Sample records for genome sequencing project

  1. A computational genomics pipeline for prokaryotic sequencing projects.

    PubMed

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  2. A computational genomics pipeline for prokaryotic sequencing projects

    PubMed Central

    Kislyuk, Andrey O.; Katz, Lee S.; Agrawal, Sonia; Hagen, Matthew S.; Conley, Andrew B.; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C.; Sammons, Scott A.; Govil, Dhwani; Mair, Raydel D.; Tatti, Kathleen M.; Tondella, Maria L.; Harcourt, Brian H.; Mayer, Leonard W.; Jordan, I. King

    2010-01-01

    Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: king.jordan@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20519285

  3. Automated sample-preparation technologies in genome sequencing projects.

    PubMed

    Hilbert, H; Lauber, J; Lubenow, H; Düsterhöft, A

    2000-01-01

    A robotic workstation system (BioRobot 96OO, QIAGEN) and a 96-well UV spectrophotometer (Spectramax 250, Molecular Devices) were integrated in to the process of high-throughput automated sequencing of double-stranded plasmid DNA templates. An automated 96-well miniprep kit protocol (QIAprep Turbo, QIAGEN) provided high-quality plasmid DNA from shotgun clones. The DNA prepared by this procedure was used to generate more than two mega bases of final sequence data for two genomic projects (Arabidopsis thaliana and Schizosaccharomyces pombe), three thousand expressed sequence tags (ESTs) plus half a mega base of human full-length cDNA clones, and approximately 53,000 single reads for a whole genome shotgun project (Pseudomonas putida).

  4. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    PubMed

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  5. The Qatar genome project: translation of whole-genome sequencing into clinical practice.

    PubMed

    Zayed, Hatem

    2016-10-01

    Qatar Genome Project was launched in 2013 with the intent to sequence the genome of each Qatari citizen in an effort to protect Qataris from the high rate of indigenous genetic diseases by allowing the mapping of disease-causing variants/rare variants and establishing a Qatari reference genome. Indeed, this project is expected to have numerous global benefits because the elevated homogeneity of the Qatari population, that will make Qatar an excellent genetic laboratory that will generate a wealth of data that will allow us to make sense of the genotype-phenotype correlations of many diseases, especially the complex multifactorial diseases, and will pave the way for changing the traditional medical practice of looking first at the phenotype rather than the genotype. © 2016 John Wiley & Sons Ltd.

  6. Deep whole-genome sequencing of 90 Han Chinese genomes.

    PubMed

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the

  7. Malaria Genome Sequencing Project.

    DTIC Science & Technology

    2000-01-01

    and the genomes of organisms that cause diseases such as syphylis (Treponema pallidum), ul- cers (Helicobacter pylori), Lyme disease ( Borrelia ...Parasitol Today 11: 1-4. Fräser CM, Casjens S, et al. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580...of false-posi- tives. It has been used as the gene finder for Borrelia burgdorferi (Fräser et al, 1997), Treponema pallidum (Fräser et al., 1998

  8. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants

    PubMed Central

    Reuter, Miriam S.; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K.C.; Trost, Brett; Paton, Tara A.; Pereira, Sergio L.; Herbrick, Jo-Anne; Wintle, Richard F.; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R.; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W.L.; Wang, Zhuozhi; Patel, Rohan V.; Pellecchia, Giovanna; Wei, John; Strug, Lisa J.; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M.; Bassett, Anne S.; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D.; Stavropoulos, Dimitri J.; Bowdin, Sarah; Hildebrandt, Matthew R.; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M. Stephen; Monfared, Nasim; Hosseini, S. Mohsen; Joseph-George, Ann M.; Keeley, Fred W.; Cook, Ryan A.; Fiume, Marc; Lee, Hin C.; Marshall, Christian R.; Davies, Jill; Hazell, Allison; Buchanan, Janet A.; Szego, Michael J.; Scherer, Stephen W.

    2018-01-01

    BACKGROUND: The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. METHODS: Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. RESULTS: Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants — associated with cancer, cardiac or neurodegenerative phenotypes — remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. INTERPRETATION: Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. PMID:29431110

  9. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    PubMed

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  10. The Giardia genome project database.

    PubMed

    McArthur, A G; Morrison, H G; Nixon, J E; Passamaneck, N Q; Kim, U; Hinkle, G; Crocker, M K; Holder, M E; Farr, R; Reich, C I; Olsen, G E; Aley, S B; Adam, R D; Gillin, F D; Sogin, M L

    2000-08-15

    The Giardia genome project database provides an online resource for Giardia lamblia (WB strain, clone C6) genome sequence information. The database includes edited single-pass reads, the results of BLASTX searches, and details of progress towards sequencing the entire 12 million-bp Giardia genome. Pre-sorted BLASTX results can be retrieved based on keyword searches and BLAST searches of the high throughput Giardia data can be initiated from the web site or through NCBI. Descriptions of the genomic DNA libraries, project protocols and summary statistics are also available. Although the Giardia genome project is ongoing, new sequences are made available on a bi-monthly basis to ensure that researchers have access to information that may assist them in the search for genes and their biological function. The current URL of the Giardia genome project database is www.mbl.edu/Giardia.

  11. The Ensembl genome database project.

    PubMed

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  12. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaofan; Peris, David; Kominek, Jacek

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  13. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE PAGES

    Zhou, Xiaofan; Peris, David; Kominek, Jacek; ...

    2016-09-16

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  14. MIPS: a database for genomes and protein sequences.

    PubMed

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  15. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    USDA-ARS?s Scientific Manuscript database

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  16. MIPS: a database for genomes and protein sequences

    PubMed Central

    Mewes, H. W.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Mayer, K.; Mokrejs, M.; Morgenstern, B.; Münsterkötter, M.; Rudd, S.; Weil, B.

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz–Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91–93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155–158; Barker et al. (2001) Nucleic Acids Res., 29, 29–32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de). PMID:11752246

  17. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  18. Snake Genome Sequencing: Results and Future Prospects

    PubMed Central

    Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.

    2016-01-01

    Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957

  19. Snake Genome Sequencing: Results and Future Prospects.

    PubMed

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  20. Earth BioGenome Project: Sequencing life for the future of life.

    PubMed

    Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie

    2018-04-24

    Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

  1. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  2. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  3. Human genetics and genomics a decade after the release of the draft sequence of the human genome.

    PubMed

    Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng

    2011-10-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.

  4. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    PubMed Central

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  5. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  6. Sequencing intractable DNA to close microbial genomes.

    PubMed

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  7. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.

    PubMed

    Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A

    2016-10-11

    Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.

  8. The Pediatric Cancer Genome Project

    PubMed Central

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  9. Mapping and Sequencing the Human Genome

    DOE R&D Accomplishments Database

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  10. Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert DeSalle

    2004-09-10

    This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less

  11. Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project

    DOE PAGES

    Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.; ...

    2014-06-15

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less

  12. Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less

  13. Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome.

    PubMed

    Sola-Landa, Alberto; Rodríguez-García, Antonio; Barreiro, Carlos; Pérez-Redondo, Rosario

    2017-01-01

    The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.

  14. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    PubMed

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  15. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    PubMed

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  16. Origins of the Human Genome Project.

    PubMed

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  17. Personal Genome Sequencing in Ostensibly Healthy Individuals and the PeopleSeq Consortium

    PubMed Central

    Linderman, Michael D.; Nielsen, Daiva E.; Green, Robert C.

    2016-01-01

    Thousands of ostensibly healthy individuals have had their exome or genome sequenced, but a much smaller number of these individuals have received any personal genomic results from that sequencing. We term those projects in which ostensibly healthy participants can receive sequencing-derived genetic findings and may also have access to their genomic data as participatory predispositional personal genome sequencing (PPGS). Here we are focused on genome sequencing applied in a pre-symptomatic context and so define PPGS to exclude diagnostic genome sequencing intended to identify the molecular cause of suspected or diagnosed genetic disease. In this report we describe the design of completed and underway PPGS projects, briefly summarize the results reported to date and introduce the PeopleSeq Consortium, a newly formed collaboration of PPGS projects designed to collect much-needed longitudinal outcome data. PMID:27023617

  18. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    PubMed

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Defining Genome Project Standards in a New Era of Sequencing

    ScienceCinema

    Chain, Patrick

    2018-01-16

    Patrick Chain of the DOE Joint Genome Institute gives a talk on behalf of the International Genome Sequencing Standards Consortium on the need for intermediate genome classifications between "draft" and "finished".

  20. Standardized Metadata for Human Pathogen/Vector Genomic Sequences

    PubMed Central

    Dugan, Vivien G.; Emrich, Scott J.; Giraldo-Calderón, Gloria I.; Harb, Omar S.; Newman, Ruchi M.; Pickett, Brett E.; Schriml, Lynn M.; Stockwell, Timothy B.; Stoeckert, Christian J.; Sullivan, Dan E.; Singh, Indresh; Ward, Doyle V.; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M.; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H.; Cuomo, Christina A.; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W. Florian; Giovanni, Maria; Henn, Matthew R.; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C.; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F.; Murphy, Cheryl I.; Myers, Garry; Neafsey, Daniel E.; Nelson, Karen E.; Nierman, William C.; Puzak, Julia; Rasko, David; Roos, David S.; Sadzewicz, Lisa; Silva, Joana C.; Sobral, Bruno; Squires, R. Burke; Stevens, Rick L.; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H.

    2014-01-01

    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a

  1. Standardized metadata for human pathogen/vector genomic sequences.

    PubMed

    Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H

    2014-01-01

    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a

  2. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  3. The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine.

    PubMed

    Vassy, Jason L; Lautenbach, Denise M; McLaughlin, Heather M; Kong, Sek Won; Christensen, Kurt D; Krier, Joel; Kohane, Isaac S; Feuerman, Lindsay Z; Blumenthal-Barby, Jennifer; Roberts, J Scott; Lehmann, Lisa Soleymani; Ho, Carolyn Y; Ubel, Peter A; MacRae, Calum A; Seidman, Christine E; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2014-03-20

    Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care. This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients' genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes, behaviors and outcomes of physician and patient participants at multiple time points before and after the disclosure of these results. The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine will evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only

  4. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    PubMed

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  5. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class.

    PubMed

    Jarvis, Erich D

    2016-01-01

    The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.

  6. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights.

    PubMed

    Bertelli, Claire; Aeby, Sébastien; Chassot, Bérénice; Clulow, James; Hilfiker, Olivier; Rappo, Samuel; Ritzmann, Sébastien; Schumacher, Paolo; Terrettaz, Céline; Benaglio, Paola; Falquet, Laurent; Farinelli, Laurent; Gharib, Walid H; Goesmann, Alexander; Harshman, Keith; Linke, Burkhard; Miyazaki, Ryo; Rivolta, Carlo; Robinson-Rechavi, Marc; van der Meer, Jan Roelof; Greub, Gilbert

    2015-01-01

    With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

  7. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel.

    PubMed

    Delaneau, Olivier; Marchini, Jonathan

    2014-06-13

    A major use of the 1000 Genomes Project (1000 GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000 GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants.

  8. Human genome project: revolutionizing biology through leveraging technology

    NASA Astrophysics Data System (ADS)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  9. MIPS: a database for genomes and protein sequences.

    PubMed Central

    Mewes, H W; Heumann, K; Kaps, A; Mayer, K; Pfeiffer, F; Stocker, S; Frishman, D

    1999-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried near Munich, Germany, develops and maintains genome oriented databases. It is commonplace that the amount of sequence data available increases rapidly, but not the capacity of qualified manual annotation at the sequence databases. Therefore, our strategy aims to cope with the data stream by the comprehensive application of analysis tools to sequences of complete genomes, the systematic classification of protein sequences and the active support of sequence analysis and functional genomics projects. This report describes the systematic and up-to-date analysis of genomes (PEDANT), a comprehensive database of the yeast genome (MYGD), a database reflecting the progress in sequencing the Arabidopsis thaliana genome (MATD), the database of assembled, annotated human EST clusters (MEST), and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). MIPS provides access through its WWW server (http://www.mips.biochem.mpg.de) to a spectrum of generic databases, including the above mentioned as well as a database of protein families (PROTFAM), the MITOP database, and the all-against-all FASTA database. PMID:9847138

  10. The Human Genome Project: big science transforms biology and medicine.

    PubMed

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  11. The Human Genome Project: big science transforms biology and medicine

    PubMed Central

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project. PMID:24040834

  12. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    PubMed

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  13. A Workshop Report on Wheat Genome Sequencing

    PubMed Central

    Gill, Bikram S.; Appels, Rudi; Botha-Oberholster, Anna-Maria; Buell, C. Robin; Bennetzen, Jeffrey L.; Chalhoub, Boulos; Chumley, Forrest; Dvořák, Jan; Iwanaga, Masaru; Keller, Beat; Li, Wanlong; McCombie, W. Richard; Ogihara, Yasunari; Quetier, Francis; Sasaki, Takuji

    2004-01-01

    Sponsored by the National Science Foundation and the U.S. Department of Agriculture, a wheat genome sequencing workshop was held November 10–11, 2003, in Washington, DC. It brought together 63 scientists of diverse research interests and institutions, including 45 from the United States and 18 from a dozen foreign countries (see list of participants at http://www.ksu.edu/igrow). The objectives of the workshop were to discuss the status of wheat genomics, obtain feedback from ongoing genome sequencing projects, and develop strategies for sequencing the wheat genome. The purpose of this report is to convey the information discussed at the workshop and provide the basis for an ongoing dialogue, bringing forth comments and suggestions from the genetics community. PMID:15514080

  14. Human genomics projects and precision medicine.

    PubMed

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  15. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    PubMed

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  16. The Genome 10K Project: a way forward.

    PubMed

    Koepfli, Klaus-Peter; Paten, Benedict; O'Brien, Stephen J

    2015-01-01

    The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.

  17. The Genome 10K Project: A Way Forward

    PubMed Central

    Koepfli, Klaus-Peter; Paten, Benedict; O’Brien, Stephen J.

    2017-01-01

    The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ~26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species. PMID:25689317

  18. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  19. Applications of the 1000 Genomes Project resources

    PubMed Central

    Zheng-Bradley, Xiangqun

    2017-01-01

    Abstract The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. PMID:27436001

  20. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects

    PubMed Central

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  1. Genome Sequencing and Assembly by Long Reads in Plants

    PubMed Central

    Li, Changsheng; Lin, Feng; An, Dong; Huang, Ruidong

    2017-01-01

    Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists’ projects. PMID:29283420

  2. Impact of Genomic Counseling on Informed Decision-Making among ostensibly Healthy Individuals Seeking Personal Genome Sequencing: the HealthSeq Project.

    PubMed

    Suckiel, Sabrina A; Linderman, Michael D; Sanderson, Saskia C; Diaz, George A; Wasserstein, Melissa; Kasarskis, Andrew; Schadt, Eric E; Zinberg, Randi E

    2016-10-01

    Personal genome sequencing is increasingly utilized by healthy individuals for predispositional screening and other applications. However, little is known about the impact of 'genomic counseling' on informed decision-making in this context. Our primary aim was to compare measures of participants' informed decision-making before and after genomic counseling in the HealthSeq project, a longitudinal cohort study of individuals receiving personal results from whole genome sequencing (WGS). Our secondary aims were to assess the impact of the counseling on WGS knowledge and concerns, and to explore participants' satisfaction with the counseling. Questionnaires were administered to participants (n = 35) before and after their pre-test genomic counseling appointment. Informed decision-making was measured using the Decisional Conflict Scale (DCS) and the Satisfaction with Decision Scale (SDS). DCS scores decreased after genomic counseling (mean: 11.34 before vs. 5.94 after; z = -4.34, p < 0.001, r = 0.52), and SDS scores increased (mean: 27.91 vs. 29.06 respectively; z = 2.91, p = 0.004, r = 0.35). Satisfaction with counseling was high (mean (SD) = 26.91 (2.68), on a scale where 6 = low and 30 = high satisfaction). HealthSeq participants felt that their decision regarding receiving personal results from WGS was more informed after genomic counseling. Further research comparing the impact of different genomic counseling models is needed.

  3. 11,670 whole-genome sequences representative of the Han Chinese population from the CONVERGE project.

    PubMed

    Cai, Na; Bigdeli, Tim B; Kretzschmar, Warren W; Li, Yihan; Liang, Jieqin; Hu, Jingchu; Peterson, Roseann E; Bacanu, Silviu; Webb, Bradley Todd; Riley, Brien; Li, Qibin; Marchini, Jonathan; Mott, Richard; Kendler, Kenneth S; Flint, Jonathan

    2017-02-14

    The China, Oxford and Virginia Commonwealth University Experimental Research on Genetic Epidemiology (CONVERGE) project on Major Depressive Disorder (MDD) sequenced 11,670 female Han Chinese at low-coverage (1.7X), providing the first large-scale whole genome sequencing resource representative of the largest ethnic group in the world. Samples are collected from 58 hospitals from 23 provinces around China. We are able to call 22 million high quality single nucleotide polymorphisms (SNP) from the nuclear genome, representing the largest SNP call set from an East Asian population to date. We use these variants for imputation of genotypes across all samples, and this has allowed us to perform a successful genome wide association study (GWAS) on MDD. The utility of these data can be extended to studies of genetic ancestry in the Han Chinese and evolutionary genetics when integrated with data from other populations. Molecular phenotypes, such as copy number variations and structural variations can be detected, quantified and analysed in similar ways.

  4. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    PubMed

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  5. 10KP: A phylodiverse genome sequencing plan.

    PubMed

    Cheng, Shifeng; Melkonian, Michael; Smith, Stephen A; Brockington, Samuel; Archibald, John M; Delaux, Pierre-Marc; Li, Fay-Wei; Melkonian, Barbara; Mavrodiev, Evgeny V; Sun, Wenjing; Fu, Yuan; Yang, Huanming; Soltis, Douglas E; Graham, Sean W; Soltis, Pamela S; Liu, Xin; Xu, Xun; Wong, Gane Ka-Shu

    2018-03-01

    Understanding plant evolution and diversity in a phylogenomic context is an enormous challenge due, in part, to limited availability of genome-scale data across phylodiverse species. The 10KP (10,000 Plants) Genome Sequencing Project will sequence and characterize representative genomes from every major clade of embryophytes, green algae, and protists (excluding fungi) within the next 5 years. By implementing and continuously improving leading-edge sequencing technologies and bioinformatics tools, 10KP will catalogue the genome content of plant and protist diversity and make these data freely available as an enduring foundation for future scientific discoveries and applications. 10KP is structured as an international consortium, open to the global community, including botanical gardens, plant research institutes, universities, and private industry. Our immediate goal is to establish a policy framework for this endeavor, the principles of which are outlined here.

  6. Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project.

    PubMed

    Biesecker, Leslie G

    2012-04-01

    The debate surrounding the return of results from high-throughput genomic interrogation encompasses many important issues including ethics, law, economics, and social policy. As well, the debate is also informed by the molecular, genetic, and clinical foundations of the emerging field of clinical genomics, which is based on this new technology. This article outlines the main biomedical considerations of sequencing technologies and demonstrates some of the early clinical experiences with the technology to enable the debate to stay focused on real-world practicalities. These experiences are based on early data from the ClinSeq project, which is a project to pilot the use of massively parallel sequencing in a clinical research context with a major aim to develop modes of returning results to individual subjects. The study has enrolled >900 subjects and generated exome sequence data on 572 subjects. These data are beginning to be interpreted and returned to the subjects, which provides examples of the potential usefulness and pitfalls of clinical genomics. There are numerous genetic results that can be readily derived from a genome including rare, high-penetrance traits, and carrier states. However, much work needs to be done to develop the tools and resources for genomic interpretation. The main lesson learned is that a genome sequence may be better considered as a health-care resource, rather than a test, one that can be interpreted and used over the lifetime of the patient.

  7. Applications of the 1000 Genomes Project resources.

    PubMed

    Zheng-Bradley, Xiangqun; Flicek, Paul

    2017-05-01

    The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. © The Author 2016. Published by Oxford University Press.

  8. Complete genome sequence of Staphylothermus hellenicus P8T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  9. Personal genomes in progress: from the human genome project to the personal genome project.

    PubMed

    Lunshof, Jeantine E; Bobe, Jason; Aach, John; Angrist, Misha; Thakuria, Joseph V; Vorhaus, Daniel B; Hoehe, Margret R; Church, George M

    2010-01-01

    The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.

  10. The UK’s 100,000 Genomes Project: manifesting policymakers’ expectations

    PubMed Central

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2017-01-01

    The UK’s 100,000 Genomes Project has the aim of sequencing 100,000 genomes from UK National Health Service (NHS) patients while concomitantly transforming clinical care such that whole genome sequencing becomes routine clinical practice in the UK. Policymakers claim that the project will revolutionize NHS care. We wished to explore the 100,000 Genomes Project, and in particular, the extent to which policymaker claims have helped or hindered the work of those associated with Genomics England – the company established by the Department of Health to deliver the project. We interviewed 20 individuals linked to, or working for Genomics England. Interviewees had double-edged views about the context within which they were working. On the one hand, policymakers’ expectations attached to the venture were considered vacuous “genohype”; on the other hand, they were considered the impetus needed for those trying to advance genomic research into clinical practice. Findings should be considered for future genomes projects. PMID:29238265

  11. Genome Sequence of the Freshwater Yangtze Finless Porpoise.

    PubMed

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jingsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang; Li, Songhai

    2018-04-16

    The Yangtze finless porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) is a subspecies of the narrow-ridged finless porpoise ( N. asiaeorientalis ). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603.

  12. Genome Sequence of the Freshwater Yangtze Finless Porpoise

    PubMed Central

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jinsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang

    2018-01-01

    The Yangtze finless porpoise (Neophocaena asiaeorientalis ssp. asiaeorientalis) is a subspecies of the narrow-ridged finless porpoise (N. asiaeorientalis). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603. PMID:29659530

  13. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  14. Animal selection for whole genome sequencing by quantifying the unique contribution of homozygous haplotypes sequenced

    USDA-ARS?s Scientific Manuscript database

    Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...

  15. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    USDA-ARS?s Scientific Manuscript database

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  16. Comparative genomic data of the Avian Phylogenomics Project.

    PubMed

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of

  17. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  18. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  19. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    PubMed Central

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  20. Economic importance, taxonomic representation and scientific priority as drivers of genome sequencing projects.

    PubMed

    Vallée, Geneviève C; Muñoz, Daniella Santos; Sankoff, David

    2016-11-11

    Of the approximately two hundred sequenced plant genomes, how many and which ones were sequenced motivated by strictly or largely scientific considerations, and how many by chiefly economic, in a wide sense, incentives? And how large a role does publication opportunity play? In an integration of multiple disparate databases and other sources of information, we collect and analyze data on the size (number of species) in the plant orders and families containing sequenced genomes, on the trade value of these species, and of all the same-family or same-order species, and on the publication priority within the family and order. These data are subjected to multiple regression and other statistical analyses. We find that despite the initial importance of model organisms, it is clearly economic considerations that outweigh others in the choice of genome to be sequenced. This has important implications for generalizations about plant genomes, since human choices of plants to harvest (and cultivate) will have incurred many biases with respect to phenotypic characteristics and hence of genomic properties, and recent genomic evolution will also have been affected by human agricultural practices.

  1. Len Gen: The international lentil genome sequencing project

    USDA-ARS?s Scientific Manuscript database

    We have been sequencing CDC Redberry using NGS of paired-end and mate-pair libraries over a wide range of sizes and technologies. The most recent draft (v0.7) of approximately 150x coverage produced scaffolds covering over half the genome (2.7 Gb of the expected 4.3 Gb). Long reads from PacBio sequ...

  2. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.

    PubMed

    Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R

    2014-08-16

    Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human

  3. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34

    DOE PAGES

    Anderson, Iain J.; DasSarma, Priya; Lucas, Susan; ...

    2016-09-10

    Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  4. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain J.; DasSarma, Priya; Lucas, Susan

    Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  5. Genome sequencing of the redbanded stink bug (Piezodorus guildinii)

    USDA-ARS?s Scientific Manuscript database

    We assembled a partial genome sequence from the redbanded stink bug, Piezodorus guildinii from Illumina MiSeq sequencing runs. The sequence has been submitted and published under NCBI GenBank Accession Number JTEQ01000000. The BioProject and BioSample Accession numbers are PRJNA263369 and SAMN030997...

  6. Complete genome sequence of Streptosporangium roseum type strain (NI 9100T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, Matt; Sikorski, Johannes; Jando, Marlen

    2010-01-01

    Streptosporangium roseum Crauch 1955 is the type strain of the species which is the type species of the genus Streptosporangium. The pinkish coiled Streptomyces-like organism with a spore case was isolated from vegetable garden soil in 1955. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Streptosporangiaceae, and the second largest microbial genome sequence ever deciphered. The 10,369,518 bp long genome with its 9421 protein-coding and 80 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaeamore » project.« less

  7. The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide

    PubMed Central

    Liolios, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Kyrpides, Nikos C.

    2006-01-01

    The Genomes On Line Database (GOLD) is a web resource for comprehensive access to information regarding complete and ongoing genome sequencing projects worldwide. The database currently incorporates information on over 1500 sequencing projects, of which 294 have been completed and the data deposited in the public databases. GOLD v.2 has been expanded to provide information related to organism properties such as phenotype, ecotype and disease. Furthermore, project relevance and availability information is now included. GOLD is available at . It is also mirrored at the Institute of Molecular Biology and Biotechnology, Crete, Greece at PMID:16381880

  8. Deep Whole-Genome Sequencing of 100 Southeast Asian Malays

    PubMed Central

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-01

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. PMID:23290073

  9. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata.

    PubMed

    Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C

    2008-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource that provides information on genome and metagenome projects worldwide. Complete and ongoing projects and their associated metadata can be accessed in GOLD through pre-computed lists and a search page. As of September 2007, GOLD contains information on more than 2900 sequencing projects, out of which 639 have been completed and their sequence data deposited in the public databases. GOLD continues to expand with the goal of providing metadata information related to the projects and the organisms/environments towards the Minimum Information about a Genome Sequence' (MIGS) guideline. GOLD is available at http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece at http://gold.imbb.forth.gr/

  10. Selecting sequence variants to improve genomic predictions for dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Millions of genetic variants have been identified by population-scale sequencing projects, but subsets are needed for routine genomic predictions or to include on genotyping arrays. Methods of selecting sequence variants were compared using both simulated sequence genotypes and actual data from run ...

  11. Gambling on a shortcut to genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, L.

    1991-06-21

    Almost from the start of the Human Genome Project, a debate has been raging over whether to sequence the entire human genome, all 3 billion bases, or just the genes - a mere 2% or 3% of the genome, and by far the most interesting part. In England, Sydney Brenner convinced the Medical Research Council (MRC) to start with the expressed genes, or complementary DNAs. But the US stance has been that the entire sequence is essential if we are to understand the blueprint of man. Craig Venter of the National Institute of Neurological Disorders and Stroke says that focusingmore » on the expressed genes may be even more useful than expected. His strategy involves randomly selecting clones from cDNA libraries which theoretically contain all the genes that are switched on at a particular time in a particular tissue. Then the researchers sequence just a short stretch of each clone, about 400 to 500 bases, to create can expressed sequence tag or EST. The sequences of these ESTs are then stored in a database. Using that information, other researchers can then recreate that EST by using polymerase chain reaction techniques.« less

  12. Meeting the challenges of non-referenced genome assembly from short-read sequence data

    Treesearch

    M. Parks; A. Liston; R. Cronn

    2010-01-01

    Massively parallel sequencing technologies (MPST) offer unprecedented opportunities for novel sequencing projects. MPST, while offering tremendous sequencing capacity, are typically most effective in resequencing projects (as opposed to the sequencing of novel genomes) due to the fact that sequence is returned in relatively short reads. Nonetheless, there is great...

  13. Genome projects and the functional-genomic era.

    PubMed

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  14. Complete genome sequence of Serratia plymuthica strain AS12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Alstrom, Sadhna

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  15. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  16. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    PubMed

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Deep whole-genome sequencing of 100 southeast Asian Malays.

    PubMed

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-10

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Progress in Understanding and Sequencing the Genome of Brassica rapa

    PubMed Central

    Hong, Chang Pyo; Kwon, Soo-Jin; Kim, Jung Sun; Yang, Tae-Jin; Park, Beom-Seok; Lim, Yong Pyo

    2008-01-01

    Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day “diploid” Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization. PMID:18288250

  19. The Human Genome Project: how do we protect Australians?

    PubMed

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  20. What can we learn about lyssavirus genomes using 454 sequencing?

    PubMed

    Höper, Dirk; Finke, Stefan; Freuling, Conrad M; Hoffmann, Bernd; Beer, Martin

    2012-01-01

    The main task of the individual project number four"Whole genome sequencing, virus-host adaptation, and molecular epidemiological analyses of lyssaviruses "within the network" Lyssaviruses--a potential re-emerging public health threat" is to provide high quality complete genome sequences from lyssaviruses. These sequences are analysed in-depth with regard to the diversity of the viral populations as to both quasi-species and so-called defective interfering RNAs. Moreover, the sequence data will facilitate further epidemiological analyses, will provide insight into the evolution of lyssaviruses and will be the basis for the design of novel nucleic acid based diagnostics. The first results presented here indicate that not only high quality full-length lyssavirus genome sequences can be generated, but indeed efficient analysis of the viral population gets feasible.

  1. Draft Genome Sequence of Microbacterium sp. Strain UCD-TDU (Phylum Actinobacteria)

    PubMed Central

    Bendiks, Zachary A.; Lang, Jenna M.; Darling, Aaron E.; Coil, David A.

    2013-01-01

    Here, we present the draft genome sequence of Microbacterium sp. strain UCD-TDU, a member of the phylum Actinobacteria. The assembly contains 3,746,321 bp (in 8 scaffolds). This strain was isolated from a residential toilet as part of an undergraduate student research project to sequence reference genomes of microbes from the built environment. PMID:23516225

  2. A map of human genome variation from population-scale sequencing.

    PubMed

    Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A

    2010-10-28

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

  3. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.

    PubMed

    Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C

    2016-12-15

    The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several

  4. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data

    PubMed Central

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-01

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data—previously only browseable through our FTP site—by focusing on particular samples, populations or data sets of interest. PMID:27638885

  5. Complete genome sequence of Aminobacterium colombiense type strain (ALA-1T)

    PubMed Central

    Chertkov, Olga; Sikorski, Johannes; Brambilla, Evelyne; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Bruce, David; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Spring, Stefan; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Aminobacterium colombiense Baena et al. 1999 is the type species of the genus Aminobacterium. This genus is of large interest because of its isolated phylogenetic location in the family Synergistaceae, its strictly anaerobic lifestyle, and its ability to grow by fermentation of a limited range of amino acids but not carbohydrates. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the family Synergistaceae and the first genome sequence of a member of the genus Aminobacterium. The 1,980,592 bp long genome with its 1,914 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304712

  6. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata.

    PubMed

    Liolios, Konstantinos; Chen, I-Min A; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M; Kyrpides, Nikos C

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/

  7. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    PubMed Central

    Liolios, Konstantinos; Chen, I-Min A.; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M.; Kyrpides, Nikos C.

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ PMID:19914934

  8. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  9. Complete genome sequence of Nakamurella multipartita type strain (Y-104).

    PubMed

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, Alex; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-03-30

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the monospecific genus Nakamurella in the actinobacterial suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is capable of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT)

    PubMed Central

    Plugge, Caroline M.; Henstra, Anne M.; Worm, Petra; Swarts, Daan C.; Paulitsch-Fuchs, Astrid H.; Scholten, Johannes C.M.; Lykidis, Athanasios; Lapidus, Alla L.; Goltsman, Eugene; Kim, Edwin; McDonald, Erin; Rohlin, Lars; Crable, Bryan R.; Gunsalus, Robert P.; Stams, Alfons J.M.; McInerney, Michael J.

    2012-01-01

    Syntrophobacter fumaroxidans strain MPOBT is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project. PMID:23450070

  11. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    PubMed

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  12. The 1000 bull genome project

    USDA-ARS?s Scientific Manuscript database

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  13. Multiplexed fragaria chloroplast genome sequencing

    Treesearch

    W. Njuguna; A. Liston; R. Cronn; N.V. Bassil

    2010-01-01

    A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...

  14. Exploiting long read sequencing technologies to establish high quality highly contiguous pig reference genome assemblies

    USDA-ARS?s Scientific Manuscript database

    The current pig reference genome sequence (Sscrofa10.2) was established using Sanger sequencing and following the clone-by-clone hierarchical shotgun sequencing approach used in the public human genome project. However, as sequence coverage was low (4-6x) the resulting assembly was only of draft qua...

  15. Origins of the Human Genome Project

    DOE R&D Accomplishments Database

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  16. Extensive sequencing of seven human genomes to characterize benchmark reference materials

    PubMed Central

    Zook, Justin M.; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E.; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B.R.; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M.; Chang, Christopher C.; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T.; Zaranek, Alexander W.; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M.; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X.Y.; Schnall-Levin, Michael; Ordonez, Heather S.; Mudivarti, Patrice A.; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  17. Complete genome sequence of Rhodothermus marinus type strain (R-10).

    PubMed

    Nolan, Matt; Tindall, Brian J; Pomrenke, Helga; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Elizabeth; Han, Cliff; Bruce, David; Goodwin, Lynne; Chain, Patrick; Pitluck, Sam; Ovchinikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Detter, John C

    2009-12-29

    Rhodothermus marinus Alfredsson et al. 1995 is the type species of the genus and is of phylogenetic interest because the Rhodothermaceae represent the deepest lineage in the phylum Bacteroidetes. R. marinus R-10(T) is a Gram-negative, non-motile, non-spore-forming bacterium isolated from marine hot springs off the coast of Iceland. Strain R-10(T) is strictly aerobic and requires slightly halophilic conditions for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Rhodothermus, and only the second sequence from members of the family Rhodothermaceae. The 3,386,737 bp genome (including a 125 kb plasmid) with its 2914 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    PubMed

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencingmore » is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place

  20. Ethical considerations of research policy for personal genome analysis: the approach of the Genome Science Project in Japan.

    PubMed

    Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto

    2014-12-01

    As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.

  1. Complete genome sequence of Sulfurimonas autotrophica type strain (OK10T)

    PubMed Central

    Sikorski, Johannes; Munk, Christine; Lapidus, Alla; Ngatchou Djao, Olivier Duplex; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Han, Cliff; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Sims, David; Meincke, Linda; Brettin, Thomas; Detter, John C.; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Lang, Elke; Spring, Stefan; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Sulfurimonas autotrophica Inagaki et al. 2003 is the type species of the genus Sulfurimonas. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habitation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second complete genome sequence of the genus Sulfurimonas and the 15th genome in the family Helicobacteraceae. The 2,153,198 bp long genome with its 2,165 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304749

  2. The African Genome Variation Project shapes medical genetics in Africa

    NASA Astrophysics Data System (ADS)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  3. The African Genome Variation Project shapes medical genetics in Africa.

    PubMed

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  4. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    PubMed Central

    2011-01-01

    Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was

  5. Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing

    PubMed Central

    Kim, Ryong Nam; Kim, Dae-Soo; Choi, Sang-Haeng; Yoon, Byoung-Ha; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Jong-Joo; Ha, Ji-Hong; Toyoda, Atsushi; Fujiyama, Asao; Kim, Aeri; Kim, Min-Young; Park, Kun-Hyang; Lee, Kang Seon; Park, Hong-Seog

    2012-01-01

    Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics. PMID:22474061

  6. Enhancing genome assemblies by integrating non-sequence based data

    PubMed Central

    2011-01-01

    Introduction Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. Methods The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Results Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated

  7. Enhancing genome assemblies by integrating non-sequence based data.

    PubMed

    Heider, Thomas N; Lindsay, James; Wang, Chenwei; O'Neill, Rachel J; Pask, Andrew J

    2011-05-28

    Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total

  8. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    PubMed Central

    Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C.

    2008-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource that provides information on genome and metagenome projects worldwide. Complete and ongoing projects and their associated metadata can be accessed in GOLD through pre-computed lists and a search page. As of September 2007, GOLD contains information on more than 2900 sequencing projects, out of which 639 have been completed and their sequence data deposited in the public databases. GOLD continues to expand with the goal of providing metadata information related to the projects and the organisms/environments towards the Minimum Information about a Genome Sequence’ (MIGS) guideline. GOLD is available at http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece at http://gold.imbb.forth.gr/ PMID:17981842

  9. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  10. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata.

    PubMed

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M; Kyrpides, Nikos C

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11,472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond.

  11. Construction of a large collection of small genome variations in French dairy and beef breeds using whole-genome sequences.

    PubMed

    Boussaha, Mekki; Michot, Pauline; Letaief, Rabia; Hozé, Chris; Fritz, Sébastien; Grohs, Cécile; Esquerré, Diane; Duchesne, Amandine; Philippe, Romain; Blanquet, Véronique; Phocas, Florence; Floriot, Sandrine; Rocha, Dominique; Klopp, Christophe; Capitan, Aurélien; Boichard, Didier

    2016-11-15

    In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.

  12. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  13. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    PubMed

    Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V

    2012-02-17

    The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  14. Origins of the Human Genome Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information ismore » embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.« less

  15. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    PubMed Central

    2012-01-01

    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described. PMID:22293439

  16. DraGnET: Software for storing, managing and analyzing annotated draft genome sequence data

    PubMed Central

    2010-01-01

    Background New "next generation" DNA sequencing technologies offer individual researchers the ability to rapidly generate large amounts of genome sequence data at dramatically reduced costs. As a result, a need has arisen for new software tools for storage, management and analysis of genome sequence data. Although bioinformatic tools are available for the analysis and management of genome sequences, limitations still remain. For example, restrictions on the submission of data and use of these tools may be imposed, thereby making them unsuitable for sequencing projects that need to remain in-house or proprietary during their initial stages. Furthermore, the availability and use of next generation sequencing in industrial, governmental and academic environments requires biologist to have access to computational support for the curation and analysis of the data generated; however, this type of support is not always immediately available. Results To address these limitations, we have developed DraGnET (Draft Genome Evaluation Tool). DraGnET is an open source web application which allows researchers, with no experience in programming and database management, to setup their own in-house projects for storing, retrieving, organizing and managing annotated draft and complete genome sequence data. The software provides a web interface for the use of BLAST, allowing users to perform preliminary comparative analysis among multiple genomes. We demonstrate the utility of DraGnET for performing comparative genomics on closely related bacterial strains. Furthermore, DraGnET can be further developed to incorporate additional tools for more sophisticated analyses. Conclusions DraGnET is designed for use either by individual researchers or as a collaborative tool available through Internet (or Intranet) deployment. For genome projects that require genome sequencing data to initially remain proprietary, DraGnET provides the means for researchers to keep their data in-house for

  17. Complete genome sequence of Streptobacillus moniliformis type strain (9901T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, Matt; Gronow, Sabine; Lapidus, Alla L.

    2009-01-01

    Streptobacillus moniliformis Levaditi et al. 1925 is the sole and type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically much accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. S. moniliformis, a Gram-negative, non-motile and pleomorphic bacterium, is the etiologic agent of rat bite fever and Haverhill fever. Strain 9901T, the type strain of the species, was isolated from a patient with rat bite fever. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the second completedmore » genome sequence of the order 'Fusobacteriales' and no more than the third sequence from the phylum 'Fusobacteria'. The 1,662,578 bp long chromosome and the 10,702 bp plasmid with a total of 1511 protein-coding and 55 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  18. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  19. Complete genome sequence of Brachyspira murdochii type strain (56-150T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Amrita; Sikorski, Johannes; Gronow, Sabine

    2010-01-01

    Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic but host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the group B spirochaetes were first described under the basonym Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum Spirochaetes . Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceaeand only the second genomemore » sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  20. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Sikorski, Johannes; Sims, David

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part ofmore » the Genomic Encyclopedia of Bacteria and Archaea project.« less

  1. Toward an Integrated BAC Library Resource for Genome Sequencing and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M. I.; Kim, U.-J.

    We developed a great deal of expertise in building large BAC libraries from a variety of DNA sources including humans, mice, corn, microorganisms, worms, and Arabidopsis. We greatly improved the technology for screening these libraries rapidly and for selecting appropriate BACs and mapping BACs to develop large overlapping contigs. We became involved in supplying BACs and BAC contigs to a variety of sequencing and mapping projects and we began to collaborate with Drs. Adams and Venter at TIGR and with Dr. Leroy Hood and his group at University of Washington to provide BACs for end sequencing and for mapping andmore » sequencing of large fragments of chromosome 16. Together with Dr. Ian Dunham and his co-workers at the Sanger Center we completed the mapping and they completed the sequencing of the first human chromosome, chromosome 22. This was published in Nature in 1999 and our BAC contigs made a major contribution to this sequencing effort. Drs. Shizuya and Ding invented an automated highly accurate BAC mapping technique. We also developed long-term collaborations with Dr. Uli Weier at UCSF in the design of BAC probes for characterization of human tumors and specific chromosome deletions and breakpoints. Finally the contribution of our work to the human genome project has been recognized in the publication both by the international consortium and the NIH of a draft sequence of the human genome in Nature last year. Dr. Shizuya was acknowledged in the authorship of that landmark paper. Dr. Simon was also an author on the Venter/Adams Celera project sequencing the human genome that was published in Science last year.« less

  2. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    PubMed

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  3. Complete genome sequence of Marivirga tractuosa type strain (H-43).

    PubMed

    Pagani, Ioanna; Chertkov, Olga; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Nolan, Matt; Saunders, Elizabeth; Pitluck, Sam; Held, Brittany; Goodwin, Lynne; Liolios, Konstantinos; Ovchinikova, Galina; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Detter, John C; Han, Cliff; Tapia, Roxanne; Ngatchou-Djao, Olivier D; Rohde, Manfred; Göker, Markus; Spring, Stefan; Sikorski, Johannes; Woyke, Tanja; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-04-29

    Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Gronow, Sabine; Lapidus, Alla

    2009-05-20

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large fusiform non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from themore » phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  5. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, N; Gronow, Sabine; Lapidus, Alla L.

    2009-01-01

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large, fusiform, non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from themore » phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  6. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata

    PubMed Central

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293

  7. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.

    PubMed

    Taylor, Jeremy F; Whitacre, Lynsey K; Hoff, Jesse L; Tizioto, Polyana C; Kim, JaeWoo; Decker, Jared E; Schnabel, Robert D

    2016-08-17

    Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Assembly errors and a lack of annotation of functional elements significantly limit the utility of

  8. A 1000 Arab genome project to study the Emirati population.

    PubMed

    Al-Ali, Mariam; Osman, Wael; Tay, Guan K; AlSafar, Habiba S

    2018-04-01

    Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.

  9. Benchmark Dataset for Whole Genome Sequence Compression.

    PubMed

    C L, Biji; S Nair, Achuthsankar

    2017-01-01

    The research in DNA data compression lacks a standard dataset to test out compression tools specific to DNA. This paper argues that the current state of achievement in DNA compression is unable to be benchmarked in the absence of such scientifically compiled whole genome sequence dataset and proposes a benchmark dataset using multistage sampling procedure. Considering the genome sequence of organisms available in the National Centre for Biotechnology and Information (NCBI) as the universe, the proposed dataset selects 1,105 prokaryotes, 200 plasmids, 164 viruses, and 65 eukaryotes. This paper reports the results of using three established tools on the newly compiled dataset and show that their strength and weakness are evident only with a comparison based on the scientifically compiled benchmark dataset. The sample dataset and the respective links are available @ https://sourceforge.net/projects/benchmarkdnacompressiondataset/.

  10. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    PubMed

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  11. Whole-genome sequence-based analysis of thyroid function.

    PubMed

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G

    2015-03-06

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.

  12. WhopGenome: high-speed access to whole-genome variation and sequence data in R.

    PubMed

    Wittelsbürger, Ulrich; Pfeifer, Bastian; Lercher, Martin J

    2015-02-01

    The statistical programming language R has become a de facto standard for the analysis of many types of biological data, and is well suited for the rapid development of new algorithms. However, variant call data from population-scale resequencing projects are typically too large to be read and processed efficiently with R's built-in I/O capabilities. WhopGenome can efficiently read whole-genome variation data stored in the widely used variant call format (VCF) file format into several R data types. VCF files can be accessed either on local hard drives or on remote servers. WhopGenome can associate variants with annotations such as those available from the UCSC genome browser, and can accelerate the reading process by filtering loci according to user-defined criteria. WhopGenome can also read other Tabix-indexed files and create indices to allow fast selective access to FASTA-formatted sequence files. The WhopGenome R package is available on CRAN at http://cran.r-project.org/web/packages/WhopGenome/. A Bioconductor package has been submitted. lercher@cs.uni-duesseldorf.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    PubMed

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Scientific Goals of the Human Genome Project.

    ERIC Educational Resources Information Center

    Wills, Christopher

    1993-01-01

    The Human Genome Project, an effort to sequence all the DNA of a human cell, is needed to better understand the behavior of chromosomes during cell division, with the ultimate goal of understanding the specific genes contributing to specific diseases and disabilities. (MSE)

  15. Complete genome sequence of Cellulophaga lytica type strain (LIM-21T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Amrita; Abt, Birte; Teshima, Hazuki

    Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellulophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechnological interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algicola this is the second completed genome sequence of a member of the genus Cellulophaga. The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of one circular chromosome and ismore » a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  16. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction.

    PubMed

    Palmer, Lance E; Dejori, Mathaeus; Bolanos, Randall; Fasulo, Daniel

    2010-01-15

    With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies. Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.

  17. [Complete genome sequencing and sequence analysis of BCG Tice].

    PubMed

    Wang, Zhiming; Pan, Yuanlong; Wu, Jun; Zhu, Baoli

    2012-10-04

    The objective of this study is to obtain the complete genome sequence of Bacillus Calmette-Guerin Tice (BCG Tice), in order to provide more information about the molecular biology of BCG Tice and design more reasonable vaccines to prevent tuberculosis. We assembled the data from high-throughput sequencing with SOAPdenovo software, with many contigs and scaffolds obtained. There are many sequence gaps and physical gaps remained as a result of regional low coverage and low quality. We designed primers at the end of contigs and performed PCR amplification in order to link these contigs and scaffolds. With various enzymes to perform PCR amplification, adjustment of PCR reaction conditions, and combined with clone construction to sequence, all the gaps were finished. We obtained the complete genome sequence of BCG Tice and submitted it to GenBank of National Center for Biotechnology Information (NCBI). The genome of BCG Tice is 4334064 base pairs in length, with GC content 65.65%. The problems and strategies during the finishing step of BCG Tice sequencing are illuminated here, with the hope of affording some experience to those who are involved in the finishing step of genome sequencing. The microarray data were verified by our results.

  18. Complete genome sequence of Actinosynnema mirum type strain (101T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together withmore » the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  19. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    PubMed Central

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  20. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Genome sequence of Phytophthora ramorum: implications for management

    Treesearch

    Brett Tyler; Sucheta Tripathy; Nik Grunwald; Kurt Lamour; Kelly Ivors; Matteo Garbelotto; Daniel Rokhsar; Nik Putnam; Igor Grigoriev; Jeffrey Boore

    2006-01-01

    A draft genome sequence has been determined for Phytophthora ramorum, together with a draft sequence of the soybean pathogen Phytophthora sojae. The P. ramorum genome was sequenced to a depth of 7-fold coverage, while the P. sojae genome was sequenced to a depth of 9-fold coverage. The genome...

  2. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Kyrpides, Nikos C

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  3. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  4. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    PubMed Central

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  5. Venturia carpophila draft genome sequence

    USDA-ARS?s Scientific Manuscript database

    Venturia carpophila causes peach scab, a disease that renders peach fruit unmarketable. We report a high-quality draft genome sequence (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia in the United States. The genome sequence described will be a useful resour...

  6. The 1000 Genomes Project: new opportunities for research and social challenges

    PubMed Central

    2010-01-01

    The 1000 Genomes Project, an international collaboration, is sequencing the whole genome of approximately 2,000 individuals from different worldwide populations. The central goal of this project is to describe most of the genetic variation that occurs at a population frequency greater than 1%. The results of this project will allow scientists to identify genetic variation at an unprecedented degree of resolution and will also help improve the imputation methods for determining unobserved genetic variants that are not represented on current genotyping arrays. By identifying novel or rare functional genetic variants, researchers will be able to pinpoint disease-causing genes in genomic regions initially identified by association studies. This level of detailed sequence information will also improve our knowledge of the evolutionary processes and the genomic patterns that have shaped the human species as we know it today. The new data will also lay the foundation for future clinical applications, such as prediction of disease susceptibility and drug response. However, the forthcoming availability of whole genome sequences at affordable prices will raise ethical concerns and pose potential threats to individual privacy. Nevertheless, we believe that these potential risks are outweighed by the benefits in terms of diagnosis and research, so long as rigorous safeguards are kept in place through legislation that prevents discrimination on the basis of the results of genetic testing. PMID:20193048

  7. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.

    PubMed

    Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph

    2006-08-01

    Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.

  8. Optical mapping and its potential for large-scale sequencing projects.

    PubMed

    Aston, C; Mishra, B; Schwartz, D C

    1999-07-01

    Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.

  9. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)

    PubMed Central

    Munk, A. Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2011-01-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21886861

  10. In vitro propagation of the microsporidian pathogen Brachiola algerae and studies of its chromosome and ribosomal DNA organization in the context of the complete genome sequencing project.

    PubMed

    Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre

    2008-03-01

    Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.

  11. Complete genome sequence of Oceanithermus profundus type strain (506T)

    PubMed Central

    Pati, Amrita; Zhang, Xiaojing; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Jeffries, Cynthia D.; Brambilla, Evelyne-Marie; Röhl, Alina; Mwirichia, Romano; Rohde, Manfred; Tindall, Brian J.; Sikorski, Johannes; Wirth, Reinhard; Göker, Markus; Woyke, Tanja; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Land, Miriam

    2011-01-01

    Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21677858

  12. The Genome of the Netherlands: design, and project goals.

    PubMed

    Boomsma, Dorret I; Wijmenga, Cisca; Slagboom, Eline P; Swertz, Morris A; Karssen, Lennart C; Abdellaoui, Abdel; Ye, Kai; Guryev, Victor; Vermaat, Martijn; van Dijk, Freerk; Francioli, Laurent C; Hottenga, Jouke Jan; Laros, Jeroen F J; Li, Qibin; Li, Yingrui; Cao, Hongzhi; Chen, Ruoyan; Du, Yuanping; Li, Ning; Cao, Sujie; van Setten, Jessica; Menelaou, Androniki; Pulit, Sara L; Hehir-Kwa, Jayne Y; Beekman, Marian; Elbers, Clara C; Byelas, Heorhiy; de Craen, Anton J M; Deelen, Patrick; Dijkstra, Martijn; den Dunnen, Johan T; de Knijff, Peter; Houwing-Duistermaat, Jeanine; Koval, Vyacheslav; Estrada, Karol; Hofman, Albert; Kanterakis, Alexandros; Enckevort, David van; Mai, Hailiang; Kattenberg, Mathijs; van Leeuwen, Elisabeth M; Neerincx, Pieter B T; Oostra, Ben; Rivadeneira, Fernanodo; Suchiman, Eka H D; Uitterlinden, Andre G; Willemsen, Gonneke; Wolffenbuttel, Bruce H; Wang, Jun; de Bakker, Paul I W; van Ommen, Gert-Jan; van Duijn, Cornelia M

    2014-02-01

    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project.

  13. The Genome of the Netherlands: design, and project goals

    PubMed Central

    Boomsma, Dorret I; Wijmenga, Cisca; Slagboom, Eline P; Swertz, Morris A; Karssen, Lennart C; Abdellaoui, Abdel; Ye, Kai; Guryev, Victor; Vermaat, Martijn; van Dijk, Freerk; Francioli, Laurent C; Hottenga, Jouke Jan; Laros, Jeroen F J; Li, Qibin; Li, Yingrui; Cao, Hongzhi; Chen, Ruoyan; Du, Yuanping; Li, Ning; Cao, Sujie; van Setten, Jessica; Menelaou, Androniki; Pulit, Sara L; Hehir-Kwa, Jayne Y; Beekman, Marian; Elbers, Clara C; Byelas, Heorhiy; de Craen, Anton J M; Deelen, Patrick; Dijkstra, Martijn; den Dunnen, Johan T; de Knijff, Peter; Houwing-Duistermaat, Jeanine; Koval, Vyacheslav; Estrada, Karol; Hofman, Albert; Kanterakis, Alexandros; Enckevort, David van; Mai, Hailiang; Kattenberg, Mathijs; van Leeuwen, Elisabeth M; Neerincx, Pieter B T; Oostra, Ben; Rivadeneira, Fernanodo; Suchiman, Eka H D; Uitterlinden, Andre G; Willemsen, Gonneke; Wolffenbuttel, Bruce H; Wang, Jun; de Bakker, Paul I W; van Ommen, Gert-Jan; van Duijn, Cornelia M

    2014-01-01

    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent–offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910–1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14–15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project. PMID:23714750

  14. First complete genome sequence of infectious laryngotracheitis virus

    PubMed Central

    2011-01-01

    Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528

  15. The 3,000 rice genomes project

    PubMed Central

    2014-01-01

    Background Rice, Oryza sativa L., is the staple food for half the world’s population. By 2030, the production of rice must increase by at least 25% in order to keep up with global population growth and demand. Accelerated genetic gains in rice improvement are needed to mitigate the effects of climate change and loss of arable land, as well as to ensure a stable global food supply. Findings We resequenced a core collection of 3,000 rice accessions from 89 countries. All 3,000 genomes had an average sequencing depth of 14×, with average genome coverages and mapping rates of 94.0% and 92.5%, respectively. From our sequencing efforts, approximately 18.9 million single nucleotide polymorphisms (SNPs) in rice were discovered when aligned to the reference genome of the temperate japonica variety, Nipponbare. Phylogenetic analyses based on SNP data confirmed differentiation of the O. sativa gene pool into 5 varietal groups – indica, aus/boro, basmati/sadri, tropical japonica and temperate japonica. Conclusions Here, we report an international resequencing effort of 3,000 rice genomes. This data serves as a foundation for large-scale discovery of novel alleles for important rice phenotypes using various bioinformatics and/or genetic approaches. It also serves to understand the genomic diversity within O. sativa at a higher level of detail. With the release of the sequencing data, the project calls for the global rice community to take advantage of this data as a foundation for establishing a global, public rice genetic/genomic database and information platform for advancing rice breeding technology for future rice improvement. PMID:24872877

  16. Parents' interest in whole-genome sequencing of newborns.

    PubMed

    Goldenberg, Aaron J; Dodson, Daniel S; Davis, Matthew M; Tarini, Beth A

    2014-01-01

    The aim of this study was to assess parents' interest in whole-genome sequencing for newborns. We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician's office. Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state's newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician's office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as "very important" in making a decision to have a newborn's whole genome sequenced. These data may help health departments and children's health-care providers anticipate parents' level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.

  17. The Chlamydomonas genome project: a decade on.

    PubMed

    Blaby, Ian K; Blaby-Haas, Crysten E; Tourasse, Nicolas; Hom, Erik F Y; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George B; Stanke, Mario; Harris, Elizabeth H; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S; Prochnik, Simon

    2014-10-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  19. A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education

    PubMed Central

    2012-01-01

    Background Amazona vittata is a critically endangered Puerto Rican endemic bird, the only surviving native parrot species in the United States territory, and the first parrot in the large Neotropical genus Amazona, to be studied on a genomic scale. Findings In a unique community-based funded project, DNA from an A. vittata female was sequenced using a HiSeq Illumina platform, resulting in a total of ~42.5 billion nucleotide bases. This provided approximately 26.89x average coverage depth at the completion of this funding phase. Filtering followed by assembly resulted in 259,423 contigs (N50 = 6,983 bp, longest = 75,003 bp), which was further scaffolded into 148,255 fragments (N50 = 19,470, longest = 206,462 bp). This provided ~76% coverage of the genome based on an estimated size of 1.58 Gb. The assembled scaffolds allowed basic genomic annotation and comparative analyses with other available avian whole-genome sequences. Conclusions The current data represents the first genomic information from and work carried out with a unique source of funding. This analysis further provides a means for directed training of young researchers in genetic and bioinformatics analyses and will facilitate progress towards a full assembly and annotation of the Puerto Rican parrot genome. It also adds extensive genomic data to a new branch of the avian tree, making it useful for comparative analyses with other avian species. Ultimately, the knowledge acquired from these data will contribute to an improved understanding of the overall population health of this species and aid in ongoing and future conservation efforts. PMID:23587420

  20. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants

    PubMed Central

    Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.

    2015-01-01

    Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016

  1. Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine.

    PubMed

    Green, Robert C; Goddard, Katrina A B; Jarvik, Gail P; Amendola, Laura M; Appelbaum, Paul S; Berg, Jonathan S; Bernhardt, Barbara A; Biesecker, Leslie G; Biswas, Sawona; Blout, Carrie L; Bowling, Kevin M; Brothers, Kyle B; Burke, Wylie; Caga-Anan, Charlisse F; Chinnaiyan, Arul M; Chung, Wendy K; Clayton, Ellen W; Cooper, Gregory M; East, Kelly; Evans, James P; Fullerton, Stephanie M; Garraway, Levi A; Garrett, Jeremy R; Gray, Stacy W; Henderson, Gail E; Hindorff, Lucia A; Holm, Ingrid A; Lewis, Michelle Huckaby; Hutter, Carolyn M; Janne, Pasi A; Joffe, Steven; Kaufman, David; Knoppers, Bartha M; Koenig, Barbara A; Krantz, Ian D; Manolio, Teri A; McCullough, Laurence; McEwen, Jean; McGuire, Amy; Muzny, Donna; Myers, Richard M; Nickerson, Deborah A; Ou, Jeffrey; Parsons, Donald W; Petersen, Gloria M; Plon, Sharon E; Rehm, Heidi L; Roberts, J Scott; Robinson, Dan; Salama, Joseph S; Scollon, Sarah; Sharp, Richard R; Shirts, Brian; Spinner, Nancy B; Tabor, Holly K; Tarczy-Hornoch, Peter; Veenstra, David L; Wagle, Nikhil; Weck, Karen; Wilfond, Benjamin S; Wilhelmsen, Kirk; Wolf, Susan M; Wynn, Julia; Yu, Joon-Ho

    2016-06-02

    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine. Copyright © 2016 American Society of Human Genetics. All rights reserved.

  2. Multilocus sequence typing of total-genome-sequenced bacteria.

    PubMed

    Larsen, Mette V; Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W; Aarestrup, Frank M; Lund, Ole

    2012-04-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

  3. Complete genome sequence of Marivirga tractuosa type strain (H-43T)

    PubMed Central

    Pagani, Ioanna; Chertkov, Olga; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Nolan, Matt; Saunders, Elizabeth; Pitluck, Sam; Held, Brittany; Goodwin, Lynne; Liolios, Konstantinos; Ovchinikova, Galina; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D.; Detter, John C.; Han, Cliff; Tapia, Roxanne; Ngatchou-Djao, Olivier D.; Rohde, Manfred; Göker, Markus; Spring, Stefan; Sikorski, Johannes; Woyke, Tanja; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2011-01-01

    Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21677852

  4. Newborn Sequencing in Genomic Medicine and Public Health

    PubMed Central

    Agrawal, Pankaj B.; Bailey, Donald B.; Beggs, Alan H.; Brenner, Steven E.; Brower, Amy M.; Cakici, Julie A.; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J.; Dukhovny, Dmitry; Green, Robert C.; Harris-Wai, Julie; Holm, Ingrid A.; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F.; Koenig, Barbara A.; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J.; Lewis, Megan A.; McGuire, Amy L.; Milko, Laura V.; Mooney, Sean D.; Parad, Richard B.; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C.; Powell, Cynthia M.; Puck, Jennifer M.; Rehm, Heidi L.; Risch, Neil; Roche, Myra; Shieh, Joseph T.; Veeraraghavan, Narayanan; Watson, Michael S.; Willig, Laurel; Yu, Timothy W.; Urv, Tiina; Wise, Anastasia L.

    2017-01-01

    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. PMID:28096516

  5. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle.

    PubMed

    van Binsbergen, Rianne; Calus, Mario P L; Bink, Marco C A M; van Eeuwijk, Fred A; Schrooten, Chris; Veerkamp, Roel F

    2015-09-17

    In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data. Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training. Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed. Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the

  6. Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Alex; Lapidus, Alla; Rio, Tijana GlavinaDel

    2009-05-20

    Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location of the genomically little studied suborder Catenulisporineae within the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic conditions. Under regular conditions C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium isolated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we describe the features of thismore » organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial family Catenulisporaceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  7. Implications of the Human Genome Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitcher, P.

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and socialmore » problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.« less

  8. Why Assembling Plant Genome Sequences Is So Challenging

    PubMed Central

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  9. Harnessing Whole Genome Sequencing in Medical Mycology.

    PubMed

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  10. Genomic Sequence Variation Markup Language (GSVML).

    PubMed

    Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi

    2010-02-01

    With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as

  11. Approaches for in silico finishing of microbial genome sequences

    PubMed Central

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    2017-01-01

    Abstract The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing. PMID:28898352

  12. Approaches for in silico finishing of microbial genome sequences.

    PubMed

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.

  13. Newborn Sequencing in Genomic Medicine and Public Health.

    PubMed

    Berg, Jonathan S; Agrawal, Pankaj B; Bailey, Donald B; Beggs, Alan H; Brenner, Steven E; Brower, Amy M; Cakici, Julie A; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J; Dukhovny, Dmitry; Green, Robert C; Harris-Wai, Julie; Holm, Ingrid A; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F; Koenig, Barbara A; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J; Lewis, Megan A; McGuire, Amy L; Milko, Laura V; Mooney, Sean D; Parad, Richard B; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C; Powell, Cynthia M; Puck, Jennifer M; Rehm, Heidi L; Risch, Neil; Roche, Myra; Shieh, Joseph T; Veeraraghavan, Narayanan; Watson, Michael S; Willig, Laurel; Yu, Timothy W; Urv, Tiina; Wise, Anastasia L

    2017-02-01

    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. Copyright © 2017 by the American Academy of Pediatrics.

  14. Complete genome sequence of Haliscomenobacter hydrossis type strain (OT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daligault, Hajnalka E.; Lapidus, Alla L.; Zeytun, Ahmet

    2011-01-01

    Haliscomenobacter hydrossis van Veen et al. 1973 is the type species of the genus Halisco- menobacter, which belongs to order 'Sphingobacteriales'. The species is of interest because of its isolated phylogenetic location in the tree of life, especially the so far genomically un- charted part of it, and because the organism grows in a thin, hardly visible hyaline sheath. Members of the species were isolated from fresh water of lakes and from ditch water. The genome of H. hydrossis is the first completed genome sequence reported from a member of the family 'Saprospiraceae'. The 8,771,651 bp long genome with itsmore » three plasmids of 92 kbp, 144 kbp and 164 kbp length contains 6,848 protein-coding and 60 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  15. Haematobia irritans dataset of raw sequence reads from Illumina and Pac Bio sequencing of genomic DNA

    USDA-ARS?s Scientific Manuscript database

    The genome of the horn fly, Haematobia irritans, was sequenced using Illumina- and Pac Bio-based protocols. Following quality filtering, the raw reads have been deposited at NCBI under the BioProject and BioSample accession numbers PRJNA30967 and SAMN07830356, respectively. The Illumina reads are un...

  16. Complete genome sequence of Halogeometricum borinquense type strain (PR3T)

    PubMed Central

    Malfatti, Stephanie; Tindall, Brian J.; Schneider, Susanne; Fähnrich, Regine; Lapidus, Alla; LaButtii, Kurt; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Anderson, Iain; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D’haeseleer, Patrik; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Chain, Patrick

    2009-01-01

    Halogeometricum borinquense Montalvo-Rodríguez et al. 1998 is the type species of the genus, and is of phylogenetic interest because of its distinct location between the halobacterial genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) concentrations for growth. It can not only grow aerobically but also anaerobically using nitrate as electron acceptor. The strain described in this report is a free-living, motile, pleomorphic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puerto Rico. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the halobacterial genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 protein-coding and 57 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304651

  17. Complete genome sequence of Halogeometricum borinquense type strain (PR 3 T)

    DOE PAGES

    Malfatti, Stephanie; Tindall, Brian J.; Schneider, Susanne; ...

    2009-09-29

    Halogeometricum borinquense Montalvo-Rodríguez et al. 1998 is the type species of the genus, and is of phylogenetic interest because of its distinct location between the halobacterial genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) concentrations for growth. It can not only grow aerobically but also anaerobically using nitrate as electron acceptor. The strain described in this report is a free-living, motile, pleomorphic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puerto Rico. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completemore » genome sequence of the halobacterial genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 protein-coding and 57 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  18. Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509T)

    PubMed Central

    Sun, Hui; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Djao, Olivier Duplex Ngatchou; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Nocardiopsis dassonvillei (Brocq-Rousseau 1904) Meyer 1976 is the type species of the genus Nocardiopsis, which in turn is the type genus of the family Nocardiopsaceae. This species is of interest because of its ecological versatility. Members of N. dassonvillei have been isolated from a large variety of natural habitats such as soil and marine sediments, from different plant and animal materials as well as from human patients. Moreover, representatives of the genus Nocardiopsis participate actively in biopolymer degradation. This is the first complete genome sequence in the family Nocardiopsaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,543,312 bp long genome consist of a 5.77 Mbp chromosome and a 0.78 Mbp plasmid and with its 5,570 protein-coding and 77 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304737

  19. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle.

    PubMed

    Veerkamp, Roel F; Bouwman, Aniek C; Schrooten, Chris; Calus, Mario P L

    2016-12-01

    Whole-genome sequence data is expected to capture genetic variation more completely than common genotyping panels. Our objective was to compare the proportion of variance explained and the accuracy of genomic prediction by using imputed sequence data or preselected SNPs from a genome-wide association study (GWAS) with imputed whole-genome sequence data. Phenotypes were available for 5503 Holstein-Friesian bulls. Genotypes were imputed up to whole-genome sequence (13,789,029 segregating DNA variants) by using run 4 of the 1000 bull genomes project. The program GCTA was used to perform GWAS for protein yield (PY), somatic cell score (SCS) and interval from first to last insemination (IFL). From the GWAS, subsets of variants were selected and genomic relationship matrices (GRM) were used to estimate the variance explained in 2087 validation animals and to evaluate the genomic prediction ability. Finally, two GRM were fitted together in several models to evaluate the effect of selected variants that were in competition with all the other variants. The GRM based on full sequence data explained only marginally more genetic variation than that based on common SNP panels: for PY, SCS and IFL, genomic heritability improved from 0.81 to 0.83, 0.83 to 0.87 and 0.69 to 0.72, respectively. Sequence data also helped to identify more variants linked to quantitative trait loci and resulted in clearer GWAS peaks across the genome. The proportion of total variance explained by the selected variants combined in a GRM was considerably smaller than that explained by all variants (less than 0.31 for all traits). When selected variants were used, accuracy of genomic predictions decreased and bias increased. Although 35 to 42 variants were detected that together explained 13 to 19% of the total variance (18 to 23% of the genetic variance) when fitted alone, there was no advantage in using dense sequence information for genomic prediction in the Holstein data used in our study

  20. Lessons learnt on the analysis of large sequence data in animal genomics.

    PubMed

    Biscarini, F; Cozzi, P; Orozco-Ter Wengel, P

    2018-04-06

    The 'omics revolution has made a large amount of sequence data available to researchers and the industry. This has had a profound impact in the field of bioinformatics, stimulating unprecedented advancements in this discipline. Mostly, this is usually looked at from the perspective of human 'omics, in particular human genomics. Plant and animal genomics, however, have also been deeply influenced by next-generation sequencing technologies, with several genomics applications now popular among researchers and the breeding industry. Genomics tends to generate huge amounts of data, and genomic sequence data account for an increasing proportion of big data in biological sciences, due largely to decreasing sequencing and genotyping costs and to large-scale sequencing and resequencing projects. The analysis of big data poses a challenge to scientists, as data gathering currently takes place at a faster pace than does data processing and analysis, and the associated computational burden is increasingly taxing, making even simple manipulation, visualization and transferring of data a cumbersome operation. The time consumed by the processing and analysing of huge data sets may be at the expense of data quality assessment and critical interpretation. Additionally, when analysing lots of data, something is likely to go awry-the software may crash or stop-and it can be very frustrating to track the error. We herein review the most relevant issues related to tackling these challenges and problems, from the perspective of animal genomics, and provide researchers that lack extensive computing experience with guidelines that will help when processing large genomic data sets. © 2018 Stichting International Foundation for Animal Genetics.

  1. Psychological and behavioural impact of returning personal results from whole-genome sequencing: the HealthSeq project.

    PubMed

    Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A; Zinberg, Randi; Wasserstein, Melissa; Kasarskis, Andrew; Diaz, George A; Schadt, Eric E

    2017-02-01

    Providing ostensibly healthy individuals with personal results from whole-genome sequencing could lead to improved health and well-being via enhanced disease risk prediction, prevention, and diagnosis, but also poses practical and ethical challenges. Understanding how individuals react psychologically and behaviourally will be key in assessing the potential utility of personal whole-genome sequencing. We conducted an exploratory longitudinal cohort study in which quantitative surveys and in-depth qualitative interviews were conducted before and after personal results were returned to individuals who underwent whole-genome sequencing. The participants were offered a range of interpreted results, including Alzheimer's disease, type 2 diabetes, pharmacogenomics, rare disease-associated variants, and ancestry. They were also offered their raw data. Of the 35 participants at baseline, 29 (82.9%) completed the 6-month follow-up. In the quantitative surveys, test-related distress was low, although it was higher at 1-week than 6-month follow-up (Z=2.68, P=0.007). In the 6-month qualitative interviews, most participants felt happy or relieved about their results. A few were concerned, particularly about rare disease-associated variants and Alzheimer's disease results. Two of the 29 participants had sought clinical follow-up as a direct or indirect consequence of rare disease-associated variants results. Several had mentioned their results to their doctors. Some participants felt having their raw data might be medically useful to them in the future. The majority reported positive reactions to having their genomes sequenced, but there were notable exceptions to this. The impact and value of returning personal results from whole-genome sequencing when implemented on a larger scale remains to be seen.

  2. Psychological and behavioural impact of returning personal results from whole-genome sequencing: the HealthSeq project

    PubMed Central

    Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A; Zinberg, Randi; Wasserstein, Melissa; Kasarskis, Andrew; Diaz, George A; Schadt, Eric E

    2017-01-01

    Providing ostensibly healthy individuals with personal results from whole-genome sequencing could lead to improved health and well-being via enhanced disease risk prediction, prevention, and diagnosis, but also poses practical and ethical challenges. Understanding how individuals react psychologically and behaviourally will be key in assessing the potential utility of personal whole-genome sequencing. We conducted an exploratory longitudinal cohort study in which quantitative surveys and in-depth qualitative interviews were conducted before and after personal results were returned to individuals who underwent whole-genome sequencing. The participants were offered a range of interpreted results, including Alzheimer's disease, type 2 diabetes, pharmacogenomics, rare disease-associated variants, and ancestry. They were also offered their raw data. Of the 35 participants at baseline, 29 (82.9%) completed the 6-month follow-up. In the quantitative surveys, test-related distress was low, although it was higher at 1-week than 6-month follow-up (Z=2.68, P=0.007). In the 6-month qualitative interviews, most participants felt happy or relieved about their results. A few were concerned, particularly about rare disease-associated variants and Alzheimer's disease results. Two of the 29 participants had sought clinical follow-up as a direct or indirect consequence of rare disease-associated variants results. Several had mentioned their results to their doctors. Some participants felt having their raw data might be medically useful to them in the future. The majority reported positive reactions to having their genomes sequenced, but there were notable exceptions to this. The impact and value of returning personal results from whole-genome sequencing when implemented on a larger scale remains to be seen. PMID:28051073

  3. Real-time, portable genome sequencing for Ebola surveillance.

    PubMed

    Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W

    2016-02-11

    The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.

  4. The FlyBase database of the Drosophila genome projects and community literature

    PubMed Central

    2003-01-01

    FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D. melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy. PMID:12519974

  5. The 1000 Genomes Project: data management and community access.

    PubMed

    Clarke, Laura; Zheng-Bradley, Xiangqun; Smith, Richard; Kulesha, Eugene; Xiao, Chunlin; Toneva, Iliana; Vaughan, Brendan; Preuss, Don; Leinonen, Rasko; Shumway, Martin; Sherry, Stephen; Flicek, Paul

    2012-04-27

    The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.

  6. G-Anchor: a novel approach for whole-genome comparative mapping utilizing evolutionary conserved DNA sequences.

    PubMed

    Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M

    2018-05-01

    Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.

  7. Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapidus, Alla; Pukall, Rudiger; LaButti, Kurt

    2009-05-20

    Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a membermore » of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  8. Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana

    2009-01-01

    Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location it occupies within the scarcely explored suborder Catenulisporineae of the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic condi-tions. Under regular conditions, C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium iso-lated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we de-scribe the features ofmore » this organism, together with the complete genome sequence and anno-tation. This is the first complete genome sequence of the actinobacterial family Catenulispo-raceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  9. Genome sequencing in microfabricated high-density picolitre reactors.

    PubMed

    Margulies, Marcel; Egholm, Michael; Altman, William E; Attiya, Said; Bader, Joel S; Bemben, Lisa A; Berka, Jan; Braverman, Michael S; Chen, Yi-Ju; Chen, Zhoutao; Dewell, Scott B; Du, Lei; Fierro, Joseph M; Gomes, Xavier V; Godwin, Brian C; He, Wen; Helgesen, Scott; Ho, Chun Heen; Ho, Chun He; Irzyk, Gerard P; Jando, Szilveszter C; Alenquer, Maria L I; Jarvie, Thomas P; Jirage, Kshama B; Kim, Jong-Bum; Knight, James R; Lanza, Janna R; Leamon, John H; Lefkowitz, Steven M; Lei, Ming; Li, Jing; Lohman, Kenton L; Lu, Hong; Makhijani, Vinod B; McDade, Keith E; McKenna, Michael P; Myers, Eugene W; Nickerson, Elizabeth; Nobile, John R; Plant, Ramona; Puc, Bernard P; Ronan, Michael T; Roth, George T; Sarkis, Gary J; Simons, Jan Fredrik; Simpson, John W; Srinivasan, Maithreyan; Tartaro, Karrie R; Tomasz, Alexander; Vogt, Kari A; Volkmer, Greg A; Wang, Shally H; Wang, Yong; Weiner, Michael P; Yu, Pengguang; Begley, Richard F; Rothberg, Jonathan M

    2005-09-15

    The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

  10. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Christine; Lapidus, Alla L.; Lucas, Susan

    2011-01-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The spe- cies is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung in- fection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806more » bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.« less

  11. Complete Genome Sequence of Pigmentation Negative Yersinia Pestis strain Cadman Running head: Complete Genome Sequence of Y. pestis strain Cadman

    DTIC Science & Technology

    2016-10-27

    Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of

  12. Complete genome sequence of Intrasporangium calvum type strain (7 KIPT)

    PubMed Central

    Del Rio, Tijana Glavina; Chertkov, Olga; Yasawong, Montri; Lucas, Susan; Deshpande, Shweta; Cheng, Jan-Fang; Detter, Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Pukall, Rüdiger; Sikorski, Johannes; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2010-01-01

    Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304734

  13. Targeted sequencing of plant genomes

    Treesearch

    Mark D. Huynh

    2014-01-01

    Next-generation sequencing (NGS) has revolutionized the field of genetics by providing a means for fast and relatively affordable sequencing. With the advancement of NGS, wholegenome sequencing (WGS) has become more commonplace. However, sequencing an entire genome is still not cost effective or even beneficial in all cases. In studies that do not require a whole-...

  14. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  15. Short reads from honey bee (Apis sp.) sequencing projects reflect microbial associate diversity

    PubMed Central

    Hurst, Gregory D.D.

    2017-01-01

    High throughput (or ‘next generation’) sequencing has transformed most areas of biological research and is now a standard method that underpins empirical study of organismal biology, and (through comparison of genomes), reveals patterns of evolution. For projects focused on animals, these sequencing methods do not discriminate between the primary target of sequencing (the animal genome) and ‘contaminating’ material, such as associated microbes. A common first step is to filter out these contaminants to allow better assembly of the animal genome or transcriptome. Here, we aimed to assess if these ‘contaminations’ provide information with regard to biologically important microorganisms associated with the individual. To achieve this, we examined whether the short read data from Apis retrieved elements of its well established microbiome. To this end, we screened almost 1,000 short read libraries of honey bee (Apis sp.) DNA sequencing project for the presence of microbial sequences, and find sequences from known honey bee microbial associates in at least 11% of them. Further to this, we screened ∼500 Apis RNA sequencing libraries for evidence of viral infections, which were found to be present in about half of them. We then used the data to reconstruct draft genomes of three Apis associated bacteria, as well as several viral strains de novo. We conclude that ‘contamination’ in short read sequencing libraries can provide useful genomic information on microbial taxa known to be associated with the target organisms, and may even lead to the discovery of novel associations. Finally, we demonstrate that RNAseq samples from experiments commonly carry uneven viral loads across libraries. We note variation in viral presence and load may be a confounding feature of differential gene expression analyses, and as such it should be incorporated as a random factor in analyses. PMID:28717593

  16. Short reads from honey bee (Apis sp.) sequencing projects reflect microbial associate diversity.

    PubMed

    Gerth, Michael; Hurst, Gregory D D

    2017-01-01

    High throughput (or 'next generation') sequencing has transformed most areas of biological research and is now a standard method that underpins empirical study of organismal biology, and (through comparison of genomes), reveals patterns of evolution. For projects focused on animals, these sequencing methods do not discriminate between the primary target of sequencing (the animal genome) and 'contaminating' material, such as associated microbes. A common first step is to filter out these contaminants to allow better assembly of the animal genome or transcriptome. Here, we aimed to assess if these 'contaminations' provide information with regard to biologically important microorganisms associated with the individual. To achieve this, we examined whether the short read data from Apis retrieved elements of its well established microbiome. To this end, we screened almost 1,000 short read libraries of honey bee ( Apis sp.) DNA sequencing project for the presence of microbial sequences, and find sequences from known honey bee microbial associates in at least 11% of them. Further to this, we screened ∼500 Apis RNA sequencing libraries for evidence of viral infections, which were found to be present in about half of them. We then used the data to reconstruct draft genomes of three Apis associated bacteria, as well as several viral strains de novo . We conclude that 'contamination' in short read sequencing libraries can provide useful genomic information on microbial taxa known to be associated with the target organisms, and may even lead to the discovery of novel associations. Finally, we demonstrate that RNAseq samples from experiments commonly carry uneven viral loads across libraries. We note variation in viral presence and load may be a confounding feature of differential gene expression analyses, and as such it should be incorporated as a random factor in analyses.

  17. Sequencing and comparing whole mitochondrial genomes ofanimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based onmore » our experiences to date with determining and comparing complete mtDNA sequences.« less

  18. Real-time, portable genome sequencing for Ebola surveillance

    PubMed Central

    Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.

    2016-01-01

    The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  19. Phylogenomics from Whole Genome Sequences Using aTRAM.

    PubMed

    Allen, Julie M; Boyd, Bret; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Warnow, Tandy; Huang, Daisie I; Grady, Patrick G S; Bell, Kayce C; Cronk, Quentin C B; Mugisha, Lawrence; Pittendrigh, Barry R; Leonardi, M Soledad; Reed, David L; Johnson, Kevin P

    2017-09-01

    Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing

  20. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.

    PubMed

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian

    2017-04-27

    The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.

  1. The first genome sequences of human bocaviruses from Vietnam

    PubMed Central

    Thanh, Tran Tan; Van, Hoang Minh Tu; Hong, Nguyen Thi Thu; Nhu, Le Nguyen Truc; Anh, Nguyen To; Tuan, Ha Manh; Hien, Ho Van; Tuong, Nguyen Manh; Kien, Trinh Trung; Khanh, Truong Huu; Nhan, Le Nguyen Thanh; Hung, Nguyen Thanh; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier; Tan, Le Van

    2017-01-01

    As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the virus. PMID:28090592

  2. Initial sequencing and comparative analysis of the mouse genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of themore » genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.« less

  3. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae,more » respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.« less

  4. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3T)

    PubMed Central

    Han, Cliff; Spring, Stefan; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia C.; Saunders, Elizabeth; Chertkov, Olga; Brettin, Thomas; Göker, Markus; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2009-01-01

    Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum ‘Bacteroidetes’. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304637

  5. Complete genome sequence of Leadbetterella byssophila type strain (4M15T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abt, Birte; Teshima, Hazuki; Lucas, Susan

    2011-01-01

    Leadbetterella byssophila Weon et al. 2005 is the type species of the genus Leadbetterella of the family Cytophagaceae in the phylum Bacteroidetes. Members of the phylum Bacteroidetes are widely distributed in nature, especially in aquatic environments. They are of special interest for their ability to degrade complex biopolymers. L. byssophila occupies a rather isolated position in the tree of life and is characterized by its ability to hydrolyze starch and gelatine, but not agar, cellulose or chitin. Here we describe the features of this organism, together with the complete genome sequence, and annotation. L. byssophila is already the 16th membermore » of the family Cytophagaceae whose genome has been sequenced. The 4,059,653 bp long single replicon genome with its 3,613 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  6. Whole Genome Sequencing

    MedlinePlus

    ... exons, the parts of DNA that code for proteins in the body. Researchers like this method because it is faster and cheaper. Learn More More still needs to be done before whole genome sequencing becomes a routine part of medical care. Many ...

  7. All about the Human Genome Project (HGP)

    MedlinePlus

    ... CSER), and Genome Sequencing Informatics Tools (GS-IT) Comparative Genomics Background information prepared for the media on ... other species to the human sequence. Background on Comparative Genomic Analysis New Process to Prioritize Animal Genomes ...

  8. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers

    PubMed Central

    Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R

    2015-01-01

    We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554

  9. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, R.D.; Adams, M.D.; White, O.

    1995-07-28

    An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism. 46 refs., 4 figs., 4 tabs.

  10. Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer.

    PubMed

    Wang, Ji; Ke, Yue Hua; Zhang, Yong; Huang, Ke Qiang; Wang, Lei; Shen, Xin Xin; Dong, Xiao Ping; Xu, Wen Bo; Ma, Xue Jun

    2017-10-01

    Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  12. Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Chertkov, Olga; Lapidus, Alla L.

    2012-01-01

    Saprospira grandis Gross et al. 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S. grandis strain Sa g1 was isolated from decaying crab carapace in France and was selected for genome sequencing because of its isolated location in the tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S.more » grandis. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 protein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  13. Illumina Production Sequencing at the DOE Joint Genome Institute - Workflow and Optimizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, Angela; Fern, Alison; Diego, Matthew San

    2010-06-18

    The U.S. Department of Energy (DOE) Joint Genome Institute?s (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the DOE mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI?s Production Sequencing group, the Illumina Genome Analyzer pipeline has been established as one of three sequencing platforms, along with Roche/454 and ABI/Sanger. Optimization of the Illumina pipeline has been ongoing with the aim of continual process improvement of the laboratory workflow. These process improvement projects are being led by the JGI?s Process Optimization, Sequencing Technologies, Instrumentation&more » Engineering, and the New Technology Production groups. Primary focus has been on improving the procedural ergonomics and the technicians? operating environment, reducing manually intensive technician operations with different tools, reducing associated production costs, and improving the overall process and generated sequence quality. The U.S. DOE JGI was established in 1997 in Walnut Creek, CA, to unite the expertise and resources of five national laboratories? Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest ? along with HudsonAlpha Institute for Biotechnology. JGI is operated by the University of California for the U.S. DOE.« less

  14. Genomics England's implementation of its public engagement strategy: Blurred boundaries between engagement for the United Kingdom's 100,000 Genomes project and the need for public support.

    PubMed

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-04-01

    The United Kingdom's 100,000 Genomes Project has the aim of sequencing 100,000 genomes from National Health Service patients such that whole genome sequencing becomes routine clinical practice. It also has a research-focused goal to provide data for scientific discovery. Genomics England is the limited company established by the Department of Health to deliver the project. As an innovative scientific/clinical venture, it is interesting to consider how Genomics England positions itself in relation to public engagement activities. We set out to explore how individuals working at, or associated with, Genomics England enacted public engagement in practice. Our findings show that individuals offered a narrative in which public engagement performed more than one function. On one side, public engagement was seen as 'good practice'. On the other, public engagement was presented as core to the project's success - needed to encourage involvement and ultimately recruitment. We discuss the implications of this in this article.

  15. Draft Sequences of the Radish (Raphanus sativus L.) Genome

    PubMed Central

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-01-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

  16. The human genome project: Prospects and implications for clinical medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, E.D.; Waterston, R.H.

    1991-10-09

    The recently initiated human genome project is a large international effort to elucidate the genetic architecture of the genomes of man and several model organisms. The initial phases of this endeavor involve the establishment of rough blueprints (maps) of the genetic landscape of these genomes, with the long-term goal of determining their precise nucleotide sequences and identifying the genes. The knowledge gained by these studies will provide a vital tool for the study of many biologic processes and will have a profound impact on clinical medicine.

  17. EGASP: the human ENCODE Genome Annotation Assessment Project

    PubMed Central

    Guigó, Roderic; Flicek, Paul; Abril, Josep F; Reymond, Alexandre; Lagarde, Julien; Denoeud, France; Antonarakis, Stylianos; Ashburner, Michael; Bajic, Vladimir B; Birney, Ewan; Castelo, Robert; Eyras, Eduardo; Ucla, Catherine; Gingeras, Thomas R; Harrow, Jennifer; Hubbard, Tim; Lewis, Suzanna E; Reese, Martin G

    2006-01-01

    Background We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. Results The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. Conclusion This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence. PMID:16925836

  18. Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Stackebrandt, Erko; Held, Brittany

    2013-01-01

    Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell enve- lope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is as- sociated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the firstmore » genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.« less

  19. Genomic sequencing: assessing the health care system, policy, and big-data implications.

    PubMed

    Phillips, Kathryn A; Trosman, Julia R; Kelley, Robin K; Pletcher, Mark J; Douglas, Michael P; Weldon, Christine B

    2014-07-01

    New genomic sequencing technologies enable the high-speed analysis of multiple genes simultaneously, including all of those in a person's genome. Sequencing is a prominent example of a "big data" technology because of the massive amount of information it produces and its complexity, diversity, and timeliness. Our objective in this article is to provide a policy primer on sequencing and illustrate how it can affect health care system and policy issues. Toward this end, we developed an easily applied classification of sequencing based on inputs, methods, and outputs. We used it to examine the implications of sequencing for three health care system and policy issues: making care more patient-centered, developing coverage and reimbursement policies, and assessing economic value. We conclude that sequencing has great promise but that policy challenges include how to optimize patient engagement as well as privacy, develop coverage policies that distinguish research from clinical uses and account for bioinformatics costs, and determine the economic value of sequencing through complex economic models that take into account multiple findings and downstream costs. Project HOPE—The People-to-People Health Foundation, Inc.

  20. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    PubMed

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  1. The FlyBase database of the Drosophila genome projects and community literature

    PubMed Central

    2002-01-01

    FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. Following on the success of the Drosophila genome project, FlyBase has primary responsibility for the continual reannotation of the D.melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. The current cycle of reannotation focuses on establishing a comprehensive data set of gene models (i.e. transcription units and CDSs). There are many points of entry to the genome within FlyBase, most notably through maps, gene ontologies, structured phenotypic and gene expression data, and anatomy. PMID:11752267

  2. Mitochondrial Genome Sequence of the Legume Vicia faba

    PubMed Central

    Negruk, Valentine

    2013-01-01

    The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

  3. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  4. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.

    PubMed

    Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko

    2017-10-01

    We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. FOUNTAIN: A JAVA open-source package to assist large sequencing projects

    PubMed Central

    Buerstedde, Jean-Marie; Prill, Florian

    2001-01-01

    Background Better automation, lower cost per reaction and a heightened interest in comparative genomics has led to a dramatic increase in DNA sequencing activities. Although the large sequencing projects of specialized centers are supported by in-house bioinformatics groups, many smaller laboratories face difficulties managing the appropriate processing and storage of their sequencing output. The challenges include documentation of clones, templates and sequencing reactions, and the storage, annotation and analysis of the large number of generated sequences. Results We describe here a new program, named FOUNTAIN, for the management of large sequencing projects . FOUNTAIN uses the JAVA computer language and data storage in a relational database. Starting with a collection of sequencing objects (clones), the program generates and stores information related to the different stages of the sequencing project using a web browser interface for user input. The generated sequences are subsequently imported and annotated based on BLAST searches against the public databases. In addition, simple algorithms to cluster sequences and determine putative polymorphic positions are implemented. Conclusions A simple, but flexible and scalable software package is presented to facilitate data generation and storage for large sequencing projects. Open source and largely platform and database independent, we wish FOUNTAIN to be improved and extended in a community effort. PMID:11591214

  6. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  7. Probabilistic topic modeling for the analysis and classification of genomic sequences

    PubMed Central

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  8. Ultraaccurate genome sequencing and haplotyping of single human cells.

    PubMed

    Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun

    2017-11-21

    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.

  9. Genome Improvement at JGI-HAGSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less

  10. Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species

    PubMed Central

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

  11. Reference genome sequence of the model plant Setaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species thatmore » demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).« less

  12. Reference genome sequence of the model plant Setaria.

    PubMed

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-05-13

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  13. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  14. PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.

    PubMed

    Liu, Chao Chun; Ji, Hezhao

    2018-06-26

    The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Complete genome sequence of Thermosphaera aggregans type strain (M11TL).

    PubMed

    Spring, Stefan; Rachel, Reinhard; Lapidus, Alla; Davenport, Karen; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia C; Brettin, Thomas; Detter, John C; Tapia, Roxanne; Han, Cliff; Heimerl, Thomas; Weikl, Fabian; Brambilla, Evelyne; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-06-15

    Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TL(T) was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Sequencing and assembly of the 22-gb loblolly pine genome.

    PubMed

    Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H

    2014-03-01

    Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.

  17. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.

    PubMed

    Li, Qing; Hermanson, Peter J; Springer, Nathan M

    2018-01-01

    DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.

  18. Use of sequence-independent-single-primer-amplification (SISPA) for whole genome sequencing using illumina MiSeq platform for avian influenza virus, Newcastle disease virus, and infectious bronchitis virus

    USDA-ARS?s Scientific Manuscript database

    Over the past decade, Next Generation Sequencing (NGS) technologies, also called deep sequencing, have continued to evolve, increasing capacity and lower the cost necessary for large genome sequencing projects. The one of the advantage of NGS platforms is the possibility to sequence the samples with...

  19. Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops

    PubMed Central

    Stiller, Jiri; Covarelli, Lorenzo; Lindeberg, Magdalen; Shivas, Roger G.; Manners, John M.

    2013-01-01

    Compared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis. PMID:23661484

  20. Low-pass sequencing for microbial comparative genomics

    PubMed Central

    Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy

    2004-01-01

    Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich

  1. Complete genome sequence of Dyadobacter fermentans type strain (NS114T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Elke; Lapidus, Alla; Chertkov, Olga

    Dyadobacter fermentans (Chelius MK and Triplett EW, 2000) is the type species of the genus Dyadobacter. It is of phylogenetic interest because of its location in the Cytophagaceae, a very diverse family within the order 'Sphingobacteriales'. D. fermentans has a mainly respiratory metabolism, stains Gram-negative, is non-motile and oxidase and catalase positive. It is characterized by the production of cell filaments in ageing cultures, a flexirubin-like pigment and its ability to ferment glucose, which is almost unique in the aerobically living members of this taxonomically difficult family. Here we describe the features of this organism, together with the complete genomemore » sequence, and annotation. This is the first complete genome sequence of the 'sphingobacterial' genus Dyadobacter, and this 6,967,790 bp long single replicon genome with its 5804 protein-coding and 50 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  2. Modeling genome coverage in single-cell sequencing

    PubMed Central

    Daley, Timothy; Smith, Andrew D.

    2014-01-01

    Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873

  3. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspectmore » centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.« less

  4. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect tomore » see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.« less

  5. Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Amrita; Gronow, Sabine; Lu, Megan

    2011-01-01

    Prevotella multisaccharivorax Sakamoto et al. 2005 is a species of the large genus Prevotella, which belongs to the family Prevotellaceae. The species is of medical interest because its members are able to cause diseases in the human oral cavity such as periodontitis, root caries and others. Although 77 Prevotella genomes have already been sequenced or are targeted for sequencing, this is only the second completed genome sequence of a type strain of a species within the genus Prevotella to be published. The 3,388,644 bp long genome is assembled in three non-contiguous contigs, harbors 2,876 protein-coding and 75 RNA genes andmore » is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  6. MIPS: a database for protein sequences and complete genomes.

    PubMed Central

    Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D

    1998-01-01

    The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795

  7. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  8. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.

    PubMed

    Hribová, Eva; Neumann, Pavel; Matsumoto, Takashi; Roux, Nicolas; Macas, Jirí; Dolezel, Jaroslav

    2010-09-16

    Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic

  9. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing

    PubMed Central

    2010-01-01

    Background Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. Results In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. Conclusion A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA

  10. GAMES identifies and annotates mutations in next-generation sequencing projects.

    PubMed

    Sana, Maria Elena; Iascone, Maria; Marchetti, Daniela; Palatini, Jeff; Galasso, Marco; Volinia, Stefano

    2011-01-01

    Next-generation sequencing (NGS) methods have the potential for changing the landscape of biomedical science, but at the same time pose several problems in analysis and interpretation. Currently, there are many commercial and public software packages that analyze NGS data. However, the limitations of these applications include output which is insufficiently annotated and of difficult functional comprehension to end users. We developed GAMES (Genomic Analysis of Mutations Extracted by Sequencing), a pipeline aiming to serve as an efficient middleman between data deluge and investigators. GAMES attains multiple levels of filtering and annotation, such as aligning the reads to a reference genome, performing quality control and mutational analysis, integrating results with genome annotations and sorting each mismatch/deletion according to a range of parameters. Variations are matched to known polymorphisms. The prediction of functional mutations is achieved by using different approaches. Overall GAMES enables an effective complexity reduction in large-scale DNA-sequencing projects. GAMES is available free of charge to academic users and may be obtained from http://aqua.unife.it/GAMES.

  11. Indigenous peoples and the morality of the Human Genome Diversity Project.

    PubMed

    Dodson, M; Williamson, R

    1999-04-01

    In addition to the aim of mapping and sequencing one human's genome, the Human Genome Project also intends to characterise the genetic diversity of the world's peoples. The Human Genome Diversity Project raises political, economic and ethical issues. These intersect clearly when the genomes under study are those of indigenous peoples who are already subject to serious economic, legal and/or social disadvantage and discrimination. The fact that some individuals associated with the project have made dismissive comments about indigenous peoples has confused rather than illuminated the deeper issues involved, as well as causing much antagonism among indigenous peoples. There are more serious ethical issues raised by the project for all geneticists, including those who are sympathetic to the problems of indigenous peoples. With particular attention to the history and attitudes of Australian indigenous peoples, we argue that the Human Genome Diversity Project can only proceed if those who further its objectives simultaneously: respect the cultural beliefs of indigenous peoples; publicly support the efforts of indigenous peoples to achieve respect and equality; express respect by a rigorous understanding of the meaning of equitable negotiation of consent, and ensure that both immediate and long term economic benefits from the research flow back to the groups taking part.

  12. Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

    DOE R&D Accomplishments Database

    DeLisi, Charles (Associate Director, Health and Environmental Research, DOE Office of Energy Research)

    1986-05-06

    In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, Director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, DeLisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.

  13. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology

    Treesearch

    Richard Cronn; Aaron Liston; Matthew Parks; David S. Gernandt; Rongkun Shen; Todd Mockler

    2008-01-01

    Organellar DNA sequences are widely used in evolutionary and population genetic studies; however, the conservative nature of chloroplast gene and genome evolution often limits phylogenetic resolution and statistical power. To gain maximal access to the historical record contained within chloroplast genomes, we have adapted multiplex sequencing-by-synthesis (MSBS) to...

  14. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    PubMed

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  16. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  17. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  18. Genome survey sequencing of red swamp crayfish Procambarus clarkii.

    PubMed

    Shi, Linlin; Yi, Shaokui; Li, Yanhe

    2018-06-21

    Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina's Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.

  19. Genome Sequence of Stachybotrys chartarum Strain 51-11

    PubMed Central

    Kim, Jean; Levy, Josh

    2015-01-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful. PMID:26430036

  20. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Tatiparthi B. K.; Thomas, Alex D.; Stamatis, Dimitri

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencingmore » projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.« less

  1. The Sequenced Angiosperm Genomes and Genome Databases.

    PubMed

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  2. The Sequenced Angiosperm Genomes and Genome Databases

    PubMed Central

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology. PMID:29706973

  3. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study.

    PubMed

    Lane, William J; Westhoff, Connie M; Gleadall, Nicholas S; Aguad, Maria; Smeland-Wagman, Robin; Vege, Sunitha; Simmons, Daimon P; Mah, Helen H; Lebo, Matthew S; Walter, Klaudia; Soranzo, Nicole; Di Angelantonio, Emanuele; Danesh, John; Roberts, David J; Watkins, Nick A; Ouwehand, Willem H; Butterworth, Adam S; Kaufman, Richard M; Rehm, Heidi L; Silberstein, Leslie E; Green, Robert C

    2018-06-01

    There are more than 300 known red blood cell (RBC) antigens and 33 platelet antigens that differ between individuals. Sensitisation to antigens is a serious complication that can occur in prenatal medicine and after blood transfusion, particularly for patients who require multiple transfusions. Although pre-transfusion compatibility testing largely relies on serological methods, reagents are not available for many antigens. Methods based on single-nucleotide polymorphism (SNP) arrays have been used, but typing for ABO and Rh-the most important blood groups-cannot be done with SNP typing alone. We aimed to develop a novel method based on whole-genome sequencing to identify RBC and platelet antigens. This whole-genome sequencing study is a subanalysis of data from patients in the whole-genome sequencing arm of the MedSeq Project randomised controlled trial (NCT01736566) with no measured patient outcomes. We created a database of molecular changes in RBC and platelet antigens and developed an automated antigen-typing algorithm based on whole-genome sequencing (bloodTyper). This algorithm was iteratively improved to address cis-trans haplotype ambiguities and homologous gene alignments. Whole-genome sequencing data from 110 MedSeq participants (30 × depth) were used to initially validate bloodTyper through comparison with conventional serology and SNP methods for typing of 38 RBC antigens in 12 blood-group systems and 22 human platelet antigens. bloodTyper was further validated with whole-genome sequencing data from 200 INTERVAL trial participants (15 × depth) with serological comparisons. We iteratively improved bloodTyper by comparing its typing results with conventional serological and SNP typing in three rounds of testing. The initial whole-genome sequencing typing algorithm was 99·5% concordant across the first 20 MedSeq genomes. Addressing discordances led to development of an improved algorithm that was 99·8% concordant for the remaining 90 Med

  4. Genome sequence of the olive tree, Olea europaea.

    PubMed

    Cruz, Fernando; Julca, Irene; Gómez-Garrido, Jèssica; Loska, Damian; Marcet-Houben, Marina; Cano, Emilio; Galán, Beatriz; Frias, Leonor; Ribeca, Paolo; Derdak, Sophia; Gut, Marta; Sánchez-Fernández, Manuel; García, Jose Luis; Gut, Ivo G; Vargas, Pablo; Alioto, Tyler S; Gabaldón, Toni

    2016-06-27

    The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.

  5. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  6. Reducing assembly complexity of microbial genomes with single-molecule sequencing.

    PubMed

    Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M

    2013-01-01

    The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.

  7. The draft genome sequence of cork oak.

    PubMed

    Ramos, António Marcos; Usié, Ana; Barbosa, Pedro; Barros, Pedro M; Capote, Tiago; Chaves, Inês; Simões, Fernanda; Abreu, Isabl; Carrasquinho, Isabel; Faro, Carlos; Guimarães, Joana B; Mendonça, Diogo; Nóbrega, Filomena; Rodrigues, Leandra; Saibo, Nelson J M; Varela, Maria Carolina; Egas, Conceição; Matos, José; Miguel, Célia M; Oliveira, M Margarida; Ricardo, Cândido P; Gonçalves, Sónia

    2018-05-22

    Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species.

  8. Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598

    PubMed Central

    2014-01-01

    Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project. PMID:25780498

  9. Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598.

    PubMed

    Ardley, Julie; Tian, Rui; Howieson, John; Yates, Ron; Bräu, Lambert; Han, James; Lobos, Elizabeth; Huntemann, Marcel; Chen, Amy; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Goodwin, Lynne; Woyke, Tanja; Kyrpides, Nikos; Reeve, Wayne

    2014-01-01

    Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project.

  10. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    PubMed

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  11. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    PubMed Central

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  12. Agaricus bisporus genome sequence: a commentary.

    PubMed

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Genome Sequence of Stachybotrys chartarum Strain 51-11.

    PubMed

    Betancourt, Doris A; Dean, Timothy R; Kim, Jean; Levy, Josh

    2015-10-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful. Copyright © 2015 Betancourt et al.

  14. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    PubMed Central

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  15. Complete genome sequence of Hippea maritima type strain (MH2T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Lu, Megan; Nolan, Matt

    2011-01-01

    Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome se- quencing because of its isolated phylogenetic location, as a distant next neighbor of the ge- nus Desulfurella. Strain MH2T is the first type strain from the order Desulfurellales with a com- pletely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein- coding and 57 RNA genesmore » consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  16. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  17. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less

  18. Mapping our genes: The genome projects: How big, how fast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate,more » focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.« less

  19. Mapping Our Genes: The Genome Projects: How Big, How Fast

    DOE R&D Accomplishments Database

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for ?writing the rules? of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  20. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing

    PubMed Central

    2010-01-01

    Background Food supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei) is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model. Results End sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690) were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome. Conclusions The BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish. PMID:20105308

  1. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.

    PubMed

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-02-24

    Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  2. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    USDA-ARS?s Scientific Manuscript database

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  3. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

    PubMed Central

    Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

    2014-01-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  4. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromericmore » regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops« less

  5. Sequence modelling and an extensible data model for genomic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peter Wei-Der

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data modelmore » that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.« less

  6. Sequence modelling and an extensible data model for genomic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peter Wei-Der

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data modelmore » that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.« less

  7. Sequences Associated with Centromere Competency in the Human Genome

    PubMed Central

    Hayden, Karen E.; Strome, Erin D.; Merrett, Stephanie L.; Lee, Hye-Ran; Rudd, M. Katharine

    2013-01-01

    Centromeres, the sites of spindle attachment during mitosis and meiosis, are located in specific positions in the human genome, normally coincident with diverse subsets of alpha satellite DNA. While there is strong evidence supporting the association of some subfamilies of alpha satellite with centromere function, the basis for establishing whether a given alpha satellite sequence is or is not designated a functional centromere is unknown, and attempts to understand the role of particular sequence features in establishing centromere identity have been limited by the near identity and repetitive nature of satellite sequences. Utilizing a broadly applicable experimental approach to test sequence competency for centromere specification, we have carried out a genomic and epigenetic functional analysis of endogenous human centromere sequences available in the current human genome assembly. The data support a model in which functionally competent sequences confer an opportunity for centromere specification, integrating genomic and epigenetic signals and promoting the concept of context-dependent centromere inheritance. PMID:23230266

  8. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    PubMed

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  9. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    PubMed

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  10. Draft Genome Sequence of Pedobacter agri PB92T, Which Belongs to the Family Sphingobacteriaceae

    PubMed Central

    Lee, Myunglip; Roh, Seong Woon; Lee, Hae-Won; Yim, Kyung June; Kim, Kil-Nam; Bae, Jin-Woo; Choi, Kwang-Sik; Jeon, You-Jin; Jung, Won-Kyo; Kang, Heewan

    2012-01-01

    Strain PB92T of Pedobacter agri, which belongs to the family Sphingobacteriaceae, was isolated from soil in the Republic of Korea. The draft genome of strain PB92T contains 5,141,552 bp, with a G+C content of 38.0%. This is the third genome sequencing project of the type strains among the Pedobacter species. PMID:22740666

  11. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity

    PubMed Central

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-01-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  12. Initial sequence and comparative analysis of the cat genome

    PubMed Central

    Pontius, Joan U.; Mullikin, James C.; Smith, Douglas R.; Lindblad-Toh, Kerstin; Gnerre, Sante; Clamp, Michele; Chang, Jean; Stephens, Robert; Neelam, Beena; Volfovsky, Natalia; Schäffer, Alejandro A.; Agarwala, Richa; Narfström, Kristina; Murphy, William J.; Giger, Urs; Roca, Alfred L.; Antunes, Agostinho; Menotti-Raymond, Marilyn; Yuhki, Naoya; Pecon-Slattery, Jill; Johnson, Warren E.; Bourque, Guillaume; Tesler, Glenn; O’Brien, Stephen J.

    2007-01-01

    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence. PMID:17975172

  13. Whole-Genome Sequencing for Optimized Patient Management

    PubMed Central

    Bainbridge, Matthew N.; Wiszniewski, Wojciech; Murdock, David R.; Friedman, Jennifer; Gonzaga-Jauregui, Claudia; Newsham, Irene; Reid, Jeffrey G.; Fink, John K.; Morgan, Margaret B.; Gingras, Marie-Claude; Muzny, Donna M.; Hoang, Linh D.; Yousaf, Shahed; Lupski, James R.; Gibbs, Richard A.

    2012-01-01

    Whole-genome sequencing of patient DNA can facilitate diagnosis of a disease, but its potential for guiding treatment has been under-realized. We interrogated the complete genome sequences of a 14-year-old fraternal twin pair diagnosed with dopa (3,4-dihydroxyphenylalanine)–responsive dystonia (DRD; Mendelian Inheritance in Man #128230). DRD is a genetically heterogeneous and clinically complex movement disorder that is usually treated with l-dopa, a precursor of the neurotransmitter dopamine. Whole-genome sequencing identified compound heterozygous mutations in the SPR gene encoding sepiapterin reductase. Disruption of SPR causes a decrease in tetrahydrobiopterin, a cofactor required for the hydroxylase enzymes that synthesize the neurotransmitters dopamine and serotonin. Supplementation of l-dopa therapy with 5-hydroxytryptophan, a serotonin precursor, resulted in clinical improvements in both twins. PMID:21677200

  14. The draft genome sequence of cork oak

    PubMed Central

    Ramos, António Marcos; Usié, Ana; Barbosa, Pedro; Barros, Pedro M.; Capote, Tiago; Chaves, Inês; Simões, Fernanda; Abreu, Isabl; Carrasquinho, Isabel; Faro, Carlos; Guimarães, Joana B.; Mendonça, Diogo; Nóbrega, Filomena; Rodrigues, Leandra; Saibo, Nelson J. M.; Varela, Maria Carolina; Egas, Conceição; Matos, José; Miguel, Célia M.; Oliveira, M. Margarida; Ricardo, Cândido P.; Gonçalves, Sónia

    2018-01-01

    Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species. PMID:29786699

  15. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    PubMed Central

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  16. Fathead minnow genome sequencing and assembly

    EPA Pesticide Factsheets

    The dataset provides the URLs for accessing the genome sequence data and two draft assemblies as well as fathead minnow genotyping data associated with estimating the heterozygosity of the in-bred line.This dataset is associated with the following publication:Burns, F., L. Cogburn, G. Ankley , D. Villeneuve , E. Waits , Y. Chang, V. Llaca, S. Deschamps, R. Jackson, and R. Hoke. Sequencing and De novo Draft Assemblies of the Fathead Minnow (Pimphales promelas)Reference Genome. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 35(1): 212-217, (2016).

  17. Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa

    PubMed Central

    Spencer, David H.; Kas, Arnold; Smith, Eric E.; Raymond, Christopher K.; Sims, Elizabeth H.; Hastings, Michele; Burns, Jane L.; Kaul, Rajinder; Olson, Maynard V.

    2003-01-01

    Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, ∼10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel. PMID:12562802

  18. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    USDA-ARS?s Scientific Manuscript database

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  19. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  20. Single-cell genomic sequencing using Multiple Displacement Amplification.

    PubMed

    Lasken, Roger S

    2007-10-01

    Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).

  1. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    PubMed

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  2. Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Sikorski, Johannes; Zeytun, Ahmet

    Nitratifractor salsuginis Nakagawa et al. 2005 is the type species of the genus Nitratifractor, a member of the family Nautiliaceae. The species is of interest because of its high capacity for nitrate reduction via conversion to N2 through respiration, which is a key compound in plant nutrition. The strain is also of interest because it represents the first mesophilic and faculta- tively anaerobic member of the Epsilonproteobacteria reported to grow on molecular hydro- gen. This is the first completed genome sequence of a member of the genus Nitratifractor and the second sequence from the family Nautiliaceae. The 2,101,285 bp longmore » genome with its 2,121 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  3. Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437T)

    PubMed Central

    Mavromatis, Konstantinos; Stackebrandt, Erko; Munk, Christine; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Rohde, Manfred; Gronow, Sabine; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2013-01-01

    Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly published name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:23961309

  4. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.

    PubMed

    ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong

    2018-05-15

    We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.

  5. The PiGeOn project: protocol of a longitudinal study examining psychosocial and ethical issues and outcomes in germline genomic sequencing for cancer.

    PubMed

    Best, Megan; Newson, Ainsley J; Meiser, Bettina; Juraskova, Ilona; Goldstein, David; Tucker, Kathy; Ballinger, Mandy L; Hess, Dominique; Schlub, Timothy E; Biesecker, Barbara; Vines, Richard; Vines, Kate; Thomas, David; Young, Mary-Anne; Savard, Jacqueline; Jacobs, Chris; Butow, Phyllis

    2018-04-23

    Advances in genomics offer promise for earlier detection or prevention of cancer, by personalisation of medical care tailored to an individual's genomic risk status. However genome sequencing can generate an unprecedented volume of results for the patient to process with potential implications for their families and reproductive choices. This paper describes a protocol for a study (PiGeOn) that aims to explore how patients and their blood relatives experience germline genomic sequencing, to help guide the appropriate future implementation of genome sequencing into routine clinical practice. We have designed a mixed-methods, prospective, cohort sub-study of a germline genomic sequencing study that targets adults with cancer suggestive of a genetic aetiology. One thousand probands and 2000 of their blood relatives will undergo germline genomic sequencing as part of the parent study in Sydney, Australia between 2016 and 2020. Test results are expected within12-15 months of recruitment. For the PiGeOn sub-study, participants will be invited to complete surveys at baseline, three months and twelve months after baseline using self-administered questionnaires, to assess the experience of long waits for results (despite being informed that results may not be returned) and expectations of receiving them. Subsets of both probands and blood relatives will be purposively sampled and invited to participate in three semi-structured qualitative interviews (at baseline and each follow-up) to triangulate the data. Ethical themes identified in the data will be used to inform critical revisions of normative ethical concepts or frameworks. This will be one of the first studies internationally to follow the psychosocial impact on probands and their blood relatives who undergo germline genome sequencing, over time. Study results will inform ongoing ethical debates on issues such as informed consent for genomic sequencing, and informing participants and their relatives of specific

  6. Pervasive sequence patents cover the entire human genome.

    PubMed

    Rosenfeld, Jeffrey A; Mason, Christopher E

    2013-01-01

    The scope and eligibility of patents for genetic sequences have been debated for decades, but a critical case regarding gene patents (Association of Molecular Pathologists v. Myriad Genetics) is now reaching the US Supreme Court. Recent court rulings have supported the assertion that such patents can provide intellectual property rights on sequences as small as 15 nucleotides (15mers), but an analysis of all current US patent claims and the human genome presented here shows that 15mer sequences from all human genes match at least one other gene. The average gene matches 364 other genes as 15mers; the breast-cancer-associated gene BRCA1 has 15mers matching at least 689 other genes. Longer sequences (1,000 bp) still showed extensive cross-gene matches. Furthermore, 15mer-length claims from bovine and other animal patents could also claim as much as 84% of the genes in the human genome. In addition, when we expanded our analysis to full-length patent claims on DNA from all US patents to date, we found that 41% of the genes in the human genome have been claimed. Thus, current patents for both short and long nucleotide sequences are extraordinarily non-specific and create an uncertain, problematic liability for genomic medicine, especially in regard to targeted re-sequencing and other sequence diagnostic assays.

  7. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

    PubMed

    Jayakumar, Vasanthan; Sakakibara, Yasubumi

    2017-11-03

    Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms. © The Author 2017. Published by Oxford University Press.

  8. Importing statistical measures into Artemis enhances gene identification in the Leishmania genome project.

    PubMed

    Aggarwal, Gautam; Worthey, E A; McDonagh, Paul D; Myler, Peter J

    2003-06-07

    Seattle Biomedical Research Institute (SBRI) as part of the Leishmania Genome Network (LGN) is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN) into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.

  9. Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.

    PubMed

    Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A

    2016-01-01

    One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    PubMed

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.

  11. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

    PubMed Central

    Dunlap, Jay C.; Borkovich, Katherine A.; Henn, Matthew R.; Turner, Gloria E.; Sachs, Matthew S.; Glass, N. Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E.; Birren, Bruce W.; Weiss, Richard L.; Townsend, Jeffrey P.; Loros, Jennifer J.; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V.; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M.; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2013-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to acccomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of nonyeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes. PMID:17352902

  12. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Wang, Yun-sheng

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  13. The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1.

    PubMed

    Vaz, Paola K; Mahony, Timothy J; Hartley, Carol A; Fowler, Elizabeth V; Ficorilli, Nino; Lee, Sang W; Gilkerson, James R; Browning, Glenn F; Devlin, Joanne M

    2016-01-22

    While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.

  14. The African Genome Variation Project shapes medical genetics in Africa

    PubMed Central

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  15. Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project

    PubMed Central

    Iacobuzio-Donahue, Christine A

    2012-01-01

    Pancreatic cancer is a disease caused by the accumulation of genetic alterations in specific genes. Elucidation of the human genome sequence, in conjunction with technical advances in the ability to perform whole exome sequencing, have provided new insight into the mutational spectra characteristic of this lethal tumour type. Most recently, exomic sequencing has been used to clarify the clonal evolution of pancreatic cancer as well as provide time estimates of pancreatic carcinogenesis, indicating that a long window of opportunity may exist for early detection of this disease while in the curative stage. Moving forward, these mutational analyses indicate potential targets for personalised diagnostic and therapeutic intervention as well as the optimal timing for intervention based on the natural history of pancreatic carcinogenesis and progression. PMID:21749982

  16. ‘Someday it will be the norm’: physician perspectives on the utility of genome sequencing for patient care in the MedSeq Project

    PubMed Central

    Vassy, Jason L; Christensen, Kurt D; Slashinski, Melody J; Lautenbach, Denise M; Raghavan, Sridharan; Robinson, Jill Oliver; Blumenthal-Barby, Jennifer; Feuerman, Lindsay Zausmer; Lehmann, Lisa Soleymani; Murray, Michael F; Green, Robert C; McGuire, Amy L

    2015-01-01

    Aim To describe practicing physicians’ perceived clinical utility of genome sequencing. Materials & methods We conducted a mixed-methods analysis of data from 18 primary care physicians and cardiologists in a study of the clinical integration of whole-genome sequencing. Physicians underwent brief genomics continuing medical education before completing surveys and semi-structured interviews. Results Physicians described sequencing as currently lacking clinical utility because of its uncertain interpretation and limited impact on clinical decision-making, but they expressed the idea that its clinical integration was inevitable. Potential clinical uses for sequencing included complementing other clinical information, risk stratification, motivating patient behavior change and pharmacogenetics. Conclusion Physicians given genomics continuing medical education use the language of both evidence-based and personalized medicine in describing the utility of genome-wide testing in patient care. PMID:25642274

  17. Protecting genomic sequence anonymity with generalization lattices.

    PubMed

    Malin, B A

    2005-01-01

    Current genomic privacy technologies assume the identity of genomic sequence data is protected if personal information, such as demographics, are obscured, removed, or encrypted. While demographic features can directly compromise an individual's identity, recent research demonstrates such protections are insufficient because sequence data itself is susceptible to re-identification. To counteract this problem, we introduce an algorithm for anonymizing a collection of person-specific DNA sequences. The technique is termed DNA lattice anonymization (DNALA), and is based upon the formal privacy protection schema of k -anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic sequence from k-1 other entries in a collection. To maximize information retained in protected sequences, we incorporate a concept generalization lattice to learn the distance between two residues in a single nucleotide region. The lattice provides the most similar generalized concept for two residues (e.g. adenine and guanine are both purines). The method is tested and evaluated with several publicly available human population datasets ranging in size from 30 to 400 sequences. Our findings imply the anonymization schema is feasible for the protection of sequences privacy. The DNALA method is the first computational disclosure control technique for general DNA sequences. Given the computational nature of the method, guarantees of anonymity can be formally proven. There is room for improvement and validation, though this research provides the groundwork from which future researchers can construct genomics anonymization schemas tailored to specific datasharing scenarios.

  18. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan

    2016-01-01

    Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean.

  19. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE PAGES

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  20. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  1. The FLEXGene repository: exploiting the fruits of the genome projects by creating a needed resource to face the challenges of the post-genomic era.

    PubMed

    Brizuela, Leonardo; Richardson, Aaron; Marsischky, Gerald; Labaer, Joshua

    2002-01-01

    Thanks to the results of the multiple completed and ongoing genome sequencing projects and to the newly available recombination-based cloning techniques, it is now possible to build gene repositories with no precedent in their composition, formatting, and potential. This new type of gene repository is necessary to address the challenges imposed by the post-genomic era, i.e., experimentation on a genome-wide scale. We are building the FLEXGene (Full Length EXpression-ready) repository. This unique resource will contain clones representing the complete ORFeome of different organisms, including Homo sapiens as well as several pathogens and model organisms. It will consist of a comprehensive, characterized (sequence-verified), and arrayed gene repository. This resource will allow full exploitation of the genomic information by enabling genome-wide scale experimentation at the level of functional/phenotypic assays as well as at the level of protein expression, purification, and analysis. Here we describe the rationale and construction of this resource and focus on the data obtained from the Saccharomyces cerevisiae project.

  2. Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1

    PubMed Central

    Wang, Xu; Wang, Qing; Zhang, Weijia; Wang, Yinjia; Li, Li; Wen, Tong; Zhang, Tongwei; Zhang, Yang; Xu, Jun; Hu, Junying; Li, Shuqi; Liu, Lingzi; Liu, Jinxin; Jiang, Wei; Tian, Jiesheng; Wang, Lei; Li, Jilun

    2014-01-01

    We report the complete genomic sequence of Magnetospirillum gryphiswaldense MSR-1 (DSM 6361), a type strain of the genus Magnetospirillum belonging to the Alphaproteobacteria. Compared to the reported draft sequence, extensive rearrangements and differences were found, indicating high genomic flexibility and “domestication” by accelerated evolution of the strain upon repeated passaging. PMID:24625872

  3. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  4. From sequencing to annotating: extending the metaphor of the book of life from genetics to genomics.

    PubMed

    Hellsten, Iina

    2005-12-01

    The article discusses how the metaphor of the Book of Life was extended over time to cover the life cycle of the Human Genome Project from genetics to genomics. In particular, the focus is on the role of extendable metaphors in the debate on the Human Genome Project in three European newspapers, popular scientific journals and scientific and scholarly articles from 1990 to 2002. In these different domains of use, various parts of the metaphor were highlighted. The metaphor of Book of Life was mainly used to justify the continuation of the gene research from gene sequencing to comparative genomics. Readily extendable metaphors, such as the Book of Life, function as useful communicative tools both over time and across domains of use.

  5. Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring.

    PubMed

    Göker, Markus; Spring, Stefan; Scheuner, Carmen; Anderson, Iain; Zeytun, Ahmet; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2014-06-15

    Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Genome sequence of the Thermotoga thermarum type strain (LA 3 T) from an African solfataric spring

    DOE PAGES

    Goker, Markus; Spring, Stefan; Scheuner, Carmen; ...

    2014-06-15

    Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum ' Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3 T is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significantmore » discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  7. Templated sequence insertion polymorphisms in the human genome

    NASA Astrophysics Data System (ADS)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  8. Sequencing and comparative genomic analysis of 1227 Felis catus cDNA sequences enriched for developmental, clinical and nutritional phenotypes

    PubMed Central

    2012-01-01

    Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742

  9. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  10. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113).

    PubMed

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-10-15

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Indexcov: fast coverage quality control for whole-genome sequencing.

    PubMed

    Pedersen, Brent S; Collins, Ryan L; Talkowski, Michael E; Quinlan, Aaron R

    2017-11-01

    The BAM and CRAM formats provide a supplementary linear index that facilitates rapid access to sequence alignments in arbitrary genomic regions. Comparing consecutive entries in a BAM or CRAM index allows one to infer the number of alignment records per genomic region for use as an effective proxy of sequence depth in each genomic region. Based on these properties, we have developed indexcov, an efficient estimator of whole-genome sequencing coverage to rapidly identify samples with aberrant coverage profiles, reveal large-scale chromosomal anomalies, recognize potential batch effects, and infer the sex of a sample. Indexcov is available at https://github.com/brentp/goleft under the MIT license. © The Authors 2017. Published by Oxford University Press.

  12. A Deep-Coverage Tomato BAC Library and Prospects Toward Development of an STC Framework for Genome Sequencing

    PubMed Central

    Budiman, Muhammad A.; Mao, Long; Wood, Todd C.; Wing, Rod A.

    2000-01-01

    Recently a new strategy using BAC end sequences as sequence-tagged connectors (STCs) was proposed for whole-genome sequencing projects. In this study, we present the construction and detailed characterization of a 15.0 haploid genome equivalent BAC library for the cultivated tomato, Lycopersicon esculentum cv. Heinz 1706. The library contains 129,024 clones with an average insert size of 117.5 kb and a chloroplast content of 1.11%. BAC end sequences from 1490 ends were generated and analyzed as a preliminary evaluation for using this library to develop an STC framework to sequence the tomato genome. A total of 1205 BAC end sequences (80.9%) were obtained, with an average length of 360 high-quality bases, and were searched against the GenBank database. Using a cutoff expectation value of <10−6, and combining the results from BLASTN, BLASTX, and TBLASTX searches, 24.3% of the BAC end sequences were similar to known sequences, of which almost half (48.7%) share sequence similarities to retrotransposons and 7% to known genes. Some of the transposable element sequences were the first reported in tomato, such as sequences similar to maize transposon Activator (Ac) ORF and tobacco pararetrovirus-like sequences. Interestingly, there were no BAC end sequences similar to the highly repeated TGRI and TGRII elements. However, the majority (70.3%) of STCs did not share significant sequence similarities to any sequences in GenBank at either the DNA or predicted protein levels, indicating that a large portion of the tomato genome is still unknown. Our data demonstrate that this BAC library is suitable for developing an STC database to sequence the tomato genome. The advantages of developing an STC framework for whole-genome sequencing of tomato are discussed. [The BAC end sequences described in this paper have been deposited in the GenBank data library under accession nos. AQ367111–AQ368361.] PMID:10645957

  13. A Novel Genome-Information Content-Based Statistic for Genome-Wide Association Analysis Designed for Next-Generation Sequencing Data

    PubMed Central

    Luo, Li; Zhu, Yun

    2012-01-01

    Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812

  14. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    PubMed

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  15. Complete genome sequence of Coriobacterium glomerans type strain (PW2T) from the midgut of Pyrrhocoris apterus L. (red soldier bug)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stackebrandt, Erko; Zeytun, Ahmet; Lapidus, Alla L.

    2013-01-01

    Coriobacterium glomerans Haas and Ko nig 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for whichmore » complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  16. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.

    PubMed

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance; Messina, Thomas; Fan, Hongtao; Jaeger, Edward; Stephens, Susan

    2013-06-27

    Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available

  17. Consequences of splitting whole-genome sequencing effort over multiple breeds on imputation accuracy.

    PubMed

    Bouwman, Aniek C; Veerkamp, Roel F

    2014-10-03

    The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference

  18. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    PubMed

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  19. Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis

    PubMed Central

    Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia

    2011-01-01

    Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non

  20. Sequencing and comparative analyses of the genomes of zoysiagrasses

    PubMed Central

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-01-01

    Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp. PMID:26975196

  1. Sequencing and comparative analyses of the genomes of zoysiagrasses.

    PubMed

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-04-01

    Zoysiais a warm-season turfgrass, which comprises 11 allotetraploid species (2n= 4x= 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession 'Nagirizaki' (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella 'Wakaba' and Z. pacifica 'Zanpa' were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica'Kyoto', Z. japonica'Miyagi' and Z. matrella'Chiba Fair Green', were accumulated, and aligned against the reference genome of 'Nagirizaki' along with those from 'Wakaba' and 'Zanpa'. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the 'Zoysia Genome Database' at http://zoysia.kazusa.or.jp. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Complete genome sequence of Sebaldella termitidis type strain (NCTC 11300T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon-Smith, Miranda; Celia, Laura; Chertkov, Olga

    2010-01-01

    Sebaldella termitidis (Sebald 1962) Collins and Shah 1986, is the only species in the genus Sebaldella within the fusobacterial family Leptotrichiaceae . The sole and type strain of the species was first isolated about 50 years ago from intestinal content of Mediterranean ter-mites. The species is of interest for its very isolated phylogenetic position within the phylum Fusobacteria in the tree of life, with no other species sharing more than 90% 16S rRNA se-quence similarity. The 4,486,650 bp long genome with its 4,210 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. The genome sequence of the colonial chordate, Botryllus schlosseri

    PubMed Central

    Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R

    2013-01-01

    Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927

  4. Genomics England’s implementation of its public engagement strategy: Blurred boundaries between engagement for the United Kingdom’s 100,000 Genomes project and the need for public support

    PubMed Central

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2017-01-01

    The United Kingdom’s 100,000 Genomes Project has the aim of sequencing 100,000 genomes from National Health Service patients such that whole genome sequencing becomes routine clinical practice. It also has a research-focused goal to provide data for scientific discovery. Genomics England is the limited company established by the Department of Health to deliver the project. As an innovative scientific/clinical venture, it is interesting to consider how Genomics England positions itself in relation to public engagement activities. We set out to explore how individuals working at, or associated with, Genomics England enacted public engagement in practice. Our findings show that individuals offered a narrative in which public engagement performed more than one function. On one side, public engagement was seen as ‘good practice’. On the other, public engagement was presented as core to the project’s success – needed to encourage involvement and ultimately recruitment. We discuss the implications of this in this article. PMID:29241419

  5. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome

  6. Illumina Synthetic Long Read Sequencing Allows Recovery of Missing Sequences even in the “Finished” C. elegans Genome

    PubMed Central

    Li, Runsheng; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Ren, Xiaoliang; Zhao, Zhongying

    2015-01-01

    Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24×reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads. PMID:26039588

  7. Sensitivity to sequencing depth in single-cell cancer genomics.

    PubMed

    Alves, João M; Posada, David

    2018-04-16

    Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.

  8. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project

    DOE PAGES

    Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.; ...

    2017-10-27

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less

  9. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project.

    PubMed

    Weston, David J; Turetsky, Merritt R; Johnson, Matthew G; Granath, Gustaf; Lindo, Zoë; Belyea, Lisa R; Rice, Steven K; Hanson, David T; Engelhardt, Katharina A M; Schmutz, Jeremy; Dorrepaal, Ellen; Euskirchen, Eugénie S; Stenøien, Hans K; Szövényi, Péter; Jackson, Michelle; Piatkowski, Bryan T; Muchero, Wellington; Norby, Richard J; Kostka, Joel E; Glass, Jennifer B; Rydin, Håkan; Limpens, Juul; Tuittila, Eeva-Stiina; Ullrich, Kristian K; Carrell, Alyssa; Benscoter, Brian W; Chen, Jin-Gui; Oke, Tobi A; Nilsson, Mats B; Ranjan, Priya; Jacobson, Daniel; Lilleskov, Erik A; Clymo, R S; Shaw, A Jonathan

    2018-01-01

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses. © 2017 UT-Battelle New Phytologist © 2017 New Phytologist Trust.

  10. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less

  11. Draft genome sequence of the silver pomfret fish, Pampus argenteus.

    PubMed

    AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar

    2016-01-01

    Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.

  12. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  13. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  14. Specialized microbial databases for inductive exploration of microbial genome sequences

    PubMed Central

    Fang, Gang; Ho, Christine; Qiu, Yaowu; Cubas, Virginie; Yu, Zhou; Cabau, Cédric; Cheung, Frankie; Moszer, Ivan; Danchin, Antoine

    2005-01-01

    Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore , a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya) has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis) associated to related organisms for comparison. PMID:15698474

  15. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    PubMed

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  16. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    PubMed Central

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  17. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Ravi; Howieson, John; Yates, Ron

    Bradyrhizobium sp. WSM1253 is a novel N 2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigsmore » arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.« less

  18. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    DOE PAGES

    Tiwari, Ravi; Howieson, John; Yates, Ron; ...

    2015-11-30

    Bradyrhizobium sp. WSM1253 is a novel N 2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigsmore » arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.« less

  19. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  20. Efficient analysis of mouse genome sequences reveal many nonsense variants

    PubMed Central

    Steeland, Sophie; Timmermans, Steven; Van Ryckeghem, Sara; Hulpiau, Paco; Saeys, Yvan; Van Montagu, Marc; Vandenbroucke, Roosmarijn E.; Libert, Claude

    2016-01-01

    Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1. PMID:27147605

  1. Complete Genome Sequences of 38 Gordonia sp. Bacteriophages

    PubMed Central

    Montgomery, Matthew T.; Bonilla, J. Alfred; Dejong, Randall; Garlena, Rebecca A.; Guerrero Bustamante, Carlos; Klyczek, Karen K.; Russell, Daniel A.; Wertz, John T.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2017-01-01

    ABSTRACT We report here the genome sequences of 38 newly isolated bacteriophages using Gordonia terrae 3612 (ATCC 25594) and Gordonia neofelifaecis NRRL59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity. PMID:28057748

  2. A web-based genomic sequence database for the Streptomycetaceae: a tool for systematics and genome mining

    USDA-ARS?s Scientific Manuscript database

    The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...

  3. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  4. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    PubMed

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  5. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierman, William C.

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less

  6. Complete genome sequence of Ikoma lyssavirus.

    PubMed

    Marston, Denise A; Ellis, Richard J; Horton, Daniel L; Kuzmin, Ivan V; Wise, Emma L; McElhinney, Lorraine M; Banyard, Ashley C; Ngeleja, Chanasa; Keyyu, Julius; Cleaveland, Sarah; Lembo, Tiziana; Rupprecht, Charles E; Fooks, Anthony R

    2012-09-01

    Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.

  7. Complete genome sequence of Thioalkalivibrio sp. K90mix

    PubMed Central

    Muyzer, Gerard; Sorokin, Dimitry Y.; Mavromatis, Konstantinos; Lapidus, Alla; Foster, Brian; Sun, Hui; Ivanova, Natalia; Pati, Amrita; D'haeseleer, Patrik; Woyke, Tanja; Kyrpides, Nikos C.

    2011-01-01

    Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic, natronophilic sulfur-oxidizing bacterium (SOxB) belonging to the family Ectothiorhodospiraceae within the Gammaproteobacteria. The strain was isolated from a mixture of sediment samples obtained from different soda lakes located in the Kulunda Steppe (Altai, Russia) based on its extreme potassium carbonate tolerance as an enrichment method. Here we report the complete genome sequence of strain K90mix and its annotation. The genome was sequenced within the Joint Genome Institute Community Sequencing Program, because of its relevance to the sustainable removal of sulfide from wastewater and gas streams. PMID:22675584

  8. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae

    PubMed Central

    Dunitz, Madison I.; James, Pamela M.; Jospin, Guillaume; Coil, David A.; Chandler, James Angus

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931 bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D. suzukii. PMID:24762940

  9. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  10. Effects of informed consent for individual genome sequencing on relevant knowledge.

    PubMed

    Kaphingst, K A; Facio, F M; Cheng, M-R; Brooks, S; Eidem, H; Linn, A; Biesecker, B B; Biesecker, L G

    2012-11-01

    Increasing availability of individual genomic information suggests that patients will need knowledge about genome sequencing to make informed decisions, but prior research is limited. In this study, we examined genome sequencing knowledge before and after informed consent among 311 participants enrolled in the ClinSeq™ sequencing study. An exploratory factor analysis of knowledge items yielded two factors (sequencing limitations knowledge; sequencing benefits knowledge). In multivariable analysis, high pre-consent sequencing limitations knowledge scores were significantly related to education [odds ratio (OR): 8.7, 95% confidence interval (CI): 2.45-31.10 for post-graduate education, and OR: 3.9; 95% CI: 1.05, 14.61 for college degree compared with less than college degree] and race/ethnicity (OR: 2.4, 95% CI: 1.09, 5.38 for non-Hispanic Whites compared with other racial/ethnic groups). Mean values increased significantly between pre- and post-consent for the sequencing limitations knowledge subscale (6.9-7.7, p < 0.0001) and sequencing benefits knowledge subscale (7.0-7.5, p < 0.0001); increase in knowledge did not differ by sociodemographic characteristics. This study highlights gaps in genome sequencing knowledge and underscores the need to target educational efforts toward participants with less education or from minority racial/ethnic groups. The informed consent process improved genome sequencing knowledge. Future studies could examine how genome sequencing knowledge influences informed decision making. © 2012 John Wiley & Sons A/S.

  11. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    PubMed Central

    2014-01-01

    Background Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources. PMID:24460871

  12. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.

    PubMed

    Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R

    2017-07-01

    The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

  13. A high-throughput Sanger strategy for human mitochondrial genome sequencing

    PubMed Central

    2013-01-01

    Background A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and sequencing strategy that is designed for automated processing, yet routinely produces high quality sequences, is needed to facilitate high-volume production of these mtGenome data sets. Results We developed a robust 8-amplicon Sanger sequencing strategy that regularly produces complete, forensic-quality mtGenome haplotypes in the first pass of data generation. The protocol works equally well on samples representing diverse mtDNA haplogroups and DNA input quantities ranging from 50 pg to 1 ng, and can be applied to specimens of varying DNA quality. The complete workflow was specifically designed for implementation on robotic instrumentation, which increases throughput and reduces both the opportunities for error inherent to manual processing and the cost of generating full mtGenome sequences. Conclusions The described strategy will assist efforts to generate complete mtGenome haplotypes which meet the highest data quality expectations for forensic genetic and other applications. Additionally, high-quality data produced using this protocol can be used to assess mtDNA data developed using newer technologies and chemistries. Further, the amplification strategy can be used to enrich for mtDNA as a first step in sample preparation for targeted next-generation sequencing. PMID:24341507

  14. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives

  15. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    PubMed

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  16. Draft genome sequence of the Coccolithovirus Emiliania huxleyi virus 203.

    PubMed

    Nissimov, Jozef I; Worthy, Charlotte A; Rooks, Paul; Napier, Johnathan A; Kimmance, Susan A; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J

    2011-12-01

    The Coccolithoviridae are a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 203 (EhV-203) has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 400 kbp, consisting of 464 coding sequences (CDSs). Here we describe the genomic features of EhV-203 together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.

  17. Mapping Challenging Mutations by Whole-Genome Sequencing

    PubMed Central

    Smith, Harold E.; Fabritius, Amy S.; Jaramillo-Lambert, Aimee; Golden, Andy

    2016-01-01

    Whole-genome sequencing provides a rapid and powerful method for identifying mutations on a global scale, and has spurred a renewed enthusiasm for classical genetic screens in model organisms. The most commonly characterized category of mutation consists of monogenic, recessive traits, due to their genetic tractability. Therefore, most of the mapping methods for mutation identification by whole-genome sequencing are directed toward alleles that fulfill those criteria (i.e., single-gene, homozygous variants). However, such approaches are not entirely suitable for the characterization of a variety of more challenging mutations, such as dominant and semidominant alleles or multigenic traits. Therefore, we have developed strategies for the identification of those classes of mutations, using polymorphism mapping in Caenorhabditis elegans as our model for validation. We also report an alternative approach for mutation identification from traditional recombinant crosses, and a solution to the technical challenge of sequencing sterile or terminally arrested strains where population size is limiting. The methods described herein extend the applicability of whole-genome sequencing to a broader spectrum of mutations, including classes that are difficult to map by traditional means. PMID:26945029

  18. Draft genome sequence of Therminicola potens strain JR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  19. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  20. A one-page summary report of genome sequencing for the healthy adult.

    PubMed

    Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.

  1. A One-Page Summary Report of Genome Sequencing for the Healthy Adult

    PubMed Central

    Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602

  2. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    PubMed

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  3. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    PubMed

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  4. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species.

    PubMed

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-06-23

    The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the

  5. Complete Genomic Sequence and Comparative Analysis of the Genome Segments of Sweet Potato Chlorotic Stunt Virus in China

    PubMed Central

    Qin, Yanhong; Wang, Li; Zhang, Zhenchen; Qiao, Qi; Zhang, Desheng; Tian, Yuting; Wang, Shuang; Wang, Yongjiang; Yan, Zhaoling

    2014-01-01

    Background Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. Methodology/Principal Findings The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. Conclusions/Significance We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV

  6. Genome sequencing and annotation of Serratia sp. strain TEL.

    PubMed

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000.

  7. Draft genome sequence of Paenibacillus sp. EZ-K15 isolated from wastewater systems.

    PubMed

    Mohammed, Waleed S; Ziganshina, Elvira E; Shagimardanova, Elena I; Gogoleva, Natalia E; Ziganshin, Ayrat M

    2017-12-12

    Paenibacillus species, belonging to the family Paenibacillaceae, are able to survive for long periods under adverse environmental conditions. Several Paenibacillus species produce antimicrobial compounds and are capable of biodegradation of various contaminants; therefore, more investigations at the genomic level are necessary to improve our understanding of their ecology, genetics, as well as potential biotechnological applications. In the present study, we describe the draft genome sequence of Paenibacillus sp. EZ-K15 that was isolated from nitrocellulose-contaminated wastewater samples. The genome comprises 7,258,662 bp, with a G+C content of 48.6%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHM00000000. Data demonstrated here can be used by other researchers working or studying in the field of whole genome analysis and application of Paenibacillus species in biotechnological processes.

  8. First High-Quality Draft Genome Sequence of Pasteurella multocida Sequence Type 128 Isolated from Infected Bone.

    PubMed

    Kavousi, Niloofar; Eng, Wilhelm Wei Han; Lee, Yin Peng; Tan, Lian Huat; Thuraisingham, Ravindran; Yule, Catherine M; Gan, Han Ming

    2016-03-03

    We report here the first high-quality draft genome sequence of Pasteurella multocida sequence type 128, which was isolated from the infected finger bone of an adult female who was bitten by a domestic dog. The draft genome will be a valuable addition to the scarce genomic resources available for P. multocida. Copyright © 2016 Kavousi et al.

  9. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae.

    PubMed

    Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K

    2010-02-01

    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

  10. Draft genome sequence of the coccolithovirus Emiliania huxleyi virus 202.

    PubMed

    Nissimov, Jozef I; Worthy, Charlotte A; Rooks, Paul; Napier, Johnathan A; Kimmance, Susan A; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J

    2012-02-01

    Emiliania huxleyi virus 202 (EhV-202) is a member of the Coccolithoviridae, a group of viruses that infect the marine coccolithophorid Emiliania huxleyi. EhV-202 has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 407 kbp, consisting of 485 coding sequences (CDSs). Here we describe the genomic features of EhV-202, together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.

  11. BAC-pool 454-sequencing: A rapid and efficient approach to sequence complex tetraploid cotton genomes

    USDA-ARS?s Scientific Manuscript database

    New and emerging next generation sequencing technologies have been promising in reducing sequencing costs, but not significantly for complex polyploid plant genomes such as cotton. Large and highly repetitive genome of G. hirsutum (~2.5GB) is less amenable and cost-intensive with traditional BAC-by...

  12. Draft Genome Sequence, and a Sequence-Defined Genetic Linkage Map of the Legume Crop Species Lupinus angustifolius L

    PubMed Central

    Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W.; Howieson, John G.; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species. PMID:23734219

  13. Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W; Howieson, John G; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.

  14. Next Generation Sequencing at the University of Chicago Genomics Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faber, Pieter

    2013-04-24

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.

  15. Completed Genome Sequences of Strains from 36 Serotypes of Salmonella

    PubMed Central

    Robertson, James; Yoshida, Catherine; Gurnik, Simone; Rankin, Marisa

    2018-01-01

    ABSTRACT We report here the completed closed genome sequences of strains representing 36 serotypes of Salmonella. These genome sequences will provide useful references for understanding the genetic variation between serotypes, particularly as references for mapping of raw reads or to create assemblies of higher quality, as well as to aid in studies of comparative genomics of Salmonella. PMID:29348347

  16. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich.

    PubMed

    Luan, Ming-Bao; Jian, Jian-Bo; Chen, Ping; Chen, Jun-Hui; Chen, Jian-Hua; Gao, Qiang; Gao, Gang; Zhou, Ju-Hong; Chen, Kun-Mei; Guang, Xuan-Min; Chen, Ji-Kang; Zhang, Qian-Qian; Wang, Xiao-Fei; Fang, Long; Sun, Zhi-Min; Bai, Ming-Zhou; Fang, Xiao-Dong; Zhao, Shan-Cen; Xiong, He-Ping; Yu, Chun-Ming; Zhu, Ai-Guo

    2018-05-01

    Ramie, Boehmeria nivea (L.) Gaudich, family Urticaceae, is a plant native to eastern Asia, and one of the world's oldest fibre crops. It is also used as animal feed and for the phytoremediation of heavy metal-contaminated farmlands. Thus, the genome sequence of ramie was determined to explore the molecular basis of its fibre quality, protein content and phytoremediation. For further understanding ramie genome, different paired-end and mate-pair libraries were combined to generate 134.31 Gb of raw DNA sequences using the Illumina whole-genome shotgun sequencing approach. The highly heterozygous B. nivea genome was assembled using the Platanus Genome Assembler, which is an effective tool for the assembly of highly heterozygous genome sequences. The final length of the draft genome of this species was approximately 341.9 Mb (contig N50 = 22.62 kb, scaffold N50 = 1,126.36 kb). Based on ramie genome annotations, 30,237 protein-coding genes were predicted, and the repetitive element content was 46.3%. The completeness of the final assembly was evaluated by benchmarking universal single-copy orthologous genes (BUSCO); 90.5% of the 1,440 expected embryophytic genes were identified as complete, and 4.9% were identified as fragmented. Phylogenetic analysis based on single-copy gene families and one-to-one orthologous genes placed ramie with mulberry and cannabis, within the clade of urticalean rosids. Genome information of ramie will be a valuable resource for the conservation of endangered Boehmeria species and for future studies on the biogeography and characteristic evolution of members of Urticaceae. © 2018 John Wiley & Sons Ltd.

  17. Whole-genome sequence of Schistosoma haematobium.

    PubMed

    Young, Neil D; Jex, Aaron R; Li, Bo; Liu, Shiping; Yang, Linfeng; Xiong, Zijun; Li, Yingrui; Cantacessi, Cinzia; Hall, Ross S; Xu, Xun; Chen, Fangyuan; Wu, Xuan; Zerlotini, Adhemar; Oliveira, Guilherme; Hofmann, Andreas; Zhang, Guojie; Fang, Xiaodong; Kang, Yi; Campbell, Bronwyn E; Loukas, Alex; Ranganathan, Shoba; Rollinson, David; Rinaldi, Gabriel; Brindley, Paul J; Yang, Huanming; Wang, Jun; Wang, Jian; Gasser, Robin B

    2012-01-15

    Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.

  18. Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data

    PubMed Central

    McManus, Kimberly F.; Kelley, Joanna L.; Song, Shiya; Veeramah, Krishna R.; Woerner, August E.; Stevison, Laurie S.; Ryder, Oliver A.; Ape Genome Project, Great; Kidd, Jeffrey M.; Wall, Jeffrey D.; Bustamante, Carlos D.; Hammer, Michael F.

    2015-01-01

    Although population-level genomic sequence data have been gathered extensively for humans, similar data from our closest living relatives are just beginning to emerge. Examination of genomic variation within great apes offers many opportunities to increase our understanding of the forces that have differentially shaped the evolutionary history of hominid taxa. Here, we expand upon the work of the Great Ape Genome Project by analyzing medium to high coverage whole-genome sequences from 14 western lowland gorillas (Gorilla gorilla gorilla), 2 eastern lowland gorillas (G. beringei graueri), and a single Cross River individual (G. gorilla diehli). We infer that the ancestors of western and eastern lowland gorillas diverged from a common ancestor approximately 261 ka, and that the ancestors of the Cross River population diverged from the western lowland gorilla lineage approximately 68 ka. Using a diffusion approximation approach to model the genome-wide site frequency spectrum, we infer a history of western lowland gorillas that includes an ancestral population expansion of 1.4-fold around 970 ka and a recent 5.6-fold contraction in population size 23 ka. The latter may correspond to a major reduction in African equatorial forests around the Last Glacial Maximum. We also analyze patterns of variation among western lowland gorillas to identify several genomic regions with strong signatures of recent selective sweeps. We find that processes related to taste, pancreatic and saliva secretion, sodium ion transmembrane transport, and cardiac muscle function are overrepresented in genomic regions predicted to have experienced recent positive selection. PMID:25534031

  19. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  20. BAC sequencing using pooled methods.

    PubMed

    Saski, Christopher A; Feltus, F Alex; Parida, Laxmi; Haiminen, Niina

    2015-01-01

    Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.

  1. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    PubMed

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  2. Draft genome sequence of Enterococcus faecium strain LMG 8148.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Enterococcus faecium, traditionally considered a harmless gut commensal, is emerging as an important nosocomial pathogen showing increasing rates of multidrug resistance. We report the draft genome sequence of E. faecium strain LMG 8148, isolated in 1968 from a human in Gothenburg, Sweden. The draft genome has a total length of 2,697,490 bp, a GC-content of 38.3 %, and 2,402 predicted protein-coding sequences. The isolation of this strain predates the emergence of E. faecium as a nosocomial pathogen. Consequently, its genome can be useful in comparative genomic studies investigating the evolution of E. faecium as a pathogen.

  3. Selected Insights from Application of Whole Genome Sequencing for Outbreak Investigations

    PubMed Central

    Le, Vien Thi Minh; Diep, Binh An

    2014-01-01

    Purpose of review The advent of high-throughput whole genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate pathogen strain resolution, whole genome sequencing could augment traditional epidemiologic investigations of infectious disease outbreaks. Recent findings The combination of whole genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, and Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreak caused by environmentally acquired molds. Summary When combined with traditional epidemiologic investigation, whole genome sequencing has proven useful for elucidating sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for analysis of whole genome sequence data is much needed to make this powerful tool more widely accessible. PMID:23856896

  4. It's more than stamp collecting: how genome sequencing can unify biological research.

    PubMed

    Richards, Stephen

    2015-07-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    PubMed

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  6. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences.

    PubMed

    Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer

    2017-09-26

    Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .

  7. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-01-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. PMID:24344172

  8. Genome sequencing and analysis of the model grass Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Kalluri, Udaya C; Tuskan, Gerald A

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with easemore » of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.« less

  9. A Pan-HIV Strategy for Complete Genome Sequencing

    PubMed Central

    Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.

    2015-01-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702

  10. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    PubMed

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    PubMed

    Jeong, Seongmun; Kim, Jiwoong; Park, Won; Jeon, Hongmin; Kim, Namshin

    2017-01-01

    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD.

  12. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome

    PubMed Central

    2013-01-01

    Background Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. Results Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. Conclusions We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts. PMID:23368932

  13. Draft Genome Sequence of “Cohnella kolymensis” B-2846

    PubMed Central

    Kudryashova, Ekaterina B.; Ariskina, Elena V.

    2016-01-01

    A draft genome sequence of “Cohnella kolymensis” strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics. PMID:26769947

  14. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    PubMed

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  15. Genome Sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    USDA-ARS?s Scientific Manuscript database

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  16. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    USDA-ARS?s Scientific Manuscript database

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  17. Conserved noncoding sequences conserve biological networks and influence genome evolution.

    PubMed

    Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang

    2018-05-01

    Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.

  18. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing

    PubMed Central

    2013-01-01

    Background Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Results Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Conclusions Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of

  19. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    PubMed Central

    2012-01-01

    Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported

  20. Single molecule sequencing of the M13 virus genome without amplification.

    PubMed

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X; Yan, Qin; Deem, Michael W; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias.

  1. Genome sequence of Frateuria aurantia type strain (Kondô 67T), a xanthomonade isolated from Lilium auratium Lindl.

    PubMed Central

    Anderson, Iain; Teshima, Huzuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Rohde, Manfred; Lang, Elke; Detter, John C.; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2013-01-01

    Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:24501647

  2. Genome sequence of Frateuria aurantia type strain (Kondô 67T), a xanthomonade isolated from Lilium auratium Lindl.

    DOE PAGES

    Anderson, Iain; Teshima, Huzuki; Nolan, Matt; ...

    2013-10-16

    Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67 T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67 T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67 T is the first member of the genus Frateuramore » whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  3. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences.

    PubMed

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A

    2016-10-15

    Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments.

    PubMed

    Ziganshina, Elvira E; Mohammed, Waleed S; Doijad, Swapnil P; Shagimardanova, Elena I; Gogoleva, Natalia E; Ziganshin, Ayrat M

    2018-04-01

    Brevibacterium spp. are aerobic, nonbranched, asporogenous, gram-positive, rod-shaped bacteria which may exhibit a rod-coccus cycle when cells get older and can be found in various environments. ​Several Brevibacterium species have industrial importance and are capable of biotransformation of various contaminants. Here we describe the draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments. The genome comprises 3,885,924 bp, with a G + C content of 64.2%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHL00000000.

  5. Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951

    DOE PAGES

    Toome, Merje; Kuo, Alan; Henrissat, Bernard; ...

    2014-06-12

    We present the draft genome sequence of the smut fungus Tilletiaria anomala UBC 951 (Basidiomycota, Ustilaginomycotina). The sequenced genome size is 18.7 Mb, consisting of 289 scaffolds and a total of 6,810 predicted genes. This is the first genome sequence published for a fungus in the order Georgefisheriales (Exobasidiomycetes).

  6. Whole-genome sequencing of the world's oldest people.

    PubMed

    Gierman, Hinco J; Fortney, Kristen; Roach, Jared C; Coles, Natalie S; Li, Hong; Glusman, Gustavo; Markov, Glenn J; Smith, Justin D; Hood, Leroy; Coles, L Stephen; Kim, Stuart K

    2014-01-01

    Supercentenarians (110 years or older) are the world's oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.

  7. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    PubMed

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  8. Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    PubMed Central

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing

  9. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    PubMed Central

    2010-01-01

    Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID

  10. Draft Genome Sequence of Tolypothrix boutellei Strain VB521301

    PubMed Central

    Chandrababunaidu, Mathu Malar; Singh, Deeksha; Sen, Diya; Bhan, Sushma; Das, Subhadeep; Gupta, Akash

    2015-01-01

    We report here the draft genome sequence of the filamentous nitrogen-fixing cyanobacterium Tolypothrix boutellei strain VB521301. The organism is lipid rich and hydrophobic and produces polyunsaturated fatty acids which can be harnessed for industrial purpose. The draft genome sequence assembled into 11,572,263 bp with 70 scaffolds and 7,777 protein coding genes. PMID:25700407

  11. The zebrafish reference genome sequence and its relationship to the human genome.

    PubMed

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  12. Decoding the genome beyond sequencing: the new phase of genomic research.

    PubMed

    Heng, Henry H Q; Liu, Guo; Stevens, Joshua B; Bremer, Steven W; Ye, Karen J; Abdallah, Batoul Y; Horne, Steven D; Ye, Christine J

    2011-10-01

    While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501

  14. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  15. Controversy and debate on clinical genomics sequencing-paper 1: genomics is not exceptional: rigorous evaluations are necessary for clinical applications of genomic sequencing.

    PubMed

    Wilson, Brenda J; Miller, Fiona Alice; Rousseau, François

    2017-12-01

    Next generation genomic sequencing (NGS) technologies-whole genome and whole exome sequencing-are now cheap enough to be within the grasp of many health care organizations. To many, NGS is symbolic of cutting edge health care, offering the promise of "precision" and "personalized" medicine. Historically, research and clinical application has been a two-way street in clinical genetics: research often driven directly by the desire to understand and try to solve immediate clinical problems affecting real, identifiable patients and families, accompanied by a low threshold of willingness to apply research-driven interventions without resort to formal empirical evaluations. However, NGS technologies are not simple substitutes for older technologies and need careful evaluation for use as screening, diagnostic, or prognostic tools. We have concerns across three areas. First, at the moment, analytic validity is unknown because technical platforms are not yet stable, laboratory quality assurance programs are in their infancy, and data interpretation capabilities are badly underdeveloped. Second, clinical validity of genomic findings for patient populations without pre-existing high genetic risk is doubtful, as most clinical experience with NGS technologies relates to patients with a high prior likelihood of a genetic etiology. Finally, we are concerned that proponents argue not only for clinically driven approaches to assessing a patient's genome, but also for seeking out variants associated with unrelated conditions or susceptibilities-so-called "secondary targets"-this is screening on a genomic scale. We argue that clinical uses of genomic sequencing should remain limited to specialist and research settings, that screening for secondary findings in clinical testing should be limited to the maximum extent possible, and that the benefits, harms, and economic implications of their routine use be systematically evaluated. All stakeholders have a responsibility to ensure that

  16. Ensembl 2002: accommodating comparative genomics.

    PubMed

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  17. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  18. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  19. Whole Genome Sequencing of Greater Amberjack (Seriola dumerili) for SNP Identification on Aligned Scaffolds and Genome Structural Variation Analysis Using Parallel Resequencing

    PubMed Central

    Aokic, Jun-ya; Kawase, Junya; Hamada, Kazuhisa; Fujimoto, Hiroshi; Yamamoto, Ikki; Usuki, Hironori

    2018-01-01

    Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence. PMID:29785397

  20. Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences

    PubMed Central

    Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.

    2012-01-01

    ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136

  1. Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies

    PubMed Central

    Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim

    2007-01-01

    While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434

  2. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    PubMed Central

    Chen, Lei; Pospíšilová, Petra; Strouhal, Michal; Qin, Xiang; Mikalová, Lenka; Norris, Steven J.; Muzny, Donna M.; Gibbs, Richard A.; Fulton, Lucinda L.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. PMID:22292095

  3. Characterization and complete genome sequence of a panicovirus from Bermuda grass by high-throughput sequencing.

    PubMed

    Tahir, Muhammad N; Lockhart, Ben; Grinstead, Samuel; Mollov, Dimitre

    2017-04-01

    Bermuda grass samples were examined by transmission electron microscopy and 28-30 nm spherical virus particles were observed. Total RNA from these plants was subjected to high-throughput sequencing (HTS). The nearly full genome sequence of a panicovirus was identified from one HTS scaffold. Sanger sequencing was used to confirm the HTS results and complete the genome sequence of 4404 nt. This virus was provisionally named Bermuda grass latent virus (BGLV). Its predicted open reading frames follow the typical arrangement of the genus Panicovirus. Based on sequence comparisons and phylogenetic analyses BGLV differs from other viruses and therefore taxonomically it is a new member of the genus Panicovirus, family Tombusviridae.

  4. Single molecule sequencing of the M13 virus genome without amplification

    PubMed Central

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901

  5. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    PubMed

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data.

    PubMed

    Buchanan, Carrie C; Torstenson, Eric S; Bush, William S; Ritchie, Marylyn D

    2012-01-01

    Since publication of the human genome in 2003, geneticists have been interested in risk variant associations to resolve the etiology of traits and complex diseases. The International HapMap Consortium undertook an effort to catalog all common variation across the genome (variants with a minor allele frequency (MAF) of at least 5% in one or more ethnic groups). HapMap along with advances in genotyping technology led to genome-wide association studies which have identified common variants associated with many traits and diseases. In 2008 the 1000 Genomes Project aimed to sequence 2500 individuals and identify rare variants and 99% of variants with a MAF of <1%. To determine whether the 1000 Genomes Project includes all the variants in HapMap, we examined the overlap between single nucleotide polymorphisms (SNPs) genotyped in the two resources using merged phase II/III HapMap data and low coverage pilot data from 1000 Genomes. Comparison of the two data sets showed that approximately 72% of HapMap SNPs were also found in 1000 Genomes Project pilot data. After filtering out HapMap variants with a MAF of <5% (separately for each population), 99% of HapMap SNPs were found in 1000 Genomes data. Not all variants cataloged in HapMap are also cataloged in 1000 Genomes. This could affect decisions about which resource to use for SNP queries, rare variant validation, or imputation. Both the HapMap and 1000 Genomes Project databases are useful resources for human genetics, but it is important to understand the assumptions made and filtering strategies employed by these projects.

  7. Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic.

    PubMed

    Yebra, Gonzalo; Hodcroft, Emma B; Ragonnet-Cronin, Manon L; Pillay, Deenan; Brown, Andrew J Leigh

    2016-12-23

    HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree's using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences.

  8. The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species.

    PubMed

    Wu, Linhuan; McCluskey, Kevin; Desmeth, Philippe; Liu, Shuangjiang; Hideaki, Sugawara; Yin, Ye; Moriya, Ohkuma; Itoh, Takashi; Kim, Cha Young; Lee, Jung-Sook; Zhou, Yuguang; Kawasaki, Hiroko; Hazbón, Manzour Hernando; Robert, Vincent; Boekhout, Teun; Lima, Nelson; Evtushenko, Lyudmila; Boundy-Mills, Kyria; Bunk, Boyke; Moore, Edward R B; Eurwilaichitr, Lily; Ingsriswang, Supawadee; Shah, Heena; Yao, Su; Jin, Tao; Huang, Jinqun; Shi, Wenyu; Sun, Qinglan; Fan, Guomei; Li, Wei; Li, Xian; Kurtböke, Ipek; Ma, Juncai

    2018-05-01

    Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.

  9. Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico.

    PubMed

    Velazquez-Salinas, Lauro; Isa, Pavel; Pauszek, Steven J; Rodriguez, Luis L

    2017-09-14

    We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database.

  10. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113T)

    PubMed Central

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J.; Abt, Birte; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2011-01-01

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22180808

  11. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera

    PubMed Central

    Kluge, M.; Franco, A. C.; Giongo, A.; Valdez, F. P.; Saddi, T. M.; Brito, W. M. E. D.; Roehe, P. M.

    2016-01-01

    A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. PMID:26823583

  12. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  13. Inference of gorilla demographic and selective history from whole-genome sequence data.

    PubMed

    McManus, Kimberly F; Kelley, Joanna L; Song, Shiya; Veeramah, Krishna R; Woerner, August E; Stevison, Laurie S; Ryder, Oliver A; Ape Genome Project, Great; Kidd, Jeffrey M; Wall, Jeffrey D; Bustamante, Carlos D; Hammer, Michael F

    2015-03-01

    Although population-level genomic sequence data have been gathered extensively for humans, similar data from our closest living relatives are just beginning to emerge. Examination of genomic variation within great apes offers many opportunities to increase our understanding of the forces that have differentially shaped the evolutionary history of hominid taxa. Here, we expand upon the work of the Great Ape Genome Project by analyzing medium to high coverage whole-genome sequences from 14 western lowland gorillas (Gorilla gorilla gorilla), 2 eastern lowland gorillas (G. beringei graueri), and a single Cross River individual (G. gorilla diehli). We infer that the ancestors of western and eastern lowland gorillas diverged from a common ancestor approximately 261 ka, and that the ancestors of the Cross River population diverged from the western lowland gorilla lineage approximately 68 ka. Using a diffusion approximation approach to model the genome-wide site frequency spectrum, we infer a history of western lowland gorillas that includes an ancestral population expansion of 1.4-fold around 970 ka and a recent 5.6-fold contraction in population size 23 ka. The latter may correspond to a major reduction in African equatorial forests around the Last Glacial Maximum. We also analyze patterns of variation among western lowland gorillas to identify several genomic regions with strong signatures of recent selective sweeps. We find that processes related to taste, pancreatic and saliva secretion, sodium ion transmembrane transport, and cardiac muscle function are overrepresented in genomic regions predicted to have experienced recent positive selection. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Draft Genome Sequence of Tolypothrix boutellei Strain VB521301.

    PubMed

    Chandrababunaidu, Mathu Malar; Singh, Deeksha; Sen, Diya; Bhan, Sushma; Das, Subhadeep; Gupta, Akash; Adhikary, Siba Prasad; Tripathy, Sucheta

    2015-02-19

    We report here the draft genome sequence of the filamentous nitrogen-fixing cyanobacterium Tolypothrix boutellei strain VB521301. The organism is lipid rich and hydrophobic and produces polyunsaturated fatty acids which can be harnessed for industrial purpose. The draft genome sequence assembled into 11,572,263 bp with 70 scaffolds and 7,777 protein coding genes. Copyright © 2015 Chandrababunaidu et al.

  15. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...

  16. Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico

    PubMed Central

    Isa, Pavel; Pauszek, Steven J.; Rodriguez, Luis L.

    2017-01-01

    ABSTRACT We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database. PMID:28912331

  17. Whole Genome Amplification and Reduced-Representation Genome Sequencing of Schistosoma japonicum Miracidia

    PubMed Central

    Shortt, Jonathan A.; Card, Daren C.; Schield, Drew R.; Liu, Yang; Zhong, Bo; Castoe, Todd A.

    2017-01-01

    Background In areas where schistosomiasis control programs have been implemented, morbidity and prevalence have been greatly reduced. However, to sustain these reductions and move towards interruption of transmission, new tools for disease surveillance are needed. Genomic methods have the potential to help trace the sources of new infections, and allow us to monitor drug resistance. Large-scale genotyping efforts for schistosome species have been hindered by cost, limited numbers of established target loci, and the small amount of DNA obtained from miracidia, the life stage most readily acquired from humans. Here, we present a method using next generation sequencing to provide high-resolution genomic data from S. japonicum for population-based studies. Methodology/Principal Findings We applied whole genome amplification followed by double digest restriction site associated DNA sequencing (ddRADseq) to individual S. japonicum miracidia preserved on Whatman FTA cards. We found that we could effectively and consistently survey hundreds of thousands of variants from 10,000 to 30,000 loci from archived miracidia as old as six years. An analysis of variation from eight miracidia obtained from three hosts in two villages in Sichuan showed clear population structuring by village and host even within this limited sample. Conclusions/Significance This high-resolution sequencing approach yields three orders of magnitude more information than microsatellite genotyping methods that have been employed over the last decade, creating the potential to answer detailed questions about the sources of human infections and to monitor drug resistance. Costs per sample range from $50-$200, depending on the amount of sequence information desired, and we expect these costs can be reduced further given continued reductions in sequencing costs, improvement of protocols, and parallelization. This approach provides new promise for using modern genome-scale sampling to S. japonicum surveillance

  18. Whole Genome Amplification and Reduced-Representation Genome Sequencing of Schistosoma japonicum Miracidia.

    PubMed

    Shortt, Jonathan A; Card, Daren C; Schield, Drew R; Liu, Yang; Zhong, Bo; Castoe, Todd A; Carlton, Elizabeth J; Pollock, David D

    2017-01-01

    In areas where schistosomiasis control programs have been implemented, morbidity and prevalence have been greatly reduced. However, to sustain these reductions and move towards interruption of transmission, new tools for disease surveillance are needed. Genomic methods have the potential to help trace the sources of new infections, and allow us to monitor drug resistance. Large-scale genotyping efforts for schistosome species have been hindered by cost, limited numbers of established target loci, and the small amount of DNA obtained from miracidia, the life stage most readily acquired from humans. Here, we present a method using next generation sequencing to provide high-resolution genomic data from S. japonicum for population-based studies. We applied whole genome amplification followed by double digest restriction site associated DNA sequencing (ddRADseq) to individual S. japonicum miracidia preserved on Whatman FTA cards. We found that we could effectively and consistently survey hundreds of thousands of variants from 10,000 to 30,000 loci from archived miracidia as old as six years. An analysis of variation from eight miracidia obtained from three hosts in two villages in Sichuan showed clear population structuring by village and host even within this limited sample. This high-resolution sequencing approach yields three orders of magnitude more information than microsatellite genotyping methods that have been employed over the last decade, creating the potential to answer detailed questions about the sources of human infections and to monitor drug resistance. Costs per sample range from $50-$200, depending on the amount of sequence information desired, and we expect these costs can be reduced further given continued reductions in sequencing costs, improvement of protocols, and parallelization. This approach provides new promise for using modern genome-scale sampling to S. japonicum surveillance, and could be applied to other schistosome species and other

  19. Complete Genome Sequence of Staphylococcus epidermidis 1457

    PubMed Central

    Galac, Madeline R.; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L.

    2017-01-01

    ABSTRACT Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. PMID:28572323

  20. Fungal Genomics for Energy and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  1. A sequence-based survey of the complex structural organization of tumor genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison ofmore » the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.« less

  2. A Rapid Whole Genome Sequencing and Analysis System Supporting Genomic Epidemiology (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Michael

    2012-06-01

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  3. A Rapid Whole Genome Sequencing and Analysis System Supporting Genomic Epidemiology (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    FitzGerald, Michael

    2018-01-11

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  4. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    PubMed

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  5. It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research

    PubMed Central

    Richards, Stephen

    2015-01-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218

  6. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  7. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    PubMed

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  8. Living laboratory: whole-genome sequencing as a learning healthcare enterprise.

    PubMed

    Angrist, M; Jamal, L

    2015-04-01

    With the proliferation of affordable large-scale human genomic data come profound and vexing questions about management of such data and their clinical uncertainty. These issues challenge the view that genomic research on human beings can (or should) be fully segregated from clinical genomics, either conceptually or practically. Here, we argue that the sharp distinction between clinical care and research is especially problematic in the context of large-scale genomic sequencing of people with suspected genetic conditions. Core goals of both enterprises (e.g. understanding genotype-phenotype relationships; generating an evidence base for genomic medicine) are more likely to be realized at a population scale if both those ordering and those undergoing sequencing for diagnostic reasons are routinely and longitudinally studied. Rather than relying on expensive and lengthy randomized clinical trials and meta-analyses, we propose leveraging nascent clinical-research hybrid frameworks into a broader, more permanent instantiation of exploratory medical sequencing. Such an investment could enlighten stakeholders about the real-life challenges posed by whole-genome sequencing, such as establishing the clinical actionability of genetic variants, returning 'off-target' results to families, developing effective service delivery models and monitoring long-term outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius.

    PubMed

    Liu, Kai; Xu, Dongpo; Li, Jia; Bian, Chao; Duan, Jinrong; Zhou, Yanfeng; Zhang, Minying; You, Xinxin; You, Yang; Chen, Jieming; Yu, Hui; Xu, Gangchun; Fang, Di-An; Qiang, Jun; Jiang, Shulun; He, Jie; Xu, Junmin; Shi, Qiong; Zhang, Zhiyong; Xu, Pao

    2017-04-01

    Chinese clearhead icefish, Protosalanx hyalocranius , is a representative icefish species with economic importance and special appearance. Due to its great economic value in China, the fish was introduced into Lake Dianchi and several other lakes from the Lake Taihu half a century ago. Similar to the Sinocyclocheilus cavefish, the clearhead icefish has certain cavefish-like traits, such as transparent body and nearly scaleless skin. Here, we provide the whole genome sequence of this surface-dwelling fish and generated a draft genome assembly, aiming at exploring molecular mechanisms for the biological interests. A total of 252.1 Gb of raw reads were sequenced. Subsequently, a novel draft genome assembly was generated, with the scaffold N50 reaching 1.163 Mb. The genome completeness was estimated to be 98.39 % by using the CEGMA evaluation. Finally, we annotated 19 884 protein-coding genes and observed that repeat sequences account for 24.43 % of the genome assembly. We report the first draft genome of the Chinese clearhead icefish. The genome assembly will provide a solid foundation for further molecular breeding and germplasm resource protection in Chinese clearhead icefish, as well as other icefishes. It is also a valuable genetic resource for revealing the molecular mechanisms for the cavefish-like characters. © The Authors 2017. Published by Oxford University Press.

  10. Complete Genome Sequence of Bacteroides ovatus V975

    PubMed Central

    Goesmann, Alexander; Carding, Simon R.

    2016-01-01

    The complete genome sequence of Bacteroides ovatus V975 was determined. The genome consists of a single circular chromosome of 6,475,296 bp containing five rRNA operons, 68 tRNA genes, and 4,959 coding genes. PMID:27908995

  11. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    PubMed

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  12. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs

    PubMed Central

    Dilthey, Alexander T.; Gourraud, Pierre-Antoine; McVean, Gil

    2016-01-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30–250 CPU hours per sample) remain a significant

  13. Fueling the Future with Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less

  14. Complete Genome Sequence of Staphylococcus epidermidis 1457.

    PubMed

    Galac, Madeline R; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L; Fey, Paul D

    2017-06-01

    Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. Copyright © 2017 Galac et al.

  15. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities tomore » known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.« less

  16. Genome Sequence of Enterohemorrhagic Escherichia coli NCCP15658

    PubMed Central

    Song, Ju Yeon; Yoo, Ran Hee; Jang, Song Yee; Seong, Won-Keun; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Enterohemorrhagic Escherichia coli causes severe food-borne disease in the guts of humans and animals. Here, we report the high-quality draft genome sequence of E. coli NCCP15658 isolated from a patient in the Republic of Korea. Its genome size was determined to be 5.46 Mb, and its genomic features, including genes encoding virulence factors, were analyzed. PMID:22740673

  17. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera.

    PubMed

    Campos, F S; Kluge, M; Franco, A C; Giongo, A; Valdez, F P; Saddi, T M; Brito, W M E D; Roehe, P M

    2016-01-28

    A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. Copyright © 2016 Campos et al.

  18. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  19. The zebrafish reference genome sequence and its relationship to the human genome

    PubMed Central

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  20. Human Genome Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.