbate or attenuate extant racial group health disparities. We delineate how nurse scholars could engage in the configuration of an equitable genomic medicine paradigm. Organizing Construct We identify as legitimate subjects for nursing scholarship the scientific relevance, ethical, and public policy implications for employing racial categories in genomic research in the context of reducing extant health disparities. Findings Since genomic research is largely population specific, current classification of genomic data will center on racial and ethnic groups. Nurse scholars should be involved in clarifying how putative racial group differences should be elucidated in light of the current orthodoxy that genomic solutions may alleviate racial health disparities. Conclusions Nurse scholars are capable of employing their expertise in concept analysis to elucidate how race is used as a variable in scientific research, and to use knowledge brokering to delineate how race variables that imply human ancestry could be utilized in genomic research pragmatically in the context of health disparities. Clinical Relevance In an era of genomic medicine, nurse scholars should recognize and understand the challenges and complexities of genomics and race and their relevance to health care and health disparities. PMID:23452096

  8. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  9. The life aquatic: advances in marine vertebrate genomics.

    PubMed

    Kelley, Joanna L; Brown, Anthony P; Therkildsen, Nina Overgaard; Foote, Andrew D

    2016-07-01

    The ocean is hypothesized to be where life on earth originated, and subsequent evolutionary transitions between marine and terrestrial environments have been key events in the origin of contemporary biodiversity. Here, we review how comparative genomic approaches are an increasingly important aspect of understanding evolutionary processes, such as physiological and morphological adaptation to the diverse habitats within the marine environment. In addition, we highlight how population genomics has provided unprecedented resolution for population structuring, speciation and adaptation in marine environments, which can have a low cost of dispersal and few physical barriers to gene flow, and can thus support large populations. Building upon this work, we outline the applications of genomics tools to conservation and their relevance to assessing the wide-ranging impact of fisheries and climate change on marine species. PMID:27376488

  10. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports.

  11. Advances in Exercise, Fitness, and Performance Genomics in 2015.

    PubMed

    Sarzynski, Mark A; Loos, Ruth J F; Lucia, Alejandro; Pérusse, Louis; Roth, Stephen M; Wolfarth, Bernd; Rankinen, Tuomo; Bouchard, Claude

    2016-10-01

    This review of the exercise genomics literature encompasses the highest-quality articles published in 2015 across seven broad topics: physical activity behavior, muscular strength and power, cardiorespiratory fitness and endurance performance, body weight and adiposity, insulin and glucose metabolism, lipid and lipoprotein metabolism, and hemodynamic traits. One study used a quantitative trait locus for wheel running in mice to identify single nucleotide polymorphisms (SNPs) in humans associated with physical activity levels. Two studies examined the association of candidate gene ACTN3 R577X genotype on muscular performance. Several studies examined gene-physical activity interactions on cardiometabolic traits. One study showed that physical inactivity exacerbated the body mass index (BMI)-increasing effect of an FTO SNP but only in individuals of European ancestry, whereas another showed that high-density lipoprotein cholesterol (HDL-C) SNPs from genome-wide association studies exerted a smaller effect in active individuals. Increased levels of moderate-to-vigorous-intensity physical activity were associated with higher Matsuda insulin sensitivity index in PPARG Ala12 carriers but not Pro12 homozygotes. One study combined genome-wide and transcriptome-wide profiling to identify genes and SNPs associated with the response of triglycerides (TG) to exercise training. The genome-wide association study results showed that four SNPs accounted for all of the heritability of △TG, whereas the baseline expression of 11 genes predicted 27% of △TG. A composite SNP score based on the top eight SNPs derived from the genomic and transcriptomic analyses was the strongest predictor of ΔTG, explaining 14% of the variance. The review concludes with a discussion of a conceptual framework defining some of the critical conditions for exercise genomics studies and highlights the importance of the recently launched National Institutes of Health Common Fund program titled "Molecular

  12. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  13. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  14. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  15. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  16. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  17. Advances in exercise, fitness, and performance genomics in 2011.

    PubMed

    Roth, Stephen M; Rankinen, Tuomo; Hagberg, James M; Loos, Ruth J F; Pérusse, Louis; Sarzynski, Mark A; Wolfarth, Bernd; Bouchard, Claude

    2012-05-01

    This review of the exercise genomics literature emphasizes the highest quality articles published in 2011. Given this emphasis on the best publications, only a small number of published articles are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared with controls. A two-stage fine-mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVRIB) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study reports, on HDL cholesterol. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but also have a major effect on exercise biology and exercise behavior research.

  18. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  19. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  20. Advances in mRNA Silencing and Transgene Expression: a Gateway to Functional Genomics in Schistosomes

    PubMed Central

    Tchoubrieva, Elissaveta B.; Kalinna, Bernd H.

    2013-01-01

    The completion of the WHO Schistosoma Genome Project in 2008, although not fully annotated, provides a golden opportunity to actively pursue fundamental research on the parasites genome. This analysis will aid identification of targets for drugs, vaccines and markers for diagnostic tools as well as for studying the biological basis of drug resistance, infectivity and pathology. For the validation of drug and vaccine targets, the genomic sequence data is only of use if functional analyses can be conducted (in the parasite itself). Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing and rapid advances have been made in gene silencing and transgenesis of schistosomes. PMID:21415884

  1. Operationalizing the TANIC and NICA-L3/L4 Tools to Improve Informatics Competencies.

    PubMed

    Sipes, Carolyn; McGonigle, Dee; Hunter, Kathy; Hebda, Toni; Hill, Taryn; Lamblin, Jean

    2016-01-01

    Two tools were developed for nurses to self-assess different levels of informatics competencies. The TANIC is used for all nurses to self-assess; the NICA-L3/L4 is a tool for the informatics nurse specialist (INS) to self-assess skill levels. There are 167 informatics items in the TANIC and 178 advanced informatics items in the NICA-L3/L4. These tools were piloted; the results presented here. Based on the evaluation, the tools have been integrated into informatics courses at the BSN and MSN programs at Chamberlain College of Nursing, and presented in two AACN webinars and other national conferences. Numerous requests have been honored to provide the tools for other schools of nursing to use in their courses, including DNP programs. Other requests include those from CNIOs and managers to include in their job descriptions for informatics nurses. PMID:27332209

  2. What is health informatics?

    PubMed

    Sullivan, F

    2001-10-01

    Health informatics is a relatively recent jargon term for a subject that may be of great interest to health services researchers and policy makers. Most countries with highly developed health systems are investing heavily in computer hardware and software in the expectation of higher quality for lower costs. Recent systematic reviews have indeed demonstrated the health benefits of a range of electronic tools, particularly in the areas of prevention and therapeutic monitoring. However, there remains a relative lack of published evaluations of informatics tools and methods. Uncritical adoption of new systems based on the pressures of technological push continue to discredit policy makers who have had to commit significant resources despite inadequate information on what can be realistically expected from a proposed system. There are great opportunities for researchers interested in evaluation to fill the vacuum left by informaticists who are too busy writing their next line of code.

  3. Biomedical informatics: changing what physicians need to know and how they learn.

    PubMed

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  4. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    PubMed Central

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  5. Advances in Exercise, Fitness, and Performance Genomics in 2014

    PubMed Central

    Loos, Ruth J. F.; Hagberg, James M.; Pérusse, Louis; Roth, Stephen M.; Sarzynski, Mark A.; Wolfarth, Bernd; Rankinen, Tuomo; Bouchard, Claude

    2015-01-01

    This is the annual review of the exercise genomics literature in which we report on the highest quality papers published in 2014. We identified a number of noteworthy papers across a number of fields. In 70 to 89 years old, only 19% of ACE II homozygotes exhibited significant improvement in gait speed in response to a year-long physical activity program compared to 30% of ACE D-allele carriers. New studies continue to support the notion that the genetic susceptibility to obesity, as evidenced by a genomic risk score (GRS; based on multiple SNPs), is attenuated by 40-50% in individuals who are physically active, compare to those who are sedentary. One study reported that the polygenic risk for hypertriglyceridemia was reduced by 30-40% in individuals with high cardiorespiratory fitness. One report showed that there was a significant interaction of a type 2 diabetes GRS with physical activity, with active individuals having the lowest risk of developing diabetes. The protective effect of was most pronounced in the low GRS tertile (HR=0.82). The interaction observed with the diabetes GRS appeared to be dependent on a genetic susceptibility to insulin resistance and not insulin secretion. A significant interaction between PPARα sequence variants and physical activity levels on cardiometabolic risk was observed, with higher activity levels associated with lower risk only in carriers of specific genotypes and haplotypes. The review concludes with a discussion of the importance of replication studies when very large population or intervention discovery studies are not feasible or are cost prohibitive. PMID:25706296

  6. Advances in exercise, fitness, and performance genomics in 2014.

    PubMed

    Loos, Ruth J F; Hagberg, James M; Pérusse, Louis; Roth, Stephen M; Sarzynski, Mark A; Wolfarth, Bernd; Rankinen, Tuomo; Bouchard, Claude

    2015-06-01

    This is the annual review of the exercise genomics literature in which we report on the highest quality papers published in 2014. We identified a number of noteworthy papers across a number of fields. In 70-89 yr olds, only 19% of angiotensin-converting enzyme (ACE) II homozygotes exhibited significant improvement in gait speed in response to a yearlong physical activity program compared to 30% of ACE D-allele carriers. New studies continue to support the notion that the genetic susceptibility to obesity, as evidenced by a genomic risk score (GRS; based on multiple single nucleotide polymorphisms), is attenuated by 40%-50% in individuals who are physically active, compared to those who are sedentary. One study reported that the polygenic risk for hypertriglyceridemia was reduced by 30%-40% in individuals with high cardiorespiratory fitness. One report showed that there was a significant interaction of a type 2 diabetes GRS with physical activity, with active individuals having the lowest risk of developing diabetes. The protective effect of physical activity was most pronounced in the low GRS tertile (hazard ratio, 0.82). The interaction observed with the diabetes GRS seemed to be dependent on a genetic susceptibility to insulin resistance and not insulin secretion. A significant interaction between PPARα sequence variants and physical activity levels on cardiometabolic risk was observed, with higher activity levels associated with lower risk only in carriers of specific genotypes and haplotypes. The review concludes with a discussion of the importance of replication studies when very large population or intervention discovery studies are not feasible or are cost prohibitive. PMID:25706296

  7. Recent advances in the prenatal interrogation of the human fetal genome.

    PubMed

    Hui, Lisa; Bianchi, Diana W

    2013-02-01

    The amount of genetic and genomic information obtainable from the human fetus during pregnancy is accelerating at an unprecedented rate. Two themes have dominated recent technological advances in prenatal diagnosis: interrogation of the fetal genome in increasingly high resolution and the development of non-invasive methods of fetal testing using cell-free DNA in maternal plasma. These two areas of advancement have now converged with several recent reports of non-invasive assessment of the entire fetal genome from maternal blood. However, technological progress is outpacing the ability of the healthcare providers and patients to incorporate these new tests into existing clinical care, and further complicates many of the economic and ethical dilemmas in prenatal diagnosis. This review summarizes recent work in this field and discusses the integration of these new technologies into the clinic and society.

  8. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.

    PubMed

    Siggens, L; Ekwall, K

    2014-09-01

    The organization of the genome into functional units, such as enhancers and active or repressed promoters, is associated with distinct patterns of DNA and histone modifications. The Encyclopedia of DNA Elements (ENCODE) project has advanced our understanding of the principles of genome, epigenome and chromatin organization, identifying hundreds of thousands of potential regulatory regions and transcription factor binding sites. Part of the ENCODE consortium, GENCODE, has annotated the human genome with novel transcripts including new noncoding RNAs and pseudogenes, highlighting transcriptional complexity. Many disease variants identified in genome-wide association studies are located within putative enhancer regions defined by the ENCODE project. Understanding the principles of chromatin and epigenome organization will help to identify new disease mechanisms, biomarkers and drug targets, particularly as ongoing epigenome mapping projects generate data for primary human cell types that play important roles in disease.

  9. Harnessing genomics and genome biology to understand malaria biology.

    PubMed

    Volkman, Sarah K; Neafsey, Daniel E; Schaffner, Stephen F; Park, Daniel J; Wirth, Dyann F

    2012-05-01

    Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.

  10. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome.

    PubMed

    Riesco-Eizaguirre, Garcilaso; Santisteban, Pilar

    2016-11-01

    Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies.

  11. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome.

    PubMed

    Riesco-Eizaguirre, Garcilaso; Santisteban, Pilar

    2016-11-01

    Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies. PMID:27666535

  12. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  13. The 2005 Australian Informatics Competition

    ERIC Educational Resources Information Center

    Clark, David

    2006-01-01

    This article describes the Australian Informatics Competition (AIC), a non-programming competition aimed at identifying students with potential in programming and algorithmic design. It is the first step in identifying students to represent Australia at the International Olympiad in Informatics. The main aim of the AIC is to increase awareness of…

  14. Training Residents in Medical Informatics.

    ERIC Educational Resources Information Center

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  15. Advances in exercise, fitness, and performance genomics in 2010.

    PubMed

    Hagberg, James M; Rankinen, Tuomo; Loos, Ruth J F; Pérusse, Louis; Roth, Stephen M; Wolfarth, Bernd; Bouchard, Claude

    2011-05-01

    This review of the exercise genomics literature emphasizes the strongest articles published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin-converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the V˙O2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits are known to influence physical activity behavior. However, physical activity seems to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity after exposure to regular exercise. SNPs in the cAMP-responsive element binding position 1 (CREB1) gene were associated with training-induced HR response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed.

  16. Functional genomics of seed dormancy in wheat: advances and prospects

    PubMed Central

    Gao, Feng; Ayele, Belay T.

    2014-01-01

    Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur prior to harvest. As it causes substantial loss in grain yield and quality, preharvest sprouting is an ever-present major constraint to the production of wheat. The significance of the problem emphasizes the need to incorporate an intermediate level of dormancy into elite wheat cultivars, and this requires detailed dissection of the mechanisms underlying the regulation of seed dormancy and preharvest sprouting. Seed dormancy research in wheat often involves after-ripening, a period of dry storage during which seeds lose dormancy, or comparative analysis of seeds derived from dormant and non-dormant cultivars. The increasing development in wheat genomic resources along with the application of transcriptomics, proteomics, and metabolomics approaches in studying wheat seed dormancy have extended our knowledge of the mechanisms acting at transcriptional and post-transcriptional levels. Recent progresses indicate that some of the molecular mechanisms are associated with hormonal pathways, epigenetic regulations, targeted oxidative modifications of seed mRNAs and proteins, redox regulation of seed protein thiols, and modulation of translational activities. Given that preharvest sprouting is closely associated with seed dormancy, these findings will significantly contribute to the designing of efficient strategies for breeding preharvest sprouting tolerant wheat. PMID:25309557

  17. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.

  18. Informatics applied to cytology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2008-01-01

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory. PMID:19495402

  19. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    PubMed Central

    Kim, Ji Yeon; Gudewicz, Thomas M.; Dighe, Anand S.; Gilbertson, John R.

    2010-01-01

    Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the “pathology informatics curriculum wiki”, an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki. PMID:20805963

  20. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data.

  1. Recent advances in genome mining of secondary metabolites in Aspergillus terreus

    PubMed Central

    Guo, Chun-Jun; Wang, Clay C. C.

    2014-01-01

    Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of interesting biological activities. Recent advances in genome sequencing and techniques in genetic manipulation have enabled researchers to study the biosynthetic genes of these SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and territram, with interesting bioactivities. This review will cover recent progress in genome mining of SMs identified in this fungus. The identification and characterization of the gene cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed in depth. PMID:25566227

  2. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    PubMed Central

    Delmont, Tom O.

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes. PMID:27069789

  3. Bioimage Informatics for Big Data.

    PubMed

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment. PMID:27207370

  4. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.

    PubMed

    Ceasar, S Antony; Rajan, Vinothkumar; Prykhozhij, Sergey V; Berman, Jason N; Ignacimuthu, S

    2016-09-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology. PMID:27350235

  5. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer

    PubMed Central

    Du, Meijun; Dittmar, Rachel L.; Lee, Adam; Nandy, Debashis; Yuan, Tiezheng; Guo, Yongchen; Wang, Yuan; Tschannen, Michael R.; Worthey, Elizabeth; Jacob, Howard; See, William; Kilari, Deepak; Wang, Xuexia; Hovey, Raymond L.; Huang, Chiang-Ching; Wang, Liang

    2015-01-01

    Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locus-specific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p < 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer. PMID:25915538

  6. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers.

    PubMed

    Mendrick, Donna L; Schnackenberg, Laura

    2009-10-01

    Incomplete knowledge of tissue pathogenesis is hampering the identification of biomarkers for the appropriate therapeutic targets to prevent or inhibit disease processes, and the prediction and diagnosis of injury due to disease and adverse events of drug therapy. The revolution in genomics and metabolomics, combined with advanced bioinformatics and computational methods for mining such large, complex data sets, are beginning to provide critical insights into tissue injury. Such results will move us closer to the promise of personalized medicine.

  7. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.

    PubMed

    Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

    2009-06-01

    Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.

  8. Dental Informatics in India: Time to Embrace the Change

    PubMed Central

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  9. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area.

  10. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  11. The origins of informatics.

    PubMed Central

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803

  12. Building Informatics Environment

    2008-06-02

    The Building Informatics Environment is a modeling environment based on the Modelica language. The environment allows users to create a computer model of a building and its energy systems with various time scales and physical resolutions. The environment can be used for rapid development of, e.g., demand controls algorithms, new HVAC system solutions and new operational strategies (controls, fault detection and diagnostics). Models for building energy and control systems are made available in the environment.more » The models can be used as provided, or they can be changed and/or linked with each other in order to model the effects that a particular user is interested in.« less

  13. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  14. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    PubMed

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.

  15. Comprehensive Genomic Profiling of Advanced Esophageal Squamous Cell Carcinomas and Esophageal Adenocarcinomas Reveals Similarities and Differences

    PubMed Central

    Johnson, Adrienne; Ali, Siraj M.; Klempner, Samuel J.; Bekaii-Saab, Tanios; Vacirca, Jeffrey L.; Khaira, Depinder; Yelensky, Roman; Chmielecki, Juliann; Elvin, Julia A.; Lipson, Doron; Miller, Vincent A.; Stephens, Philip J.; Ross, Jeffrey S.

    2015-01-01

    Background. Esophageal squamous cell carcinomas (ESCCs) and esophageal adenocarcinomas (EACs) account for >95% of esophageal malignancies and represent a major global health burden. ESCC is the dominant histology globally but represents a minority of U.S. cases, with EAC accounting for the majority of U.S. cases. The patient outcomes for advanced ESCC and EAC are poor, and new therapeutic options are needed. Using a sensitive sequencing assay, we compared the genomic profiles of ESCC and EAC with attention to identification of therapeutically relevant genomic alterations. Methods. Next-generation sequencing-based comprehensive genomic profiling was performed on hybridization-captured, adaptor ligation-based libraries to a median coverage depth of >650× for all coding exons of 315 cancer-related genes plus selected introns from 28 genes frequently rearranged in cancer. Results from a single sample were evaluated for all classes of genomic alterations (GAs) including point mutations, short insertions and deletions, gene amplifications, homozygous deletions, and fusions/rearrangements. Clinically relevant genomic alterations (CRGAs) were defined as alterations linked to approved drugs and those under evaluation in mechanism-driven clinical trials. Results. There were no significant differences by sex for either tumor type, and the median age for all patients was 63 years. All ESCCs and EACs were at an advanced stage at the time of sequencing. All 71 ESCCs and 231 EACs featured GAs on profiling, with 522 GAs in ESCC (7.4 per sample) and 1,303 GAs in EAC (5.6 per sample). The frequency of clinically relevant GAs in ESCC was 94% (2.6 per sample) and 93% in EAC (2.7 per sample). CRGAs occurring more frequently in EAC included KRAS (23% EAC vs. 6% ESCC) and ERBB2 (23% EAC vs. 3% ESCC). ESCC samples were enriched for CRGA in PIK3CA (24% ESCC vs. 10% EAC), PTEN (11% ESCC vs. 4% EAC), and NOTCH1 (17% ESCC vs. 3% EAC). Other GAs that differed significantly between histologic

  16. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  17. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    PubMed Central

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  18. Recent Advances in Understanding the Role of Nutrition in Human Genome Evolution12

    PubMed Central

    Ye, Kaixiong; Gu, Zhenglong

    2011-01-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics. PMID:22332091

  19. Education review: applied medical informatics--informatics in medical education.

    PubMed

    Naeymi-Rad, F; Trace, D; Moidu, K; Carmony, L; Booden, T

    1994-05-01

    The importance of informatics training within a health sciences program is well recognized and is being implemented on an increasing scale. At Chicago Medical School (CMS), the Informatics program incorporates information technology at every stage of medical education. First-year students are offered an elective in computer topics that concentrate on basic computer literacy. Second-year students learn information management such as entry and information retrieval skills. For example, during the Introduction to Clinical Medicine course, the student is exposed to the Intelligent Medical Record-Entry (IMR-E), allowing the student to enter and organize information gathered from patient encounters. In the third year, students in the Internal Medicine rotation at Norwalk Hospital use Macintosh power books to enter and manage their patients. Patient data gathered by the student are stored in a local server in Norwalk Hospital. In the final year, we teach students the role of informatics in clinical decision making. The present senior class at CMS has been exposed to the power of medical informatics tools for several years. The use of these informatics tools at the point of care is stressed. PMID:10134760

  20. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals

    PubMed Central

    Gunawardena, Sharmini; Karunaweera, Nadira D.

    2015-01-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals. PMID:25943157

  1. Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia.

    PubMed

    Kugelman, Jeffrey R; Wiley, Michael R; Mate, Suzanne; Ladner, Jason T; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W; Minogue, Timothy; Schoepp, Randal J; Schaecher, Kurt E; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa; Park, Daniel J; Sabeti, Pardis C; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Palacios, Gustavo

    2015-07-01

    To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.

  2. Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia

    PubMed Central

    Kugelman, Jeffrey R.; Wiley, Michael R.; Mate, Suzanne; Ladner, Jason T.; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W.; Minogue, Timothy; Schoepp, Randal J.; Schaecher, Kurt E.; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa; Park, Daniel J.; Sabeti, Pardis C.; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.

    2015-01-01

    To support Liberia’s response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014–February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low. PMID:26079255

  3. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals.

    PubMed

    Gunawardena, Sharmini; Karunaweera, Nadira D

    2015-05-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.

  4. Building blocks for a clinical imaging informatics environment.

    PubMed

    Kohli, Marc D; Warnock, Max; Daly, Mark; Toland, Christopher; Meenan, Chris; Nagy, Paul G

    2014-04-01

    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064-1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions.

  5. Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013.

    PubMed

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P; Kirshenbaum, Lorrie; Blaxall, Burns C; Terzic, Andre; Hall, Jennifer L

    2014-07-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, preclinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multimodality imaging, and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context.

  6. The Impact of Imaging Informatics Fellowships.

    PubMed

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists.

  7. Using informatics to capture older adults’ wellness

    PubMed Central

    Demiris, George; Thompson, Hilaire J.; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2014-01-01

    Purpose The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults’ wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. Methods A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Results Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Conclusion Informatics can advance health care for older adults and support a holistic assessment of older adults’ wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events

  8. The Impact of Imaging Informatics Fellowships.

    PubMed

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists. PMID:26831474

  9. Driving the Profession of Health Informatics: The Australasian College of Health Informatics.

    PubMed

    Pearce, Christopher; Veil, Klaus; Williams, Peter; Cording, Andrew; Liaw, Siaw-Teng; Grain, Heather

    2015-01-01

    Across the world, bodies representing health informatics or promoting health informatics are either societies of common interest or universities with health informatics courses/departments. Professional colleges in Health Informatics (similar to the idea of professional colleges in other health fields) are few and far between. The Australasian College of Health Informatics has been in existence since 2001, and has an increasing membership of nearly 100 fellows and members, acting as a national focal point for the promotion of Health Informatics in Australasia. Describing the activities of the college, this article demonstrates a need for increasing professionalization of Health informatics beyond the current structures.

  10. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  11. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed. PMID:26836997

  12. Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing.

    PubMed

    Walker, T M; Monk, P; Smith, E Grace; Peto, T E A

    2013-09-01

    The control of tuberculosis depends on the identification and treatment of infectious patients and their contacts, who are currently identified through a combined approach of genotyping and epidemiological investigation. However, epidemiological data are often challenging to obtain, and genotyping data are difficult to interpret without them. Whole genome sequencing (WGS) technology is increasingly affordable, and offers the prospect of identifying plausible transmission events between patients without prior recourse to epidemiological data. We discuss the current approaches to tuberculosis control, and how WGS might advance public health efforts in the future. PMID:23432709

  13. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  14. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  15. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  16. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.).

    PubMed

    Parween, Sabiha; Nawaz, Kashif; Roy, Riti; Pole, Anil K; Venkata Suresh, B; Misra, Gopal; Jain, Mukesh; Yadav, Gitanjali; Parida, Swarup K; Tyagi, Akhilesh K; Bhatia, Sabhyata; Chattopadhyay, Debasis

    2015-01-01

    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes. PMID:26259924

  17. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.).

    PubMed

    Parween, Sabiha; Nawaz, Kashif; Roy, Riti; Pole, Anil K; Venkata Suresh, B; Misra, Gopal; Jain, Mukesh; Yadav, Gitanjali; Parida, Swarup K; Tyagi, Akhilesh K; Bhatia, Sabhyata; Chattopadhyay, Debasis

    2015-08-11

    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.

  18. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.

  19. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  20. Progress with Formalization in Medical Informatics?

    PubMed Central

    van der Maas, Arnoud A.F.; Ten Hoopen, A. Johannes; Ter Hofstede, Arthur H.M.

    2001-01-01

    The prevailing view of medical informatics as a primarily subservient discipline in health care is challenged. Developments in both general informatics and medical informatics are described to identify desirable properties of modeling languages and tools needed to solve key problems in the application field. For progress in medical informatics, it is considered essential to develop far more formal modeling languages, modeling techniques, and tools. A major aim of this development should be to expel ambiguity from concepts essential to medicine, positioning medical informatics “at the heart of health care.” PMID:11230381

  1. Five periods in development of medical informatics.

    PubMed

    Masic, Izet

    2014-02-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics.

  2. The Role of Genomic Profiling in Advanced Breast Cancer: The Two Faces of Janus

    PubMed Central

    Eralp, Yesim

    2016-01-01

    Recent advances in genomic technology have led to considerable improvement in our understanding of the molecular basis that underpins breast cancer biology. Through the use of comprehensive whole genome genomic profiling by next-generation sequencing, an unprecedented bulk of data on driver mutations, key genomic rearrangements, and mechanisms on tumor evolution has been generated. These developments have marked the beginning of a new era in oncology called “personalized or precision medicine.” Elucidation of biologic mechanisms that underpin carcinogenetic potential and metastatic behavior has led to an inevitable explosion in the development of effective targeted agents, many of which have gained approval over the past decade. Despite energetic efforts and the enormous support gained within the oncology community, there are many obstacles in the clinical implementation of precision medicine. Other than the well-known biologic markers, such as ER and Her-2/neu, no proven predictive marker exists to determine the responsiveness to a certain biologic agent. One of the major issues in this regard is teasing driver mutations among the background noise within the bulk of coexisting passenger mutations. Improving bioinformatics tools through electronic models, enhanced by improved insight into pathway dependency may be the step forward to overcome this problem. Next, is the puzzle on spatial and temporal tumoral heterogeneity, which remains to be solved by ultra-deep sequencing and optimizing liquid biopsy techniques. Finally, there are multiple logistical and financial issues that have to be meticulously tackled in order to optimize the use of “precision medicine” in the real-life setting. PMID:27547031

  3. The Role of Genomic Profiling in Advanced Breast Cancer: The Two Faces of Janus.

    PubMed

    Eralp, Yesim

    2016-01-01

    Recent advances in genomic technology have led to considerable improvement in our understanding of the molecular basis that underpins breast cancer biology. Through the use of comprehensive whole genome genomic profiling by next-generation sequencing, an unprecedented bulk of data on driver mutations, key genomic rearrangements, and mechanisms on tumor evolution has been generated. These developments have marked the beginning of a new era in oncology called "personalized or precision medicine." Elucidation of biologic mechanisms that underpin carcinogenetic potential and metastatic behavior has led to an inevitable explosion in the development of effective targeted agents, many of which have gained approval over the past decade. Despite energetic efforts and the enormous support gained within the oncology community, there are many obstacles in the clinical implementation of precision medicine. Other than the well-known biologic markers, such as ER and Her-2/neu, no proven predictive marker exists to determine the responsiveness to a certain biologic agent. One of the major issues in this regard is teasing driver mutations among the background noise within the bulk of coexisting passenger mutations. Improving bioinformatics tools through electronic models, enhanced by improved insight into pathway dependency may be the step forward to overcome this problem. Next, is the puzzle on spatial and temporal tumoral heterogeneity, which remains to be solved by ultra-deep sequencing and optimizing liquid biopsy techniques. Finally, there are multiple logistical and financial issues that have to be meticulously tackled in order to optimize the use of "precision medicine" in the real-life setting. PMID:27547031

  4. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  5. Postcards from the imaging informatics road. Despite policy complexities, diagnostic imaging informatics makes progress on multiple fronts.

    PubMed

    Hagland, Mark

    2011-11-01

    The current strategic landscape for imaging informatics is one filled with great contrasts and paradoxes. On the one hand, because imaging informatics was not explicitly addressed in Stage 1 of the meaningful use requirements under the American Recovery and Reinvestment Act/Health Information Technology for Economic and Clinical Health Act (ARRA-HITECH) legislation, it instantly lost some of the environment of turbo-charged energy characterized by areas that were directly addressed by the HITECH Act, such as quality data reporting, care management, and of course, core electronic health record (EHR) development. On the other hand, an interesting combination of factors--rapidly advancing technology, the expansion of the image archiving concept across different medical specialties, and the inclusion of diagnostic image-sharing as one element in the development of health information exchange (HIE) arrangements nationwide--is nonetheless pushing imaging informatics forward towards new innovations. The five articles below provide readers with different glimpses of the path ahead for imaging informatics. The first presents a look at the current policy and reimbursement landscape. Each of the four subsequent articles delve into different aspects of innovation, from a process developed at a public hospital to improve and speed up the diagnostic process for trauma patients, to a radiology-specific financial analytics solution in the group practice setting, to an advance in cardiology information systems, to a self-developed federated image viewing platform at one of the nation's largest integrated health systems. Each of those initiatives is very different; yet it is clear that a great deal of innovation is taking place across the US. healthcare system when it comes to imaging informatics. With a landscape filled with uncertainties and potential policy, reimbursement, and industry shifts in the offing, CIOs, CMIOs, and other healthcare IT leaders will need to think very

  6. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  7. Biomedical informatics methods in pharmacogenomics.

    PubMed

    Yan, Qing

    2005-01-01

    Pharmacogenomics is the study of the genetic basis of individual variation in response to therapeutic agents. Pharmacogenomics may potentially affect on every step of health care and every drug treatment protocol. The optimal approach to pharmacogenomics in hypertension requires the integration of different disciplines, in which biomedical informatics plays an essential role. This chapter describes biomedical informatics methods used in dealing with key issues in pharmacogenomics. These key issues include the association between structure and function, the interaction between gene and drug, and the correlation between genotype and phenotype. Heterogeneous resources, including web sites, databases, and software analysis tools, are selected, organized, and integrated in practical methods to support these studies. Bioinformatics methods described in this chapter include genetic sequence searching, comparison, structural modeling, functional analysis, and systems biology studies, with emphasis on single-nucleotide polymorphism (SNP) analysis. Medical informatics methods such as disease and drug information and clinical terminology are also embraced in this chapter. This combination of both biological and medical informatics provides comprehensive methodologies to resolve complex problems in pharmacogenomics.

  8. Personal Chemical Exposure informatics

    EPA Science Inventory

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  9. Bioinformatics meets clinical informatics.

    PubMed

    Smith, Jeremy; Protti, Denis

    2005-01-01

    The field of bioinformatics has exploded over the past decade. Hopes have run high for the impact on preventive, diagnostic, and therapeutic capabilities of genomics and proteomics. As time has progressed, so has our understanding of this field. Although the mapping of the human genome will certainly have an impact on health care, it is a complex web to unweave. Addressing simpler "Single Nucleotide Polymorphisms" (SNPs) is not new, however, the complexity and importance of polygenic disorders and the greater role of the far more complex field of proteomics has become more clear. Proteomics operates much closer to the actual cellular level of human structure and proteins are very sensitive markers of health. Because the proteome, however, is so much more complex than the genome, and changes with time and environmental factors, mapping it and using the data in direct care delivery is even harder than for the genome. For these reasons of complexity, the expected utopia of a single gene chip or protein chip capable of analyzing an individual's genetic make-up and producing a cornucopia of useful diagnostic information appears still a distant hope. When, and if, this happens, perhaps a genetic profile of each individual will be stored with their medical record; however, in the mean time, this type of information is unlikely to prove highly useful on a broad scale. To address the more complex "polygenic" diseases and those related to protein variations, other tools will be developed in the shorter term. "Top-down" analysis of populations and diseases is likely to produce earlier wins in this area. Detailed computer-generated models will map a wide array of human and environmental factors that indicate the presence of a disease or the relative impact of a particular treatment. These models may point to an underlying genomic or proteomic cause, for which genomic or proteomic testing or therapies could then be applied for confirmation and/or treatment. These types of

  10. Clinical health informatics education for a 21st Century World.

    PubMed

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education. PMID:20407180

  11. Glutamine Synthetase in Legumes: Recent Advances in Enzyme Structure and Functional Genomics

    PubMed Central

    Betti, Marco; García-Calderón, Margarita; Pérez-Delgado, Carmen M.; Credali, Alfredo; Estivill, Guillermo; Galván, Francisco; Vega, José M.; Márquez, Antonio J.

    2012-01-01

    Glutamine synthetase (GS) is the key enzyme involved in the assimilation of ammonia derived either from nitrate reduction, N2 fixation, photorespiration or asparagine breakdown. A small gene family is encoding for different cytosolic (GS1) or plastidic (GS2) isoforms in legumes. We summarize here the recent advances carried out concerning the quaternary structure of GS, as well as the functional relationship existing between GS2 and processes such as nodulation, photorespiration and water stress, in this latter case by means of proline production. Functional genomic analysis using GS2-minus mutant reveals the key role of GS2 in the metabolic control of the plants and, more particularly, in carbon metabolism. PMID:22942686

  12. [Septic shock in ICU: advanced therapeutics, immunoparalysis and genomics. State of the art].

    PubMed

    Arriagada S, Daniela; Donoso F, Alejandro; Cruces R, Pablo; Díaz R, Franco

    2014-08-01

    New and important concepts have emerged for the advanced management of the child with septic shock in the recent decades. Attending physicians in the Pediatric intensive care unit must be fully aware of them to improve patient care in the critical care unit. It should be considered the use of immune therapy only in selected groups of patients. Continuous renal replacement therapies are well tolerated and their early use prevents deleterious fluid overload. Removal of inflammatory mediators by using high volume hemofiltration may play a role in hyperdynamic septic patients. The use of plasmapheresis is recommended in patients with thrombocytopenia-associated multiple organ failure. Extracorporeal support use should be considered in those with refractory septic shock despite goals directed therapy. The immunoparalysis has been associated with nosocomial infections and late mortality. The information from genetic markers may allow early intervention and preventive genomics-based medicine.

  13. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients

    NASA Astrophysics Data System (ADS)

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-02-01

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml-1). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  14. Limited Genomic Heterogeneity of Circulating Melanoma Cells in Advanced Stage Patients

    PubMed Central

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Ed; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-01-01

    Purpose Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design Blood samples from 40 metastatic melanoma patients and 10 normal blood donors (NBD) were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAb) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification (WGA) and copy number variation (CNV) analysis. Results Based on CSPG4 expression and nuclear size, 1 to 250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5 to 371.5 CMCs/ml). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this population may contribute to develop effective therapeutic strategies. PMID:25574741

  15. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications.

    PubMed

    Veeraraghavan, Jamunarani; Ma, Jiacheng; Hu, Yiheng; Wang, Xiao-Song

    2016-07-01

    Gene fusions have long been considered principally as the oncogenic events of hematologic malignancies, but have recently gained wide attention in solid tumors due to several milestone discoveries and the advancement of deep sequencing technologies. With the progress in deep sequencing studies of breast cancer transcriptomes and genomes, the discovery of recurrent and pathological gene fusions in breast cancer is on the focus. Recently, driven by new deep sequencing studies, several recurrent or pathological gene fusions have been identified in breast cancer, including ESR1-CCDC170, SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1-YAP1 etc. More important, most of these gene fusions are preferentially identified in the more aggressive breast cancers, such as luminal B, basal-like, or endocrine-resistant breast cancer, suggesting recurrent gene fusions as additional key driver events in these tumors other than the known drivers such as the estrogen receptor. In this paper, we have comprehensively summarized the newly identified recurrent or pathological gene fusion events in breast cancer, reviewed the contributions of new genomic and deep sequencing technologies to new fusion discovery and the integrative bioinformatics tools to analyze these data, highlighted the biological relevance and clinical implications of these fusion discoveries, and discussed future directions of gene fusion research in breast cancer. PMID:27372070

  16. Genomics and the Human Genome Project: implications for psychiatry.

    PubMed

    Kelsoe, John R

    2004-11-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project has approached human genetics on a scale not previously seen in biology. This has been made possible by dramatic advances in high throughput technology and bio-informatics. Tools such as gene chips and micro-arrays have spawned an entirely new strategy to examine the function and expression of genes in a massively parallel fashion. Together these tools have dramatically advanced our knowledge about the human genome. They promise powerful new approaches to complex genetic traits such as psychiatric illness. The goals and progress of the Human Genome Project and the technology involved are reviewed. The implications of this science for psychiatric genetics are discussed.

  17. MBAT: A scalable informatics system for unifying digital atlasing workflows

    PubMed Central

    2010-01-01

    Background Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. Results The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. Conclusions MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible

  18. A 400,000-year-old mitochondrial genome questions phylogenetic relationships amongst archaic hominins: using the latest advances in ancient genomics, the mitochondrial genome sequence of a 400,000-year-old hominin has been deciphered.

    PubMed

    Orlando, Ludovic

    2014-06-01

    By combining state-of-the-art approaches in ancient genomics, Meyer and co-workers have reconstructed the mitochondrial sequence of an archaic hominin that lived at Sierra de Atapuerca, Spain about 400,000 years ago. This achievement follows recent advances in molecular anthropology that delivered the genome sequence of younger archaic hominins, such as Neanderthals and Denisovans. Molecular phylogenetic reconstructions placed the Atapuercan as a sister group to Denisovans, although its morphology suggested closer affinities with Neanderthals. In addition to possibly challenging our interpretation of the fossil record, this study confirms that genomic information can be recovered from extremely damaged DNA molecules, even in the presence of significant levels of human contamination. Together with the recent characterization of a 700,000-year-old horse genome, this study opens the Middle Pleistocene to genomics, thereby extending the scope of ancient DNA to the last million years.

  19. 78 FR 8546 - National Center for Advancing Translational Sciences (NCATS) and National Human Genome Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ...) and National Human Genome Research Institute (NHGRI): Cooperative Research and Development Agreement... the National Human Genome Research Institute (NHGRI), the National Institutes of Health (NIH),...

  20. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  1. Nursing Informatics: Decades of Contribution to Health Informatics

    PubMed Central

    Mæland Knudsen, Lina Merete

    2013-01-01

    Objectives In this paper we present a contemporary understanding of "nursing informatics" and relate it to applications in three specific contexts, hospitals, community health, and home dwelling, to illustrate achievements that contribute to the overall schema of health informatics. Methods We identified literature through database searches in MEDLINE, EMBASE, CINAHL, and the Cochrane Library. Database searching was complemented by one author search and hand searches in six relevant journals. The literature review helped in conceptual clarification and elaborate on use that are supported by applications in different settings. Results Conceptual clarification of nursing data, information and knowledge has been expanded to include wisdom. Information systems and support for nursing practice benefits from conceptual clarification of nursing data, information, knowledge, and wisdom. We introduce three examples of information systems and point out core issues for information integration and practice development. Conclusions Exploring interplays of data, information, knowledge, and wisdom, nursing informatics takes a practice turn, accommodating to processes of application design and deployment for purposeful use by nurses in different settings. Collaborative efforts will be key to further achievements that support task shifting, mobility, and ubiquitous health care. PMID:23882413

  2. Transformation of health care through innovative use of information technology: challenges for health and medical informatics education.

    PubMed

    Haux, R; Swinkels, W; Ball, M; Knaup, P; Lun, K C

    1998-06-01

    Information storage and processing continues to become increasingly important for health care, and offers enormous potential to be realised in the delivery of health care. Therefore, it is imperative that all health care professionals should learn skills and gain knowledge in the field of health informatics, or medical informatics, respectively. Working Group 1, Health and Medical Informatics Education, of the International Medical Informatics Association (IMIA WG1) seeks to advance the knowledge of how these skills are taught in courses for the various health care professions around the world, and includes physicians, nurses, administrators, and specialists in medical informatics. IMIA WG1 held its 6th International Conference on Health and Medical Education in Newcastle, Australia, in August 1997. The theme of the conference was 'Transformation of Healthcare through Innovative Use of Information Technology'. This special issue of the International Journal of Medical Informatics on Health and Medical Informatics Education contains selected papers presented at the conference. In addition to the central topic, Educating Health Care Professionals in Medical Informatics the topics telematics, distance education and computer based training were also discussed at the conference. PMID:9726487

  3. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  4. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  5. Cognitive hacking and intelligence and security informatics

    NASA Astrophysics Data System (ADS)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  6. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  7. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  8. Nanoinformatics: new challenges for biomedical informatics at the nano level.

    PubMed

    De La Iglesia, Diana; Chiesa, Stefano; Kern, Josipa; Maojo, Victor; Martin-Sanchez, Fernando; Potamias, George; Moustakis, Vassilis; Mitchell, Joyce A

    2009-01-01

    Over the last decades Nanotechnology has promised to advance science and technology in many areas. Within medicine, Nanomedicine promises to deliver new methods for diagnosis, prognosis and therapy. As the amount of available information is rapidly growing, new Biomedical Informatics approaches have to be developed to satisfy the increasing demand on data and knowledge management. In 2007, a new sub-discipline, already named "Nanoinformatics", was created with support from the US National Science Foundation. In Europe, a project named ACTION-Grid was launched in 2008 with support from the European Commission to analyze the challenges and agenda for developing Nanoinformatics as a discipline related to Nanotechnology, Biomedicine and Informatics. For MIE 2009, members of this consortium proposed a workshop to discuss the scientific and strategic issues associated with this topic. Nanoinformatics aims to create a bridge between Nanomedicine and Information Technology applying computational methods to manage the information created in the nanomedical domain.

  9. Nanoinformatics: new challenges for biomedical informatics at the nano level.

    PubMed

    De La Iglesia, Diana; Chiesa, Stefano; Kern, Josipa; Maojo, Victor; Martin-Sanchez, Fernando; Potamias, George; Moustakis, Vassilis; Mitchell, Joyce A

    2009-01-01

    Over the last decades Nanotechnology has promised to advance science and technology in many areas. Within medicine, Nanomedicine promises to deliver new methods for diagnosis, prognosis and therapy. As the amount of available information is rapidly growing, new Biomedical Informatics approaches have to be developed to satisfy the increasing demand on data and knowledge management. In 2007, a new sub-discipline, already named "Nanoinformatics", was created with support from the US National Science Foundation. In Europe, a project named ACTION-Grid was launched in 2008 with support from the European Commission to analyze the challenges and agenda for developing Nanoinformatics as a discipline related to Nanotechnology, Biomedicine and Informatics. For MIE 2009, members of this consortium proposed a workshop to discuss the scientific and strategic issues associated with this topic. Nanoinformatics aims to create a bridge between Nanomedicine and Information Technology applying computational methods to manage the information created in the nanomedical domain. PMID:19745461

  10. The cancer translational research informatics platform

    PubMed Central

    McConnell, Patrick; Dash, Rajesh C; Chilukuri, Ram; Pietrobon, Ricardo; Johnson, Kimberly; Annechiarico, Robert; Cuticchia, A Jamie

    2008-01-01

    Background Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™) has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform) tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security. Results caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data. Conclusion Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes. PMID:19108734

  11. The Molecular Medicine Informatics Model (MMIM).

    PubMed

    Hibbert, Marienne; Gibbs, Peter; O'Brien, Terence; Colman, Peter; Merriel, Robert; Rafael, Naomi; Georgeff, Michael

    2007-01-01

    In 2005, a major collaboration in Melbourne Australia successfully completed implementing a major medical informatics infrastructure - this is now being used for discovery research and has won significant expansion funding for 2006 - 2009. The convergence of life sciences, healthcare, and information technology is now driving research into the fundamentals of disease causation. Key to enabling this is collating data in sufficient numbers of patients to ensure studies are adequately powered. The Molecular Medicine Informatics Model (MMIM) is a 'virtual' research repository of clinical, laboratory and genetic data sets. Integrated data, physically located within independent hospital and research organisations can be searched and queried seamlessly via a federated data integrator. Researchers must gain authorisation to access data, and inform/obtain permission from the data owners, before the data can be accessed. The legal and ethical issues surrounding the use of this health data have been addressed so data complies with privacy requirements. The MMIM platform has also solved the issue of record linking individual cases and integrating data sources across multiple institutions and multiple clinical specialties. Significant research outcomes already enabled by the MMIM research platform include epilepsy seizure analyses for responders / non responders to therapy; sensitivity of faecal occult blood testing for asymptomatic colorectal cancer and advanced adenomas over a 25-year experience in colorectal cancer screening; subsite-specific colorectal cancer in diabetic and non diabetic patients; and the influence of language spoken on colorectal cancer diagnosis, management and outcomes. Ultimately the infrastructure of MMIM enables discovery research to be accessible via the Web with security, intellectual property and privacy addressed.

  12. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    PubMed

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  13. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  14. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  15. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  16. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  17. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    PubMed Central

    Xiao, Wenming; Wu, Leihong; Yavas, Gokhan; Simonyan, Vahan; Ning, Baitang; Hong, Huixiao

    2016-01-01

    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune

  18. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals.

    PubMed

    Shelden, Megan C; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance. PMID:23717314

  19. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  20. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  1. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  2. The Impact of Medical Informatics on Librarianship.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  3. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  4. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  5. Five Periods in Development of Medical Informatics

    PubMed Central

    Masic, Izet

    2014-01-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  6. Cardiovascular Health Informatics: Risk Screening and Intervention

    PubMed Central

    Hartley, Craig J.; Naghavi, Morteza; Parodi, Oberdan; Pattichis, Constantinos S.; Poon, Carmen C. Y.; Zhang, Yuan-Ting

    2014-01-01

    Despite enormous efforts to prevent cardiovascular disease (CVD) in the past, it remains the leading cause of death in most countries worldwide. Around two-thirds of these deaths are due to acute events, which frequently occur suddenly and are often fatal before medical care can be given. New strategies for screening and early intervening CVD, in addition to the conventional methods, are therefore needed in order to provide personalized and pervasive healthcare. In this special issue, selected emerging technologies in health informatics for screening and intervening CVDs are reported. These papers include reviews or original contributions on 1) new potential genetic biomarkers for screening CVD outcomes and high-throughput techniques for mining genomic data; 2) new imaging techniques for obtaining faster and higher resolution images of cardiovascular imaging biomarkers such as the cardiac chambers and atherosclerotic plaques in coronary arteries, as well as possible automatic segmentation, identification, or fusion algorithms; 3) new physiological biomarkers and novel wearable and home healthcare technologies for monitoring them in daily lives; 4) new personalized prediction models of plaque formation and progression or CVD outcomes; and 5) quantifiable indices and wearable systems to measure them for early intervention of CVD through lifestyle changes. It is hoped that the proposed technologies and systems covered in this special issue can result in improved CVD management and treatment at the point of need, offering a better quality of life to the patient. PMID:22997187

  7. A national education strategy to develop nursing informatics competencies.

    PubMed

    Hebert, M

    2000-01-01

    Advances in the sophistication of information and communication technologies offer nursing practitioners opportunities for better information management, more complete documentation of their work, and knowledge development to support evidence-based nursing practice. However, a nursing culture that recognizes and adopts the contributions of technology to practice is required to take advantage of these opportunities. The nature of this change suggests a shift in emphasis from specialists in Nursing Informatics (NI) to NI being integrated into all four domains of nursing practice. The magnitude of change required on individual, organizational and professional levels points to the need for Nursing Informatics education strategies on a national level. Recognizing the role and history of NI specialists, defining NI and the required NI competencies are necessary first steps in developing such a plan. Expanding and adapting the educational infrastructure required to support this initiative follows. A working committee at the national level with representatives from a number of stakeholder groups is currently working on a National Nursing Informatics Project to address these issues. This article summarizes key points of an initial discussion paper.

  8. More than four decades of medical informatics education for medical students in Germany. New recommendations published.

    PubMed

    Winter, A; Hilgers, R-D; Hofestädt, R; Knaup-Gregori, P; Ose, C; Trimmer, A

    2013-01-01

    The publication of German competency-based learning objectives "Medical Informatics" for undergraduate medical education gives reason to report on more publications of the German journal GMS Medical Informatics, Biometry and Epidemiology ( MIBE ) in Methods. The publications in focus deal with support of medical education by health and biomedical informatics, hospital information systems and their relation to medical devices, transinstitutional health information systems and the need of national eHealth strategies, epidemiological research on predicting high consumption of resources, and with the interaction of epidemiologists and medical statisticians in examining mortality risks in diabetes, in genome wide association studies and in dealing with limits and thresholds. This report is the beginning of an annual series intending to support better international cooperation to achieve good information as a basis for good medicine and good healthcare.

  9. Health informatics 3.0.

    PubMed

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  10. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era

    PubMed Central

    Seow, Heng Fong; Yip, Wai Kien; Fifis, Theodora

    2016-01-01

    Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC) can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for cancer therapy. PMID:27099521

  11. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  12. Development, Implementation, and Evaluation of Health Informatics Masters Program at KSAU-HS University, Saudi Arabia

    ERIC Educational Resources Information Center

    Majid, Altuwaijri

    2007-01-01

    The Saudi health sector has witnessed a significant progress in recent decades with some Saudi hospitals receiving international recognition. However, this progress has not been accompanied by the same advancement in the health informatics field whose applications have become a necessity for hospitals in order to achieve important objectives such…

  13. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  14. A National Agenda for Public Health Informatics

    PubMed Central

    Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin

    2001-01-01

    The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561

  15. Materials Informatics: Fast Track to New Materials

    SciTech Connect

    Ferris, Kim F.; Peurrung, Loni M.; Marder, James M.

    2007-01-01

    Current methods for new materials development focus on either deeper fundamental-level studies or generation of large quantities of data. The data challenge in materials science is not only the volume of data being generated by many independent investigators, but its heterogeneity and also its complexity that must be transformed, analyzed, correlated and communicated. Materials informatics addresses these issues. Materials informatics is an emerging information-based field combining computational, statistical, and mathematical approaches with materials sciences for accelerating discovery and development of new materials. Within the informatic framework, the various different forms of information form a system architecture, an iterative cycle for transforming data into knowledge.

  16. Genomic Methods Take the Plunge: Recent Advances in High-Throughput Sequencing of Marine Mammals.

    PubMed

    Cammen, Kristina M; Andrews, Kimberly R; Carroll, Emma L; Foote, Andrew D; Humble, Emily; Khudyakov, Jane I; Louis, Marie; McGowen, Michael R; Olsen, Morten Tange; Van Cise, Amy M

    2016-11-01

    The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of NMOs utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on NMOs. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs. PMID:27511190

  17. CRISPR/Cas9: an advanced tool for editing plant genomes.

    PubMed

    Samanta, Milan Kumar; Dey, Avishek; Gayen, Srimonta

    2016-10-01

    To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs. PMID:27012546

  18. Recent advances in ecological genomics: from phenotypic plasticity to convergent and adaptive evolution and speciation.

    PubMed

    Landry, Christian R; Aubin-Horth, Nadia

    2014-01-01

    Biological diversity emerges from the interaction between genomes and their environment. Recent conceptual and technological developments allow dissecting these interactions over short and long time-scales. The 16 contributions to this book by leaders in the field cover major recent progresses in the field of Ecological Genomics. Altogether, they illustrate the interplay between the life-history and genomic architecture of organisms, how the interaction of the environment and the genome is shaping phenotypic variation through phenotypic plasticity, how the process of adaptation may be constrained and fueled by internal and external features of organisms and finally, how species formation is the result of intricate interactions between genomes and the ecological conditions. These contributions also show how fundamental questions in biology transcend the boundaries of kingdoms, species and environments and illustrate how integrative approaches are powerful means to answer the most important and challenging questions in ecology and evolution. PMID:24277292

  19. Towards the molecular dissection of fertilization signaling: Our functional genomic/proteomic strategies.

    PubMed

    Sato, Ken-Ichi; Iwasaki, Tetsushi; Sakakibara, Ken-Ichi; Itakura, Shuji; Fukami, Yasuo

    2002-09-01

    Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.

  20. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers

    PubMed Central

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S. Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A.

    2015-01-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted “panel” sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate “drivers.” Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions. PMID:27148575

  1. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies. PMID:27274022

  2. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies.

  3. Informatics in the service of health, a look to the future.

    PubMed

    Moehr, J R

    1998-06-01

    The paper attempts a balanced look at the directions of health informatics required in the future. In a high level review of impediments to health and health care a number of issues are identified that may be amenable to improvement by contributions from health informatics. Attention is drawn to the improvement of the collection and dissemination of knowledge in addition to the analysis of morbid conditions as a focus for health informatics. On this basis a review of the current state of health information systems is undertaken. The importance of adaptable user interfaces for end users and systems personnel, privacy and confidentiality protection, and linkage among clinical support systems and knowledge repositories is stressed. These improvements hinge on advancements in medical concept representation. Canadian contributions to these developments, particularly the instigation of Evidence Based Medicine (EBM) are briefly reviewed.

  4. Scientific papers for health informatics.

    PubMed

    Pereira, Samáris Ramiro; Duarte, Jacy Marcondes; Bandiera-Paiva, Paulo

    2013-01-01

    From the hypothesis that the development of scientific papers, mainly in interdisciplinary areas such as Health Informatics, may bring difficulties to the author, as had its communicative efficacy decreased or compromising their approval for publication; we aim to make considerations on the main items to good players making this kind of text. The scientific writing has peculiarities that must be taken into consideration when it writes: general characteristics, such as simplicity and objectivity, and characteristics of each area of knowledge, such as terminology, formatting and standardization. The research methodology adopted is bibliographical. The information was based on literature review and the authors' experience, teachers and assessors of scientific methodology in peer review publications in the area. As a result, we designed a checklist of items to be checked before submission of a paper to a scientific publication vehicle in order to contribute to the promotion of research, facilitating the publication and increase its capacity in this important area of knowledge.

  5. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    PubMed Central

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  6. MIRASS: medical informatics research activity support system using information mashup network.

    PubMed

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  7. Consumer Informatics in Chronic Illness

    PubMed Central

    Tetzlaff, Linda

    1997-01-01

    Abstract Objective: To explore the informatic requirements in the home care of chronically ill patients. Design: A number of strategies were deployed to help evoke a picture of home care informatics needs: A detailed questionnaire evaluating informational needs and assessing programmable technologies was distributed to a clinic population of parents of children with cancer. Open ended questionnaires were distributed to medical staff and parents soliciting a list of questions asked of medical staff. Parent procedure training was observed to evaluate the training dialog, and parents were observed interacting with a prototype information and education computer offering. Results: Parents' concerns ranged from the details of managing day to day, to conceptual information about disease and treatment, to management of psychosocial problems. They sought information to solve problems and to provide emotional support, which may create conflicts of interest when the material is threatening. Whether they preferred to be informed by a doctor, nurse, or another parent depended on the nature of the information. Live interaction was preferred to video, which was preferred to text for all topics. Respondents used existing technologies in a straightforward way but were enthusiastic about the proposed use of computer technology to support home care. Multimedia solutions appear to complement user needs and preferences. Conclusion: Consumers appear positively disposed toward on-line solutions. On-line systems can offer breadth, depth and timeliness currently unattainable. Patients should be involved in the formation and development process in much the same way that users are involved in usercentered computer interface design. A generic framework for patient content is presented that could be applied across multiple disorders. PMID:9223035

  8. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided.

  9. Biomedical informatics in Switzerland: need for action.

    PubMed

    Lovis, Christian; Blaser, Jürg

    2015-01-01

    Biomedical informatics (BMI) is an umbrella scientific field that covers many domains, as defined several years ago by the International Medical Informatics Association and the American Medical Informatics Association, two leading players in the field. For example, one of the domains of BMI is clinical informatics, which has been formally recognised as a medical subspecialty by the American Board of Medical Specialty since 2011. Most OECD (Organisation for Economic Co-operation and Development) countries offer very strong curricula in the field of BMI, strong research and development funding with clear tracks and, for most of them, inclusion of BMI in the curricula of health professionals, but BMI remains only marginally recognised in Switzerland. Recent major changes, however, such as the future federal law on electronic patient records, the personalised health initiative or the growing empowerment of citizens towards their health data, are adding much weight to the need for BMI capacity-building in Switzerland.

  10. Strategic leadership skills for nursing informatics.

    PubMed

    Cooper, Anne; Hamer, Susan

    Nurses need to integrate information and information technology into routine practice and embrace opportunities to manage care in new ways. This article describes a programme that aims to help senior nurses develop strategic leadership skills in the area of informatics.

  11. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  12. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  13. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. PMID:27393468

  14. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  15. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  16. Nursing Informatics Education: Latino America & Caribe.

    PubMed

    Hullin, Carol

    2016-01-01

    The objective of this panel is to share the current status of Nursing Informatics education at the national (Chile) and regional level. All the panelists are involved in different educational programs by face to face, online and small workshops. The scope is to anyone who is interested in the education in nursing informatics in Spanish, since the entire panelists participate in the design & development of educational programs from certificate, diploma, bachelor, master and PhD curriculums. PMID:27332321

  17. From classification to epilepsy ontology and informatics.

    PubMed

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-07-01

    The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multidimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) Common Data Elements, the International Classification of Diseases (ICD) systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence-based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multimodal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity, and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  18. Evolution of medical informatics in bibliographic databases.

    PubMed

    Otero, Paula; Pedernera, Federico; Montenegro, Sergio; Borbolla, Damian; Garcia Marti, Sebastián; Luna, Daniel; de Quiros, Fernan Gonzalez Bernaldo

    2004-01-01

    Medical informatics became a medical specialty during the last years and this is evidenced by a great amount of journal articles regarding the subject published worldwide. We compared the presentation of Medical Informatics in two different bibliographic databases: MEDLINE and LILACS (Latin American and Caribbean Literature on the Health Sciences). Previous studies described how Medical Informatics was represented in MEDLINE, but we wanted to compare it to a regional database as LILACS. We search both databases completely (MEDLINE 1966 -2002 and LILACS 1982-2002) using the keyword "Medical Informatics" as MeSH term in MEDLINE and as DeCS term in LILACS, and we added "medical informatics" as text word and analyzed the references obtained as results. We found that MEDLINE properly represents the impact of Medical Informatics in non-Latin-American international journals, but lacks of a considerable amount of articles from this region, while LILACS, although in comparison it is smaller in size, has more articles regarding the subject. So we think that LILACS properly represents the specialty in Latin America and the Caribbean Region.

  19. Advances in Aspergillus secondary metabolite research in the post-genomic era

    PubMed Central

    Sanchez, James F.; Somoza, Amber D.; Keller, Nancy P.

    2015-01-01

    This review studies the impact of whole genome sequencing on Aspergillus secondary metabolite research. There has been a proliferation of many new, intriguing discoveries since sequencing data became widely available. What is more, the genomes disclosed the surprising finding that there are many more secondary metabolite biosynthetic pathways than laboratory research had suggested. Activating these pathways has been met with some success, but many more dormant genes remain to be awakened. PMID:22228366

  20. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future.

  1. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future. PMID:25104401

  2. SNP genotyping and population genomics from expressed sequences - current advances and future possibilities.

    PubMed

    De Wit, Pierre; Pespeni, Melissa H; Palumbi, Stephen R

    2015-05-01

    With the rapid increase in production of genetic data from new sequencing technologies, a myriad of new ways to study genomic patterns in nonmodel organisms are currently possible. Because genome assembly still remains a complicated procedure, and because the functional role of much of the genome is unclear, focusing on SNP genotyping from expressed sequences provides a cost-effective way to reduce complexity while still retaining functionally relevant information. This review summarizes current methods, identifies ways that using expressed sequence data benefits population genomic inference and explores how current practitioners evaluate and overcome challenges that are commonly encountered. We focus particularly on the additional power of functional analysis provided by expressed sequence data and how these analyses push beyond allele pattern data available from nonfunction genomic approaches. The massive data sets generated by these approaches create opportunities and problems as well - especially false positives. We discuss methods available to validate results from expressed SNP genotyping assays, new approaches that sidestep use of mRNA and review follow-up experiments that can focus on evolutionary mechanisms acting across the genome.

  3. Advances in genome editing technology and its promising application in evolutionary and ecological studies.

    PubMed

    Chen, Lei; Tang, Linyi; Xiang, Hui; Jin, Lijun; Li, Qiye; Dong, Yang; Wang, Wen; Zhang, Guojie

    2014-01-01

    Genetic modification has long provided an approach for "reverse genetics", analyzing gene function and linking DNA sequence to phenotype. However, traditional genome editing technologies have not kept pace with the soaring progress of the genome sequencing era, as a result of their inefficiency, time-consuming and labor-intensive methods. Recently, invented genome modification technologies, such as ZFN (Zinc Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), and CRISPR/Cas9 nuclease (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 nuclease) can initiate genome editing easily, precisely and with no limitations by organism. These new tools have also offered intriguing possibilities for conducting functional large-scale experiments. In this review, we begin with a brief introduction of ZFN, TALEN, and CRISPR/Cas9 technologies, then generate an extensive prediction of effective TALEN and CRISPR/Cas9 target sites in the genomes of a broad range of taxonomic species. Based on the evidence, we highlight the potential and practicalities of TALEN and CRISPR/Cas9 editing in non-model organisms, and also compare the technologies and test interesting issues such as the functions of candidate domesticated, as well as candidate genes in life-environment interactions. When accompanied with a high-throughput sequencing platform, we forecast their potential revolutionary impacts on evolutionary and ecological research, which may offer an exciting prospect for connecting the gap between DNA sequence and phenotype in the near future.

  4. MI-Lab - A Laboratory Environment for Medical Informatics Students.

    PubMed

    Brandt, Karsten; Löbe, Matthias; Schaaf, Michael; Jahn, Franziska; Winter, Alfred; Stäubert, Sebastian

    2016-01-01

    Medical research and health care highly depend on the use of information technology. There is a wide range of application systems (patient administration system, laboratory information system, communication server etc.) and heterogeneous data types (administrative data, clinical data, laboratory data, image data, genomic data etc.). Students and researchers do not often have the possibility to use productive application systems of e.g. hospitals or medical practices to gain practical experiences or examine new components and technologies. Therefore, the aim of this project is to develop a dedicated laboratory environment for patient health care and clinical research. Essential application systems were identified and a suitable architecture was designed for this purpose. It is accompanied by a teaching plan that considers learning modules for bachelor and master degrees in medical informatics. We implemented the laboratory environment called MI-Lab with multiple free and open source software components. All components are installed on virtual machines and/or Docker containers. This modular architecture creates a flexible system which can be deployed in various scenarios. The preliminary evaluation results suggests that laboratory environments like MI-Lab work well in teaching practical aspects of medical informatics and are widely accepted by students.

  5. MI-Lab - A Laboratory Environment for Medical Informatics Students.

    PubMed

    Brandt, Karsten; Löbe, Matthias; Schaaf, Michael; Jahn, Franziska; Winter, Alfred; Stäubert, Sebastian

    2016-01-01

    Medical research and health care highly depend on the use of information technology. There is a wide range of application systems (patient administration system, laboratory information system, communication server etc.) and heterogeneous data types (administrative data, clinical data, laboratory data, image data, genomic data etc.). Students and researchers do not often have the possibility to use productive application systems of e.g. hospitals or medical practices to gain practical experiences or examine new components and technologies. Therefore, the aim of this project is to develop a dedicated laboratory environment for patient health care and clinical research. Essential application systems were identified and a suitable architecture was designed for this purpose. It is accompanied by a teaching plan that considers learning modules for bachelor and master degrees in medical informatics. We implemented the laboratory environment called MI-Lab with multiple free and open source software components. All components are installed on virtual machines and/or Docker containers. This modular architecture creates a flexible system which can be deployed in various scenarios. The preliminary evaluation results suggests that laboratory environments like MI-Lab work well in teaching practical aspects of medical informatics and are widely accepted by students. PMID:27577339

  6. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future

    PubMed Central

    Gottesman, Omri; Kuivaniemi, Helena; Tromp, Gerard; Faucett, W. Andrew; Li, Rongling; Manolio, Teri A.; Sanderson, Saskia C.; Kannry, Joseph; Zinberg, Randi; Basford, Melissa A.; Brilliant, Murray; Carey, David J.; Chisholm, Rex L.; Chute, Christopher G.; Connolly, John J.; Crosslin, David; Denny, Joshua C.; Gallego, Carlos J.; Haines, Jonathan L.; Hakonarson, Hakon; Harley, John; Jarvik, Gail P.; Kohane, Isaac; Kullo, Iftikhar J.; Larson, Eric B.; McCarty, Catherine; Ritchie, Marylyn D.; Roden, Dan M.; Smith, Maureen E.; Böttinger, Erwin P.; Williams, Marc S.

    2013-01-01

    The Electronic Medical Records and Genomics Network is a National Human Genome Research Institute–funded consortium engaged in the development of methods and best practices for using the electronic medical record as a tool for genomic research. Now in its sixth year and second funding cycle, and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from electronic medical records can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and health-care informatics, particularly for electronic phenotyping, genome-wide association studies, genomic medicine implementation, and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here, we describe the evolution, accomplishments, opportunities, and challenges of the network from its inception as a five-group consortium focused on genotype–phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting toward the implementation of genomic medicine. Genet Med 15 10, 761–771. PMID:23743551

  7. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future.

    PubMed

    Gottesman, Omri; Kuivaniemi, Helena; Tromp, Gerard; Faucett, W Andrew; Li, Rongling; Manolio, Teri A; Sanderson, Saskia C; Kannry, Joseph; Zinberg, Randi; Basford, Melissa A; Brilliant, Murray; Carey, David J; Chisholm, Rex L; Chute, Christopher G; Connolly, John J; Crosslin, David; Denny, Joshua C; Gallego, Carlos J; Haines, Jonathan L; Hakonarson, Hakon; Harley, John; Jarvik, Gail P; Kohane, Isaac; Kullo, Iftikhar J; Larson, Eric B; McCarty, Catherine; Ritchie, Marylyn D; Roden, Dan M; Smith, Maureen E; Böttinger, Erwin P; Williams, Marc S

    2013-10-01

    The Electronic Medical Records and Genomics Network is a National Human Genome Research Institute-funded consortium engaged in the development of methods and best practices for using the electronic medical record as a tool for genomic research. Now in its sixth year and second funding cycle, and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from electronic medical records can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and health-care informatics, particularly for electronic phenotyping, genome-wide association studies, genomic medicine implementation, and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here, we describe the evolution, accomplishments, opportunities, and challenges of the network from its inception as a five-group consortium focused on genotype-phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting toward the implementation of genomic medicine.

  8. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future.

    PubMed

    Gottesman, Omri; Kuivaniemi, Helena; Tromp, Gerard; Faucett, W Andrew; Li, Rongling; Manolio, Teri A; Sanderson, Saskia C; Kannry, Joseph; Zinberg, Randi; Basford, Melissa A; Brilliant, Murray; Carey, David J; Chisholm, Rex L; Chute, Christopher G; Connolly, John J; Crosslin, David; Denny, Joshua C; Gallego, Carlos J; Haines, Jonathan L; Hakonarson, Hakon; Harley, John; Jarvik, Gail P; Kohane, Isaac; Kullo, Iftikhar J; Larson, Eric B; McCarty, Catherine; Ritchie, Marylyn D; Roden, Dan M; Smith, Maureen E; Böttinger, Erwin P; Williams, Marc S

    2013-10-01

    The Electronic Medical Records and Genomics Network is a National Human Genome Research Institute-funded consortium engaged in the development of methods and best practices for using the electronic medical record as a tool for genomic research. Now in its sixth year and second funding cycle, and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from electronic medical records can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and health-care informatics, particularly for electronic phenotyping, genome-wide association studies, genomic medicine implementation, and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here, we describe the evolution, accomplishments, opportunities, and challenges of the network from its inception as a five-group consortium focused on genotype-phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting toward the implementation of genomic medicine. PMID:23743551

  9. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.

    PubMed

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L; Hornung, Veit; Smith, Anja van Brabant

    2015-04-20

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications.

  10. [Advances in insect obligate endosymbionts and their genomes--a review].

    PubMed

    Rao, Qiong; Wu, Huiming

    2014-07-01

    In nature, many insects, especially sap-feeding insects, harbor nutritional bacterial symbionts, which are called obligate endosymbionts. These bacteria co-evolved with their hosts for millions of years. Obligate endosymbionts are commonly found in specialized organs, named bacteriomes or mycetomes that consist of a number of insect's cells (bacteriocytes or mycetocytes). Obligate endosymbionts strictly maternally inherited, providing essential amino acids to the hosts, and relating to survival, reproduction and evolution of the insects. Because of enriched nutritional environment, compared to those free-living bacteria, the genomes of obligate endosymbionts have different characteristics, such as genome size, GC content, and gene deletion. Although the genomes of many insect endosymbionts have been carefully analysis, the gene functions of endosymbionts and the interactions between endosymbionts/hosts and endosymbionts remain unknown. Thus, to provide an insight into the co-evolution of endosymbionts and their hosts, further studies of endosymbionts at genetic level are required.

  11. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  12. X-Informatics: Practical Semantic Science

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  13. Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations

    PubMed Central

    Cheng, Riyan; Lim, Jackie E.; Samocha, Kaitlin E.; Sokoloff, Greta; Abney, Mark; Skol, Andrew D.; Palmer, Abraham A.

    2010-01-01

    Model organisms offer many advantages for the genetic analysis of complex traits. However, identification of specific genes is often hampered by a lack of recombination between the genomes of inbred progenitors. Recently, genome-wide association studies (GWAS) in humans have offered gene-level mapping resolution that is possible because of the large number of accumulated recombinations among unrelated human subjects. To obtain analogous improvements in mapping resolution in mice, we used a 34th generation advanced intercross line (AIL) derived from two inbred strains (SM/J and LG/J). We used simulations to show that familial relationships among subjects must be accounted for when analyzing these data; we then used a mixed model that included polygenic effects to address this problem in our own analysis. Using a combination of F2 and AIL mice derived from the same inbred progenitors, we identified genome-wide significant, subcentimorgan loci that were associated with methamphetamine sensitivity, (e.g., chromosome 18; LOD = 10.5) and non-drug-induced locomotor activity (e.g., chromosome 8; LOD = 18.9). The 2-LOD support interval for the former locus contains no known genes while the latter contains only one gene (Csmd1). This approach is broadly applicable in terms of phenotypes and model organisms and allows GWAS to be performed in multigenerational crosses between and among inbred strains where familial relatedness is often unavoidable. PMID:20439773

  14. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms

    PubMed Central

    Kameshwar, Ayyappa kumar Sista; Qin, Wensheng

    2016-01-01

    Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation. PMID:26884714

  15. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2016-01-01

    Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation. PMID:26884714

  16. Ongoing efforts and future plans for phenotyping to complement genomic advances in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing and planned genomic research in the peanut community should lead to the development of additional molecular markers that will be useful in peanut cultivar development. However, to achieve this, much work will need to be done to associate these genetic markers with important phenotypic trait...

  17. Recent advances in cattle functional genomics and their application to beef quality.

    PubMed

    Hocquette, J-F; Lehnert, S; Barendse, W; Cassar-Malek, I; Picard, B

    2007-02-01

    The advent of high-throughput DNA sequencing techniques, array technology and protein analysis has increased the efficiency of research in bovine muscle physiology, with the ultimate objective of improving beef quality either by breeding or rearing factors. For genetic purposes, polymorphisms in some key genes have been reported for their association with beef quality traits. The sequencing of the bovine genome has dramatically increased the number of available gene polymorphisms. The association of these new polymorphisms with the variability in beef quality (e.g. tenderness, marbling) for different breeds in different rearing systems will be a very important issue. For rearing purposes, global gene expression profiling at the mRNA or protein level has already shown that previously unsuspected genes may be associated either with muscle development or growth, and may lead to the development of new molecular indicators of tenderness or marbling. Some of these genes are specifically regulated by genetic and nutritional factors or differ between different beef cuts. In recognition of the potential economic benefits of genomics, public institutions in association with the beef industry are developing livestock genomics projects around the world. From the scientific, technical and economical points of view, genomics is thus reshaping research on beef quality.

  18. [Informatics in the Croatian health care system].

    PubMed

    Kern, Josipa; Strnad, Marija

    2005-01-01

    Informatization process of the Croatian health care system started relatively early. Computer processing of data of persons not covered by health insurance started in 1968 in Zagreb. Remetinec Health Center served as a model of computer data processing (CDP) in primary health care and Sveti Duh General Hospital in inpatient CDP, whereas hospital administration and health service were first introduced to Zagreb University Hospital Center and Sestre Milosrdnice University Hospital. At Varazdin Medical Center CDP for health care services started in 1970. Several registries of chronic diseases have been established: cancer, psychosis, alcoholism, and hospital registries as well as pilot registries of lung tuberculosis patients and diabetics. Health statistics reports on healthcare services, work accidents and sick-leaves as well as on hospital mortality started to be produced by CDP in 1977. Besides alphanumeric data, the modern information technology (IT) can give digital images and signals. Communication in health care system demands a standardized format of all information, especially for telemedicine. In 2000, Technical Committee for Standardization in Medical Informatics was founded in Croatia, in order to monitor the activities of the International Standardization Organization (ISO) and Comite Européen de Normalisation (CEN), and to implement their international standards in the Croatian standardization procedure. The HL7 Croatia has also been founded to monitor developments in the communication standard HL7. So far, the Republic of Croatia has a number of acts regulating informatization in general and consequently the informatization of the health care system (Act on Personal Data Confidentiality, Act on Digital Signature, Act of Standardization) enacted. The ethical aspect of data security and data protection has been covered by the Code of Ethics for medical informaticians. It has been established by the International Medical Informatics Association (IMIA

  19. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  20. History of health informatics: a global perspective.

    PubMed

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  1. Translating Genomic Advances to Physical Therapist Practice: A Closer Look at the Nature and Nurture of Common Diseases.

    PubMed

    Curtis, Catherine L; Goldberg, Allon; Kleim, Jeffrey A; Wolf, Steven L

    2016-04-01

    The Human Genome Project and the International HapMap Project have yielded new understanding of the influence of the human genome on health and disease, advancing health care in significant ways. In personalized medicine, genetic factors are used to identify disease risk and tailor preventive and therapeutic regimens. Insight into the genetic bases of cellular processes is revealing the causes of disease and effects of exercise. Many diseases known to have a major lifestyle contribution are highly influenced by common genetic variants. Genetic variants are associated with increased risk for common diseases such as cardiovascular disease and osteoarthritis. Exercise response also is influenced by genetic factors. Knowledge of genetic factors can help clinicians better understand interindividual differences in disease presentation, pain experience, and exercise response. Family health history is an important genetic tool and encourages clinicians to consider the wider client-family unit. Clinicians in this new era need to be prepared to guide patients and their families on a variety of genomics-related concerns, including genetic testing and other ethical, legal, or social issues. Thus, it is essential that clinicians reconsider the role of genetics in the preservation of wellness and risk for disease to identify ways to best optimize fitness, health, or recovery. Clinicians with knowledge of the influence of genetic variants on health and disease will be uniquely positioned to institute individualized lifestyle interventions, thereby fulfilling roles in prevention and wellness. This article describes how discoveries in genomics are rapidly evolving the understanding of health and disease by highlighting 2 conditions: cardiovascular disease and osteoarthritis. Genetic factors related to exercise effects also are considered. PMID:26637647

  2. Translating Genomic Advances to Physical Therapist Practice: A Closer Look at the Nature and Nurture of Common Diseases.

    PubMed

    Curtis, Catherine L; Goldberg, Allon; Kleim, Jeffrey A; Wolf, Steven L

    2016-04-01

    The Human Genome Project and the International HapMap Project have yielded new understanding of the influence of the human genome on health and disease, advancing health care in significant ways. In personalized medicine, genetic factors are used to identify disease risk and tailor preventive and therapeutic regimens. Insight into the genetic bases of cellular processes is revealing the causes of disease and effects of exercise. Many diseases known to have a major lifestyle contribution are highly influenced by common genetic variants. Genetic variants are associated with increased risk for common diseases such as cardiovascular disease and osteoarthritis. Exercise response also is influenced by genetic factors. Knowledge of genetic factors can help clinicians better understand interindividual differences in disease presentation, pain experience, and exercise response. Family health history is an important genetic tool and encourages clinicians to consider the wider client-family unit. Clinicians in this new era need to be prepared to guide patients and their families on a variety of genomics-related concerns, including genetic testing and other ethical, legal, or social issues. Thus, it is essential that clinicians reconsider the role of genetics in the preservation of wellness and risk for disease to identify ways to best optimize fitness, health, or recovery. Clinicians with knowledge of the influence of genetic variants on health and disease will be uniquely positioned to institute individualized lifestyle interventions, thereby fulfilling roles in prevention and wellness. This article describes how discoveries in genomics are rapidly evolving the understanding of health and disease by highlighting 2 conditions: cardiovascular disease and osteoarthritis. Genetic factors related to exercise effects also are considered.

  3. Effect of an informatics for evidence-based practice curriculum on nursing informatics competencies.

    PubMed

    Desjardins, Karen S; Cook, Sarah Sheets; Jenkins, Melinda; Bakken, Suzanne

    2005-12-01

    Effective and appropriate use of information and communication technologies is an essential competency for all health care professionals. The purpose of this paper is to describe the effect of an evolving informatics for evidence-based practice (IEBP) curriculum on nursing informatics competencies in three student cohorts in the combined BS/MS program for non-nurses at the Columbia University School of Nursing. A repeated-measures, non-equivalent comparison group design was used to determine differences in self-rated informatics competencies pre- and post-IEBP and between cohorts at the end of the BS year of the combined BS/MS program. The types of Computer Skill competencies on which the students rated themselves as competent (> or =3) on admission were generic in nature and reflective of basic computer literacy. Informatics competencies increased significantly from admission to BS graduation in all areas for the class of 2002 and in all, but three areas, for the class of 2003. None of the three cohorts achieved competence in Computer Skills: Education despite curricular revisions. There were no significant differences between classes at the end of the BS year. Innovative educational approaches, such as the one described in this paper demonstrate promise as a method to achieve informatics competence. It is essential to integrate routine measurement of informatics competency into the curriculum so that approaches can be refined as needed to ensure informatics competent graduates.

  4. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2000-08-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1). PMID:10992757

  5. Preparing for the third millennium: the views of life informatics.

    PubMed

    Li, Z R; Tian, A J; Yang, Y Y

    1998-01-01

    The chief aspects of this paper are the condition of the birth of life informatics and its tasks, basic concepts, principles, and structure. There are three phases of combining informatics with medicine: product, technological, and theoretic application of which the goals are respectively the informatization of numerical and word processing, data of medical treatment, and the knowledge of medicine. While reached the third phase we have dealt with two types of biological information, physical and nonphysical, i.e., body information (i.e., the information about body's components and structure), and life information (i.e., the information about life codes and life programs). Life informatics is a main branch of bioinformatics. It is a new member of the medical informatics family, and as such is younger than health informatics, nursing informatics, and dental informatics. It's task is to assist biologists and medical doctors to recognize and interfere the human life information procedure just as they are doing well with human body's matter and energy system. Its basic concepts are life information, life information medicine, and life information therapy. Its most important principles are information materialism, general informatics, and information determinism. Its main branches are biomolecule, cellular, organic, individual, and social informatics. In the third millennium, the life informatics will be a leading discipline in biology, medicine and informatics, which will gradually influence modern philosophy and other humanities.

  6. People, organizational, and leadership factors impacting informatics support for clinical and translational research

    PubMed Central

    2013-01-01

    Background In recent years, there have been numerous initiatives undertaken to describe critical information needs related to the collection, management, analysis, and dissemination of data in support of biomedical research (J Investig Med 54:327-333, 2006); (J Am Med Inform Assoc 16:316–327, 2009); (Physiol Genomics 39:131-140, 2009); (J Am Med Inform Assoc 18:354–357, 2011). A common theme spanning such reports has been the importance of understanding and optimizing people, organizational, and leadership factors in order to achieve the promise of efficient and timely research (J Am Med Inform Assoc 15:283–289, 2008). With the emergence of clinical and translational science (CTS) as a national priority in the United States, and the corresponding growth in the scale and scope of CTS research programs, the acuity of such information needs continues to increase (JAMA 289:1278–1287, 2003); (N Engl J Med 353:1621–1623, 2005); (Sci Transl Med 3:90, 2011). At the same time, systematic evaluations of optimal people, organizational, and leadership factors that influence the provision of data, information, and knowledge management technologies and methods are notably lacking. Methods In response to the preceding gap in knowledge, we have conducted both: 1) a structured survey of domain experts at Academic Health Centers (AHCs); and 2) a subsequent thematic analysis of public-domain documentation provided by those same organizations. The results of these approaches were then used to identify critical factors that may influence access to informatics expertise and resources relevant to the CTS domain. Results A total of 31 domain experts, spanning the Biomedical Informatics (BMI), Computer Science (CS), Information Science (IS), and Information Technology (IT) disciplines participated in a structured surveyprocess. At a high level, respondents identified notable differences in theaccess to BMI, CS, and IT expertise and services depending on the establishment of a

  7. Image informatics in systems biology applications

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.

    2005-02-01

    Digital optical microscopy, coupled with parallel processing and a large arsenal of labeling techniques, offers tremendous values to localize, identify, and characterize cells and molecules. This generates many image informatics challenges in requiring new algorithms and tools to extract, classify, correlate, and model image features and content from massive amounts of cellular and molecular images acquired. Image informatics aims to fill this gap. Coupling automated microscopy and image analysis with biostatistical and data mining techniques to provide a system biologic approach in studying the cells, the basic unit of life, potentially leads to many exciting applications in life and health sciences. In this presentation, we describe certain new system biology applications enabled by image informatics technology.

  8. Health Informatics for Pediatric Disaster Preparedness Planning

    PubMed Central

    Burke, R.V.; Ryutov, T.; Neches, R.; Upperman, J.S.

    2010-01-01

    Objective 1. To conduct a review of the role of informatics in pediatric disaster preparedness using all medical databases. 2. To provide recommendations to improve pediatric disaster preparedness by the application of informatics. Methods A literature search was conducted using MEDLINE, CINHL and the Cochrane Library using the key words “children” AND “disaster preparedness and disaster” AND “informatics”. Results A total of 314 papers were initially produced by the search and eight that met the selection criteria were included in the review. Four themes emerged: tools for disaster preparedness, education, reunification and planning and response. Conclusion The literature pertaining to informatics and pediatric disaster preparedness is sparse and many gaps still persist. Current disaster preparedness tools focus on the general population and do not specifically address children. The most progress has been achieved in family reunification; however, the recommendations delineated are yet to be completed. PMID:23616840

  9. NASA Biomedical Informatics Capabilities and Needs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  10. Software engineering education in medical informatics.

    PubMed

    Leven, F J

    1989-11-01

    Requirements and approaches of Software Engineering education in the field of Medical Informatics are described with respect to the impact of (1) experiences characterizing the "software misery", (2) status and tendencies in software methodology, and (3) educational status and needs in computer science education influenced by the controversy "theoretical versus practical education". Special attention is directed toward the growing importance of analysis, design methods, and techniques in the professional spectrum of Medical Informatics, the relevance of general principles of systems engineering in health care, the potential of non-procedural programming paradigms, and the intersection of Artificial Intelligence and education. Realizations of and experiences with programs in the field of Software Engineering are reported with respect to special requirements in Medical Informatics.

  11. Genomics of elite sporting performance: what little we know and necessary advances.

    PubMed

    Pitsiladis, Yannis; Wang, Guan; Wolfarth, Bernd; Scott, Robert; Fuku, Noriyuki; Mikami, Eri; He, Zihong; Fiuza-Luces, Carmen; Eynon, Nir; Lucia, Alejandro

    2013-06-01

    Numerous reports of genetic associations with performance-related phenotypes have been published over the past three decades but there has been limited progress in discovering and characterising the genetic contribution to elite/world-class performance, mainly owing to few coordinated research efforts involving major funding initiatives/consortia and the use primarily of the candidate gene analysis approach. It is timely that exercise genomics research has moved into a new era utilising well-phenotyped, large cohorts and genome-wide technologies--approaches that have begun to elucidate the genetic basis of other complex traits/diseases. This review summarises the most recent and significant findings from sports genetics and explores future trends and possibilities.

  12. Advances in environmental genomics: towards an integrated view of micro-organisms and ecosystems.

    PubMed

    Bertin, Philippe N; Médigue, Claudine; Normand, Philippe

    2008-02-01

    Microbial genome sequencing has, for the first time, made accessible all the components needed for both the elaboration and the functioning of a cell. Associated with other global methods such as protein and mRNA profiling, genomics has considerably extended our knowledge of physiological processes and their diversity not only in human, animal and plant pathogens but also in environmental isolates. At a higher level of complexity, the so-called meta approaches have recently shown great promise in investigating microbial communities, including uncultured micro-organisms. Combined with classical methods of physico-chemistry and microbiology, these endeavours should provide us with an integrated view of how micro-organisms adapt to particular ecological niches and participate in the dynamics of ecosystems.

  13. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics.

    PubMed

    Klemm, Elizabeth; Dougan, Gordon

    2016-05-11

    The development of next-generation sequencing as a cost-effective technology has facilitated the analysis of bacterial population structure at a whole-genome level and at scale. From these data, phylogenic trees have been constructed that define population structures at a local, national, and global level, providing a framework for genetic analysis. Although still at an early stage, these approaches have yielded progress in several areas, including pathogen transmission mapping, the genetics of niche colonization and host adaptation, as well as gene-to-phenotype association studies. Antibiotic resistance has proven to be a major challenge in the early 21(st) century, and phylogenetic analyses have uncovered the dramatic effect that the use of antibiotics has had on shaping bacterial population structures. An update on insights into bacterial evolution from comparative genomics is provided in this review. PMID:27173928

  14. Genomics and plant breeding.

    PubMed

    Aljanabi, S

    2001-01-01

    Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.

  15. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  16. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  17. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping.

    PubMed

    Parsons, Marilyn; Ramasamy, Gowthaman; Vasconcelos, Elton J R; Jensen, Bryan C; Myler, Peter J

    2015-08-01

    Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.

  18. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.

    PubMed

    Vivek-Ananth, R P; Samal, Areejit

    2016-09-01

    A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with metabolic reactions, the constraint-based modelling approach, flux balance analysis (FBA), has proved to be a vital alternative to investigate the capabilities of reconstructed metabolic networks. In parallel, advent of high-throughput technologies has led to the generation of massive amounts of omics data on transcriptional regulation comprising mRNA transcript levels and genome-wide binding profile of transcriptional regulators. A frontier area in metabolic systems biology has been the development of methods to integrate the available transcriptional regulatory information into constraint-based models of reconstructed metabolic networks in order to increase the predictive capabilities of computational models and understand the regulation of cellular metabolism. Here, we review the existing methods to integrate transcriptional regulatory information into constraint-based models of metabolic networks.

  19. Things to come: postmodern digital knowledge management and medical informatics.

    PubMed

    Matheson, N W

    1995-01-01

    The overarching informatics grand challenge facing society is the creation of knowledge management systems that can acquire, conserve, organize, retrieve, display, and distribute what is known today in a manner that informs and educates, facilitates the discovery and creation of new knowledge, and contributes to the health and welfare of the planet. At one time the private, national, and university libraries of the world collectively constituted the memory of society's intellectual history. In the future, these new digital knowledge management systems will constitute human memory in its entirety. The current model of multiple local collections of duplicated resources will give way to specialized sole-source servers. In this new environment all scholarly scientific knowledge should be public domain knowledge: managed by scientists, organized for the advancement of knowledge, and readily available to all. Over the next decade, the challenge for the field of medical informatics and for the libraries that serve as the continuous memory for the biomedical sciences will be to come together to form a new organization that will lead to the development of postmodern digital knowledge management systems for medicine. These systems will form a portion of the evolving world brain of the 21st century.

  20. Informatics-Based Discovery of Disease-Associated Immune Profiles

    PubMed Central

    Delmas, Amber; Oikonomopoulos, Angelos; Lacey, Precious N.; Fallahi, Mohammad; Hommes, Daniel W.; Sundrud, Mark S.

    2016-01-01

    Advances in flow and mass cytometry are enabling ultra-high resolution immune profiling in mice and humans on an unprecedented scale. However, the resulting high-content datasets challenge traditional views of cytometry data, which are both limited in scope and biased by pre-existing hypotheses. Computational solutions are now emerging (e.g., Citrus, AutoGate, SPADE) that automate cell gating or enable visualization of relative subset abundance within healthy versus diseased mice or humans. Yet these tools require significant computational fluency and fail to show quantitative relationships between discrete immune phenotypes and continuous disease variables. Here we describe a simple informatics platform that uses hierarchical clustering and nearest neighbor algorithms to associate manually gated immune phenotypes with clinical or pre-clinical disease endpoints of interest in a rapid and unbiased manner. Using this approach, we identify discrete immune profiles that correspond with either weight loss or histologic colitis in a T cell transfer model of inflammatory bowel disease (IBD), and show distinct nodes of immune dysregulation in the IBDs, Crohn’s disease and ulcerative colitis. This streamlined informatics approach for cytometry data analysis leverages publicly available software, can be applied to manually or computationally gated cytometry data, is suitable for any clinical or pre-clinical setting, and embraces ultra-high content flow and mass cytometry as a discovery engine. PMID:27669154

  1. Things to come: postmodern digital knowledge management and medical informatics.

    PubMed Central

    Matheson, N W

    1995-01-01

    The overarching informatics grand challenge facing society is the creation of knowledge management systems that can acquire, conserve, organize, retrieve, display, and distribute what is known today in a manner that informs and educates, facilitates the discovery and creation of new knowledge, and contributes to the health and welfare of the planet. At one time the private, national, and university libraries of the world collectively constituted the memory of society's intellectual history. In the future, these new digital knowledge management systems will constitute human memory in its entirety. The current model of multiple local collections of duplicated resources will give way to specialized sole-source servers. In this new environment all scholarly scientific knowledge should be public domain knowledge: managed by scientists, organized for the advancement of knowledge, and readily available to all. Over the next decade, the challenge for the field of medical informatics and for the libraries that serve as the continuous memory for the biomedical sciences will be to come together to form a new organization that will lead to the development of postmodern digital knowledge management systems for medicine. These systems will form a portion of the evolving world brain of the 21st century. PMID:7743318

  2. Harnessing next-generation informatics for personalizing medicine: a report from AMIA's 2014 Health Policy Invitational Meeting.

    PubMed

    Wiley, Laura K; Tarczy-Hornoch, Peter; Denny, Joshua C; Freimuth, Robert R; Overby, Casey L; Shah, Nigam; Martin, Ross D; Sarkar, Indra Neil

    2016-03-01

    The American Medical Informatics Association convened the 2014 Health Policy Invitational Meeting to develop recommendations for updates to current policies and to establish an informatics research agenda for personalizing medicine. In particular, the meeting focused on discussing informatics challenges related to personalizing care through the integration of genomic or other high-volume biomolecular data with data from clinical systems to make health care more efficient and effective. This report summarizes the findings (n = 6) and recommendations (n = 15) from the policy meeting, which were clustered into 3 broad areas: (1) policies governing data access for research and personalization of care; (2) policy and research needs for evolving data interpretation and knowledge representation; and (3) policy and research needs to ensure data integrity and preservation. The meeting outcome underscored the need to address a number of important policy and technical considerations in order to realize the potential of personalized or precision medicine in actual clinical contexts.

  3. Agent-oriented captology for medical informatics.

    PubMed

    Bărbat, B E; Zamfirescu, C B; Costache, G

    2000-01-01

    Considering that neither captology nor agent-orientation, are applied in medical informatics, as they could be, the paper presents a broad-spectrum generic architectural framework to support developing adaptive medical applications, based on synergistic correlation between persuasive interfaces and intelligent agents. Their main features are adapted for medical informatics. Lying on this groundwork, the design space for agent-oriented persuasive applications is defined and several guidelines for its main dimensions are given. The approach is instantiated through an agent-based test-bench application, having the purpose to persuade to quit smoking.

  4. A "fundamental theorem" of biomedical informatics.

    PubMed

    Friedman, Charles P

    2009-01-01

    This paper proposes, in words and pictures, a "fundamental theorem" to help clarify what informatics is and what it is not. In words, the theorem stipulates that a person working in partnership with an information resource is "better" than that same person unassisted. The theorem is applicable to health care, research, education, and administrative activities. Three corollaries to the theorem illustrate that informatics is more about people than technology; that in order for the theorem to hold, resources must be informative in addition to being correct; and that the theorem can fail to hold for reasons explained by understanding the interaction between the person and the resource.

  5. Systems Medicine: The Future of Medical Genomics, Healthcare, and Wellness.

    PubMed

    Saqi, Mansoor; Pellet, Johann; Roznovat, Irina; Mazein, Alexander; Ballereau, Stéphane; De Meulder, Bertrand; Auffray, Charles

    2016-01-01

    Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.

  6. An overview of the medical informatics curriculum in medical schools.

    PubMed Central

    Espino, J. U.; Levine, M. G.

    1998-01-01

    As medical schools incorporate medical informatics into their curriculum the problems of implementation arise. Because there are no standards regarding a medical informatics curriculum, medical schools are implementing the subjects in various ways. A survey was undertaken to amass an overview of the medical informatics curriculum nationally. Of the responding schools, most have aspects of medical informatics incorporated into current courses and utilize existing faculty. Literature searching, clinical decision-making, and Internet are the basic topics in the current curricula. The trend is for medical informatics to be incorporated throughout all four years of medical school. Barriers are the difficulties in faculty training, and slow implementation. PMID:9929263

  7. After three decades of Medical Informatics Europe congresses.

    PubMed

    Dezelic, Gjuro

    2009-01-01

    European medical informatics professionals traditionally gather at congresses of the European Federation for Medical Informatics (EFMI) named "Medical Informatics Europe - MIE". After more than three decades of successive organization of these congresses, some important points of their history of are presented. As the MIE Congress in Sarajevo, organized by the Society for Medical Informatics of Bosnia and Herzegovina (BHSMI), is the third EFMI event in the western part of South-East Europe, a short review of the development of medical informatics in this part of Europe, together with important events in its history, will shortly be presented.

  8. The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics

    PubMed Central

    Kilbridge, Peter M.; Classen, David C.

    2008-01-01

    Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896

  9. Recent advances in genomic DNA sequencing of microbial species from single cells

    PubMed Central

    Lasken, Roger S.; McLean, Jeffrey S.

    2015-01-01

    The vast majority of microbial species remain uncultivated and, until recently, about half of all known bacterial phyla were identified only from their 16S ribosomal RNA gene sequence. With the advent of single-cell sequencing, genomes of uncultivated species are rapidly filling in unsequenced branches of the microbial phylogenetic tree. The wealth of new insights gained from these previously inaccessible groups is providing a deeper understanding of their basic biology, taxonomy and evolution, as well as their diverse roles in environmental ecosystems and human health. PMID:25091868

  10. A brief history of nursing informatics in the United States of America.

    PubMed

    Ozbolt, Judy G; Saba, Virginia K

    2008-01-01

    From the beginning of modern nursing, data from standardized patient records were seen as a potentially powerful resource for assessing and improving the quality of care. As nursing informatics began to evolve in the second half of the 20th century, the lack of standards for language and data limited the functionality and usefulness of early applications. In response, nurses developed standardized languages, but until the turn of the century, neither they nor anyone else understood the attributes required to achieve computability and semantic interoperability. Collaboration across disciplines and national boundaries has led to the development of standards that meet these requirements, opening the way for powerful information tools. Many challenges remain, however. Realizing the potential of nurses to transform and improve health care and outcomes through informatics will require fundamental changes in individuals, organizations, and systems. Nurses are developing and applying informatics methods and tools to discover knowledge and improve health from the molecular to the global level and are seeking the collective wisdom of interdisciplinary and interorganizational collaboration to effect the necessary changes. NOTE: Although this article focuses on nursing informatics in the United States, nurses around the world have made substantial contributions to the field. This article alludes to a few of those advances, but a comprehensive description is beyond the scope of the present work.

  11. Nursing informatics knowledge and competencies: a national survey of nursing education programs in the United States.

    PubMed

    McNeil, Barbara J; Elfrink, Victoria L; Pierce, Susan T; Beyea, Suzanne C; Bickford, Carol J; Averill, Carolyn

    2005-12-01

    An online survey of deans/directors of 266 baccalaureate and higher nursing programs in the U.S. was developed by informatics expert nurses. Participants (1) identified nursing informatics (NI) competencies and knowledge of undergraduate and/or graduate students in their nursing programs; (2) determined faculty preparedness to teach NI and to use informatics tools; and (3) provided perceptions of NI requirements of local practicing nurses. Frequency data and qualitative responses were analyzed. Approximately half of undergraduate nursing programs were teaching information literacy skills and required students to enter with word-processing and email skills. Least visible informatics content at all levels included the use of information system data standards, the Nursing Information and Data Set Evaluation Center criteria, the unified medical language system (UMLS), and the nurse's role in the life cycle of an information system. Almost 50% of respondents perceived faculty as "novice" and "advanced beginners" in teaching and using NI applications. Participants reported no future plans to offer NI training in their region. Findings have major implications for nurse faculty, staff developers, and program administrators who are planning continuing education opportunities and designing nursing curricula that prepare nurses for use of the electronic health record and 21st century professional practice. PMID:16046276

  12. Informatics Systems and Tools to Facilitate Patient-centered Care Coordination

    PubMed Central

    Kneale, L.

    2015-01-01

    Summary Introduction There is a growing international focus on patient-centered care. A model designed to facilitate this type of care in the primary care setting is the patient-centered medical home. This model of care strives to be patient-focused, comprehensive, team-based, coordinated, accessible, and focused on quality and safety of care. Objective The objective of this paper is to identify the current status and future trends of patient-centered care and the role of informatics systems and tools in facilitating this model of care. Methods In this paper we review recent scientific literature of the past four years to identify trends and state of current evidence when it comes to patient-centered care overall, and more specifically medical homes. Results There are several studies that indicate growth and development in seven informatics areas within patient-centered care, namely clinical decision support, registries, team care, care transitions, personal health records, telehealth, and measurement. In some cases we are still lacking large randomized clinical trials and the evidence base is not always solid, but findings strongly indicate the potential of informatics to support patient-centered care. Conclusion Current evidence indicates that advancements have been made in implementing and evaluating patient-centered care models. Technical, legal, and practical challenges still remain. Further examination of the impact of patient-centered informatics tools and systems on clinical outcomes is needed. PMID:26293847

  13. America's most computer advanced healthcare facilities.

    PubMed

    1993-02-01

    Healthcare Informatics polled industry experts for nominations for this listing of America's Most Computer-Advanced Healthcare Facilities. Nominations were reviewed for extent of departmental automation, leading-edge applications, advanced point-of-care technologies, and networking communications capabilities. Additional consideration was given to smaller facilities automated beyond "normal expectations." Facility representatives who believe their organizations should be included in our next listing, please contact Healthcare Informatics for a nomination form.

  14. Medical informatics on the Internet: creating the sci.med. informatics newsgroup.

    PubMed

    Zakaria, A M; Sittig, D F

    1995-01-01

    A Usenet newsgroup, sci.med.informatics, has been created to serve as an international electronic forum for discussion of issues related to medical informatics. The creation process follows a set of administrative rules set out by the Usenet administration on the Internet and consists of five steps: 1) informal discussion, 2) request for formal discussion, 3) formal discussion, 4) voting, and 5) posting of results. The newsgroup can be accessed using any news reader via the Internet. PMID:7583645

  15. Type 2 diabetes, genomics, and nursing: necessary next steps to advance the science into improved, personalized care.

    PubMed

    Underwood, Patricia C

    2011-01-01

    Type 2 diabetes mellitus (T2DM) is an inherited, chronic disorder with long-term complications; including cardiovascular disease the leading cause of mortality in the United States. The prevalence of T2DM and its complications are on the rise in the United States, highlighting the need for improved individualized prevention and treatment strategies. Exciting advancements in the field of genomics has led to the recent discovery of numerous genetic markers for T2DM; completing a promising first step toward improved, individualized prevention and treatment strategies for T2DM. These genomic markers, identified using genome-wide association studies (GWAS), candidate gene, and rare variant methodology, identify new physiologic pathways underlying the development of T2DM. Much more work is needed to successfully translate the identification of genetic markers for T2DM into improved, individualized prevention and treatment strategies. As front line providers and leaders of prevention and treatment strategies for chronic disease, nurses, nurse practitioners, and nurse scientists must contribute to this translational effort. Thus, it is important for nurses at all levels to (a) be aware of the current science of genetics and T2DM and (b) participate in the translation of this genetic information into improved, personalized patient care. The aim of this review is to (a) provide an overview of the current state of the science of genetic markers and T2DM and (b) highlight essential next steps to successfully translate the identification of genetic markers for T2DM into improved prevention and treatment strategies; focusing particularly on the role of nursing in this process.

  16. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    SciTech Connect

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  17. Coalescing medical systems: a challenge for health informatics in a global world.

    PubMed

    Stranieri, Andrew; Vaughan, Stephen

    2010-01-01

    As globalisation advances, patients in many nations increasingly access diverse medical systems including Western medicine, Traditional Chinese Medicine, Homeopathy and Ayervedic medicine. The trend toward co-existence of medical systems presents challenges for health informatics including the need to develop standards that can encompass the diversity required, the need to develop software applications that effectively inter-operate across diverse systems and the need to support patients when evaluating competing systems. This article advances the notion that the challenges can most effectively be met with the development of informatics approaches that do not assume the superiority of one medical system over another. Argument visualization to support patient decision making in selecting an appropriate medical system is presented as an application that exemplifies this stance. PMID:21191169

  18. Coalescing medical systems: a challenge for health informatics in a global world.

    PubMed

    Stranieri, Andrew; Vaughan, Stephen

    2010-01-01

    As globalisation advances, patients in many nations increasingly access diverse medical systems including Western medicine, Traditional Chinese Medicine, Homeopathy and Ayervedic medicine. The trend toward co-existence of medical systems presents challenges for health informatics including the need to develop standards that can encompass the diversity required, the need to develop software applications that effectively inter-operate across diverse systems and the need to support patients when evaluating competing systems. This article advances the notion that the challenges can most effectively be met with the development of informatics approaches that do not assume the superiority of one medical system over another. Argument visualization to support patient decision making in selecting an appropriate medical system is presented as an application that exemplifies this stance.

  19. Advanced Yellow Fever Virus Genome Detection in Point-of-Care Facilities and Reference Laboratories

    PubMed Central

    Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A.; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-01-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories. PMID:23052311

  20. Recent advances in globin research using genome-wide association studies and gene editing.

    PubMed

    Orkin, Stuart H

    2016-03-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing.

  1. Technological Advances in Bifidobacterial Molecular Genetics: Application to Functional Genomics and Medical Treatments

    PubMed Central

    FUKIYA, Satoru; HIRAYAMA, Yosuke; SAKANAKA, Mikiyasu; KANO, Yasunobu; YOKOTA, Atsushi

    2012-01-01

    Bifidobacteria are well known as beneficial intestinal bacteria that exert health-promoting effects in humans. In addition to physiological and immunological investigations, molecular genetic technologies have been developed and have recently started to be applied to clarify the molecular bases of host-Bifidobacterium interactions. These technologies include transformation technologies and Escherichia coli-Bifidobacterium shuttle vectors that enable heterologous gene expression. In this context, a plasmid artificial modification method that protects the introduced plasmid from the restriction system in host bifidobacteria has recently been developed to increase transformation efficiency. On the other hand, targeted gene inactivation systems, which are vital for functional genomics, seemed far from being practically applicable in bifidobacteria. However, remarkable progress in this technology has recently been achieved, enabling functional genomics in bifidobacteria. Integrated use of these molecular genetic technologies with omics-based analyses will surely boost characterization of the molecular basis underlying beneficial effects of bifidobacteria. Applications of recombinant bifidobacteria to medical treatments have also progressed. PMID:24936345

  2. Geo-Engineering through Internet Informatics (GEMINI)

    SciTech Connect

    Doveton, John H.; Watney, W. Lynn

    2003-03-06

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  3. Cognitive informatics in biomedicine and healthcare.

    PubMed

    Patel, Vimla L; Kannampallil, Thomas G

    2015-02-01

    Cognitive Informatics (CI) is a burgeoning interdisciplinary domain comprising of the cognitive and information sciences that focuses on human information processing, mechanisms and processes within the context of computing and computer applications. Based on a review of articles published in the Journal of Biomedical Informatics (JBI) between January 2001 and March 2014, we identified 57 articles that focused on topics related to cognitive informatics. We found that while the acceptance of CI into the mainstream informatics research literature is relatively recent, its impact has been significant - from characterizing the limits of clinician problem-solving and reasoning behavior, to describing coordination and communication patterns of distributed clinical teams, to developing sustainable and cognitively-plausible interventions for supporting clinician activities. Additionally, we found that most research contributions fell under the topics of decision-making, usability and distributed team activities with a focus on studying behavioral and cognitive aspects of clinical personnel, as they performed their activities or interacted with health information systems. We summarize our findings within the context of the current areas of CI research, future research directions and current and future challenges for CI researchers.

  4. Informatics and Small Computers in Latin America.

    ERIC Educational Resources Information Center

    Alvarez, Jose; And Others

    1985-01-01

    This paper highlights potential benefits and more pressing social and legal problems facing Latin American nations in the area of informatics and small computers. Discussion covers potential uses (education, office applications, agriculture, national planning); role of central governments; implications for economic development; and transborder…

  5. Informatics and Standards for Nanomedicine Technology

    PubMed Central

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  6. Informatics for neurocritical care: challenges and opportunities.

    PubMed

    Sivaganesan, Ahilan; Manley, Geoffrey T; Huang, Michael C

    2014-02-01

    Neurocritical care relies on the continuous, real-time measurement of numerous physiologic parameters. While our capability to obtain such measurements from patients has grown markedly with multimodal monitoring in many neurologic or neurosurgical intensive care units (ICUs), our ability to transform the raw data into actionable information is limited. One reason is that the proprietary nature of medical devices and software often prevents neuro-ICUs from capturing and centrally storing high-density data. Also, ICU alarm systems are often unreliable because the data that are captured are riddled with artifacts. Informatics is the process of acquiring, processing, and interpreting these complex arrays of data. The development of next-generation informatics tools allows for detection of complex physiologic events and brings about the possibility of decision support tools to improve neurocritical care. Although many different approaches to informatics are discussed and considered, here we focus on the Bayesian probabilistic paradigm. It quantifies the uncertainty inherent in neurocritical care instead of ignoring it, and formalizes the natural clinical thought process of updating prior beliefs using incoming patient data. We review this and other opportunities, as well as challenges, for the development and refinement of informatics tools in neurocritical care.

  7. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  8. Developing curriculum in nursing informatics in Europe.

    PubMed

    Mantas, J

    1998-06-01

    The NIGHTINGALE Project (NIGHTINGALE Project: HC1109 DGXIII Contract and Technical Annex, European Commission, December 1995) which started on the 1st of January, 1996, after the approval of the European Commission, has a 36 month duration. It is essential in planning and implementing a strategy in training the nursing profession in using and applying healthcare information systems. NIGHTINGALE contributes towards the appropriate use of the developed telematics infrastructure across Europe by educating and training nurses in a harmonious way across Europe in the upcoming field of nursing informatics. NIGHTINGALE develops courseware material based on the curriculum development process using multimedia technologies. Computer based training software packages in nursing informatics will be the basis of the training material and the corresponding courses. CD-ROM based training and reference material will also be provided in the courses whereas the traditional booklets, teaching material and textbooks can also play an adequate role in training. NIGHTINGALE will disseminate all information and courseware material freely to all interested parties through the publications of the proceedings of the conferences, through the establishment of the world wide web (WWW) server in nursing informatics for Europe (http://www.dn.uoa.gr/nightingale), which will become a depository of nursing information knowledge across Europe as well as a dissemination node of nursing informatics throughout the European members states for the benefit and welfare of the European citizen. PMID:9726502

  9. Globalising health informatics: the role of GIScience.

    PubMed

    Robertson, Hamish; Nicholas, Nick; Georgiou, Andrew; Johnson, Julie; Travaglia, Joanne

    2014-01-01

    Health systems globally are undergoing significant changes. New systems are emerging in developing countries where there were previously limited healthcare options, existing systems in emerging and developed economies are under significant resource pressures and population dynamics are creating significant pressures for change. As health systems expand and intensify, information quality and timeliness will be central to their sustainability and continuity. Information collection and transfer across diverse systems and international borders already presents a significant challenge for health system operations and logistics. Geographic information science (giscience) has the potential to support and enhance health informatics in the coming decades as health information transfers become increasingly important. In this article we propose a spatially enabled approach to support and increasingly globalised health informatics environment. In a world where populations are ageing and urbanising and health systems are linked to economic and social policy shifts, knowing where patients, diseases, health care workers and facilities are located becomes central to those systems operational capacities. In this globalising environment, health informatics needs to be spatially enabled informatics.

  10. International Co-Teaching of Medical Informatics for Training-the-Trainers in Content and Distance Education

    ERIC Educational Resources Information Center

    Lewis, Kadriye O.; Sincan, Murat

    2009-01-01

    In this technologically advanced age, much emphasis is put on collaboration in education at many levels. As a result, faculty co-teaching (collaborative teaching) has grown dramatically. This paper introduces how two instructors from different countries (USA and Turkey), one experienced in online teaching and the other in medical informatics,…

  11. p-medicine: A Medical Informatics Platform for Integrated Large Scale Heterogeneous Patient Data

    PubMed Central

    Marés, J.; Shamardin, L.; Weiler, G.; Anguita, A.; Sfakianakis, S.; Neri, E.; Zasada, S.J.; Graf, N.; Coveney, P.V.

    2014-01-01

    Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare. PMID:25954394

  12. p-medicine: A Medical Informatics Platform for Integrated Large Scale Heterogeneous Patient Data.

    PubMed

    Marés, J; Shamardin, L; Weiler, G; Anguita, A; Sfakianakis, S; Neri, E; Zasada, S J; Graf, N; Coveney, P V

    2014-01-01

    Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.

  13. Informatics: essential infrastructure for quality assessment and improvement in nursing.

    PubMed Central

    Henry, S B

    1995-01-01

    In recent decades there have been major advances in the creation and implementation of information technologies and in the development of measures of health care quality. The premise of this article is that informatics provides essential infrastructure for quality assessment and improvement in nursing. In this context, the term quality assessment and improvement comprises both short-term processes such as continuous quality improvement (CQI) and long-term outcomes management. This premise is supported by 1) presentation of a historical perspective on quality assessment and improvement; 2) delineation of the types of data required for quality assessment and improvement; and 3) description of the current and potential uses of information technology in the acquisition, storage, transformation, and presentation of quality data, information, and knowledge. PMID:7614118

  14. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    PubMed Central

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  15. Genomics of elite sporting performance: what little we know and necessary advances.

    PubMed

    Wang, Guan; Padmanabhan, Sandosh; Wolfarth, Bernd; Fuku, Noriyuki; Lucia, Alejandro; Ahmetov, Ildus I; Cieszczyk, Pawel; Collins, Malcolm; Eynon, Nir; Klissouras, Vassilis; Williams, Alun; Pitsiladis, Yannis

    2013-01-01

    Numerous reports of genetic associations with performance- and injury-related phenotypes have been published over the past three decades; these studies have employed primarily the candidate gene approach to identify genes that associate with elite performance or with variation in performance-and/or injury-related traits. Although generally with small effect sizes and heavily prone to type I statistic error, the number of candidate genetic variants that can potentially explain elite athletic status, injury predisposition, or indeed response to training will be much higher than that examined by numerous biotechnology companies. Priority should therefore be given to applying whole genome technology to sufficiently large study cohorts of world-class athletes with adequately measured phenotypes where it is possible to increase statistical power. Some of the elite athlete cohorts described in the literature might suffice, and collectively, these cohorts could be used for replication purposes. Genome-wide association studies are ongoing in some of these cohorts (i.e., Genathlete, Russian, Spanish, Japanese, United States, and Jamaican cohorts), and preliminary findings include the identification of one single nucleotide polymorphism (SNP; among more than a million SNPs analyzed) that associates with sprint performance in Japanese, American (i.e., African American), and Jamaican cohorts with a combined effect size of ~2.6 (P-value <5×10(-7)) and good concordance with endurance performance between select cohorts. Further replications of these signals in independent cohorts will be required, and any replicated SNPs will be taken forward for fine-mapping/targeted resequencing and functional studies to uncover the underlying biological mechanisms. Only after this lengthy and costly process will the true potential of genetic testing in sport be determined.

  16. Power, resolution and bias: recent advances in insect phylogeny driven by the genomic revolution.

    PubMed

    Yeates, David K; Meusemann, Karen; Trautwein, Michelle; Wiegmann, Brian; Zwick, Andreas

    2016-02-01

    Our understanding on the phylogenetic relationships of insects has been revolutionised in the last decade by the proliferation of next generation sequencing technologies (NGS). NGS has allowed insect systematists to assemble very large molecular datasets that include both model and non-model organisms. Such datasets often include a large proportion of the total number of protein coding sequences available for phylogenetic comparison. We review some early entomological phylogenomic studies that employ a range of different data sampling protocols and analyses strategies, illustrating a fundamental renaissance in our understanding of insect evolution all driven by the genomic revolution. The analysis of phylogenomic datasets is challenging because of their size and complexity, and it is obvious that the increasing size alone does not ensure that phylogenetic signal overcomes systematic biases in the data. Biases can be due to various factors such as the method of data generation and assembly, or intrinsic biological feature of the data per se, such as similarities due to saturation or compositional heterogeneity. Such biases often cause violations in the underlying assumptions of phylogenetic models. We review some of the bioinformatics tools available and being developed to detect and minimise systematic biases in phylogenomic datasets. Phylogenomic-scale data coupled with sophisticated analyses will revolutionise our understanding of insect functional genomics. This will illuminate the relationship between the vast range of insect phenotypic diversity and underlying genetic diversity. In combination with rapidly developing methods to estimate divergence times, these analyses will also provide a compelling view of the rates and patterns of lineagenesis (birth of lineages) over the half billion years of insect evolution.

  17. Power, resolution and bias: recent advances in insect phylogeny driven by the genomic revolution.

    PubMed

    Yeates, David K; Meusemann, Karen; Trautwein, Michelle; Wiegmann, Brian; Zwick, Andreas

    2016-02-01

    Our understanding on the phylogenetic relationships of insects has been revolutionised in the last decade by the proliferation of next generation sequencing technologies (NGS). NGS has allowed insect systematists to assemble very large molecular datasets that include both model and non-model organisms. Such datasets often include a large proportion of the total number of protein coding sequences available for phylogenetic comparison. We review some early entomological phylogenomic studies that employ a range of different data sampling protocols and analyses strategies, illustrating a fundamental renaissance in our understanding of insect evolution all driven by the genomic revolution. The analysis of phylogenomic datasets is challenging because of their size and complexity, and it is obvious that the increasing size alone does not ensure that phylogenetic signal overcomes systematic biases in the data. Biases can be due to various factors such as the method of data generation and assembly, or intrinsic biological feature of the data per se, such as similarities due to saturation or compositional heterogeneity. Such biases often cause violations in the underlying assumptions of phylogenetic models. We review some of the bioinformatics tools available and being developed to detect and minimise systematic biases in phylogenomic datasets. Phylogenomic-scale data coupled with sophisticated analyses will revolutionise our understanding of insect functional genomics. This will illuminate the relationship between the vast range of insect phenotypic diversity and underlying genetic diversity. In combination with rapidly developing methods to estimate divergence times, these analyses will also provide a compelling view of the rates and patterns of lineagenesis (birth of lineages) over the half billion years of insect evolution. PMID:27436549

  18. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects.

    PubMed

    Pandey, Manish K; Roorkiwal, Manish; Singh, Vikas K; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  19. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  20. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  1. Integrating Governance of Research Informatics and Health Care IT Across an Enterprise: Experiences from the Trenches

    PubMed Central

    Embi, Peter J.; Tachinardi, Umberto; Lussier, Yves; Starren, Justin; Silverstein, Jonathan

    Advances in health information technology and biomedical informatics have laid the groundwork for significant improvements in healthcare and biomedical research. For instance, Electronic Health Records can help improve the delivery of evidence-based care, enhance quality, and contribute to discoveries and evidence generation. Despite this promise, there are many challenges to achieving the vision and missions of our healthcare and research enterprises. Given the challenges inherent in doing so, institutions are increasingly moving to establish dedicated leadership and governance models charged with designing, deploying and leveraging various information resources to advance research and advanced care activities at AHCs. Some institutions have even created a new leadership position to oversee such activities, such as the Chief Research Information Officer. This panel will include research informatics leaders discussing their experiences from the proverbial trenches as they work to operationalize such cross-mission governance models. Panelists will start by providing an overview their respective positions and environments, discuss their experiences, and share lessons learned through their work at the intersection of clinical and translational research informatics and Health IT. PMID:24303236

  2. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2004-01-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1). PMID:15718686

  3. The genomics of preterm birth: from animal models to human studies

    PubMed Central

    2013-01-01

    Preterm birth (delivery at less than 37 weeks of gestation) is the leading cause of infant mortality worldwide. So far, the application of animal models to understand human birth timing has not substantially revealed mechanisms that could be used to prevent prematurity. However, with amassing data implicating an important role for genetics in the timing of the onset of human labor, the use of modern genomic approaches, such as genome-wide association studies, rare variant analyses using whole-exome or genome sequencing, and family-based designs, holds enormous potential. Although some progress has been made in the search for causative genes and variants associated with preterm birth, the major genetic determinants remain to be identified. Here, we review insights from and limitations of animal models for understanding the physiology of parturition, recent human genetic and genomic studies to identify genes involved in preterm birth, and emerging areas that are likely to be informative in future investigations. Further advances in understanding fundamental mechanisms, and the development of preventative measures, will depend upon the acquisition of greater numbers of carefully phenotyped pregnancies, large-scale informatics approaches combining genomic information with information on environmental exposures, and new conceptual models for studying the interaction between the maternal and fetal genomes to personalize therapies for mothers and infants. Information emerging from these advances will help us to identify new biomarkers for earlier detection of preterm labor, develop more effective therapeutic agents, and/or promote prophylactic measures even before conception. PMID:23673148

  4. Advancing Pharmacogenomics Education in the Core PharmD Curriculum through Student Personal Genomic Testing

    PubMed Central

    Adams, Solomon M.; Anderson, Kacey B.; Coons, James C.; Smith, Randall B.; Meyer, Susan M.; Parker, Lisa S.

    2016-01-01

    Objective. To develop, implement, and evaluate “Test2Learn” a program to enhance pharmacogenomics education through the use of personal genomic testing (PGT) and real genetic data. Design. One hundred twenty-two second-year doctor of pharmacy (PharmD) students in a required course were offered PGT as part of a larger program approach to teach pharmacogenomics within a robust ethical framework. The program added novel learning objectives, lecture materials, analysis tools, and exercises using individual-level and population-level genetic data. Outcomes were assessed with objective measures and pre/post survey instruments. Assessment. One hundred students (82%) underwent PGT. Knowledge significantly improved on multiple assessments. Genotyped students reported a greater increase in confidence in understanding test results by the end of the course. Similarly, undergoing PGT improved student’s self-perceived ability to empathize with patients compared to those not genotyped. Most students (71%) reported feeling PGT was an important part of the course, and 60% reported they had a better understanding of pharmacogenomics specifically because of the opportunity. Conclusion. Implementation of PGT in the core pharmacy curriculum was feasible, well-received, and enhanced student learning of pharmacogenomics. PMID:26941429

  5. Genomics can advance the potential for probiotic cultures to improve liver and overall health.

    PubMed

    O'Sullivan, Daniel J

    2008-01-01

    The concept of probiotics has evolved immensely since it was first proposed a century ago. There are numerous potential health benefits attributed to certain probiotic bacteria, from preventing gastrointestinal (GI) infections to stimulating the immune system. Recent evidence is now quite compelling for a role of probiotics in enhancing liver health. Liver injury is on the rise worldwide with non-alcohol fatty liver disease (NAFLD) the fastest rising liver problem, due largely to the rise in obesity and type II diabetes. A damaged liver can progress to more serious conditions such as steatohepatitis and cirrhosis, and the intestinal microflora are believed to play a large role in this progression. When the intestinal microbial flora is high in facultative microbes, particularly the Enterobacteriaceae, and low in anaerobes such as bifidobacteria, higher levels of ammonia, endotoxins and other compounds enter the blood stream. This results in direct liver damage and also indirectly from pro-inflammatory cytokines such as TNF-alpha. Probiotics have been shown to modulate the intestinal microflora and decrease the urease producing gram negatives and increase the anaerobic population. While results have been obtained with current probiotic strains, more effective strains could be obtained if all the characteristics bacteria use to survive and compete successfully in the intestine were known. The genomics era is now providing the tools to more effectively understand probiotic interactions in the intestine. This will lead to a new generation of exciting probiotics in the future. PMID:18537660

  6. Recent Advances in Discovery, Biosynthesis and Genome Mining of Medicinally Relevant Polycyclic Tetramate Macrolactams.

    PubMed

    Zhang, Guangtao; Zhang, Wenjun; Saha, Subhasish; Zhang, Changsheng

    2016-01-01

    Polycyclic tetramate macrolactams (PTMs), a widely distributed class of structurally complex natural products exhibiting diverse biological activities, share a tetramate-containing macrocyclic lactam ring fused to a subset of carbocyclic rings. More than 30 naturally occurring PTM members have been reported. Representative members include ikarugamycin, HSAF, and alteramides. The emerging significance of PTMs in medicinal applications has raised attentions on their biosynthetic studies. These studies have unveiled the unexpected conservation of compact PTM biosynthetic loci in phylogenetically diverse bacteria and elucidated mechanisms for key steps in PTM biosynthesis. PTMs were demonstrated to be derived from the common origin of a hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) pathway, in which the PKS portion was iteratively used to generate two separate polyketide chains. A common tetramate-containing polyene intermediate was proposed to be the final product of all PTM PKS/NRPS assembly lines. Subsequently, a set of oxidoreductases acted in a not yet clearly understood way to dictate the manner of cyclizations to yield different polycycle ring systems in PTMs. The only well studied example was the formation of the inner fivemembered ring in ikarugamycin, which was catalyzed by an alcohol dehydrogenase via a [1 + 6] Michael addition. Nonetheless, these studies have illustrated the extraordinary simplicity of nature's art in the biosynthesis of PTMs with complex structures and paved the way to further expand the structural diversity of the family of medicinally relevant PTMs by genome mining and combinatorial biosynthesis.

  7. Loop-linker PCR: an advanced PCR technique for genome walking.

    PubMed

    Trinh, Quoclinh; Shi, Hui; Xu, Wentao; Hao, Junran; Luo, Yunbo; Huang, Kunlun

    2012-10-01

    In this article, we developed a novel PCR method, termed loop-linker PCR, to isolate flanking sequences in transgenic crops. The novelty of this approach is its use of a stem-loop structure to design a loop-linker adapter. The adapter is designed to form a nick site when ligated with restricted DNA. This modification not only can prevent the self-ligation of adapters but also promotes the elongation of the 3' end of the loop-linker adapter to generate a stem-loop structure in the ligation products. Moreover, the suppressive effect of the stem-loop structure decreases nonspecific amplification and increases the success rate of the approach; all extension products will suppress exponential amplification except from the ligation product that contains the specific primer binding site. Using this method, 442, 1830, 107, and 512 bp left border flanking sequences were obtained from the transgenic maizes LY038, DAS-59122-7, Event 3272, and the transgenic soybean MON89788, respectively. The experimental results demonstrated that loop-linker PCR is an efficient, reliable, and cost-effective method for identifying flanking sequences in transgenic crops and could be applied for other genome walking applications.

  8. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies.

    PubMed

    Devall, Matthew; Roubroeks, Janou; Mill, Jonathan; Weedon, Michael; Lunnon, Katie

    2016-06-20

    The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field. PMID:26876477

  9. Information science for the future: an innovative nursing informatics curriculum.

    PubMed

    Travis, L; Flatley Brennan, P

    1998-04-01

    Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.

  10. [Genomic Tests: From Basic Research to Clinical Practice].

    PubMed

    Nakatani, Kaname; Mochiki, Ikuyo

    2015-03-01

    Advanced genomic analytical technologies are developing and challenging the current framework of clinical laboratory testing. However, most genomic tests have been devised as laboratory-developed tests (LDTs) without sufficient validation of their analytical validity. Quality assurance (QA) of tests is mandatory for routine clinical practice. External quality management systems such as ISO add QA. Other than QAs of pre-analysis, analytical procedures, reports, and laboratory personnel should be regularly assessed using appropriate best practices and guidelines for analytical validity. Moreover, ethical, legal, and social issues concerning genomic information should be resolved in genomic tests. Taken together, clinicians and health care policymakers must consider the accuracy with which a test identifies a patient's clinical status and the risks and benefits resulting from test use. Genomic tests in current use vary in terms of their accuracy and potential to improve health outcomes. Recently, high-throughput analysis using next-generation sequencing and microarrays is being developed and introduced into clinical practice. As analysis of these data sets is a huge challenge, it requires novel analytical processes that include data quality assessment, comprehensive analysis, interpretation of the results, and presenting the results to users. Especially, human resources are required to develop genome informatics to interpret large amounts of data. Another issue is to regulate Direct To Consumers (DTC) genetic tests by medical institutions as a salutary health service. Although advanced genomic analytical technologies present some issues, they are useful and powerful tools in clinical practice. Thus, they will be properly introduced into clinical practices in a step by step manner. PMID:26524861

  11. [Genomic Tests: From Basic Research to Clinical Practice].

    PubMed

    Nakatani, Kaname; Mochiki, Ikuyo

    2015-03-01

    Advanced genomic analytical technologies are developing and challenging the current framework of clinical laboratory testing. However, most genomic tests have been devised as laboratory-developed tests (LDTs) without sufficient validation of their analytical validity. Quality assurance (QA) of tests is mandatory for routine clinical practice. External quality management systems such as ISO add QA. Other than QAs of pre-analysis, analytical procedures, reports, and laboratory personnel should be regularly assessed using appropriate best practices and guidelines for analytical validity. Moreover, ethical, legal, and social issues concerning genomic information should be resolved in genomic tests. Taken together, clinicians and health care policymakers must consider the accuracy with which a test identifies a patient's clinical status and the risks and benefits resulting from test use. Genomic tests in current use vary in terms of their accuracy and potential to improve health outcomes. Recently, high-throughput analysis using next-generation sequencing and microarrays is being developed and introduced into clinical practice. As analysis of these data sets is a huge challenge, it requires novel analytical processes that include data quality assessment, comprehensive analysis, interpretation of the results, and presenting the results to users. Especially, human resources are required to develop genome informatics to interpret large amounts of data. Another issue is to regulate Direct To Consumers (DTC) genetic tests by medical institutions as a salutary health service. Although advanced genomic analytical technologies present some issues, they are useful and powerful tools in clinical practice. Thus, they will be properly introduced into clinical practices in a step by step manner.

  12. Distributed medical informatics education using internet2.

    PubMed Central

    Tidmarsh, Patrica J.; Cummings, Joseph; Hersh, William R.; Freidman, Charles P.

    2002-01-01

    The curricula of most medical informatics training programs are incomplete. We used Internet2-based videoconferencing to expand the educational opportunities of medical informatics students at Oregon Health & Science University and the University of Pittsburgh. Students and faculty in both programs shared extra-curricular research conferences and journal club meetings. A course in Information Retrieval was made available to students in both programs. The conferences, meetings and class were well accepted by participants. A few problems were experienced with the technology, some of which were resolved, and some non-technical challenges to distributing academic conferences, meetings and coursework were also uncovered. We plan to continue our efforts with expanded course and extra-curricular offerings and a more comprehensive evaluation strategy. PMID:12463932

  13. Biodiversity informatics and the plant conservation baseline.

    PubMed

    Paton, Alan

    2009-11-01

    Primary baseline data on taxonomy and species distribution, and its integration with environmental variables, has a valuable role to play in achieving internationally recognised targets for plant diversity conservation, such as the Global Strategy for Plant Conservation. The importance of primary baseline data and the role of biodiversity informatics in linking these data to other environmental variables are discussed. The need to maintain digital resources and make them widely accessible is an additional requirement of institutions who already collect and maintain this baseline data. The lack of resources in many species-rich areas to gather these data and make them widely accessible needs to be addressed if the full benefit of biodiversity informatics on plant conservation is to be realised.

  14. Informatics confronts drug-drug interactions.

    PubMed

    Percha, Bethany; Altman, Russ B

    2013-03-01

    Drug-drug interactions (DDIs) are an emerging threat to public health. Recent estimates indicate that DDIs cause nearly 74000 emergency room visits and 195000 hospitalizations each year in the USA. Current approaches to DDI discovery, which include Phase IV clinical trials and post-marketing surveillance, are insufficient for detecting many DDIs and do not alert the public to potentially dangerous DDIs before a drug enters the market. Recent work has applied state-of-the-art computational and statistical methods to the problem of DDIs. Here we review recent developments that encompass a range of informatics approaches in this domain, from the construction of databases for efficient searching of known DDIs to the prediction of novel DDIs based on data from electronic medical records, adverse event reports, scientific abstracts, and other sources. We also explore why DDIs are so difficult to detect and what the future holds for informatics-based approaches to DDI discovery. PMID:23414686

  15. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII. PMID:9509399

  16. An advanced application of protein microarrays: cell-based assays for functional genomics.

    PubMed

    Carbone, Roberta

    2009-01-01

    Microarrays have become common tools for approaching different experimental questions: DNA, protein and peptide arrays offer the power of multiplexing the assay and by means of miniaturization technology, the possibility to reduce cost and amount of samples and reagents. Recently, a novel technology for functional assays has been proposed. Sabatini and co-workers have shown a cell-based microarrays method (1) that relies on the deposition and immobilization of an array of cDNA plasmids on a slide where cells are subsequently plated; the cDNA is then internalized by "reverse transfection" and cells overexpress or downregulate in each single spot the genes of interest. This approach allows the screening of different phenotypes in living cells of many genes in parallel on a single slide. To overcome some relevant limitations of this approach, we have implemented the technology by means of viral immobilization (2) on a novel surface of cluster-assembled nanostructured TiO2 (3) previously functionalized with an array of a docking protein. In this work, we present the detailed development of the "reverse infection cell-microarray based technology" in U2OS cells on a novel coated slide that represents an advanced application of protein arrays.

  17. Medical informatics in the new millennium.

    PubMed

    Ball, M J; Douglas, J V

    1998-01-01

    In a period of social transformation, we must reinvent health care. For guidance, we can look to the evolving discipline of medical informatics and to the patterns of investment in the practice arena. A top ranked application need, the computerized patient record (CPR) offers cost savings and supports clinical quality and ambulatory care. In the new millennium, we need to define our values with precision and use technology to achieve quality health care.

  18. Root Cause Analysis and Health Informatics.

    PubMed

    Jones, Richard W; Despotou, George

    2016-01-01

    Root Cause Analysis (RCA) is the most widely used system analysis tool for investigating safety related incidents in healthcare. This contribution reviews RCA techniques, using a Health Informatics example, and discusses barriers to their successful uptake by healthcare organisations. It is concluded that a critical assessment to examine the uptake and evaluate the success of RCA, and other safety related techniques, within healthcare is long overdue. PMID:27350485

  19. Health informatics competencies - underpinning e-health.

    PubMed

    Grain, Heather; Hovenga, Evelyn

    2011-01-01

    There is a widespread consensus that we have an urgent need to improve our workforce capacity in all aspects associated with the skills and knowledge required for successful e-health and health informatics developments, associated change management and systems implementation strategies. Such activities aim to support various health reform policy initiatives. This paper considers the work being undertaken by many researchers around the globe to define the range of skills and knowledge requirements to suit this purpose. A number of requirements and areas of specialisation are detailed. This is followed by descriptions for competencies in general and more specifically descriptions of a set of high level agreed Health Informatics competencies. Collectively these competencies provide a suitable framework useful for the formal recognition of Health Informatics, including e-health, as a nationally recognised study discipline. Nationally agreed competencies for this discipline enables all education and training efforts to be consistently implemented and to fit with the Australian Qualifications Framework covering both the Vocational Education and Training (VET) and Higher Education sectors.

  20. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-05-20

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.

  1. Knowledge, Skills, and Resources for Pharmacy Informatics Education

    PubMed Central

    Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.

    2011-01-01

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates’ practice environment. PMID:21829267

  2. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  3. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    PubMed

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  4. Multidisciplinary education in medical informatics--a course for medical and informatics students.

    PubMed

    Breil, Bernhard; Fritz, Fleur; Thiemann, Volker; Dugas, Martin

    2010-01-01

    Design and implementation of healthcare information systems affect both computer scientists and health care professionals. In this paper we present our approach to integrate the management of information systems in the education of healthcare professionals and computer scientists alike. We designed a multidisciplinary course for medical and informatics students to provide them with practical experience concerning the design and implementation of medical information systems. This course was implemented in the curriculum of the University of Münster in 2009. The key element is a case study that is performed by small teams of medical and informatics students. A practical course on management of information systems can be useful for medical students who want to enhance their knowledge in information systems as well as for informatics students with particular interests in medicine.

  5. Better informed in clinical practice - a brief overview of dental informatics.

    PubMed

    Reynolds, P A; Harper, J; Dunne, S

    2008-03-22

    Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training. PMID:18356882

  6. Imaging-based observational databases for clinical problem solving: the role of informatics.

    PubMed

    Bui, Alex A T; Hsu, William; Arnold, Corey; El-Saden, Suzie; Aberle, Denise R; Taira, Ricky K

    2013-01-01

    Imaging has become a prevalent tool in the diagnosis and treatment of many diseases, providing a unique in vivo, multi-scale view of anatomic and physiologic processes. With the increased use of imaging and its progressive technical advances, the role of imaging informatics is now evolving--from one of managing images, to one of integrating the full scope of clinical information needed to contextualize and link observations across phenotypic and genotypic scales. Several challenges exist for imaging informatics, including the need for methods to transform clinical imaging studies and associated data into structured information that can be organized and analyzed. We examine some of these challenges in establishing imaging-based observational databases that can support the creation of comprehensive disease models. The development of these databases and ensuing models can aid in medical decision making and knowledge discovery and ultimately, transform the use of imaging to support individually-tailored patient care.

  7. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

    SciTech Connect

    Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe; Slysz, Gordon W.; Payne, Samuel H.; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-12-26

    Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.

  8. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

    NASA Astrophysics Data System (ADS)

    Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe; Slysz, Gordon W.; Payne, Samuel H.; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-12-01

    The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and its utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however, an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we began by evaluating the results of several popular MS/MS database search engines, including MS-GF+, SEQUEST, and MS-Align+, for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive, and quantitative peptidomics analysis.

  9. [The informatics of human genome and traditional Chinese medicine].

    PubMed

    Lin, Qiao; Wang, Mi-Qu; Wu, Bin; Ding, Wei-Jun; Li, Wei-Hong; Zhang, Tian-E

    2006-09-01

    Guided by the theory and methodology of yin-yang set derived from Changing Book and Medicine Canon, and using genetics as a bridge, we have tried to bring together the ancient functional systematology and modern structural one as well as Eastern and Western medicine, thereby promoting the modernization of traditional Chinese medicine (TCM) in theory and in clinical practice. Herein, we used virtual technology to transform the genetic information in OMIM of NCBI (National Center for Biotechnology Information of USA, http://www.ncbi.nlm.nih.gov ) into a secondary database in the form of webpages. There are sixteen kinds of the database named gene morbidity ones as followings as: the nature of gene, the profile of common phenotype, a interaction of endogenous, the disease of a organ or a viscera pathogenesis phenomenon, TCM, the sign of diagnosis of western medicine, the gene response to environment, syndrome, disease, nerve and -endocrine, tumor and cancer, psychology and behavior, morbidity, endo-factor of molecular information, expression, the interaction between endogenous and exogenous in which there is 4 711 words, files. The advantages of the database are its aptness for using human fuzzy intelligence to recognize things, suitability to uncovering the noumenon (yinyang) nature of an object and applicability to clinical use.

  10. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  11. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.

    PubMed

    Griffith, Malachi; Walker, Jason R; Spies, Nicholas C; Ainscough, Benjamin J; Griffith, Obi L

    2015-08-01

    Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki.

  12. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud

    PubMed Central

    Griffith, Malachi; Walker, Jason R.; Spies, Nicholas C.; Ainscough, Benjamin J.; Griffith, Obi L.

    2015-01-01

    Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki. PMID:26248053

  13. Genome cartography: charting the apicomplexan genome.

    PubMed

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology.

  14. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  15. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  16. Characteristics of Information Systems and Business Informatics Study Programs

    ERIC Educational Resources Information Center

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  17. The Recurrence Relations in Teaching Students of Informatics

    ERIC Educational Resources Information Center

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  18. A hypergraphic model of medical informatics: curriculum development guide.

    PubMed Central

    Chi, X.; Pavilcek, K.

    1999-01-01

    Medical informatics, as a descriptive, scientific study, must be mathematically or theoretically described. Is it important to define a model for medical informatics? The answer is worth pursuing. The medical informatics profession stands to benefit three-fold: first, by clarifying the vagueness of the definition of medical informatics, secondly, by identifying the scope and content for educational programs, and, thirdly, by defining career opportunities for its graduates. Existing medical informatics curricula are not comparable. Consequently, the knowledge and skills of graduates from these programs are difficult to assess. The challenge is to promote academics that develops graduates for prospective employers to fulfill the criteria of the health care industry and, simultaneously, compete with computer science programs that produce information technology graduates. In order to meet this challenge, medical informatics programs must have unique curricula that distinguishes its graduates. The solution is to educate students in a comparable manner across the domain of medical informatics. This paper discusses a theoretical model for medical informatics. Images Figure PMID:10566316

  19. [The Role Development of Informatics Nurse Specialists in Taiwan].

    PubMed

    Feng, Rung-Chuang; Lee, Ying-Li; Lee, Tso-Ying

    2015-06-01

    The development of information technology has changed the world and allowed the innovation of nursing-care services. In recent years, the development of nursing informatics in Taiwan has been catching up with international trends and has been regarded positively by the international medical informatics community. The integration of information technology into medical care system has created the new nursing role of "informatics nurse." Although the certification system and job descriptions for these nurses have become increasingly comprehensive in many nations, Taiwan remains in the early development stage in these regards. Taiwan informatics nurses continue to face unclear and inadequately stated role responsibilities and job titles, undefined training requirements, and a lack of a clear qualification / certification system. This paper introduces the role functions and professional growth of informatics nurses and introduces the framework for a certification system in order to give to various medical and paramedical staffs a better understanding of informatics nursing and to recognize the important role played by informatics nurses in the process of healthcare informatics development.

  20. Perspectives on Information Science and Health Informatics Education.

    ERIC Educational Resources Information Center

    Lunin, Lois F., Ed.; Ball, Marion J., Ed.

    1989-01-01

    This theoretical discussion of what information science can contribute to the health professions addresses questions of definition and describes application and knowledge models for the emerging profession of informatics. A review of existing programs includes curriculum models and provides details on informatics programs emphasizing information…

  1. Clinical informatics: a workforce priority for 21st century healthcare.

    PubMed

    Smith, Susan E; Drake, Lesley E; Harris, Julie-Gai B; Watson, Kay; Pohlner, Peter G

    2011-05-01

    This paper identifies the contribution of health and clinical informatics in the support of healthcare in the 21st century. Although little is known about the health and clinical informatics workforce, there is widespread recognition that the health informatics workforce will require significant expansion to support national eHealth work agendas. Workforce issues including discipline definition and self-identification, formal professionalisation, weaknesses in training and education, multidisciplinarity and interprofessional tensions, career structure, managerial support, and financial allocation play a critical role in facilitating or hindering the development of a workforce that is capable of realising the benefits to be gained from eHealth in general and clinical informatics in particular. As well as the national coordination of higher level policies, local support of training and allocation of sufficient position hours in appropriately defined roles by executive and clinical managers is essential to develop the health and clinical informatics workforce and achieve the anticipated results from evolving eHealth initiatives.

  2. High throughput instruments, methods, and informatics for systems biology.

    SciTech Connect

    Sinclair, Michael B.; Cowie, Jim R.; Van Benthem, Mark Hilary; Wylie, Brian Neil; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Aragon, Anthony D.; Keenan, Michael Robert; Boyack, Kevin W.; Thomas, Edward Victor; Werner-Washburne, Margaret C.; Mosquera-Caro, Monica P.; Martinez, M. Juanita; Martin, Shawn Bryan; Willman, Cheryl L.

    2003-12-01

    High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

  3. Health Informatics via Machine Learning for the Clinical Management of Patients

    PubMed Central

    Niehaus, K. E.; Charlton, P.; Colopy, G. W.

    2015-01-01

    Summary Objectives To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. Methods We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Results Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Conclusions Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale. PMID:26293849

  4. Consortium for oral health-related informatics: improving dental research, education, and treatment.

    PubMed

    Stark, Paul C; Kalenderian, Elsbeth; White, Joel M; Walji, Muhammad F; Stewart, Denice C L; Kimmes, Nicole; Meng, Thomas R; Willis, George P; DeVries, Ted; Chapman, Robert J

    2010-10-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come.

  5. The World Informatics Scene: ICSU, International Unions and Associations, Professional Society Activities

    NASA Astrophysics Data System (ADS)

    Fox, P.; Barton, C.

    2009-04-01

    Now that the Electronic Geophysical Year (2007-2008) has concluded, a substantial number of new coordination efforts under the heading of informatics have emerged. These efforts range from divisions/ sections in societies such as the Geological Society of America, the American Geophysical Union and the European Geosciences Union devoted to all aspects of informatics. In each case there has been a strong community response at their regular meetings. These society efforts are closer to the working scientists, technologists and data producers, and managers. At the same time, in a recognition for the need of a sustained activity such as eGY, the International Union of Geodesy and Geophysics (IUGG) has formed a Union Commission for Data and Information and the Committee on Data for Science and Technology (CODATA) approved a Task Group on eGY Earth and Space Science Data Interoperability. The International Council of Science's (ICSU) Strategic Committee on Information and Data (SCID) implementation report was approved by the ICSU general assembly in October 2008. ICSU's priority area assessment strategy for ICSU to play a leadership role in the coordination of data and information efforts world-wide. This report is being implemented and influences entities such as CODATA, and forms a new World Data System. This presentation will give details on the abovementioned activities and indicate an emerging synergy for Informatics across many discipline and the advancement of science and societal goals.

  6. Consortium for oral health-related informatics: improving dental research, education, and treatment.

    PubMed

    Stark, Paul C; Kalenderian, Elsbeth; White, Joel M; Walji, Muhammad F; Stewart, Denice C L; Kimmes, Nicole; Meng, Thomas R; Willis, George P; DeVries, Ted; Chapman, Robert J

    2010-10-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come. PMID:20930236

  7. Consortium for Oral Health-Related Informatics: Improving Dental Research, Education, and Treatment

    PubMed Central

    Stark, Paul C.; Kalenderian, Elsbeth; White, Joel M.; Walji, Muhammad F.; Stewart, Denice C.L.; Kimmes, Nicole; Meng, Thomas R.; Willis, George P.; DeVries, Ted; Chapman, Robert J.

    2011-01-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come. PMID:20930236

  8. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    PubMed Central

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-01-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research. PMID:25389451

  9. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.

    PubMed

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-10-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  10. Next generation neonatal health informatics with Artemis.

    PubMed

    McGregor, Carolyn; Catley, Christina; James, Andrew; Padbury, James

    2011-01-01

    This paper describes the deployment of a platform to enable processing of currently uncharted high frequency, high fidelity, synchronous data from medical devices. Such a platform would support the next generation of informatics solutions for neonatal intensive care. We present Artemis, a platform for real-time enactment of clinical knowledge as it relates to multidimensional data analysis and clinical research. Through specific deployment examples at two different neonatal intensive care units, we demonstrate that Artemis supports: 1) instantiation of clinical rules; 2) multidimensional analysis; 3) distribution of services for critical care via cloud computing; and 4) accomplishing 1 through 3 using current technology without a negative impact on patient care. PMID:21893725

  11. Development of a medical informatics data warehouse.

    PubMed

    Wu, Cai

    2006-01-01

    This project built a medical informatics data warehouse (MedInfo DDW) in an Oracle database to analyze medical information which has been collected through Baylor Family Medicine Clinic (FCM) Logician application. The MedInfo DDW used Star Schema with dimensional model, FCM database as operational data store (ODS); the data from on-line transaction processing (OLTP) were extracted and transferred to a knowledge based data warehouse through SQLLoad, and the patient information was analyzed by using on-line analytic processing (OLAP) in Crystal Report.

  12. Informatics solutions for high-throughput proteomics.

    PubMed

    Topaloglou, Thodoros

    2006-06-01

    The success of mass-spectrometry-based proteomics as a method for analyzing proteins in biological samples is accompanied by challenges owning to demands for increased throughput. These challenges arise from the vast volume of data generated by proteomics experiments combined with the heterogeneity in data formats, processing methods, software tools and databases that are involved in the translation of spectral data into relevant and actionable information for scientists. Informatics aims to provide answers to these challenges by transferring existing solutions from information management to proteomics and/or by generating novel computational methods for automation of proteomics data processing.

  13. [Standards in Medical Informatics: Fundamentals and Applications].

    PubMed

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences.

  14. How can we improve informatics education for German nurses? Statements derived from the first German nursing informatics summer school.

    PubMed

    Bürkle, T; Schrader, U

    1999-01-01

    For German nurses it is difficult to join training in health informatics besides their professional activity. The authors have successfully established a German nursing informatics summer school in shape of a 5 day intensive curriculum which they offer to German nurses during the summer holidays. The summer school introduces nurses into health informatics and nursing informatics. It targets interested nursing staff, nurse executives, and nurse teachers. It promotes self learning abilities for continued self education of the participants. One of its goals is to enable participants to formulate their own requirements in health information processing and to influence system design and system introduction. The paper presents the curriculum, talks about first experiences, and demonstrates the results of an evaluation among the participants. Conclusions are drawn in a set of statements on informatics education of nurses.

  15. Qualitative methods used in medical informatics research: a 12-year review.

    PubMed

    Li, Jingyi; Finkelstein, Joseph

    2008-11-06

    Qualitative methodology is gaining popularity in medical informatics research. We performed a systematic review of published studies, between 1994 and 2005, in two major medical informatics journals: JAMIA and International Journal of Medical Informatics (IJMI). The goal is to describe the emerging trends of using qualitative methodology in medical informatics research and to access the methodological quality of these qualitative studies.

  16. An Academic-Business Partnership for Advancing Clinical Informatics.

    ERIC Educational Resources Information Center

    Connors, Helen R.; Weaver, Charlotte; Warren, Judith; Miller, Karen L.

    2002-01-01

    A partnership between a university school of nursing and a health care information technology supplier resulted in the Simulated E-hEalth Delivery System (SEEDS). This program enables nursing students to learn clinical skills in a state-of-the-art environment using a live-production, clinical information system designed for care delivery. (JOW)

  17. Report on the Conference on Transposition and Genome Engineering 2015 (TGE 2015): advancing cutting-edge genomics technology in the ancient city of Nara.

    PubMed

    Woltjen, Knut; Yamamoto, Takashi; Kokubu, Chikara; Takeda, Junji

    2016-05-01

    From November 17 to 20 in 2015, the Conference on Transposition and Genome Engineering 2015 (TGE 2015) was held at Nara Kasugano International Forum-IRAKA-in Nara, Japan, located at the center of Nara Park. All of the presentations were carried out at Nohgaku hall in Nara Kasugano International Forum-IRAKA. Participation totaled 148 persons (30 international, 118 domestic), who were able to engage in lively scientific discussions over the 4-day period. The guest speaker list consisted of many top-notch international researchers, an achievement for which the conference received praise from the attendees. There were 36 oral presentations including the keynote lecture (22 presentations from guest speakers, complemented with 14 selected from abstract submissions). Additionally, there were 46 poster presentations. The conference uniquely combined research mainly from two different genomics approaches: (i) transposon technology allowing random genomic integration followed by gene discovery-related phenotypes and (ii) genome editing technology with designer nuclease allowing precise modification of a gene-of-interest.

  18. Genomics and Bioinformatics in Undergraduate Curricula: Contexts for Hybrid Laboratory/Lecture Courses for Entering and Advanced Science Students

    ERIC Educational Resources Information Center

    Temple, Louise; Cresawn, Steven G.; Monroe, Jonathan D.

    2010-01-01

    Emerging interest in genomics in the scientific community prompted biologists at James Madison University to create two courses at different levels to modernize the biology curriculum. The courses are hybrids of classroom and laboratory experiences. An upper level class uses raw sequence of a genome (plasmid or virus) as the subject on which to…

  19. Bayesian Analysis of the Pattern Informatics Technique

    NASA Astrophysics Data System (ADS)

    Cho, N.; Tiampo, K.; Klein, W.; Rundle, J.

    2007-12-01

    The pattern informatics (PI) [Rundle et al., 2000; Tiampo et al., 2002; Holliday et al., 2005] is a technique that uses phase dynamics in order to quantify temporal variations in seismicity patterns. This technique has shown interesting results for forecasting earthquakes with magnitude greater than or equal to 5 in southern California from 2000 to 2010 [Rundle et al., 2002]. In this work, a Bayesian approach is used to obtain a modified updated version of the PI called Bayesian pattern informatics (BPI). This alternative method uses the PI result as a prior probability and models such as ETAS [Ogata, 1988, 2004; Helmstetter and Sornette, 2002] or BASS [Turcotte et al., 2007] in order to obtain the likelihood. Its result is similar to the one obtained by the PI: the determination of regions, known as hotspots, that are most susceptible to the occurrence of events with M=5 and larger during the forecast period. As an initial test, retrospective forecasts for the southern California region from 1990 to 2000 were made with both the BPI and the PI techniques, and the results are discussed in this work.

  20. Contemporary issues in transfusion medicine informatics

    PubMed Central

    Sharma, Gaurav; Parwani, Anil V.; Raval, Jay S.; Triulzi, Darrell J.; Benjamin, Richard J.; Pantanowitz, Liron

    2011-01-01

    The Transfusion Medicine Service (TMS) covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS. PMID:21383927

  1. Translational Research from an Informatics Perspective

    NASA Technical Reports Server (NTRS)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  2. The new informatics of national healthcare reform.

    PubMed

    Manderscheid, R W; Henderson, M J

    1994-01-01

    The President's Health Security Act has succeeded in attracting America's attention. Several of its initiatives have been well-publicized and hotly debated in Congress. The act also includes a number of implications for healthcare informatics, and devotes an entire chapter to this subject, although this area has not received as much publicity. Every behavioral healthcare provider's information system would be significantly affected by enactment of the Health Security Act. Selected forms and data elements for the management and delivery of behavioral healthcare services would need to be standardized. Organizations of behavioral healthcare providers, managed care companies and purchasers would increasingly share selected patient and subscriber information in aggregated form, for a variety of purposes. As a result, tougher laws to protect patient data privacy will likely be forthcoming. The following article gives an overview of the informatics needs of the soon-to-be reformed American healthcare system, into which behavioral healthcare will be integrated. As part of the larger system, behavioral healthcare services and information systems will need to comply with the same guidelines and requirements, outlined below, as other healthcare providers. Preparation to meet the information demands of the evolving healthcare system will require adaptation of existing computerized information systems, utilization of new technology, consultation with the system's major shareholders and attention to continuous quality improvement processes.

  3. The molecular medicine informatics model (MMIM).

    PubMed

    Hibbert, Marienne; Gibbs, Peter; O'Brien, Terence; Colman, Peter; Merriel, Robert; Rafael, Naomi; Georgeff, Michael

    2007-01-01

    In 2005 a major collaboration in Melbourne, Australia successfully implemented a major medical informatics infrastructure. The convergence of life sciences, healthcare, and information technology is now driving research into the fundamentals of disease causation and toward tailoring individualized treatment. The Molecular Medicine Informatics Model (MMIM) is a 'virtual' research repository of clinical, laboratory and genetic data sets. Integrated data, physically located within independent hospital and research organisations can be searched and queried seamlessly via a federated data integrator. Researchers must gain authorisation to access data, and obtain permission from the data owners before the data can be accessed. The legal and ethical issues surrounding the use of this health data have been addressed so data complies with privacy requirements. The MMIM platform also record links individual cases across multiple institutions and multiple clinical specialties. Significant research outcomes in epilepsy and colorectal cancer have already been enabled by the MMIM research platform. The infrastructure of MMIM enables discovery research to be accessible via the Web with security, intellectual property and privacy addressed.

  4. WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics

    SciTech Connect

    Pickens, D; Flynn, M; Peck, D

    2014-06-15

    , effective implementation of that oversight has been challenging due to the number and extend of medical displays in use at a facility. The advent of color display and mobile displays has added additional challenges to the task of the medical physicist. This informatics display lecture first addresses the current display guidelines (the 1.0 paradigm) and further outlines the initiatives and prospects for color and mobile displays (the 2.0 paradigm). Informatics Management 1.0 to 2.0: Imaging informatics is part of every radiology practice today. Imaging informatics covers everything from the ordering of a study, through the data acquisition and processing, display and archiving, reporting of findings and the billing for the services performed. The standardization of the processes used to manage the information and methodologies to integrate these standards is being developed and advanced continuously. These developments are done in an open forum and imaging organizations and professionals all have a part in the process. In the Informatics Management presentation, the flow of information and the integration of the standards used in the processes will be reviewed. The role of radiologists and physicists in the process will be discussed. Current methods (the 1.0 paradigm) and evolving methods (the 2.0 paradigm) for validation of informatics systems function will also be discussed. Learning Objectives: Identify requirements for improving quality assurance and compliance tools for advanced and hybrid MRI systems. Identify the need for new quality assurance metrics and testing procedures for advanced systems. Identify new hardware systems and new procedures needed to evaluate MRI systems. Understand the components of current medical physics expectation for medical displays. Understand the role and prospect fo medical physics for color and mobile display devices. Understand different areas of imaging informatics and the methodology for developing informatics standards. Understand

  5. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  6. High-throughput neuro-imaging informatics

    PubMed Central

    Miller, Michael I.; Faria, Andreia V.; Oishi, Kenichi; Mori, Susumu

    2013-01-01

    This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high-throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high-dimensional neuroinformatic representation index containing O(1000–10,000) discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high-throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high-throughput machine learning methods for supporting (i) cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii) integration of image and personal medical record non-image information for diagnosis and prognosis. PMID:24381556

  7. Relational databases: a transparent framework for encouraging biology students to think informatically.

    PubMed

    Rice, Michael; Gladstone, William; Weir, Michael

    2004-01-01

    We discuss how relational databases constitute an ideal framework for representing and analyzing large-scale genomic data sets in biology. As a case study, we describe a Drosophila splice-site database that we recently developed at Wesleyan University for use in research and teaching. The database stores data about splice sites computed by a custom algorithm using Drosophila cDNA transcripts and genomic DNA and supports a set of procedures for analyzing splice-site sequence space. A generic Web interface permits the execution of the procedures with a variety of parameter settings and also supports custom structured query language queries. Moreover, new analytical procedures can be added by updating special metatables in the database without altering the Web interface. The database provides a powerful setting for students to develop informatic thinking skills.

  8. Transforming the work of early-stage drug discovery through bioprocess informatics.

    PubMed

    Holzman, Thomas F; Hebert, Eric J

    2005-01-01

    Drug discovery has historically advanced by synergy and chance. These are proving insufficient to meet the needs of the marketplace and the demands of modern medicine. We describe our strategic approaches to building and employing flexible informatics tools to transform and improve the workflows and efficiencies of the early-stages of target development in drug discovery. We contrast our approach to strategies that have recently evolved at startup biotechnology companies who use similar technological approaches to drug development but who are less encumbered by precedent and history.

  9. Consumer health informatics: a consensus description and commentary from American Medical Informatics Association members.

    PubMed Central

    Houston, T. K.; Chang, B. L.; Brown, S.; Kukafka, R.

    2001-01-01

    BACKGROUND: Although interest in Consumer Health Informatics (CHI) has increased, a consensus definition of CHI does not yet exist. PURPOSE: To conduct a hypothesis-generating survey of AMIA members regarding definition and research agenda for CHI. METHODS: We solicited participation among AMIA members in an Internet-based survey focusing on issues related to a definition of CHI. RESULTS: One hundred thirty-five AMIA members responded. Participants indicated a broad spectrum of topics important to CHI including "self-help for disease management" and "patient access to their own medical records." CHI research was felt to rely heavily on public health methods such as epidemiology and outcomes research, a paradigm shift from traditional medical informatics. Responses indicated a perceived lack of funding and need for further research in CHI. CONCLUSIONS: A working definition should emphasize the multidisciplinary nature of CHI, include consumer input into CHI design, and focus on public health approaches to evaluation. PMID:11825193

  10. Nursing Informatics Competencies for Emerging Professionals: International Leaders Panel.

    PubMed

    Pruinelli, Lisiane

    2016-01-01

    To achieve a cursory review of the competencies necessary for acquire a successful career in a competitive job market, the panel will bring together leaders from renowned academic, successful health corporations, and international leaders in nursing informatics to the table for discussion, dialogue, and make recommendations. Panelists will reflect on their experiences within the different types of informatics organizations and present some of the current challenges when educating skillful professionals. The panel will provide personal experiences, thoughts, and advice on the competencies development in nursing informatics from their lens.

  11. The Role of Informatics in Health Care Reform

    PubMed Central

    Liu, Yueyi I.

    2012-01-01

    Improving healthcare quality while simultaneously reducing cost has become a high priority of healthcare reform. Informatics is crucial in tackling this challenge. The American Recovery and Reinvestment Act of 2009 mandates adaptation and “meaningful use (MU)” of health information technology. In this review, we will highlight several areas in which informatics can make significant contributions, with a focus on radiology. We also discuss informatics related to the increasing imperatives of state and local regulations (such as radiation dose tracking) and quality initiatives. PMID:22771052

  12. Gap Analysis of Biomedical Informatics Graduate Education Competencies

    PubMed Central

    Ritko, Anna L.; Odlum, Michelle

    2013-01-01

    Graduate training in biomedical informatics (BMI) is evolving rapidly. BMI graduate programs differ in informatics domain, delivery method, degrees granted, as well as breadth and depth of curricular competencies. Using the current American Medical Informatics Association (AMIA) definition of BMI core competencies as a framework, we identified and labeled course offerings within graduate programs. From our qualitative analysis, gaps between defined competencies and curricula emerged. Topics missing from existing graduate curricula include community health, translational and clinical research, knowledge representation, data mining, communication and evidence-based practice. PMID:24551403

  13. Nursing Informatics Beyond 2020; An Interactive Workshop Exploring Our Futures.

    PubMed

    Murray, Peter J

    2016-01-01

    This interactive workshop will reflect on and update participants' views on possible future scenarios for the development of health and nursing informatics. The NI2006 Post Congress Conference discussed the future nature and scope of nursing informatics, nursing and healthcare, as viewed from likely developments between 2006 and 2020 [1]. Brief synposes from the NI2006 conference will be presented, with summaries of speakers' views on changes and progress since. Workshop participants will discuss major themes and changes, with a view to updating views on possible futures for nursing, healthcare and informatics.

  14. Bioimage informatics: a new area of engineering biology

    PubMed Central

    Peng, Hanchuan

    2008-01-01

    In recent years, the deluge of complicated molecular and cellular microscopic images creates compelling challenges for the image computing community. There has been an increasing focus on developing novel image processing, data mining, database and visualization techniques to extract, compare, search and manage the biological knowledge in these data-intensive problems. This emerging new area of bioinformatics can be called ‘bioimage informatics’. This article reviews the advances of this field from several aspects, including applications, key techniques, available tools and resources. Application examples such as high-throughput/high-content phenotyping and atlas building for model organisms demonstrate the importance of bioimage informatics. The essential techniques to the success of these applications, such as bioimage feature identification, segmentation and tracking, registration, annotation, mining, image data management and visualization, are further summarized, along with a brief overview of the available bioimage databases, analysis tools and other resources. Contact: pengh@janelia.hhmi.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18603566

  15. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  16. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  17. An Informatics-based Chronic Disease Practice

    PubMed Central

    Nordyke, Robert A.; Kulikowski, Casimir A.

    1998-01-01

    The authors present the case study of a 35-year informatics-based single subspecialty practice for the management of patients with chronic thyroid disease. This extensive experience provides a paradigm for the organization of longitudinal medical information by integrating individual patient care with clinical research and education. The kernel of the process is a set of worksheets easily completed by the physician during the patient encounter. It is a structured medical record that has been computerized since 1972, enabling analysis of different groups of patients to answer questions about chronic conditions and the effects of therapeutic interventions. The recording process and resulting studies severe as an important vehicle for medical education about the nuances of clinical practice. The authors suggest ways in which computerized medical records can become an integral part of medical practice, rather than a luxury or novelty. PMID:9452988

  18. [Looking for evidence-based medical informatics].

    PubMed

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work.

  19. [Looking for evidence-based medical informatics].

    PubMed

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work. PMID:27030221

  20. Preparing student nurses, faculty and clinicians for 21st century informatics practice: findings from a national survey of nursing education programs in the United States.

    PubMed

    McNeil, Barbara J; Elfrink, Victoria L; Pierce, Susan T

    2004-01-01

    Because healthcare delivery increasingly mandates data-driven decision-making, it is imperative that informatics knowledge and skills are integrated into nursing education curricula for all future nurse clinicians and educators. A national online survey of deans/directors of 266 baccalaureate and higher nursing education programs in the U.S. identified perceived informatics competencies and knowledge of under-graduate and graduate nursing students; determined the preparedness of nurse faculty to teach and use informatics tools; and elicited perceptions of informatics requirements of local practicing nurses. Frequency data and qualitative responses were analyzed. Approximately half of the programs reported requiring word processing and email skills upon entry into the nursing major. The use of standardized languages and the nurse's role in the life cycle of an information system were the least visible informatics content at all levels. Half of program faculty, rated as "novice" or "advanced beginners", are teaching information literacy skills. Findings have major implications for nurse educators, staff developers, and program administrators who are planning faculty/staff development opportunities and designing nursing education curricula that prepare nurses for professional practice. PMID:15360943

  1. Eco-informatics and natural resource management

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  2. Applications of medical informatics in antibiotic therapy.

    PubMed

    Evans, R S; Pestotnik, S L

    1994-01-01

    The Infectious Disease Society of America is concerned about the excessive and inappropriate use of antibiotics in U.S. hospitals. Applications of Medical Informatics can help improve the use of antibiotics and help improve patient care by monitoring and managing enormous amounts of patient information. Monitoring the duration of every antibiotic ordered in the hospital or keeping tract of the antibiotic susceptibilities for five years are examples of tasks better performed by computers. The impact of computers in medicine is seen by some as disappointing. The computer revolution has not had the impact in medicine experienced by other areas. The acceptance and use of computers by medicine will be evolutionary rather than revolutionary. In 1979, the MYCIN project demonstrated that the computer could aid physicians in the selection of antibiotics. However, MYCIN was never clinically used because physicians were require to enter all patient information into the computer. The development of computerized medical records is an essential step to further the development and implementation of computer-aided decision support. The science of Medical Informatics is still relatively new but is emerging as a distinct academic field. A few hospitals are now installing information systems and have determined that these systems will play an essential role in their ability to survive into the next century. The telephone and the automobile have been recognized as two of the most important tools for improving medical care during the past 100 years. People could more readily get medical care and the time to transmit medical information was greatly reduced through physician use of the telephone and automobile. The computer is a tool that can be used to help physicians manage the great amount of medical information being generated every day. The computer can also alert the physician of patient conditions that need attention. However, it is the physician who must use and apply the

  3. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  4. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Cancer.gov

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  5. Developing a Capstone Course within a Health Informatics Program

    PubMed Central

    Hackbarth, Gary; Cata, Teuta; Cole, Laura

    2012-01-01

    This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students’ logs confirms that students’ areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150

  6. Directions and opportunities in health informatics in British Columbia.

    PubMed

    Thornton, K

    1994-06-01

    The social changes, and changes in perceptions of the effectiveness of health care in British Columbia have resulted in a large number of recommendations in the report of the British Columbia Royal Commission on Health Care and Costs. Many of these recommendations have implications for health informatics. The British Columbia Government, in outlining a response, foresees a major change in the emphases of health care, which will involve four major areas of health informatics: network evolution, automation of the patient record, outcome- and other quality-related databases, and consumer health education. These themes are discussed, in the light of the opinions of academics, health care providers, and the health-informatics industry. The themes must be intercalated into the health informatics curriculum, to equip graduates for the challenges of B.C.'s changing health care system.

  7. A short history of medical informatics in bosnia and herzegovina.

    PubMed

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  8. SWOT Analysis on Medical Informatics and Development Strategies

    ERIC Educational Resources Information Center

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  9. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    PubMed

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  10. An Interdisciplinary Online Course in Health Care Informatics

    PubMed Central

    Smith, Scott R.

    2007-01-01

    Objectives To design an interdisciplinary course in health care informatics that enables students to: (1) understand how to incorporate technology into the provision of safe, effective and evidence-based health care; (2) make decisions about the value and ethical application of specific technologies; and (3) appreciate the perspectives and roles of patients and providers when using technology in care. Design An online, interdisciplinary elective course using a distributive learning model was created. Standard courseware was used to manage teaching and to facilitate student/instructor interactions. Interactive, multimedia lectures were developed using Internet communication software. Assessment Upon completion of the course, students demonstrated competency in identifying, analyzing, and applying informatics appropriately in diverse health settings. Conclusion Online education using multimedia software technology is effective in teaching students about health informatics and providing an innovative opportunity for interdisciplinary learning. In light of the growing need for efficient health care informatics training, additional study of this methodology is warranted. PMID:17619643

  11. A Short History of Medical Informatics in Bosnia and Herzegovina

    PubMed Central

    Masic, Izet

    2014-01-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal “Acta Informatica Medica (Acta Inform Med”, indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24648621

  12. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    PubMed

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates. PMID:24743088

  13. Antecedents of the People and Organizational Aspects of Medical Informatics

    PubMed Central

    Lorenzi, Nancy M.; Riley, Robert T.; Blyth, Andrew J. C.; Southon, Gray; Dixon, Bradley J.

    1997-01-01

    Abstract People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area—like medical informatics itself—is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena. PMID:9067874

  14. Representation of medical informatics in the wikipedia and its perspectives.

    PubMed

    Altmann, Udo

    2005-01-01

    A wiki is a technique for collaborative development of documents on the web. The Wikipedia is a comprehensive free online encyclopaedia based on this technique which has gained increasing popularity and quality. This paper's work explored the representation of Medical Informatics in the Wikipedia by a search of specific and less specific terms used in Medical Informatics and shows the potential uses of wikis and the Wikipedia for the specialty. Test entries into the Wikipedia showed that the practical use of the so-called WikiMedia software is convenient. Yet Medical Informatics is not represented sufficiently since a number of important topics is missing. The Medical Informatics communities should consider a more systematic use of these techniques for disseminating knowledge about the specialty for the public as well as for internal and educational purposes. PMID:16160349

  15. Health professionals' views of informatics education: findings from the AMIA 1999 spring conference.

    PubMed

    Staggers, N; Gassert, C A; Skiba, D J

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228

  16. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    SciTech Connect

    Phillips, M; Kalet, I; McNutt, T; Smith, W

    2014-06-15

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  17. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions. PMID:27292550

  18. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions.

  19. Bioinformatics Methods and Tools to Advance Clinical Care

    PubMed Central

    Lecroq, T.

    2015-01-01

    Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their

  20. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.