Sample records for genome sequencing techniques

  1. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  2. Unknown sequence amplification: Application to in vitro genome walking in Chlamydia trachomatis L2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copley, C.G.; Boot, C.; Bundell, K.

    1991-01-01

    A recently described technique, Chemical Genetics' unknown sequence amplification method, which requires only one specific oligonucleotide, has broadened the applicability of the polymerase chain reaction to DNA of unknown sequence. The authors have adapted this technique to the study of the genome of Chlamydia trachomatis, an obligate intracellular bacterium, and describe modifications that significantly improve the utility of this approach. These techniques allow for rapid genomic analysis entirely in vitro, using DNA of limited quantity of purity.

  3. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    USDA-ARS?s Scientific Manuscript database

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  4. A whole-genome assembly of the domestic cow, Bos taurus

    USDA-ARS?s Scientific Manuscript database

    Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion b...

  5. Probabilistic topic modeling for the analysis and classification of genomic sequences

    PubMed Central

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  6. Microbial genome sequencing using optical mapping and Illumina sequencing

    USDA-ARS?s Scientific Manuscript database

    Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...

  7. Draft Genome Sequence of Ideonella sp. Strain A 288, Isolated from an Iron-Precipitating Biofilm

    PubMed Central

    Künzel, Sven; Szewzyk, Ulrich

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of the betaproteobacterium Ideonella sp. strain A_228. This isolate, obtained from a bog iron ore-containing floodplain area in Germany, provides valuable information about the genetic diversity of neutrophilic iron-depositing bacteria. The Illumina NextSeq technique was used to sequence the draft genome sequence of the strain. PMID:28818902

  8. Agricultural biodiversity in the post-genomics era

    USDA-ARS?s Scientific Manuscript database

    The toolkit available for assessing and utilizing biological diversity within agricultural systems is rapidly expanding. In particular, genome and transcriptome re-sequencing as well as genome complexity reduction techniques are gaining popularity as the cost of generating short read sequence data d...

  9. A field ornithologist’s guide to genomics: Practical considerations for ecology and conservation

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Oh, Kevin; Langin, Kathryn; Aldridge, Cameron L.

    2016-01-01

    Vast improvements in sequencing technology have made it practical to simultaneously sequence millions of nucleotides distributed across the genome, opening the door for genomic studies in virtually any species. Ornithological research stands to benefit in three substantial ways. First, genomic methods enhance our ability to parse and simultaneously analyze both neutral and non-neutral genomic regions, thus providing insight into adaptive evolution and divergence. Second, the sheer quantity of sequence data generated by current sequencing platforms allows increased precision and resolution in analyses. Third, high-throughput sequencing can benefit applications that focus on a small number of loci that are otherwise prohibitively expensive, time-consuming, and technically difficult using traditional sequencing methods. These advances have improved our ability to understand evolutionary processes like speciation and local adaptation, but they also offer many practical applications in the fields of population ecology, migration tracking, conservation planning, diet analyses, and disease ecology. This review provides a guide for field ornithologists interested in incorporating genomic approaches into their research program, with an emphasis on techniques related to ecology and conservation. We present a general overview of contemporary genomic approaches and methods, as well as important considerations when selecting a genomic technique. We also discuss research questions that are likely to benefit from utilizing high-throughput sequencing instruments, highlighting select examples from recent avian studies.

  10. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    USDA-ARS?s Scientific Manuscript database

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  11. Functional interrogation of non-coding DNA through CRISPR genome editing

    PubMed Central

    Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.

    2017-01-01

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828

  12. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    PubMed

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  13. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    PubMed Central

    Ikuta, Kazufumi; Kanda, Teru

    2018-01-01

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically. PMID:29614006

  14. Genome Sequence of Bacillus megaterium Strain YC4-R4, a Plant Growth-Promoting Rhizobacterium Isolated from a High-Salinity Environment.

    PubMed

    Vílchez, Juan Ignacio; Tang, Qiming; Kaushal, Richa; Wang, Wei; Lv, Suhui; He, Danxia; Chu, Zhaoqing; Zhang, Heng; Liu, Renyi; Zhang, Huiming

    2018-06-21

    Here, we report the complete genome sequence for Bacillus megaterium strain YC4-R4, a highly salt-tolerant rhizobacterium that promotes growth in plants. The sequencing process was performed by combining pyrosequencing and single-molecule sequencing techniques. The complete genome is estimated to be approximately 5.44 Mb, containing a total of 5,673 predicted protein-coding DNA sequences (CDSs). Copyright © 2018 Vílchez et al.

  15. Functional interrogation of non-coding DNA through CRISPR genome editing.

    PubMed

    Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H

    2017-05-15

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Wang, Yun-sheng

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  17. Genomic Diversity and Evolution of the Lyssaviruses

    PubMed Central

    Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239

  18. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    PubMed

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  19. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  20. Secure distributed genome analysis for GWAS and sequence comparison computation.

    PubMed

    Zhang, Yihua; Blanton, Marina; Almashaqbeh, Ghada

    2015-01-01

    The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center. In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest. We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques. This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice.

  1. Secure distributed genome analysis for GWAS and sequence comparison computation

    PubMed Central

    2015-01-01

    Background The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center. Methods In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest. Results We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques. Conclusions This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice. PMID:26733307

  2. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.

    PubMed

    Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción

    2016-02-27

    In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.

  3. Application of resequencing to rice genomics, functional genomics and evolutionary analysis

    PubMed Central

    2014-01-01

    Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing. PMID:25006357

  4. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  5. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    PubMed

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  6. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics.

    PubMed

    Gullapalli, Rama R; Desai, Ketaki V; Santana-Santos, Lucas; Kant, Jeffrey A; Becich, Michael J

    2012-01-01

    The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  8. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    PubMed Central

    Gullapalli, Rama R.; Desai, Ketaki V.; Santana-Santos, Lucas; Kant, Jeffrey A.; Becich, Michael J.

    2012-01-01

    The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future. PMID:23248761

  9. Cloud-based adaptive exon prediction for DNA analysis.

    PubMed

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  10. NRGC: a novel referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Rolling circle amplification of metazoan mitochondrialgenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  12. Sputnik: a database platform for comparative plant genomics.

    PubMed

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  13. Sputnik: a database platform for comparative plant genomics

    PubMed Central

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F.X.

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics. PMID:12519965

  14. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

    PubMed

    Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko

    2017-07-12

    Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.

  15. Cloud-based adaptive exon prediction for DNA analysis

    PubMed Central

    Putluri, Srinivasareddy; Fathima, Shaik Yasmeen

    2018-01-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813

  16. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    PubMed Central

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically. PMID:16934154

  17. Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert DeSalle

    2004-09-10

    This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less

  18. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data

    DOE PAGES

    Lux, Markus; Kruger, Jan; Rinke, Christian; ...

    2016-12-20

    A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less

  19. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Markus; Kruger, Jan; Rinke, Christian

    A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less

  20. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642

  1. Scanning the human genome at kilobase resolution.

    PubMed

    Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming

    2008-05-01

    Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.

  2. Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African American Men. Addendum

    DTIC Science & Technology

    2016-11-01

    DNA sequencing technique developed by our collaborator using single amplicon long-range PCR that permits deep coverage (10,000-20,000X on average) of...the mitochondrial genome. We have sequenced 652 samples derived from frozen fully using this technology. The additional DNA samples derived from...paraffin embedded (FFPE) tissue were more challenging, but have now been sequenced . Mapping of DNA variants in our sequenced genomes to mitochondrial

  3. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites

    PubMed Central

    Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko

    2015-01-01

    Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360

  4. Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics

    PubMed Central

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.

    2014-01-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  5. De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis

    PubMed Central

    Nowrousian, Minou; Stajich, Jason E.; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D.; Pöggeler, Stefanie; Read, Nick D.; Seiler, Stephan; Smith, Kristina M.; Zickler, Denise; Kück, Ulrich; Freitag, Michael

    2010-01-01

    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology. PMID:20386741

  6. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.

    PubMed

    Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael

    2010-04-08

    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.

  7. Human Genome Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  8. High-Throughput Block Optical DNA Sequence Identification.

    PubMed

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster

    PubMed Central

    Lin, Chun-Chieh; Potter, Christopher J.

    2016-01-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272

  10. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  11. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  12. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease.

    PubMed

    Dilliott, Allison A; Farhan, Sali M K; Ghani, Mahdi; Sato, Christine; Liang, Eric; Zhang, Ming; McIntyre, Adam D; Cao, Henian; Racacho, Lemuel; Robinson, John F; Strong, Michael J; Masellis, Mario; Bulman, Dennis E; Rogaeva, Ekaterina; Lang, Anthony; Tartaglia, Carmela; Finger, Elizabeth; Zinman, Lorne; Turnbull, John; Freedman, Morris; Swartz, Rick; Black, Sandra E; Hegele, Robert A

    2018-04-04

    Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.

  13. The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

    PubMed

    Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong

    2018-04-01

    The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.

  14. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.).

    PubMed

    Mori, Kazuki; Shirasawa, Kenta; Nogata, Hitoshi; Hirata, Chiharu; Tashiro, Kosuke; Habu, Tsuyoshi; Kim, Sangwan; Himeno, Shuichi; Kuhara, Satoru; Ikegami, Hidetoshi

    2017-01-25

    With the aim of identifying sex determinants of fig, we generated the first draft genome sequence of fig and conducted the subsequent analyses. Linkage analysis with a high-density genetic map established by a restriction-site associated sequencing technique, and genome-wide association study followed by whole-genome resequencing analysis identified two missense mutations in RESPONSIVE-TO-ANTAGONIST1 (RAN1) orthologue encoding copper-transporting ATPase completely associated with sex phenotypes of investigated figs. This result suggests that RAN1 is a possible sex determinant candidate in the fig genome. The genomic resources and genetic findings obtained in this study can contribute to general understanding of Ficus species and provide an insight into fig's and plant's sex determination system.

  15. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.

    PubMed

    Kelly, Benjamin J; Fitch, James R; Hu, Yangqiu; Corsmeier, Donald J; Zhong, Huachun; Wetzel, Amy N; Nordquist, Russell D; Newsom, David L; White, Peter

    2015-01-20

    While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

  16. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  17. Protecting genomic sequence anonymity with generalization lattices.

    PubMed

    Malin, B A

    2005-01-01

    Current genomic privacy technologies assume the identity of genomic sequence data is protected if personal information, such as demographics, are obscured, removed, or encrypted. While demographic features can directly compromise an individual's identity, recent research demonstrates such protections are insufficient because sequence data itself is susceptible to re-identification. To counteract this problem, we introduce an algorithm for anonymizing a collection of person-specific DNA sequences. The technique is termed DNA lattice anonymization (DNALA), and is based upon the formal privacy protection schema of k -anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic sequence from k-1 other entries in a collection. To maximize information retained in protected sequences, we incorporate a concept generalization lattice to learn the distance between two residues in a single nucleotide region. The lattice provides the most similar generalized concept for two residues (e.g. adenine and guanine are both purines). The method is tested and evaluated with several publicly available human population datasets ranging in size from 30 to 400 sequences. Our findings imply the anonymization schema is feasible for the protection of sequences privacy. The DNALA method is the first computational disclosure control technique for general DNA sequences. Given the computational nature of the method, guarantees of anonymity can be formally proven. There is room for improvement and validation, though this research provides the groundwork from which future researchers can construct genomics anonymization schemas tailored to specific datasharing scenarios.

  18. Identifiability, genomics and U.K. data protection law.

    PubMed

    Curren, Liam; Boddington, Paula; Gowans, Heather; Hawkins, Naomi; Kanellopoulou, Nadja; Kaye, Jane; Melham, Karen

    2010-09-01

    Analyses of individuals' genomes--their entire DNA sequence--have increased knowledge about the links between genetics and disease. Anticipated advances in 'next generation' DNA-sequencing techniques will see the routine research use of whole genomes, rather than distinct parts, within the next few years. The scientific benefits of genomic research are, however, accompanied by legal and ethical concerns. Despite the assumption that genetic research data can and will be rendered anonymous, participants' identities can sometimes be elucidated, which could cause data protection legislation to apply. We undertake a timely reappraisal of these laws--particularly new penalties--and identifiability in genomic research.

  19. Genomes by design

    PubMed Central

    Haimovich, Adrian D.; Muir, Paul; Isaacs, Farren J.

    2016-01-01

    Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges. PMID:26260262

  20. Application of Genomic In Situ Hybridization in Horticultural Science

    PubMed Central

    Ramzan, Fahad; Lim, Ki-Byung

    2017-01-01

    Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH) techniques in horticultural plants. PMID:28459054

  1. Combining genomic and proteomic approaches for epigenetics research

    PubMed Central

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  2. The use of PacBio and Hi-C data in denovo assembly of the goat genome

    USDA-ARS?s Scientific Manuscript database

    Generating de novo reference genome assemblies for non-model organisms is a laborious task that often requires a large amount of data from several sequencing platforms and cytogenetic surveys. By using PacBio sequence data and new library creation techniques, we present a de novo, high quality refer...

  3. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    PubMed

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-06-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. Copyright © 2016 Khedkar and Seshasayee.

  4. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    PubMed Central

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-01-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. PMID:27172194

  5. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  6. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  8. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. In the search for the low-complexity sequences in prokaryotic and eukaryotic genomes: how to derive a coherent picture from global and local entropy measures

    NASA Astrophysics Data System (ADS)

    Acquisti, Claudia; Allegrini, Paolo; Bogani, Patrizia; Buiatti, Marcello; Catanese, Elena; Fronzoni, Leone; Grigolini, Paolo; Mersi, Giuseppe; Palatella, Luigi

    2004-04-01

    We investigate on a possible way to connect the presence of Low-Complexity Sequences (LCS) in DNA genomes and the nonstationary properties of base correlations. Under the hypothesis that these variations signal a change in the DNA function, we use a new technique, called Non-Stationarity Entropic Index (NSEI) method, and we prove that this technique is an efficient way to detect functional changes with respect to a random baseline. The remarkable aspect is that NSEI does not imply any training data or fitting parameter, the only arbitrarity being the choice of a marker in the sequence. We make this choice on the basis of biological information about LCS distributions in genomes. We show that there exists a correlation between changing the amount in LCS and the ratio of long- to short-range correlation.

  10. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    PubMed

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  12. Chemical genomic profiling via barcode sequencing to predict compound mode of action

    PubMed Central

    Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.

    2015-01-01

    Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

  13. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.

    PubMed

    Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Russell-Pavier, Freddie; Yacoot, Andrew; Picco, Loren; Payton, Oliver; Toor, Amir; Chesney, Alden; Gimzewski, James K; Mishra, Bud; Reed, Jason

    2017-11-21

    Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

  14. From genomics to functional markers in the era of next-generation sequencing.

    PubMed

    Salgotra, R K; Gupta, B B; Stewart, C N

    2014-03-01

    The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.

  15. ERGC: an efficient referential genome compression algorithm

    PubMed Central

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. Results: We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. Contact: rajasek@engr.uconn.edu PMID:26139636

  16. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq)

    PubMed Central

    Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten

    2016-01-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586

  17. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    PubMed

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Large-scale chromosome folding versus genomic DNA sequences: A discrete double Fourier transform technique.

    PubMed

    Chechetkin, V R; Lobzin, V V

    2017-08-07

    Using state-of-the-art techniques combining imaging methods and high-throughput genomic mapping tools leaded to the significant progress in detailing chromosome architecture of various organisms. However, a gap still remains between the rapidly growing structural data on the chromosome folding and the large-scale genome organization. Could a part of information on the chromosome folding be obtained directly from underlying genomic DNA sequences abundantly stored in the databanks? To answer this question, we developed an original discrete double Fourier transform (DDFT). DDFT serves for the detection of large-scale genome regularities associated with domains/units at the different levels of hierarchical chromosome folding. The method is versatile and can be applied to both genomic DNA sequences and corresponding physico-chemical parameters such as base-pairing free energy. The latter characteristic is closely related to the replication and transcription and can also be used for the assessment of temperature or supercoiling effects on the chromosome folding. We tested the method on the genome of E. coli K-12 and found good correspondence with the annotated domains/units established experimentally. As a brief illustration of further abilities of DDFT, the study of large-scale genome organization for bacteriophage PHIX174 and bacterium Caulobacter crescentus was also added. The combined experimental, modeling, and bioinformatic DDFT analysis should yield more complete knowledge on the chromosome architecture and genome organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. W-curve alignments for HIV-1 genomic comparisons.

    PubMed

    Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H

    2010-06-01

    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem.

  20. Genome-wide annotation of mutations in a phenotyped mutant library provides an efficient platform for discovery of casual gene mutations

    USDA-ARS?s Scientific Manuscript database

    Ethyl methanesulfonate (EMS) efficiently generates high-density mutations in genomes. Conventionally, these mutations are identified by techniques that can detect single-nucleotide mismatches in heteroduplexes of individual PCR amplicons. We applied whole-genome sequencing to 256-phenotyped mutant l...

  1. Using comparative genome analysis to identify problems in annotated microbial genomes.

    PubMed

    Poptsova, Maria S; Gogarten, J Peter

    2010-07-01

    Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.

  2. Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States

    PubMed Central

    Lindsey, Rebecca L.; Pouseele, Hannes; Chen, Jessica C.; Strockbine, Nancy A.; Carleton, Heather A.

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen capable of causing severe disease in humans. Rapid and accurate identification and characterization techniques are essential during outbreak investigations. Current methods for characterization of STEC are expensive and time-consuming. With the advent of rapid and cheap whole genome sequencing (WGS) benchtop sequencers, the potential exists to replace traditional workflows with WGS. The aim of this study was to validate tools to do reference identification and characterization from WGS for STEC in a single workflow within an easy to use commercially available software platform. Publically available serotype, virulence, and antimicrobial resistance databases were downloaded from the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) and integrated into a genotyping plug-in with in silico PCR tools to confirm some of the virulence genes detected from WGS data. Additionally, down sampling experiments on the WGS sequence data were performed to determine a threshold for sequence coverage needed to accurately predict serotype and virulence genes using the established workflow. The serotype database was tested on a total of 228 genomes and correctly predicted from WGS for 96.1% of O serogroups and 96.5% of H serogroups identified by conventional testing techniques. A total of 59 genomes were evaluated to determine the threshold of coverage to detect the different WGS targets, 40 were evaluated for serotype and virulence gene detection and 19 for the stx gene subtypes. For serotype, 95% of the O and 100% of the H serogroups were detected at > 40x and ≥ 30x coverage, respectively. For virulence targets and stx gene subtypes, nearly all genes were detected at > 40x, though some targets were 100% detectable from genomes with coverage ≥20x. The resistance detection tool was 97% concordant with phenotypic testing results. With isolates sequenced to > 40x coverage, the different databases accurately predicted serotype, virulence, and resistance from WGS data, providing a fast and cheaper alternative to conventional typing techniques. PMID:27242777

  3. Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States.

    PubMed

    Lindsey, Rebecca L; Pouseele, Hannes; Chen, Jessica C; Strockbine, Nancy A; Carleton, Heather A

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen capable of causing severe disease in humans. Rapid and accurate identification and characterization techniques are essential during outbreak investigations. Current methods for characterization of STEC are expensive and time-consuming. With the advent of rapid and cheap whole genome sequencing (WGS) benchtop sequencers, the potential exists to replace traditional workflows with WGS. The aim of this study was to validate tools to do reference identification and characterization from WGS for STEC in a single workflow within an easy to use commercially available software platform. Publically available serotype, virulence, and antimicrobial resistance databases were downloaded from the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) and integrated into a genotyping plug-in with in silico PCR tools to confirm some of the virulence genes detected from WGS data. Additionally, down sampling experiments on the WGS sequence data were performed to determine a threshold for sequence coverage needed to accurately predict serotype and virulence genes using the established workflow. The serotype database was tested on a total of 228 genomes and correctly predicted from WGS for 96.1% of O serogroups and 96.5% of H serogroups identified by conventional testing techniques. A total of 59 genomes were evaluated to determine the threshold of coverage to detect the different WGS targets, 40 were evaluated for serotype and virulence gene detection and 19 for the stx gene subtypes. For serotype, 95% of the O and 100% of the H serogroups were detected at > 40x and ≥ 30x coverage, respectively. For virulence targets and stx gene subtypes, nearly all genes were detected at > 40x, though some targets were 100% detectable from genomes with coverage ≥20x. The resistance detection tool was 97% concordant with phenotypic testing results. With isolates sequenced to > 40x coverage, the different databases accurately predicted serotype, virulence, and resistance from WGS data, providing a fast and cheaper alternative to conventional typing techniques.

  4. Efficient privacy-preserving string search and an application in genomics.

    PubMed

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. Efficient privacy-preserving string search and an application in genomics

    PubMed Central

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-01-01

    Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731

  6. Evaluation and validation of de novo and hybrid assembly techniques to derive high quality genome sequences

    DOE PAGES

    Utturkar, Sagar M.; Klingeman, Dawn Marie; Land, Miriam L.; ...

    2014-06-14

    Our motivation with this work was to assess the potential of different types of sequence data combined with de novo and hybrid assembly approaches to improve existing draft genome sequences. Our results show Illumina, 454 and PacBio sequencing technologies were used to generate de novo and hybrid genome assemblies for four different bacteria, which were assessed for quality using summary statistics (e.g. number of contigs, N50) and in silico evaluation tools. Differences in predictions of multiple copies of rDNA operons for each respective bacterium were evaluated by PCR and Sanger sequencing, and then the validated results were applied as anmore » additional criterion to rank assemblies. In general, assemblies using longer PacBio reads were better able to resolve repetitive regions. In this study, the combination of Illumina and PacBio sequence data assembled through the ALLPATHS-LG algorithm gave the best summary statistics and most accurate rDNA operon number predictions. This study will aid others looking to improve existing draft genome assemblies. As to availability and implementation–all assembly tools except CLC Genomics Workbench are freely available under GNU General Public License.« less

  7. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    PubMed Central

    Maezato, Yukari; Wu, Yu-Wei; Romine, Margaret F.; Lindemann, Stephen R.

    2015-01-01

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled the de novo reconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 of the 20 detected member species. Two Halomonas spp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of the Halomonas populations, one of the Rhodobacteraceae populations, and the Rhizobiales population. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set. PMID:26497460

  8. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William C.; Maezato, Yukari; Wu, Yu-Wei

    2015-10-23

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled thede novoreconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 ofmore » the 20 detected member species. TwoHalomonasspp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of theHalomonaspopulations, one of theRhodobacteraceaepopulations, and theRhizobialespopulation. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set.« less

  9. Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)

    NASA Astrophysics Data System (ADS)

    Serra, Reviewed By Martin J.

    2000-01-01

    Genomics is one of the most rapidly expanding areas of science. This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics. The text starts with a basic review of the chemical and biological properties of DNA. However, without either a biochemistry background or a supplemental biochemistry text, this chapter and much of the rest of the text would be difficult to digest. The second chapter is designed to put DNA into the context of the larger chromosomal unit. Specialized chromosomal structures and sequences (centromeres, telomeres) are introduced, leading to a section on chromosome organization and purification. The next 4 chapters cover the physical (hybridization, electrophoresis), chemical (polymerase chain reaction), and biological (genetic) techniques that provide the backbone of genomic analysis. These chapters cover in significant detail the fundamental principles underlying each technique and provide a firm background for the remainder of the text. Chapters 7­9 consider the need and methods for the development of physical maps. Chapter 7 primarily discusses chromosomal localization techniques, including in situ hybridization, FISH, and chromosome paintings. The next two chapters focus on the development of libraries and clones. In particular, Chapter 9 considers the limitations of current mapping and clone production. The current state and future of DNA sequencing is covered in the next three chapters. The first considers the current methods of DNA sequencing - especially gel-based methods of analysis, although other possible approaches (mass spectrometry) are introduced. Much of the chapter addresses the limitations of current methods, including analysis of error in sequencing and current bottlenecks in the sequencing effort. The next chapter describes the steps necessary to scale current technologies for the sequencing of entire genomes. Chapter 12 examines alternate methods for DNA sequencing. Initially, methods of single-molecule sequencing and sequencing by microscopy are introduced; the majority of the chapter is devoted to the development of DNA sequencing methods using chip microarrays and hybridization. The remaining chapters (13-15) consider the uses and analysis of DNA sequence information. The initial focus is on the identification of genes. Several examples are given of the use of DNA sequence information for diagnosis of inherited or infectious diseases. The sequence-specific manipulation of DNA is discussed in Chapter 14. The final chapter deals with the implications of large-scale sequencing, including methods for identifying genes and finding errors in DNA sequences, to the development of computer algorithms for the interpretation of DNA sequence information. The text figures are black and white line drawings that, although clearly done, seem a bit primitive for 1999. While I appreciated the simplicity of the drawings, many students accustomed to more colorful presentations will find them wanting. The four color figures in the center of the text seem an afterthought and add little to the text's clarity. Each chapter has a set of additional reading sources, mostly primary sources. Often, specialized topics are offset into boxes that provide clarification and amplification without cluttering the text. An appendix includes a list of the Web-based database resources. As an undergraduate instructor who has previously taught biochemistry, molecular biology, and a course on the human genome, I found many interesting tidbits and amplifications throughout the text. I would recommend this book as a text for an advanced undergraduate or beginning graduate course in genomics. Although the text works though several examples of genetic and genome analysis, additional problem/homework sets would need to be developed to ensure student comprehension. The text steers clear of the ethical implications of the Human Genome Initiative and remains true to its subtitle The Science and Technology .

  10. ERGC: an efficient referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    PubMed

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  12. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similarmore » to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.« less

  13. Genome Sequence of the Novel Marine Member of the Gammaproteobacteria Strain HTCC5015▿

    PubMed Central

    Thrash, J. Cameron; Stingl, Ulrich; Cho, Jang-Cheon; Ferriera, Steve; Johnson, Justin; Vergin, Kevin L.; Giovannoni, Stephen J.

    2010-01-01

    HTCC5015 is a novel, highly divergent marine member of the Gammaproteobacteria, currently without a cultured representative with greater than 89% 16S rRNA gene identity to itself. The organism was isolated from water collected from Hydrostation S south of Bermuda using high-throughput dilution-to-extinction culturing techniques. Here we present the genome sequence of the unique Gammaproteobacterium strain HTCC5015. PMID:20472792

  14. Genome Sequence of the Marine Janibacter Sp. Strain HTCC2649 ▿

    PubMed Central

    Thrash, J. Cameron; Cho, Jang-Cheon; Bertagnolli, Anthony D.; Ferriera, Steve; Johnson, Justin; Vergin, Kevin L.; Giovannoni, Stephen J.

    2011-01-01

    Janibacter sp. strain HTCC2649 is a novel marine member of the Actinobacteria, family Intrasporangiaceae, and is closely related to Janibacter melonis CM2104T and Knoellia sinensis HKI 0119T. The organism was isolated from a sample collected at Hydrostation S south of Bermuda by using high-throughput culturing techniques. Here we present the genome sequence of Janibacter sp. strain HTCC2649. PMID:21075932

  15. Streamlined Genome Sequence Compression using Distributed Source Coding

    PubMed Central

    Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel

    2014-01-01

    We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552

  16. Application of industrial scale genomics to discovery of therapeutic targets in heart failure.

    PubMed

    Mehraban, F; Tomlinson, J E

    2001-12-01

    In recent years intense activity in both academic and industrial sectors has provided a wealth of information on the human genome with an associated impressive increase in the number of novel gene sequences deposited in sequence data repositories and patent applications. This genomic industrial revolution has transformed the way in which drug target discovery is now approached. In this article we discuss how various differential gene expression (DGE) technologies are being utilized for cardiovascular disease (CVD) drug target discovery. Other approaches such as sequencing cDNA from cardiovascular derived tissues and cells coupled with bioinformatic sequence analysis are used with the aim of identifying novel gene sequences that may be exploited towards target discovery. Additional leverage from gene sequence information is obtained through identification of polymorphisms that may confer disease susceptibility and/or affect drug responsiveness. Pharmacogenomic studies are described wherein gene expression-based techniques are used to evaluate drug response and/or efficacy. Industrial-scale genomics supports and addresses not only novel target gene discovery but also the burgeoning issues in pharmaceutical and clinical cardiovascular medicine relative to polymorphic gene responses.

  17. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology.

    PubMed

    Gulati, Ashima; Somlo, Stefan

    2018-05-01

    The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.

  18. ☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus.

    PubMed

    Zou, Xiao-Hui; Bi, Zhi-Xiang; Guo, Xiao-Juan; Zhang, Zun; Zhao, Yang; Wang, Min; Zhu, Ya-Lu; Jie, Hong-Ying; Yu, Yang; Hung, Tao; Lu, Zhuo-Zhuang

    2018-07-01

    Plasmid bearing adenovirus genome is generally constructed with the method of homologous recombination in E. coli BJ5183 strain. Here, we utilized Gibson gene assembly technique to generate infectious clone of fowl adenovirus 4 (FAdV-4). Primers flanked with partial inverted terminal repeat (ITR) sequence of FAdV-4 were synthesized to amplify a plasmid backbone containing kanamycin-resistant gene and pBR322 origin (KAN-ORI). DNA assembly was carried out by combining the KAN-ORI fragment, virus genomic DNA and DNA assembly master mix. E. coli competent cells were transformed with the assembled product, and plasmids (pKFAV4) were extracted and confirmed to contain viral genome by restriction analysis and sequencing. Virus was successfully rescued from linear pKFAV4-transfected chicken LMH cells. This approach was further verified in cloning of human adenovirus 5 genome. Our results indicated that DNA assembly technique simplified the construction of infectious clone of adenovirus, suggesting its possible application in virus traditional or reverse genetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Overview of Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light of Genotypization of Immortelle Plant (Helichrysium Arenarium)

    PubMed Central

    Hodzic, Jasin; Gurbeta, Lejla; Omanovic-Miklicanin, Enisa; Badnjevic, Almir

    2017-01-01

    Introduction: Major advancements in DNA sequencing methods introduced in the first decade of the new millennium initiated a rapid expansion of sequencing studies, which yielded a tremendous amount of DNA sequence data, including whole sequenced genomes of various species, including plants. A set of novel sequencing platforms, often collectively named as “next-generation sequencing” (NGS) completely transformed the life sciences, by allowing extensive throughput, while greatly reducing the necessary time, labor and cost of any sequencing endeavor. Purpose: of this paper is to present an overview NGS platforms used to produce the current compendium of published draft genomes of various plants, namely the Roche/454, ABI/SOLiD, and Solexa/Illumina, and to determine the most frequently used platform for the whole genome sequencing of plants in light of genotypization of immortelle plant. Materials and methods: 45 papers were selected (with 47 presented plant genome draft sequences), and utilized sequencing techniques and NGS platforms (Roche/454, ABI/SOLiD and Illumina/Solexa) in selected papers were determined. Subsequently, frequency of usage of each platform or combination of platforms was calculated. Results: Illumina/Solexa platforms are by used either as sole sequencing tool in 40.42% of published genomes, or in combination with other platforms - additional 48.94% of published genomes, followed by Roche/454 platforms, used in combination with traditional Sanger sequencing method (10.64%), and never as a sole tool. ABI/SOLiD was only used in combination with Illumina/Solexa and Roche/454 in 4.25% of publications. Conclusions: Illumina/Solexa platforms are by far most preferred by researchers, most probably due to most affordable sequencing costs. Taking into consideration the current economic situation in the Balkans region, Illumina Solexa is the best (if not the only) platform choice if the sequencing of immortelle plant (Helichrysium arenarium) is to be performed by the researchers in this region. PMID:28974852

  20. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    PubMed

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  1. Development of DNA-Free Sediment for Ecological Assays with Genomic Endpoints

    EPA Science Inventory

    Recent advances in genomics are currently being exploited to discern ecological changes that have conventionally been measured using laborious counting techniques. For example, next generation sequencing technologies can be used to create DNA libraries from benthic community ass...

  2. Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing

    PubMed Central

    Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko

    2015-01-01

    The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523

  3. Long Read Alignment with Parallel MapReduce Cloud Platform

    PubMed Central

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  4. Genomic DNA sequence and cytosine methylation changes of adult rice leaves after seeds space flight

    NASA Astrophysics Data System (ADS)

    Shi, Jinming

    In this study, cytosine methylation on CCGG site and genomic DNA sequence changes of adult leaves of rice after seeds space flight were detected by methylation-sensitive amplification polymorphism (MSAP) and Amplified fragment length polymorphism (AFLP) technique respectively. Rice seeds were planted in the trial field after 4 days space flight on the shenzhou-6 Spaceship of China. Adult leaves of space-treated rice including 8 plants chosen randomly and 2 plants with phenotypic mutation were used for AFLP and MSAP analysis. Polymorphism of both DNA sequence and cytosine methylation were detected. For MSAP analysis, the average polymorphic frequency of the on-ground controls, space-treated plants and mutants are 1.3%, 3.1% and 11% respectively. For AFLP analysis, the average polymorphic frequencies are 1.4%, 2.9%and 8%respectively. Total 27 and 22 polymorphic fragments were cloned sequenced from MSAP and AFLP analysis respectively. Nine of the 27 fragments from MSAP analysis show homology to coding sequence. For the 22 polymorphic fragments from AFLP analysis, no one shows homology to mRNA sequence and eight fragments show homology to repeat region or retrotransposon sequence. These results suggest that although both genomic DNA sequence and cytosine methylation status can be effected by space flight, the genomic region homology to the fragments from genome DNA and cytosine methylation analysis were different.

  5. Long Read Alignment with Parallel MapReduce Cloud Platform.

    PubMed

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  6. Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome

    PubMed Central

    Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.

    2001-01-01

    We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203

  7. A comparative analysis of soft computing techniques for gene prediction.

    PubMed

    Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand

    2013-07-01

    The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.

    PubMed

    Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied

    2014-12-01

    Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.

  9. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  10. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)

    PubMed Central

    Iamartino, Daniela; Pruitt, Kim D; Sonstegard, Tad; Smith, Timothy P L; Low, Wai Yee; Biagini, Tommaso; Bomba, Lorenzo; Capomaccio, Stefano; Castiglioni, Bianca; Coletta, Angelo; Corrado, Federica; Ferré, Fabrizio; Iannuzzi, Leopoldo; Lawley, Cynthia; Macciotta, Nicolò; McClure, Matthew; Mancini, Giordano; Matassino, Donato; Mazza, Raffaele; Milanesi, Marco; Moioli, Bianca; Morandi, Nicola; Ramunno, Luigi; Peretti, Vincenzo; Pilla, Fabio; Ramelli, Paola; Schroeder, Steven; Strozzi, Francesco; Thibaud-Nissen, Francoise; Zicarelli, Luigi; Ajmone-Marsan, Paolo; Valentini, Alessio; Chillemi, Giovanni; Zimin, Aleksey

    2017-01-01

    Abstract Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well-annotated reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and is necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are 2 species of domestic water buffalo, the river (2n = 50) and the swamp (2n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366 983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21 398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues and identified 21 711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1. PMID:29048578

  11. Genomic tools and and prospects for new breeding techniques in flower bulb crops

    USDA-ARS?s Scientific Manuscript database

    For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...

  12. Development of DNA-Free Sediment for Ecological Assays with Genomic Endpoints (NAC SETAC)

    EPA Science Inventory

    Recent advances in genomics are currently being exploited to discern ecological changes that have conventionally been measured using laborious counting techniques. For example, next generation sequencing technologies can be used to create DNA libraries from benthic community ass...

  13. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencingmore » is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied by data on environment and physiology that can be used to understand the resulting data. As single cell isolation methods improve, there should be a shift toward incorporating uncultured organisms and communities into this effort. Efforts to sequence cultivated isolates should target characterized isolates from culture collections for which biochemical data are available, as well as other cultures of lasting value from personal collections. The genomes of type strains should be among the first targets for sequencing, but creative culture methods, novel cell isolation, and sorting methods would all be helpful in obtaining organisms we have not yet been able to cultivate for sequencing. The data that should be provided for strains targeted for sequencing will depend on the phylogenetic context of the organism and the amount of information available about its nearest relatives. Annotation is an important part of transforming genome sequences into useful resources, but it represents the most significant bottleneck to the field of comparative genomics right now and must be addressed. Furthermore, there is a need for more consistency in both annotation and achieving annotation data. As new annotation tools become available over time, re-annotation of genomes should be implemented, taking advantage of advancements in annotation techniques in order to capitalize on the genome sequences and increase both the societal and scientific benefit of genomics work. Given the proper resources, the knowledge and ability exist to be able to select model systems, some simple, some less so, and dissect them so that we may understand the processes and interactions at work in them. Colloquium participants suggest a five-pronged, coordinated initiative to exhaustively describe six different microbial ecosystems, designed to describe all the gene diversity, across genomes. In this effort, sequencing should be complemented by other experimental data, particularly transcriptomics and metabolomics data, all of which should be gathered and curated continuously. Systematic genomics efforts like the ones outlined in this document would significantly broaden our view of biological diversity and have major effects on science. This has to be backed up with examples. Considering these potential impacts and the need for acquiescence from both the public and scientists to get such projects funded and functioning, education and training will be crucial. New collaborations within the scientific community will also be necessary.« less

  14. Large-scale sequencing trials begin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, L.

    1990-12-07

    As genome sequencing gets under way, investigators are grappling not just with new techniques but also with questions about what is acceptable accuracy and when data should be released. Four groups are embarking on projects that could make or break the human genome project. They are setting out to sequence the longest stretches of DNA ever tackled-several million bases each-and to do it faster and cheaper than anyone has before. If these groups can't pull it off, then prospects for knocking off the entire human genome, all 3 billion bases, in 15 years and for $3 billion will look increasinglymore » unlikely. Harvard's Walter Gilbert, is first tackling the genome of Mycoplasma capricolum. At Stanford, David Botstein and Ron Davis are sequencing Saccharomyces cerevisiae. In a collaborative effort, Robert Waterson at Washington University and John Sulston at the Medical Research Council lab in Cambridge, England, have already started on the nematode Caenorhabditis elegans. And in the only longstanding project of the bunch, University of Wisconsin geneticist Fred Blattner is already several hundred kilobases into the Escherichia coli genome.« less

  15. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the presence of eroded periodicity. The autocorrelation method was identified as poorly suited for use with the blockwise bootstrap. Application of our methods to the genomes of two model organisms revealed a striking proportion of the yeast and mouse genomes are spanned by NPS. Despite their markedly different sizes, roughly equivalent proportions (19-21%) of the genomes lie within period-10 spans of the NPS dinucleotides {AA, TT, TA}. The biological significance of these regions remains to be demonstrated. To facilitate this, the genomic coordinates are available as Additional files 1, 2, and 3 in a format suitable for visualisation as tracks on popular genome browsers. Reviewers This article was reviewed by Prof Tomas Radivoyevitch, Dr Vsevolod Makeev (nominated by Dr Mikhail Gelfand), and Dr Rob D Knight. PMID:21527008

  16. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  17. FRESCO: Referential compression of highly similar sequences.

    PubMed

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  18. [Analysis of Musculoskeletal Systems and Their Diseases. The research for musculoskeletal disease using genome editing technology].

    PubMed

    Suzuki, Hidetsugu; Asahara, Hiroshi

    2015-08-01

    Genome editing is a genetic technology by which any DNA sequence is inserted, replaced or deleted. Genome editing has been making rapid progress recently, with the development of new techniques such as ZFN, TALEN and CRISPR/Cas9. Genome editing can be applied to various fields ranging from the production of knock out animals to gene therapy. This section summarizes these new genome editing technologies and its applications.

  19. Y and W Chromosome Assemblies: Approaches and Discoveries.

    PubMed

    Tomaszkiewicz, Marta; Medvedev, Paul; Makova, Kateryna D

    2017-04-01

    Hundreds of vertebrate genomes have been sequenced and assembled to date. However, most sequencing projects have ignored the sex chromosomes unique to the heterogametic sex - Y and W - that are known as sex-limited chromosomes (SLCs). Indeed, haploid and repetitive Y chromosomes in species with male heterogamety (XY), and W chromosomes in species with female heterogamety (ZW), are difficult to sequence and assemble. Nevertheless, obtaining their sequences is important for understanding the intricacies of vertebrate genome function and evolution. Recent progress has been made towards the adaptation of next-generation sequencing (NGS) techniques to deciphering SLC sequences. We review here currently available methodology and results with regard to SLC sequencing and assembly. We focus on vertebrates, but bring in some examples from other taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High-throughput physical mapping of chromosomes using automated in situ hybridization.

    PubMed

    George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V

    2012-06-28

    Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.

  1. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  2. AbsIDconvert: An absolute approach for converting genetic identifiers at different granularities

    PubMed Central

    2012-01-01

    Background High-throughput molecular biology techniques yield vast amounts of data, often by detecting small portions of ribonucleotides corresponding to specific identifiers. Existing bioinformatic methodologies categorize and compare these elements using inferred descriptive annotation given this sequence information irrespective of the fact that it may not be representative of the identifier as a whole. Results All annotations, no matter the granularity, can be aligned to genomic sequences and therefore annotated by genomic intervals. We have developed AbsIDconvert, a methodology for converting between genomic identifiers by first mapping them onto a common universal coordinate system using an interval tree which is subsequently queried for overlapping identifiers. AbsIDconvert has many potential uses, including gene identifier conversion, identification of features within a genomic region, and cross-species comparisons. The utility is demonstrated in three case studies: 1) comparative genomic study mapping plasmodium gene sequences to corresponding human and mosquito transcriptional regions; 2) cross-species study of Incyte clone sequences; and 3) analysis of human Ensembl transcripts mapped by Affymetrix®; and Agilent microarray probes. AbsIDconvert currently supports ID conversion of 53 species for a given list of input identifiers, genomic sequence, or genome intervals. Conclusion AbsIDconvert provides an efficient and reliable mechanism for conversion between identifier domains of interest. The flexibility of this tool allows for custom definition identifier domains contingent upon the availability and determination of a genomic mapping interval. As the genomes and the sequences for genetic elements are further refined, this tool will become increasingly useful and accurate. AbsIDconvert is freely available as a web application or downloadable as a virtual machine at: http://bioinformatics.louisville.edu/abid/. PMID:22967011

  3. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses

    PubMed Central

    Jazaeri Farsani, Seyed Mohammad; Deijs, Martin; Dijkman, Ronald; Molenkamp, Richard; Jeeninga, Rienk E; Ieven, Margareta; Goossens, Herman; van der Hoek, Lia

    2015-01-01

    Background Currently, virus discovery is mainly based on molecular techniques. Here, we propose a method that relies on virus culturing combined with state-of-the-art sequencing techniques. The most natural ex vivo culture system was used to enable replication of respiratory viruses. Method Three respiratory clinical samples were tested on well-differentiated pseudostratified tracheobronchial human airway epithelial (HAE) cultures grown at an air–liquid interface, which resemble the airway epithelium. Cells were stained with convalescent serum of the patients to identify infected cells and apical washes were analyzed by VIDISCA-454, a next-generation sequencing virus discovery technique. Results Infected cells were observed for all three samples. Sequencing subsequently indicated that the cells were infected by either human coronavirus OC43, influenzavirus B, or influenzavirus A. The sequence reads covered a large part of the genome (52%, 82%, and 57%, respectively). Conclusion We present here a new method for virus discovery that requires a virus culture on primary cells and an antibody detection. The virus in the harvest can be used to characterize the viral genome sequence and cell tropism, but also provides progeny virus to initiate experiments to fulfill the Koch's postulates. PMID:25482367

  4. De Novo Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram

    An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.

  5. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  6. A 2-D guinea pig lung proteome map

    USDA-ARS?s Scientific Manuscript database

    Guinea pigs represent an important model for a number of infectious and non-infectious pulmonary diseases. The guinea pig genome has recently been sequenced to full coverage, opening up new research avenues using genomics, transcriptomics and proteomics techniques in this species. In order to furth...

  7. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    PubMed Central

    Chen, Lei; Pospíšilová, Petra; Strouhal, Michal; Qin, Xiang; Mikalová, Lenka; Norris, Steven J.; Muzny, Donna M.; Gibbs, Richard A.; Fulton, Lucinda L.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. PMID:22292095

  8. Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shashi Bajaj; Sen, Pradip Kumar

    2010-10-01

    Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.

  9. Gambling on a shortcut to genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, L.

    1991-06-21

    Almost from the start of the Human Genome Project, a debate has been raging over whether to sequence the entire human genome, all 3 billion bases, or just the genes - a mere 2% or 3% of the genome, and by far the most interesting part. In England, Sydney Brenner convinced the Medical Research Council (MRC) to start with the expressed genes, or complementary DNAs. But the US stance has been that the entire sequence is essential if we are to understand the blueprint of man. Craig Venter of the National Institute of Neurological Disorders and Stroke says that focusingmore » on the expressed genes may be even more useful than expected. His strategy involves randomly selecting clones from cDNA libraries which theoretically contain all the genes that are switched on at a particular time in a particular tissue. Then the researchers sequence just a short stretch of each clone, about 400 to 500 bases, to create can expressed sequence tag or EST. The sequences of these ESTs are then stored in a database. Using that information, other researchers can then recreate that EST by using polymerase chain reaction techniques.« less

  10. Visualizing conserved gene location across microbe genomes

    NASA Astrophysics Data System (ADS)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  11. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  12. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    PubMed

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  13. Building a genome analysis pipeline to predict disease risk and prevent disease.

    PubMed

    Bromberg, Y

    2013-11-01

    Reduced costs and increased speed and accuracy of sequencing can bring the genome-based evaluation of individual disease risk to the bedside. While past efforts have identified a number of actionable mutations, the bulk of genetic risk remains hidden in sequence data. The biggest challenge facing genomic medicine today is the development of new techniques to predict the specifics of a given human phenome (set of all expressed phenotypes) encoded by each individual variome (full set of genome variants) in the context of the given environment. Numerous tools exist for the computational identification of the functional effects of a single variant. However, the pipelines taking advantage of full genomic, exomic, transcriptomic (and other) sequences have only recently become a reality. This review looks at the building of methodologies for predicting "variome"-defined disease risk. It also discusses some of the challenges for incorporating such a pipeline into everyday medical practice. © 2013. Published by Elsevier Ltd. All rights reserved.

  14. The human genome contracts again.

    PubMed

    Pavlichin, Dmitri S; Weissman, Tsachy; Yona, Golan

    2013-09-01

    The number of human genomes that have been sequenced completely for different individuals has increased rapidly in recent years. Storing and transferring complete genomes between computers for the purpose of applying various applications and analysis tools will soon become a major hurdle, hindering the analysis phase. Therefore, there is a growing need to compress these data efficiently. Here, we describe a technique to compress human genomes based on entropy coding, using a reference genome and known Single Nucleotide Polymorphisms (SNPs). Furthermore, we explore several intrinsic features of genomes and information in other genomic databases to further improve the compression attained. Using these methods, we compress James Watson's genome to 2.5 megabytes (MB), improving on recent work by 37%. Similar compression is obtained for most genomes available from the 1000 Genomes Project. Our biologically inspired techniques promise even greater gains for genomes of lower organisms and for human genomes as more genomic data become available. Code is available at sourceforge.net/projects/genomezip/

  15. Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor

    DOE PAGES

    Faulon, Jean-Loup; Misra, Milind; Martin, Shawn; ...

    2007-11-23

    Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. Additionally, there is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein–chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformaticsmore » representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Lastly, such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.« less

  16. Proteomics technique opens new frontiers in mobilome research.

    PubMed

    Davidson, Andrew D; Matthews, David A; Maringer, Kevin

    2017-01-01

    A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.

  17. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    PubMed

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Navigating Microbiological Food Safety in the Era of Whole-Genome Sequencing

    PubMed Central

    Nasheri, Neda; Petronella, Nicholas; Pagotto, Franco

    2016-01-01

    SUMMARY The epidemiological investigation of a foodborne outbreak, including identification of related cases, source attribution, and development of intervention strategies, relies heavily on the ability to subtype the etiological agent at a high enough resolution to differentiate related from nonrelated cases. Historically, several different molecular subtyping methods have been used for this purpose; however, emerging techniques, such as single nucleotide polymorphism (SNP)-based techniques, that use whole-genome sequencing (WGS) offer a resolution that was previously not possible. With WGS, unlike traditional subtyping methods that lack complete information, data can be used to elucidate phylogenetic relationships and disease-causing lineages can be tracked and monitored over time. The subtyping resolution and evolutionary context provided by WGS data allow investigators to connect related illnesses that would be missed by traditional techniques. The added advantage of data generated by WGS is that these data can also be used for secondary analyses, such as virulence gene detection, antibiotic resistance gene profiling, synteny comparisons, mobile genetic element identification, and geographic attribution. In addition, several software packages are now available to generate in silico results for traditional molecular subtyping methods from the whole-genome sequence, allowing for efficient comparison with historical databases. Metagenomic approaches using next-generation sequencing have also been successful in the detection of nonculturable foodborne pathogens. This review addresses state-of-the-art techniques in microbial WGS and analysis and then discusses how this technology can be used to help support food safety investigations. Retrospective outbreak investigations using WGS are presented to provide organism-specific examples of the benefits, and challenges, associated with WGS in comparison to traditional molecular subtyping techniques. PMID:27559074

  19. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  20. The Development of Chromosome Microdissection and Microcloning Technique and its Applications in Genomic Research

    PubMed Central

    Zhou, Ruo-Nan; Hu, Zan-Min

    2007-01-01

    The technique of chromosome microdissection and microcloning has been developed for more than 20 years. As a bridge between cytogenetics and molecular genetics, it leads to a number of applications: chromosome painting probe isolation, genetic linkage map and physical map construction, and expressed sequence tags generation. During those 20 years, this technique has not only been benefited from other technological advances but also cross-fertilized with other techniques. Today, it becomes a practicality with extensive uses. The purpose of this article is to review the development of this technique and its application in the field of genomic research. Moreover, a new method of generating ESTs of specific chromosomes developed by our lab is introduced. By using this method, the technique of chromosome microdissection and microcloning would be more valuable in the advancement of genomic research. PMID:18645627

  1. Evaluation of the class II region of the major histocompatibility complex of the greyhound with the genomic matching technique and sequence-based typing.

    PubMed

    Fliegner, R A; Holloway, S A; Lester, S; McLure, C A; Dawkins, R L

    2008-08-01

    The class II region of the major histocompatibility complex was evaluated in 25 greyhounds by sequence-based typing and the genomic matching technique (GMT). Two new DLA-DRB1 alleles were identified. Twenty-four dogs carried the DLA-DRB1*01201/DQA1*00401/DQB1*01303/DQB1*01701 haplotype, which carries two DQB1 alleles. One haplotype was identified from which DQB1 and DQA1 appeared to be deleted. The GMT enabled detection of DQB1 copy number, discrimination of the different class II haplotypes and the identification of new, possibly biologically relevant polymorphisms.

  2. Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures

    PubMed Central

    Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval

    2013-01-01

    Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein–chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/. PMID:23873955

  3. Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures.

    PubMed

    Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval

    2013-09-01

    Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein-chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/.

  4. A ddRAD Based Linkage Map of the Cultivated Strawberry, Fragaria xananassa

    PubMed Central

    Davik, Jahn; Sargent, Daniel James; Brurberg, May Bente; Lien, Sigbjørn; Kent, Matthew; Alsheikh, Muath

    2015-01-01

    The cultivated strawberry (Fragaria ×ananassa Duch.) is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array’s construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD) to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀) and Babette (♂). A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. ×ananassa genome. Here, we have developed the first linkage map for F. ×ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry. PMID:26398886

  5. Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence.

    PubMed

    Aleza, Pablo; Juárez, José; Hernández, María; Pina, José A; Ollitrault, Patrick; Navarro, Luis

    2009-08-22

    In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.

  6. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    PubMed

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.

  7. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies. PMID:27446025

  8. Transforming clinical microbiology with bacterial genome sequencing.

    PubMed

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  9. The complete genomic sequence of a tentative new polerovirus identified in barley in South Korea.

    PubMed

    Zhao, Fumei; Lim, Seungmo; Yoo, Ran Hee; Igori, Davaajargal; Kim, Sang-Min; Kwak, Do Yeon; Kim, Sun Lim; Lee, Bong Choon; Moon, Jae Sun

    2016-07-01

    The complete nucleotide sequence of a new barley polerovirus, tentatively named barley virus G (BVG), which was isolated in Gimje, South Korea, has been determined using an RNA sequencing technique combined with polymerase chain reaction methods. The viral genomic RNA of BVG is 5,620 nucleotides long and contains six typical open reading frames commonly observed in other poleroviruses. Sequence comparisons revealed that BVG is most closely related to maize yellow dwarf virus-RMV, with the highest amino acid identities being less than 90 % for all of the corresponding proteins. These results suggested that BVG is a member of a new species in the genus Polerovirus.

  10. Transforming clinical microbiology with bacterial genome sequencing

    PubMed Central

    2016-01-01

    Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263

  11. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics

    PubMed Central

    Delmont, Tom O.; Eren, A. Murat; Maccario, Lorrie; Prestat, Emmanuel; Esen, Özcan C.; Pelletier, Eric; Le Paslier, Denis; Simonet, Pascal; Vogel, Timothy M.

    2015-01-01

    Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment. PMID:25983722

  12. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50).

    PubMed

    Williams, John L; Iamartino, Daniela; Pruitt, Kim D; Sonstegard, Tad; Smith, Timothy P L; Low, Wai Yee; Biagini, Tommaso; Bomba, Lorenzo; Capomaccio, Stefano; Castiglioni, Bianca; Coletta, Angelo; Corrado, Federica; Ferré, Fabrizio; Iannuzzi, Leopoldo; Lawley, Cynthia; Macciotta, Nicolò; McClure, Matthew; Mancini, Giordano; Matassino, Donato; Mazza, Raffaele; Milanesi, Marco; Moioli, Bianca; Morandi, Nicola; Ramunno, Luigi; Peretti, Vincenzo; Pilla, Fabio; Ramelli, Paola; Schroeder, Steven; Strozzi, Francesco; Thibaud-Nissen, Francoise; Zicarelli, Luigi; Ajmone-Marsan, Paolo; Valentini, Alessio; Chillemi, Giovanni; Zimin, Aleksey

    2017-10-01

    Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well-annotated reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and is necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are 2 species of domestic water buffalo, the river (2 n = 50) and the swamp (2 n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366 983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21 398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues and identified 21 711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1. © The Author 2017. Published by Oxford University Press.

  13. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  14. Application of Genomic Technologies to the Breeding of Trees

    PubMed Central

    Badenes, Maria L.; Fernández i Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J.

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species. PMID:27895664

  15. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing

    USGS Publications Warehouse

    Hohenlohe, Paul A.; Day, Mitch D.; Amish, Stephen J.; Miller, Michael R.; Kamps-Hughes, Nick; Boyer, Matthew C.; Muhlfeld, Clint C.; Allendorf, Fred W.; Johnson, Eric A.; Luikart, Gordon

    2013-01-01

    Rapid and inexpensive methods for genomewide single nucleotide polymorphism (SNP) discovery and genotyping are urgently needed for population management and conservation. In hybridized populations, genomic techniques that can identify and genotype thousands of species-diagnostic markers would allow precise estimates of population- and individual-level admixture as well as identification of 'super invasive' alleles, which show elevated rates of introgression above the genomewide background (likely due to natural selection). Techniques like restriction-site-associated DNA (RAD) sequencing can discover and genotype large numbers of SNPs, but they have been limited by the length of continuous sequence data they produce with Illumina short-read sequencing. We present a novel approach, overlapping paired-end RAD sequencing, to generate RAD contigs of >300–400 bp. These contigs provide sufficient flanking sequence for design of high-throughput SNP genotyping arrays and strict filtering to identify duplicate paralogous loci. We applied this approach in five populations of native westslope cutthroat trout that previously showed varying (low) levels of admixture from introduced rainbow trout (RBT). We produced 77 141 RAD contigs and used these data to filter and genotype 3180 previously identified species-diagnostic SNP loci. Our population-level and individual-level estimates of admixture were generally consistent with previous microsatellite-based estimates from the same individuals. However, we observed slightly lower admixture estimates from genomewide markers, which might result from natural selection against certain genome regions, different genomic locations for microsatellites vs. RAD-derived SNPs and/or sampling error from the small number of microsatellite loci (n = 7). We also identified candidate adaptive super invasive alleles from RBT that had excessively high admixture proportions in hybridized cutthroat trout populations.

  16. Application of Genomic Technologies to the Breeding of Trees.

    PubMed

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.

  17. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing

    PubMed Central

    Hykin, Sarah M.; Bi, Ke; McGuire, Jimmy A.

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens—particularly for use in phylogenetic analyses—has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis. PMID:26505622

  18. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    PubMed

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis.

  19. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution

    PubMed Central

    Mahardika, Gusti N

    2018-01-01

    Abstract To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24–63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification. PMID:29514313

  20. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.

    2016-12-01

    INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.

  2. Mapping genomic features to functional traits through microbial whole genome sequences.

    PubMed

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  3. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    PubMed Central

    2011-01-01

    Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR) for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs). These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures. PMID:22093809

  4. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012more » alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.« less

  5. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

    PubMed

    Marine, Rachel; McCarren, Coleen; Vorrasane, Vansay; Nasko, Dan; Crowgey, Erin; Polson, Shawn W; Wommack, K Eric

    2014-01-30

    Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested. Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes. MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.

  6. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.

    PubMed

    Cooper, James; Ding, Yi; Song, Jiuzhou; Zhao, Keji

    2017-11-01

    Increased chromatin accessibility is a feature of cell-type-specific cis-regulatory elements; therefore, mapping of DNase I hypersensitive sites (DHSs) enables the detection of active regulatory elements of transcription, including promoters, enhancers, insulators and locus-control regions. Single-cell DNase sequencing (scDNase-seq) is a method of detecting genome-wide DHSs when starting with either single cells or <1,000 cells from primary cell sources. This technique enables genome-wide mapping of hypersensitive sites in a wide range of cell populations that cannot be analyzed using conventional DNase I sequencing because of the requirement for millions of starting cells. Fresh cells, formaldehyde-cross-linked cells or cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides are suitable for scDNase-seq assays. To generate scDNase-seq libraries, cells are lysed and then digested with DNase I. Circular carrier plasmid DNA is included during subsequent DNA purification and library preparation steps to prevent loss of the small quantity of DHS DNA. Libraries are generated for high-throughput sequencing on the Illumina platform using standard methods. Preparation of scDNase-seq libraries requires only 2 d. The materials and molecular biology techniques described in this protocol should be accessible to any general molecular biology laboratory. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.

  7. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis

    PubMed Central

    Desikan, Srinidhi; Narayanan, Sujatha

    2015-01-01

    Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019

  8. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance

    PubMed Central

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence. PMID:26565976

  9. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  10. New tool to assemble repetitive regions using next-generation sequencing data

    NASA Astrophysics Data System (ADS)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  11. Future collaborations between NEON and the U.S. EPA: linking molecular genomics for bioassessment with national ecological data sets

    EPA Science Inventory

    Molecular taxonomic techniques such as DNA barcoding offer interesting new capabilities for studying community biodiversity for applications like biological monitoring. Beyond DNA barcoding, new DNA sequencing technologies (i.e. Next-Generation Sequencing) present even greater po...

  12. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    PubMed

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  13. Functional Characterization of Two Novel Human Prostate Cancer Metastasis Related Genes

    DTIC Science & Technology

    2006-02-01

    have been conducted with in vitro-derived genetic materials from both mammalian and nonmammalian systems (27-29), a major leap in functional genomic ...sequences present in one complimentary (31) or genomic (32) DNA library but absent in another. The advent of suppressive hybridization technique...control specimens different from the native tissue for subtractive genomic analysis in some studies has created many inconclusive results. Cell to cell

  14. Mechanisms and dynamics of nuclear lamina-genome interactions.

    PubMed

    Amendola, Mario; van Steensel, Bas

    2014-06-01

    The nuclear lamina (NL) interacts with the genomic DNA and is thought to influence chromosome organization and gene expression. Both DNA sequences and histone modifications are important for NL tethering of the genomic DNA. These interactions are dynamic in individual cells and can change during differentiation and development. Evidence is accumulating that the NL contributes to the repression of transcription. Advances in mapping, genome-editing and microscopy techniques are increasing our understanding of the molecular mechanisms involved in NL-genome interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    PubMed

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

  16. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    PubMed Central

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096

  17. Single-Molecule Denaturation Mapping of Genomic DNA in Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Reisner, Walter; Larsen, Niels; Kristensen, Anders; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik

    2009-03-01

    We have developed a new DNA barcoding technique based on the partial denaturation of extended fluorescently labeled DNA molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions and can be explained by calculations of sequence-dependent melting probability. We believe this melting mapping technology is the first optically based single molecule technique sensitive to genome wide sequence variation that does not require an additional enzymatic labeling or restriction scheme.

  18. Computational approaches to identify functional genetic variants in cancer genomes

    PubMed Central

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  19. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

    Treesearch

    C. Mae Culumber; Steve R. Larson; Kevin B. Jensen; Thomas A. Jones

    2011-01-01

    Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve...

  20. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.

  1. DNA-COMPACT: DNA COMpression Based on a Pattern-Aware Contextual Modeling Technique

    PubMed Central

    Li, Pinghao; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila; Jiang, Xiaoqian

    2013-01-01

    Genome data are becoming increasingly important for modern medicine. As the rate of increase in DNA sequencing outstrips the rate of increase in disk storage capacity, the storage and data transferring of large genome data are becoming important concerns for biomedical researchers. We propose a two-pass lossless genome compression algorithm, which highlights the synthesis of complementary contextual models, to improve the compression performance. The proposed framework could handle genome compression with and without reference sequences, and demonstrated performance advantages over best existing algorithms. The method for reference-free compression led to bit rates of 1.720 and 1.838 bits per base for bacteria and yeast, which were approximately 3.7% and 2.6% better than the state-of-the-art algorithms. Regarding performance with reference, we tested on the first Korean personal genome sequence data set, and our proposed method demonstrated a 189-fold compression rate, reducing the raw file size from 2986.8 MB to 15.8 MB at a comparable decompression cost with existing algorithms. DNAcompact is freely available at https://sourceforge.net/projects/dnacompact/for research purpose. PMID:24282536

  2. The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system

    PubMed Central

    2011-01-01

    The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899

  3. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

    PubMed Central

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-01-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  4. Proteomics technique opens new frontiers in mobilome research

    PubMed Central

    Davidson, Andrew D.; Matthews, David A.

    2017-01-01

    ABSTRACT A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the “mobilome,” which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the “domestication” of transposon proteins for cellular functions. Although ‘omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called “proteomics informed by transcriptomics” (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease. PMID:28932623

  5. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  6. Empirical Validation of Pooled Whole Genome Population Re-Sequencing in Drosophila melanogaster

    PubMed Central

    Zhu, Yuan; Bergland, Alan O.; González, Josefa; Petrov, Dmitri A.

    2012-01-01

    The sequencing of pooled non-barcoded individuals is an inexpensive and efficient means of assessing genome-wide population allele frequencies, yet its accuracy has not been thoroughly tested. We assessed the accuracy of this approach on whole, complex eukaryotic genomes by resequencing pools of largely isogenic, individually sequenced Drosophila melanogaster strains. We called SNPs in the pooled data and estimated false positive and false negative rates using the SNPs called in individual strain as a reference. We also estimated allele frequency of the SNPs using “pooled” data and compared them with “true” frequencies taken from the estimates in the individual strains. We demonstrate that pooled sequencing provides a faithful estimate of population allele frequency with the error well approximated by binomial sampling, and is a reliable means of novel SNP discovery with low false positive rates. However, a sufficient number of strains should be used in the pooling because variation in the amount of DNA derived from individual strains is a substantial source of noise when the number of pooled strains is low. Our results and analysis confirm that pooled sequencing is a very powerful and cost-effective technique for assessing of patterns of sequence variation in populations on genome-wide scales, and is applicable to any dataset where sequencing individuals or individual cells is impossible, difficult, time consuming, or expensive. PMID:22848651

  7. D-peaks: a visual tool to display ChIP-seq peaks along the genome.

    PubMed

    Brohée, Sylvain; Bontempi, Gianluca

    2012-01-01

    ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.

  8. Enabling plant synthetic biology through genome engineering.

    PubMed

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique

    PubMed Central

    Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng

    2012-01-01

    Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809

  10. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing.

    PubMed

    Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland

    2011-02-18

    Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  12. The pig genome project has plenty to squeal about.

    PubMed

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  13. Private and Efficient Query Processing on Outsourced Genomic Databases.

    PubMed

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  14. Private and Efficient Query Processing on Outsourced Genomic Databases

    PubMed Central

    Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-01-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660

  15. Using a Fluorescent PCR-capillary Gel Electrophoresis Technique to Genotype CRISPR/Cas9-mediated Knockout Mutants in a High-throughput Format.

    PubMed

    Ramlee, Muhammad Khairul; Wang, Jing; Cheung, Alice M S; Li, Shang

    2017-04-08

    The development of programmable genome-editing tools has facilitated the use of reverse genetics to understand the roles specific genomic sequences play in the functioning of cells and whole organisms. This cause has been tremendously aided by the recent introduction of the CRISPR/Cas9 system-a versatile tool that allows researchers to manipulate the genome and transcriptome in order to, among other things, knock out, knock down, or knock in genes in a targeted manner. For the purpose of knocking out a gene, CRISPR/Cas9-mediated double-strand breaks recruit the non-homologous end-joining DNA repair pathway to introduce the frameshift-causing insertion or deletion of nucleotides at the break site. However, an individual guide RNA may cause undesirable off-target effects, and to rule these out, the use of multiple guide RNAs is necessary. This multiplicity of targets also means that a high-volume screening of clones is required, which in turn begs the use of an efficient high-throughput technique to genotype the knockout clones. Current genotyping techniques either suffer from inherent limitations or incur high cost, hence rendering them unsuitable for high-throughput purposes. Here, we detail the protocol for using fluorescent PCR, which uses genomic DNA from crude cell lysate as a template, and then resolving the PCR fragments via capillary gel electrophoresis. This technique is accurate enough to differentiate one base-pair difference between fragments and hence is adequate in indicating the presence or absence of a frameshift in the coding sequence of the targeted gene. This precise knowledge effectively precludes the need for a confirmatory sequencing step and allows users to save time and cost in the process. Moreover, this technique has proven to be versatile in genotyping various mammalian cells of various tissue origins targeted by guide RNAs against numerous genes, as shown here and elsewhere.

  16. [Research progress in neuropsychopharmacology updated for the post-genomic era].

    PubMed

    Nakanishi, Toru

    2009-11-01

    Neuropsychopharmacological research in the post genomic (genomic sequence) era has been developing rapidly through the use of novel techniques including DNA chips. We have applied these techniques to investigate the anti-tumor effect of NSAIDs, isolate novel genes specifically expressed in rheumatoid arthritis, and analyze gene expression profiles in mesenchymal stem cells. Recently, we have developed a novel system of quantitative PCR for detection of BDNF mRNA isoforms. By using this system, we identified the exon-specific mode of expression in acute and chronic pain. In addition, we have made gene expression profiles of KO mice of beta2 subunits in acetylcholine receptors.

  17. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.

    PubMed

    Brownstein, Catherine A; Beggs, Alan H; Homer, Nils; Merriman, Barry; Yu, Timothy W; Flannery, Katherine C; DeChene, Elizabeth T; Towne, Meghan C; Savage, Sarah K; Price, Emily N; Holm, Ingrid A; Luquette, Lovelace J; Lyon, Elaine; Majzoub, Joseph; Neupert, Peter; McCallie, David; Szolovits, Peter; Willard, Huntington F; Mendelsohn, Nancy J; Temme, Renee; Finkel, Richard S; Yum, Sabrina W; Medne, Livija; Sunyaev, Shamil R; Adzhubey, Ivan; Cassa, Christopher A; de Bakker, Paul I W; Duzkale, Hatice; Dworzyński, Piotr; Fairbrother, William; Francioli, Laurent; Funke, Birgit H; Giovanni, Monica A; Handsaker, Robert E; Lage, Kasper; Lebo, Matthew S; Lek, Monkol; Leshchiner, Ignaty; MacArthur, Daniel G; McLaughlin, Heather M; Murray, Michael F; Pers, Tune H; Polak, Paz P; Raychaudhuri, Soumya; Rehm, Heidi L; Soemedi, Rachel; Stitziel, Nathan O; Vestecka, Sara; Supper, Jochen; Gugenmus, Claudia; Klocke, Bernward; Hahn, Alexander; Schubach, Max; Menzel, Mortiz; Biskup, Saskia; Freisinger, Peter; Deng, Mario; Braun, Martin; Perner, Sven; Smith, Richard J H; Andorf, Janeen L; Huang, Jian; Ryckman, Kelli; Sheffield, Val C; Stone, Edwin M; Bair, Thomas; Black-Ziegelbein, E Ann; Braun, Terry A; Darbro, Benjamin; DeLuca, Adam P; Kolbe, Diana L; Scheetz, Todd E; Shearer, Aiden E; Sompallae, Rama; Wang, Kai; Bassuk, Alexander G; Edens, Erik; Mathews, Katherine; Moore, Steven A; Shchelochkov, Oleg A; Trapane, Pamela; Bossler, Aaron; Campbell, Colleen A; Heusel, Jonathan W; Kwitek, Anne; Maga, Tara; Panzer, Karin; Wassink, Thomas; Van Daele, Douglas; Azaiez, Hela; Booth, Kevin; Meyer, Nic; Segal, Michael M; Williams, Marc S; Tromp, Gerard; White, Peter; Corsmeier, Donald; Fitzgerald-Butt, Sara; Herman, Gail; Lamb-Thrush, Devon; McBride, Kim L; Newsom, David; Pierson, Christopher R; Rakowsky, Alexander T; Maver, Aleš; Lovrečić, Luca; Palandačić, Anja; Peterlin, Borut; Torkamani, Ali; Wedell, Anna; Huss, Mikael; Alexeyenko, Andrey; Lindvall, Jessica M; Magnusson, Måns; Nilsson, Daniel; Stranneheim, Henrik; Taylan, Fulya; Gilissen, Christian; Hoischen, Alexander; van Bon, Bregje; Yntema, Helger; Nelen, Marcel; Zhang, Weidong; Sager, Jason; Zhang, Lu; Blair, Kathryn; Kural, Deniz; Cariaso, Michael; Lennon, Greg G; Javed, Asif; Agrawal, Saloni; Ng, Pauline C; Sandhu, Komal S; Krishna, Shuba; Veeramachaneni, Vamsi; Isakov, Ofer; Halperin, Eran; Friedman, Eitan; Shomron, Noam; Glusman, Gustavo; Roach, Jared C; Caballero, Juan; Cox, Hannah C; Mauldin, Denise; Ament, Seth A; Rowen, Lee; Richards, Daniel R; San Lucas, F Anthony; Gonzalez-Garay, Manuel L; Caskey, C Thomas; Bai, Yu; Huang, Ying; Fang, Fang; Zhang, Yan; Wang, Zhengyuan; Barrera, Jorge; Garcia-Lobo, Juan M; González-Lamuño, Domingo; Llorca, Javier; Rodriguez, Maria C; Varela, Ignacio; Reese, Martin G; De La Vega, Francisco M; Kiruluta, Edward; Cargill, Michele; Hart, Reece K; Sorenson, Jon M; Lyon, Gholson J; Stevenson, David A; Bray, Bruce E; Moore, Barry M; Eilbeck, Karen; Yandell, Mark; Zhao, Hongyu; Hou, Lin; Chen, Xiaowei; Yan, Xiting; Chen, Mengjie; Li, Cong; Yang, Can; Gunel, Murat; Li, Peining; Kong, Yong; Alexander, Austin C; Albertyn, Zayed I; Boycott, Kym M; Bulman, Dennis E; Gordon, Paul M K; Innes, A Micheil; Knoppers, Bartha M; Majewski, Jacek; Marshall, Christian R; Parboosingh, Jillian S; Sawyer, Sarah L; Samuels, Mark E; Schwartzentruber, Jeremy; Kohane, Isaac S; Margulies, David M

    2014-03-25

    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.

  18. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    PubMed Central

    2014-01-01

    Background There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups. PMID:24667040

  19. Sequencing ebola and marburg viruses genomes using microarrays.

    PubMed

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing

    PubMed Central

    Manlig, Erika; Wahlberg, Per

    2017-01-01

    Abstract Sodium bisulphite treatment of DNA combined with next generation sequencing (NGS) is a powerful combination for the interrogation of genome-wide DNA methylation profiles. Library preparation for whole genome bisulphite sequencing (WGBS) is challenging due to side effects of the bisulphite treatment, which leads to extensive DNA damage. Recently, a new generation of methods for bisulphite sequencing library preparation have been devised. They are based on initial bisulphite treatment of the DNA, followed by adaptor tagging of single stranded DNA fragments, and enable WGBS using low quantities of input DNA. In this study, we present a novel approach for quick and cost effective WGBS library preparation that is based on splinted adaptor tagging (SPLAT) of bisulphite-converted single-stranded DNA. Moreover, we validate SPLAT against three commercially available WGBS library preparation techniques, two of which are based on bisulphite treatment prior to adaptor tagging and one is a conventional WGBS method. PMID:27899585

  1. SWARM : a scientific workflow for supporting Bayesian approaches to improve metabolic models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, X.; Stevens, R.; Mathematics and Computer Science

    2008-01-01

    With the exponential growth of complete genome sequences, the analysis of these sequences is becoming a powerful approach to build genome-scale metabolic models. These models can be used to study individual molecular components and their relationships, and eventually study cells as systems. However, constructing genome-scale metabolic models manually is time-consuming and labor-intensive. This property of manual model-building process causes the fact that much fewer genome-scale metabolic models are available comparing to hundreds of genome sequences available. To tackle this problem, we design SWARM, a scientific workflow that can be utilized to improve genome-scale metabolic models in high-throughput fashion. SWARM dealsmore » with a range of issues including the integration of data across distributed resources, data format conversions, data update, and data provenance. Putting altogether, SWARM streamlines the whole modeling process that includes extracting data from various resources, deriving training datasets to train a set of predictors and applying Bayesian techniques to assemble the predictors, inferring on the ensemble of predictors to insert missing data, and eventually improving draft metabolic networks automatically. By the enhancement of metabolic model construction, SWARM enables scientists to generate many genome-scale metabolic models within a short period of time and with less effort.« less

  2. CRISPR/Cas9 and genome editing in Drosophila.

    PubMed

    Bassett, Andrew R; Liu, Ji-Long

    2014-01-20

    Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. The missing indels: an estimate of indel variation in a human genome and analysis of factors that impede detection

    PubMed Central

    Jiang, Yue; Turinsky, Andrei L.; Brudno, Michael

    2015-01-01

    With the development of High-Throughput Sequencing (HTS) thousands of human genomes have now been sequenced. Whenever different studies analyze the same genome they usually agree on the amount of single-nucleotide polymorphisms, but differ dramatically on the number of insertion and deletion variants (indels). Furthermore, there is evidence that indels are often severely under-reported. In this manuscript we derive the total number of indel variants in a human genome by combining data from different sequencing technologies, while assessing the indel detection accuracy. Our estimate of approximately 1 million indels in a Yoruban genome is much higher than the results reported in several recent HTS studies. We identify two key sources of difficulties in indel detection: the insufficient coverage, read length or alignment quality; and the presence of repeats, including short interspersed elements and homopolymers/dimers. We quantify the effect of these factors on indel detection. The quality of sequencing data plays a major role in improving indel detection by HTS methods. However, many indels exist in long homopolymers and repeats, where their detection is severely impeded. The true number of indel events is likely even higher than our current estimates, and new techniques and technologies will be required to detect them. PMID:26130710

  5. Molecular Biology at the Cutting Edge: A Review on CRISPR/CAS9 Gene Editing for Undergraduates

    ERIC Educational Resources Information Center

    Thurtle-Schmidt, Deborah M.; Lo, Te-Wen

    2018-01-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing…

  6. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.

    PubMed

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-19

    Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  7. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    PubMed Central

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-01

    Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes. PMID:16423288

  8. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.

    PubMed

    Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C

    2016-12-15

    The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .

  9. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize.

    PubMed

    Fritsch, Leonie; Fischer, Rainer; Wambach, Christoph; Dudek, Max; Schillberg, Stefan; Schröper, Florian

    2015-08-01

    Simple and reliable, high-throughput techniques to detect the zygosity of transgenic events in plants are valuable for biotechnology and plant breeding companies seeking robust genotyping data for the assessment of new lines and the monitoring of breeding programs. We show that next-generation sequencing (NGS) applied to short PCR products spanning the transgene integration site provides accurate zygosity data that are more robust and reliable than those generated by PCR-based methods. The NGS reads covered the 5' border of the transgenic events (incorporating part of the transgene and the flanking genomic DNA), or the genomic sequences flanking the unfilled transgene integration site at the wild-type locus. We compared the NGS method to competitive real-time PCR with transgene-specific and wild-type-specific primer/probe pairs, one pair matching the 5' genomic flanking sequence and 5' part of the transgene and the other matching the unfilled transgene integration site. Although both NGS and real-time PCR provided useful zygosity data, the NGS technique was favorable because it needed fewer optimization steps. It also provided statistically more-reliable evidence for the presence of each allele because each product was often covered by more than 100 reads. The NGS method is also more suitable for the genotyping of large panels of plants because up to 80 million reads can be produced in one sequencing run. Our novel method is therefore ideal for the rapid and accurate genotyping of large numbers of samples.

  10. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  11. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2.

    PubMed

    López-Bueno, Alberto; Parras-Moltó, Marcos; López-Barrantes, Olivia; Belda, Sylvia; Alejo, Alí

    2017-05-01

    Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.

  12. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.

    PubMed

    James, Katherine; Cockell, Simon J; Zenkin, Nikolay

    2017-05-01

    The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.

    PubMed

    Jerison, Elizabeth R; Desai, Michael M

    2015-12-01

    Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. MSuPDA: A memory efficient algorithm for sequence alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2015-01-16

    Space complexity is a million dollar question in DNA sequence alignments. In this regards, MSuPDA (Memory Saving under Pushdown Automata) can help to reduce the occupied spaces in computer memory. Our proposed process is that Anchor Seed (AS) will be selected from given data set of Nucleotides base pairs for local sequence alignment. Quick Splitting (QS) techniques will separate the Anchor Seed from all the DNA genome segments. Selected Anchor Seed will be placed to pushdown Automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. Anchor Seed from input unit will be matched with the DNA genome segments from stack of PDA. Whatever matches, mismatches or Indel, of Nucleotides will be POP from the stack under the control of control unit of Pushdown Automata. During the POP operation on stack it will free the memory cell occupied by the Nucleotide base pair.

  15. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications

    PubMed Central

    Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner. PMID:28531174

  16. Bringing Next-Generation Sequencing into the Classroom through a Comparison of Molecular Biology Techniques

    ERIC Educational Resources Information Center

    Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.

    2014-01-01

    Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…

  17. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region.

    PubMed

    Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R

    2007-04-01

    We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.

  18. GTRAC: fast retrieval from compressed collections of genomic variants

    PubMed Central

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-01-01

    Motivation: The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. Results: We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. Availability and Implementation: The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC Contact: kedart@stanford.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587665

  19. GTRAC: fast retrieval from compressed collections of genomic variants.

    PubMed

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-09-01

    The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC CONTACT: : kedart@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467

  1. The genome of Eimeria spp., with special reference to Eimeria tenella--a coccidium from the chicken.

    PubMed

    Shirley, M W

    2000-04-10

    Eimeria spp. contain at least four genomes. The nuclear genome is best studied in the avian species Eimeria tenella and comprises about 60 Mbp DNA contained within ca. 14 chromosomes; other avian and lupine species appear to possess a nuclear genome of similar size. In addition, sequence data and hybridisation studies have provided direct evidence for extrachromosomal mitochondrial and plastid DNA genomes, and double-stranded RNA segments have also been described. The unique phenotype of "precocious" development that characterises some selected lines of Eimeria spp. not only provides the basis for the first generation of live attenuated vaccines, but offers a significant entrée into studies on the regulation of an apicomplexan life-cycle. With a view to identifying loci implicated in the trait of precocious development, a genetic linkage map of the genome of E. tenella is being constructed in this laboratory from analyses of the inheritance of over 400 polymorphic DNA markers in the progeny of a cross between complementary drug-resistant and precocious parents. Other projects that impinge directly or indirectly on the genome and/or genetics of Eimeria spp. are currently in progress in several laboratories, and include the derivation of expressed sequence tag data and the development of ancillary technologies such as transfection techniques. No large-scale genomic DNA sequencing projects have been reported.

  2. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.

    PubMed

    Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J

    2005-08-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

  3. A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).

    PubMed

    Miyanari, Yusuke

    2016-01-01

    Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.

  4. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms.

    PubMed

    Johnson, Brant R; Klaenhammer, Todd R

    2014-07-01

    For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.

  5. The identification of cis-regulatory elements: A review from a machine learning perspective.

    PubMed

    Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W

    2015-12-01

    The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Genome editing for crop improvement: Challenges and opportunities

    PubMed Central

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    ABSTRACT Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods. PMID:26930114

  7. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    PubMed Central

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath

    2017-01-01

    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905

  8. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  9. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. HLA Diversity in the 1000 Genomes Dataset

    PubMed Central

    Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; D. Rioux, John; Hauser, Stephen; Oksenberg, Jorge

    2014-01-01

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies. PMID:24988075

  11. HLA diversity in the 1000 genomes dataset.

    PubMed

    Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; Rioux, John D; Hauser, Stephen; Oksenberg, Jorge

    2014-01-01

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.

  12. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations.

    PubMed

    Fuentes-Pardo, Angela P; Ruzzante, Daniel E

    2017-10-01

    Whole-genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled-individual DNA (Pool-seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology. © 2017 John Wiley & Sons Ltd.

  13. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa.

    PubMed

    Gao, Ruimin; Feyissa, Biruk A; Croft, Mana; Hannoufa, Abdelali

    2018-04-01

    The CRISPR/Cas9 technique was successfully used to edit the genome of the obligatory outcrossing plant species Medicago sativa L. (alfalfa). RNA-guided genome engineering using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/Cas9 technology enables a variety of applications in plants. Successful application and validation of the CRISPR technique in a multiplex genome, such as that of M. sativa (alfalfa) will ultimately lead to major advances in the improvement of this crop. We used CRISPR/Cas9 technique to mutate squamosa promoter binding protein like 9 (SPL9) gene in alfalfa. Because of the complex features of the alfalfa genome, we first used droplet digital PCR (ddPCR) for high-throughput screening of large populations of CRISPR-modified plants. Based on the results of genome editing rates obtained from the ddPCR screening, plants with relatively high rates were subjected to further analysis by restriction enzyme digestion/PCR amplification analyses. PCR products encompassing the respective small guided RNA target locus were then sub-cloned and sequenced to verify genome editing. In summary, we successfully applied the CRISPR/Cas9 technique to edit the SPL9 gene in a multiplex genome, providing some insights into opportunities to apply this technology in future alfalfa breeding. The overall efficiency in the polyploid alfalfa genome was lower compared to other less-complex plant genomes. Further refinement of the CRISPR technology system will thus be required for more efficient genome editing in this plant.

  14. Robust one-Tube Ω-PCR Strategy Accelerates Precise Sequence Modification of Plasmids for Functional Genomics

    PubMed Central

    Chen, Letian; Wang, Fengpin; Wang, Xiaoyu; Liu, Yao-Guang

    2013-01-01

    Functional genomics requires vector construction for protein expression and functional characterization of target genes; therefore, a simple, flexible and low-cost molecular manipulation strategy will be highly advantageous for genomics approaches. Here, we describe a Ω-PCR strategy that enables multiple types of sequence modification, including precise insertion, deletion and substitution, in any position of a circular plasmid. Ω-PCR is based on an overlap extension site-directed mutagenesis technique, and is named for its characteristic Ω-shaped secondary structure during PCR. Ω-PCR can be performed either in two steps, or in one tube in combination with exonuclease I treatment. These strategies have wide applications for protein engineering, gene function analysis and in vitro gene splicing. PMID:23335613

  15. Complete mitochondrial genome of Ostrea denselamellosa (Bivalvia, Ostreidae).

    PubMed

    Yu, Hong; Kong, Lingfeng; Li, Qi

    2016-01-01

    The complete mitochondrial (mt) genome of the flat oyster, Ostrea denselamellosa, was determined using Long-PCR and genome walking techniques in this study. The total length of the mt genome sequence of O. denselamellosa was 16,227 bp, which is the smallest reported Ostreidae mt genome to date. It contained 12 protein-coding genes (lacking of ATP8), 23 transfer RNA genes, and two ribosomal RNA genes. A bias towards a higher representation of nucleotides A and T (60.7%) was detected in the mt genome of O. denselamellosa. The rrnL was split into two fragments (3' half, 711 bp; 5' half, 509 bp), which seems to be the unique characteristics of Ostreidae mt genomes.

  16. Genome-Wide Analyses of Individual Strongyloides stercoralis (Nematoda: Rhabditoidea) Provide Insights into Population Structure and Reproductive Life Cycles.

    PubMed

    Kikuchi, Taisei; Hino, Akina; Tanaka, Teruhisa; Aung, Myo Pa Pa Thet Hnin Htwe; Afrin, Tanzila; Nagayasu, Eiji; Tanaka, Ryusei; Higashiarakawa, Miwa; Win, Kyu Kyu; Hirata, Tetsuo; Htike, Wah Win; Fujita, Jiro; Maruyama, Haruhiko

    2016-12-01

    The helminth Strongyloides stercoralis, which is transmitted through soil, infects 30-100 million people worldwide. S. stercoralis reproduces sexually outside the host as well as asexually within the host, which causes a life-long infection. To understand the population structure and transmission patterns of this parasite, we re-sequenced the genomes of 33 individual S. stercoralis nematodes collected in Myanmar (prevalent region) and Japan (non-prevalent region). We utilised a method combining whole genome amplification and next-generation sequencing techniques to detect 298,202 variant positions (0.6% of the genome) compared with the reference genome. Phylogenetic analyses of SNP data revealed an unambiguous geographical separation and sub-populations that correlated with the host geographical origin, particularly for the Myanmar samples. The relatively higher heterozygosity in the genomes of the Japanese samples can possibly be explained by the independent evolution of two haplotypes of diploid genomes through asexual reproduction during the auto-infection cycle, suggesting that analysing heterozygosity is useful and necessary to infer infection history and geographical prevalence.

  17. The FLEXGene repository: exploiting the fruits of the genome projects by creating a needed resource to face the challenges of the post-genomic era.

    PubMed

    Brizuela, Leonardo; Richardson, Aaron; Marsischky, Gerald; Labaer, Joshua

    2002-01-01

    Thanks to the results of the multiple completed and ongoing genome sequencing projects and to the newly available recombination-based cloning techniques, it is now possible to build gene repositories with no precedent in their composition, formatting, and potential. This new type of gene repository is necessary to address the challenges imposed by the post-genomic era, i.e., experimentation on a genome-wide scale. We are building the FLEXGene (Full Length EXpression-ready) repository. This unique resource will contain clones representing the complete ORFeome of different organisms, including Homo sapiens as well as several pathogens and model organisms. It will consist of a comprehensive, characterized (sequence-verified), and arrayed gene repository. This resource will allow full exploitation of the genomic information by enabling genome-wide scale experimentation at the level of functional/phenotypic assays as well as at the level of protein expression, purification, and analysis. Here we describe the rationale and construction of this resource and focus on the data obtained from the Saccharomyces cerevisiae project.

  18. A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms.

    PubMed

    Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A

    2008-06-01

    DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.

  19. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens

    PubMed Central

    Katz, Lee S.; Griswold, Taylor; Williams-Newkirk, Amanda J.; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A.

    2017-01-01

    Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized genomic profiles, its central database, and its ability to be run in a graphical user interface. However, creating a functional wgMLST scheme requires extended up-front development and subject-matter expertise. When a scheme does not exist or when the highest resolution is needed, SNP analysis is used. Using three Listeria outbreak data sets, we demonstrated the concordance between Lyve-SET SNP typing and wgMLST. Availability: Lyve-SET can be found at https://github.com/lskatz/Lyve-SET. PMID:28348549

  20. The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons).

    PubMed

    Nuijten, Rascha J M; Bosse, Mirte; Crooijmans, Richard P M A; Madsen, Ole; Schaftenaar, Willem; Ryder, Oliver A; Groenen, Martien A M; Megens, Hendrik-Jan

    2016-01-01

    The list of threatened and endangered species is growing rapidly, due to various anthropogenic causes. Many endangered species are present in captivity and actively managed in breeding programs in which often little is known about the founder individuals. Recent developments in genetic research techniques have made it possible to sequence and study whole genomes. In this study we used the critically endangered Visayan warty pig (Sus cebifrons) as a case study to test the use of genomic information as a tool in conservation management. Two captive populations of S. cebifrons exist, which originated from two different Philippine islands. We found some evidence for a recent split between the two island populations; however all individuals that were sequenced show a similar demographic history. Evidence for both past and recent inbreeding indicated that the founders were at least to some extent related. Together with this, the low level of nucleotide diversity compared to other Sus species potentially poses a threat to the viability of the captive populations. In conclusion, genomic techniques answered some important questions about this critically endangered mammal and can be a valuable toolset to inform future conservation management in other species as well.

  1. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing

    PubMed Central

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188

  2. Protocol matters: which methylome are you actually studying?

    PubMed Central

    Robinson, Mark D; Statham, Aaron L; Speed, Terence P; Clark, Susan J

    2011-01-01

    The field of epigenetics is now capitalizing on the vast number of emerging technologies, largely based on second-generation sequencing, which interrogate DNA methylation status and histone modifications genome-wide. However, getting an exhaustive and unbiased view of a methylome at a reasonable cost is proving to be a significant challenge. In this article, we take a closer look at the impact of the DNA sequence and bias effects introduced to datasets by genome-wide DNA methylation technologies and where possible, explore the bioinformatics tools that deconvolve them. There remains much to be learned about the performance of genome-wide technologies, the data we mine from these assays and how it reflects the actual biology. While there are several methods to interrogate the DNA methylation status genome-wide, our opinion is that no single technique suitably covers the minimum criteria of high coverage and, high resolution at a reasonable cost. In fact, the fraction of the methylome that is studied currently depends entirely on the inherent biases of the protocol employed. There is promise for this to change, as the third generation of sequencing technologies is expected to again ‘revolutionize’ the way that we study genomes and epigenomes. PMID:21566704

  3. Genotyping-by-sequencing enables linkage mapping in three octoploid cultivated strawberry families

    PubMed Central

    Salinas, Natalia; Tennessen, Jacob A.; Zurn, Jason D.; Sargent, Daniel James; Hancock, James; Bassil, Nahla V.

    2017-01-01

    Genotyping-by-sequencing (GBS) was used to survey genome-wide single-nucleotide polymorphisms (SNPs) in three biparental strawberry (Fragaria × ananassa) populations with the goal of evaluating this technique in a species with a complex octoploid genome. GBS sequence data were aligned to the F. vesca ‘Fvb’ reference genome in order to call SNPs. Numbers of polymorphic SNPs per population ranged from 1,163 to 3,190. Linkage maps consisting of 30–65 linkage groups were produced from the SNP sets derived from each parent. The linkage groups covered 99% of the Fvb reference genome, with three to seven linkage groups from a given parent aligned to any particular chromosome. A phylogenetic analysis performed using the POLiMAPS pipeline revealed linkage groups that were most similar to ancestral species F. vesca for each chromosome. Linkage groups that were most similar to a second ancestral species, F. iinumae, were only resolved for Fvb 4. The quantity of missing data and heterogeneity in genome coverage inherent in GBS complicated the analysis, but POLiMAPS resolved F. × ananassa chromosomal regions derived from diploid ancestor F. vesca. PMID:28875078

  4. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  5. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  6. On the Power and the Systematic Biases of the Detection of Chromosomal Inversions by Paired-End Genome Sequencing

    PubMed Central

    Lucas Lledó, José Ignacio; Cáceres, Mario

    2013-01-01

    One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL, and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects. PMID:23637806

  7. From clinical sample to complete genome: Comparing methods for the extraction of HIV-1 RNA for high-throughput deep sequencing.

    PubMed

    Cornelissen, Marion; Gall, Astrid; Vink, Monique; Zorgdrager, Fokla; Binter, Špela; Edwards, Stephanie; Jurriaans, Suzanne; Bakker, Margreet; Ong, Swee Hoe; Gras, Luuk; van Sighem, Ard; Bezemer, Daniela; de Wolf, Frank; Reiss, Peter; Kellam, Paul; Berkhout, Ben; Fraser, Christophe; van der Kuyl, Antoinette C

    2017-07-15

    The BEEHIVE (Bridging the Evolution and Epidemiology of HIV in Europe) project aims to analyse nearly-complete viral genomes from >3000 HIV-1 infected Europeans using high-throughput deep sequencing techniques to investigate the virus genetic contribution to virulence. Following the development of a computational pipeline, including a new de novo assembler for RNA virus genomes, to generate larger contiguous sequences (contigs) from the abundance of short sequence reads that characterise the data, another area that determines genome sequencing success is the quality and quantity of the input RNA. A pilot experiment with 125 patient plasma samples was performed to investigate the optimal method for isolation of HIV-1 viral RNA for long amplicon genome sequencing. Manual isolation with the QIAamp Viral RNA Mini Kit (Qiagen) was superior over robotically extracted RNA using either the QIAcube robotic system, the mSample Preparation Systems RNA kit with automated extraction by the m2000sp system (Abbott Molecular), or the MagNA Pure 96 System in combination with the MagNA Pure 96 Instrument (Roche Diagnostics). We scored amplification of a set of four HIV-1 amplicons of ∼1.9, 3.6, 3.0 and 3.5kb, and subsequent recovery of near-complete viral genomes. Subsequently, 616 BEEHIVE patient samples were analysed to determine factors that influence successful amplification of the genome in four overlapping amplicons using the QIAamp Viral RNA Kit for viral RNA isolation. Both low plasma viral load and high sample age (stored before 1999) negatively influenced the amplification of viral amplicons >3kb. A plasma viral load of >100,000 copies/ml resulted in successful amplification of all four amplicons for 86% of the samples, this value dropped to only 46% for samples with viral loads of <20,000 copies/ml. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

    PubMed

    Lacey, Jake A; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2016-06-01

    The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.

  9. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  10. Signal Processing for Metagenomics: Extracting Information from the Soup

    PubMed Central

    Rosen, Gail L.; Sokhansanj, Bahrad A.; Polikar, Robi; Bruns, Mary Ann; Russell, Jacob; Garbarine, Elaine; Essinger, Steve; Yok, Non

    2009-01-01

    Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which aims to decode the genomes of microbes from natural communities without the need for cultivation. Although metagenomic studies have shed a great deal of insight into bacterial diversity and coding capacity, several computational challenges remain due to the massive size and complexity of metagenomic sequence data. Current tools and techniques are reviewed in this paper which address challenges in 1) genomic fragment annotation, 2) phylogenetic reconstruction, 3) functional classification of samples, and 4) interpreting complementary metaproteomics and metametabolomics data. Also surveyed are important applications of metagenomic studies, including microbial forensics and the roles of microbial communities in shaping human health and soil ecology. PMID:20436876

  11. Human cDNA mapping using fluorescence in situ hybridization. Final progress report, April 1, 1994--July 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenberg, J.R.

    The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to moremore » rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.« less

  12. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline.

    PubMed

    Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava

    2017-01-01

    After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.

  13. The Metamorphosis of Amphibian Toxicogenomics

    PubMed Central

    Helbing, Caren C.

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  14. BAC sequencing using pooled methods.

    PubMed

    Saski, Christopher A; Feltus, F Alex; Parida, Laxmi; Haiminen, Niina

    2015-01-01

    Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.

  15. The complete mitochondrial genome of Rapana venosa (Gastropoda, Muricidae).

    PubMed

    Sun, Xiujun; Yang, Aiguo

    2016-01-01

    The complete mitochondrial (mt) genome of the veined rapa whelk, Rapana venosa, was determined using genome walking techniques in this study. The total length of the mt genome sequence of R. venosa was 15,271 bp, which is comparable to the reported Muricidae mitogenomes to date. It contained 13 protein-coding genes, 21 transfer RNA genes, and two ribosomal RNA genes. A bias towards a higher representation of nucleotides A and T (69%) was detected in the mt genome of R. venosa. A small number of non-coding nucleotides (302 bp) was detected, and the largest non-coding region was 74 bp in length.

  16. Use of Multiple Displacement Amplification as Pre-polymerase Chain Reaction (Pre-PCR) to amplify genomic DNA of siphonapterids preserved for long periods in scientific collections.

    PubMed

    Avelar, Daniel M; Linardi, Pedro M

    2010-09-15

    The recently developed Multiple Displacement Amplification technique (MDA) allows for the production of a large quantity of high quality genomic DNA from low amounts of the original DNA. The goal of this study was to evaluate the performance of the MDA technique to amplify genomic DNA of siphonapterids that have been stored for long periods in 70% ethanol at room temperature. We subjected each DNA sample to two different methodologies: (1) amplification of mitochondrial 16S sequences without MDA; (2) amplification of 16S after MDA. All the samples obtained from these procedures were then sequenced. Only 4 samples (15.4%) subjected to method 1 showed amplification. In contrast, the application of MDA (method 2) improved the performance substantially, with 24 samples (92.3%) showing amplification, with significant difference. Interestingly, one of the samples successfully amplified with this method was originally collected in 1909. All of the sequenced samples displayed satisfactory results in quality evaluations (Phred ≥ 20) and good similarities, as identified with the BLASTn tool. Our results demonstrate that the use of MDA may be an effective tool in molecular studies involving specimens of fleas that have traditionally been considered inadequately preserved for such purposes.

  17. Use of Multiple Displacement Amplification as Pre-polymerase Chain Reaction (Pre-PCR) to amplify genomic DNA of siphonapterids preserved for long periods in scientific collections

    PubMed Central

    2010-01-01

    The recently developed Multiple Displacement Amplification technique (MDA) allows for the production of a large quantity of high quality genomic DNA from low amounts of the original DNA. The goal of this study was to evaluate the performance of the MDA technique to amplify genomic DNA of siphonapterids that have been stored for long periods in 70% ethanol at room temperature. We subjected each DNA sample to two different methodologies: (1) amplification of mitochondrial 16S sequences without MDA; (2) amplification of 16S after MDA. All the samples obtained from these procedures were then sequenced. Only 4 samples (15.4%) subjected to method 1 showed amplification. In contrast, the application of MDA (method 2) improved the performance substantially, with 24 samples (92.3%) showing amplification, with significant difference. Interestingly, one of the samples successfully amplified with this method was originally collected in 1909. All of the sequenced samples displayed satisfactory results in quality evaluations (Phred ≥ 20) and good similarities, as identified with the BLASTn tool. Our results demonstrate that the use of MDA may be an effective tool in molecular studies involving specimens of fleas that have traditionally been considered inadequately preserved for such purposes. PMID:20840790

  18. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

    PubMed Central

    Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2013-01-01

    Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

  19. Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  20. What is bioinformatics? A proposed definition and overview of the field.

    PubMed

    Luscombe, N M; Greenbaum, D; Gerstein, M

    2001-01-01

    The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.

  1. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Goya, Stephanie; Valinotto, Laura E; Tittarelli, Estefania; Rojo, Gabriel L; Nabaes Jodar, Mercedes S; Greninger, Alexander L; Zaiat, Jonathan J; Marti, Marcelo A; Mistchenko, Alicia S; Viegas, Mariana

    2018-01-01

    Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.

  2. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops

    PubMed Central

    Khatodia, Surender; Bhatotia, Kirti; Passricha, Nishat; Khurana, S. M. P.; Tuteja, Narendra

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses. PMID:27148329

  3. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    PubMed

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  4. Design of DNA pooling to allow incorporation of covariates in rare variants analysis.

    PubMed

    Guan, Weihua; Li, Chun

    2014-01-01

    Rapid advances in next-generation sequencing technologies facilitate genetic association studies of an increasingly wide array of rare variants. To capture the rare or less common variants, a large number of individuals will be needed. However, the cost of a large scale study using whole genome or exome sequencing is still high. DNA pooling can serve as a cost-effective approach, but with a potential limitation that the identity of individual genomes would be lost and therefore individual characteristics and environmental factors could not be adjusted in association analysis, which may result in power loss and a biased estimate of genetic effect. For case-control studies, we propose a design strategy for pool creation and an analysis strategy that allows covariate adjustment, using multiple imputation technique. Simulations show that our approach can obtain reasonable estimate for genotypic effect with only slight loss of power compared to the much more expensive approach of sequencing individual genomes. Our design and analysis strategies enable more powerful and cost-effective sequencing studies of complex diseases, while allowing incorporation of covariate adjustment.

  5. Biodiversity of Vibrios

    PubMed Central

    Thompson, Fabiano L.; Iida, Tetsuya; Swings, Jean

    2004-01-01

    Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years. PMID:15353563

  6. DNA motifs associated with aberrant CpG island methylation.

    PubMed

    Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M

    2006-05-01

    Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.

  7. The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus.

    PubMed

    Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine

    2018-01-01

    Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.

  8. Microbial species delineation using whole genome sequences

    PubMed Central

    Varghese, Neha J.; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T.; Mavrommatis, Kostas; Kyrpides, Nikos C.; Pati, Amrita

    2015-01-01

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. PMID:26150420

  9. Re-sequencing transgenic plants revealed rearrangements at T-DNA inserts, and integration of a short T-DNA fragment, but no increase of small mutations elsewhere.

    PubMed

    Schouten, Henk J; Vande Geest, Henri; Papadimitriou, Sofia; Bemer, Marian; Schaart, Jan G; Smulders, Marinus J M; Perez, Gabino Sanchez; Schijlen, Elio

    2017-03-01

    Transformation resulted in deletions and translocations at T-DNA inserts, but not in genome-wide small mutations. A tiny T-DNA splinter was detected that probably would remain undetected by conventional techniques. We investigated to which extent Agrobacterium tumefaciens-mediated transformation is mutagenic, on top of inserting T-DNA. To prevent mutations due to in vitro propagation, we applied floral dip transformation of Arabidopsis thaliana. We re-sequenced the genomes of five primary transformants, and compared these to genomic sequences derived from a pool of four wild-type plants. By genome-wide comparisons, we identified ten small mutations in the genomes of the five transgenic plants, not correlated to the positions or number of T-DNA inserts. This mutation frequency is within the range of spontaneous mutations occurring during seed propagation in A. thaliana, as determined earlier. In addition, we detected small as well as large deletions specifically at the T-DNA insert sites. Furthermore, we detected partial T-DNA inserts, one of these a tiny 50-bp fragment originating from a central part of the T-DNA construct used, inserted into the plant genome without flanking other T-DNA. Because of its small size, we named this fragment a T-DNA splinter. As far as we know this is the first report of such a small T-DNA fragment insert in absence of any T-DNA border sequence. Finally, we found evidence for translocations from other chromosomes, flanking T-DNA inserts. In this study, we showed that next-generation sequencing (NGS) is a highly sensitive approach to detect T-DNA inserts in transgenic plants.

  10. Assembly and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes.

    PubMed

    Zhong, Xingyu; Tian, Yuqing; Niu, Guoqing; Tan, Huarong

    2013-07-01

    A draft genome sequence of Streptomyces ansochromogenes 7100 was generated using 454 sequencing technology. In combination with local BLAST searches and gap filling techniques, a comprehensive antiSMASH-based method was adopted to assemble the secondary metabolite biosynthetic gene clusters in the draft genome of S. ansochromogenes. A total of at least 35 putative gene clusters were identified and assembled. Transcriptional analysis showed that 20 of the 35 gene clusters were expressed in either or all of the three different media tested, whereas the other 15 gene clusters were silent in all three different media. This study provides a comprehensive method to identify and assemble secondary metabolite biosynthetic gene clusters in draft genomes of Streptomyces, and will significantly promote functional studies of these secondary metabolite biosynthetic gene clusters.

  11. Non-coding RNAs in virology: an RNA genomics approach.

    PubMed

    Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios

    2018-04-01

    Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.

  12. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    PubMed

    Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C

    2015-08-28

    The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts). Alignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds.

  13. Genomic impact of cigarette smoke, with application to three smoking-related diseases.

    PubMed

    Talikka, M; Sierro, N; Ivanov, N V; Chaudhary, N; Peck, M J; Hoeng, J; Coggins, C R E; Peitsch, M C

    2012-11-01

    There is considerable evidence that inhaled toxicants such as cigarette smoke can cause both irreversible changes to the genetic material (DNA mutations) and putatively reversible changes to the epigenetic landscape (changes in the DNA methylation and chromatin modification state). The diseases that are believed to involve genetic and epigenetic perturbations include lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular disease (CVD), all of which are strongly linked epidemiologically to cigarette smoking. In this review, we highlight the significance of genomics and epigenomics in these major smoking-related diseases. We also summarize the in vitro and in vivo findings on the specific perturbations that smoke and its constituent compounds can inflict upon the genome, particularly on the pulmonary system. Finally, we review state-of-the-art genomics and new techniques such as high-throughput sequencing and genome-wide chromatin assays, rapidly evolving techniques which have allowed epigenetic changes to be characterized at the genome level. These techniques have the potential to significantly improve our understanding of the specific mechanisms by which exposure to environmental chemicals causes disease. Such mechanistic knowledge provides a variety of opportunities for enhanced product safety assessment and the discovery of novel therapeutic interventions.

  14. Mutation detection using automated fluorescence-based sequencing.

    PubMed

    Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju

    2008-04-01

    The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.

  15. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  16. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    PubMed

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Nature and distribution of feline sarcoma virus nucleotide sequences.

    PubMed Central

    Frankel, A E; Gilbert, J H; Porzig, K J; Scolnick, E M; Aaronson, S A

    1979-01-01

    The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene. PMID:225544

  18. Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak

    PubMed Central

    Köser, Claudio U.; Holden, Matthew T.G.; Ellington, Matthew J.; Cartwright, Edward J.P.; Brown, Nicholas M.; Ogilvy-Stuart, Amanda L.; Hsu, Li Yang; Chewapreecha, Claire; Croucher, Nicholas J.; Harris, Simon R.; Sanders, Mandy; Enright, Mark C.; Dougan, Gordon; Bentley, Stephen D.; Parkhill, Julian; Fraser, Louise J.; Betley, Jason R.; Schulz-Trieglaff, Ole B.; Smith, Geoffrey P.; Peacock, Sharon J.

    2013-01-01

    Background Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. Methods We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. Results We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial “resistome” of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a “toxome” consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. Conclusions Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.) PMID:22693998

  19. Development of a set of SNP markers present in expressed genes of the apple.

    PubMed

    Chagné, David; Gasic, Ksenija; Crowhurst, Ross N; Han, Yuepeng; Bassett, Heather C; Bowatte, Deepa R; Lawrence, Timothy J; Rikkerink, Erik H A; Gardiner, Susan E; Korban, Schuyler S

    2008-11-01

    Molecular markers associated with gene coding regions are useful tools for bridging functional and structural genomics. Due to their high abundance in plant genomes, single nucleotide polymorphisms (SNPs) are present within virtually all genomic regions, including most coding sequences. The objective of this study was to develop a set of SNPs for the apple by taking advantage of the wealth of genomics resources available for the apple, including a large collection of expressed sequenced tags (ESTs). Using bioinformatics tools, a search for SNPs within an EST database of approximately 350,000 sequences developed from a variety of apple accessions was conducted. This resulted in the identification of a total of 71,482 putative SNPs. As the apple genome is reported to be an ancient polyploid, attempts were made to verify whether those SNPs detected in silico were attributable either to allelic polymorphisms or to gene duplication or paralogous or homeologous sequence variations. To this end, a set of 464 PCR primer pairs was designed, PCR was amplified using two subsets of plants, and the PCR products were sequenced. The SNPs retrieved from these sequences were then mapped onto apple genetic maps, including a newly constructed map of a Royal Gala x A689-24 cross and a Malling 9 x Robusta 5, map using a bin mapping strategy. The SNP genotyping was performed using the high-resolution melting (HRM) technique. A total of 93 new markers containing 210 coding SNPs were successfully mapped. This new set of SNP markers for the apple offers new opportunities for understanding the genetic control of important horticultural traits using quantitative trait loci (QTL) or linkage disequilibrium analysis. These also serve as useful markers for aligning physical and genetic maps, and as potential transferable markers across the Rosaceae family.

  20. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library.

    PubMed

    Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E

    2009-11-25

    To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts. The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.

  1. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  2. Molluscan Evolutionary Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the earlymore » 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.« less

  3. A Metagenomic Approach to Cyanobacterial Genomics

    PubMed Central

    Alvarenga, Danillo O.; Fiore, Marli F.; Varani, Alessandro M.

    2017-01-01

    Cyanobacteria, or oxyphotobacteria, are primary producers that establish ecological interactions with a wide variety of organisms. Although their associations with eukaryotes have received most attention, interactions with bacterial and archaeal symbionts have also been occurring for billions of years. Due to these associations, obtaining axenic cultures of cyanobacteria is usually difficult, and most isolation efforts result in unicyanobacterial cultures containing a number of associated microbes, hence composing a microbial consortium. With rising numbers of cyanobacterial blooms due to climate change, demand for genomic evaluations of these microorganisms is increasing. However, standard genomic techniques call for the sequencing of axenic cultures, an approach that not only adds months or even years for culture purification, but also appears to be impossible for some cyanobacteria, which is reflected in the relatively low number of publicly available genomic sequences of this phylum. Under the framework of metagenomics, on the other hand, cumbersome techniques for achieving axenic growth can be circumvented and individual genomes can be successfully obtained from microbial consortia. This review focuses on approaches for the genomic and metagenomic assessment of non-axenic cyanobacterial cultures that bypass requirements for axenity. These methods enable researchers to achieve faster and less costly genomic characterizations of cyanobacterial strains and raise additional information about their associated microorganisms. While non-axenic cultures may have been previously frowned upon in cyanobacteriology, latest advancements in metagenomics have provided new possibilities for in vitro studies of oxyphotobacteria, renewing the value of microbial consortia as a reliable and functional resource for the rapid assessment of bloom-forming cyanobacteria. PMID:28536564

  4. CpG PatternFinder: a Windows-based utility program for easy and rapid identification of the CpG methylation status of DNA.

    PubMed

    Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C

    2007-09-01

    The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.

  5. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  6. A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    PubMed Central

    Rector, Annabel; Tachezy, Ruth; Van Ranst, Marc

    2004-01-01

    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 104-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information. PMID:15113879

  7. Mobile element biology – new possibilities with high-throughput sequencing

    PubMed Central

    Xing, Jinchuan; Witherspoon, David J.; Jorde, Lynn B.

    2014-01-01

    Mobile elements compose more than half of the human genome, but until recently their large-scale detection was time-consuming and challenging. With the development of new high-throughput sequencing technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. We review several high-throughput methods, with an emphasis on techniques that specifically target mobile element insertions in humans, and we highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human cancers. PMID:23312846

  8. Toward an Integrated BAC Library Resource for Genome Sequencing and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M. I.; Kim, U.-J.

    We developed a great deal of expertise in building large BAC libraries from a variety of DNA sources including humans, mice, corn, microorganisms, worms, and Arabidopsis. We greatly improved the technology for screening these libraries rapidly and for selecting appropriate BACs and mapping BACs to develop large overlapping contigs. We became involved in supplying BACs and BAC contigs to a variety of sequencing and mapping projects and we began to collaborate with Drs. Adams and Venter at TIGR and with Dr. Leroy Hood and his group at University of Washington to provide BACs for end sequencing and for mapping andmore » sequencing of large fragments of chromosome 16. Together with Dr. Ian Dunham and his co-workers at the Sanger Center we completed the mapping and they completed the sequencing of the first human chromosome, chromosome 22. This was published in Nature in 1999 and our BAC contigs made a major contribution to this sequencing effort. Drs. Shizuya and Ding invented an automated highly accurate BAC mapping technique. We also developed long-term collaborations with Dr. Uli Weier at UCSF in the design of BAC probes for characterization of human tumors and specific chromosome deletions and breakpoints. Finally the contribution of our work to the human genome project has been recognized in the publication both by the international consortium and the NIH of a draft sequence of the human genome in Nature last year. Dr. Shizuya was acknowledged in the authorship of that landmark paper. Dr. Simon was also an author on the Venter/Adams Celera project sequencing the human genome that was published in Science last year.« less

  9. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040

  10. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas.

    PubMed

    Tran, Phuong N; Savka, Michael A; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa ) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans - P. oryzihabitans , and P. kilonensis- P. brassicacearum , that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques.

  11. Genome-wide selection components analysis in a fish with male pregnancy.

    PubMed

    Flanagan, Sarah P; Jones, Adam G

    2017-04-01

    A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double-digest restriction-site associated DNA sequencing (ddRAD-seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An F ST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the F ST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome-wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome-level targets of selection in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Rat Genome and Model Resources.

    PubMed

    Shimoyama, Mary; Smith, Jennifer R; Bryda, Elizabeth; Kuramoto, Takashi; Saba, Laura; Dwinell, Melinda

    2017-07-01

    Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat's value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan. © The Author 2017. Published by Oxford University Press.

  13. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.

  14. Molecular Characterization of Transgene Integration by Next-Generation Sequencing in Transgenic Cattle

    PubMed Central

    Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606

  15. Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, James Weifu; Meller, Amit

    2007-01-01

    Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, whichmore » looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.« less

  16. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  17. An efficient approach to BAC based assembly of complex genomes.

    PubMed

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  18. Evaluation of Genomic Instability in the Abnormal Prostate

    DTIC Science & Technology

    2006-12-01

    array CGH maps copy number aberrations relative to the genome sequence by using arrays of BAC or cDNA clones as the hybridization target instead of...data produced from these analyses complicate the interpretation of results . For these reasons, and as outlined by Davies et al., 22 it is desirable...There have been numerous studies of these abnormalities and several techniques, including 9 chromosome painting, array CGH and SNP arrays , have

  19. GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads

    PubMed Central

    Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano

    2014-01-01

    Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718

  20. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  1. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE PAGES

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; ...

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  2. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome.

    PubMed

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Genomic Approaches to Zebrafish Cancer

    PubMed Central

    2017-01-01

    The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further. PMID:27165352

  4. Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Jeffrey H

    2011-04-18

    The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached.more » There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities and the use of genomic information to aid in the understanding of pathogens and biothreats. An additional focus cover s“bioenergetics. The meetings have a mix of invited and participant-initiated presentations and poster sessions during which investigators from different disciplines become familiar with available data bases and new tools facilitating coordination of information. The fields are moving very fast both in the acquisition of new knowledge of genome contents and also in the management and analysis of the information. The key is connecting bodies of knowledge on sequences, genetic organization and regulation to be able to relate the significance of this information to understanding cellular processes. To our knowledge, no other meeting synthesizes the biology of organisms, sequence information and database analysis, as well as the comparison with other completed genome sequences.« less

  5. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China

    PubMed Central

    Zhang, Jianmin; Cao, Guojie; Xu, Xuebin; Allard, Marc; Li, Peng; Brown, Eric; Yang, Xiaowei; Pan, Haijian; Meng, Jianghong

    2016-01-01

    Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis. PMID:27499751

  6. Divergence and Mosaicism among Virulent Soil Phages of the Burkholderia cepacia Complex‡

    PubMed Central

    Summer, Elizabeth J.; Gonzalez, Carlos F.; Bomer, Morgan; Carlile, Thomas; Embry, Addie; Kucherka, Amalie M.; Lee, Jonte; Mebane, Leslie; Morrison, William C.; Mark, Louise; King, Maria D.; LiPuma, John J.; Vidaver, Anne K.; Young, Ry

    2006-01-01

    We have determined the genomic sequences of four virulent myophages, Bcep1, Bcep43, BcepB1A, and Bcep781, whose hosts are soil isolates of the Burkholderia cepacia complex. Despite temporal and spatial separations between initial isolations, three of the phages (Bcep1, Bcep43, and Bcep781, designated the Bcep781 group) exhibit 87% to 99% sequence identity to one another and most coding region differences are due to synonymous nucleotide substitutions, a hallmark of neutral genetic drift. Phage BcepB1A has a very different genome organization but is clearly a mosaic with respect to many of the genes of the Bcep781 group, as is a defective prophage element in Photorhabdus luminescens. Functions were assigned to 27 out of 71 predicted genes of Bcep1 despite extreme sequence divergence. Using a lambda repressor fusion technique, 10 Bcep781-encoded proteins were identified for their ability to support homotypic interactions. While head and tail morphogenesis genes have retained canonical gene order despite extreme sequence divergence, genes involved in DNA metabolism and host lysis are not organized as in other phages. This unusual genome arrangement may contribute to the ability of the Bcep781-like phages to maintain a unified genomic type. However, the Bcep781 group phages can also engage in lateral gene transfer events with otherwise unrelated phages, a process that contributes to the broader-scale genomic mosaicism prevalent among the tailed phages. PMID:16352842

  7. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  8. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  9. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  10. Genetics of pediatric obesity.

    PubMed

    Manco, Melania; Dallapiccola, Bruno

    2012-07-01

    Onset of obesity has been anticipated at earlier ages, and prevalence has dramatically increased worldwide over the past decades. Epidemic obesity is mainly attributable to modern lifestyle, but family studies prove the significant role of genes in the individual's predisposition to obesity. Advances in genotyping technologies have raised great hope and expectations that genetic testing will pave the way to personalized medicine and that complex traits such as obesity will be prevented even before birth. In the presence of the pressing offer of direct-to-consumer genetic testing services from private companies to estimate the individual's risk for complex phenotypes including obesity, the present review offers pediatricians an update of the state of the art on genomics obesity in childhood. Discrepancies with respect to genomics of adult obesity are discussed. After an appraisal of findings from genome-wide association studies in pediatric populations, the rare variant-common disease hypothesis, the theoretical soil for next-generation sequencing techniques, is discussed as opposite to the common disease-common variant hypothesis. Next-generation sequencing techniques are expected to fill the gap of "missing heritability" of obesity, identifying rare variants associated with the trait and clarifying the role of epigenetics in its heritability. Pediatric obesity emerges as a complex phenotype, modulated by unique gene-environment interactions that occur in periods of life and are "permissive" for the programming of adult obesity. With the advent of next-generation sequencing techniques and advances in the field of exposomics, sensitive and specific tools to predict the obesity risk as early as possible are the challenge for the next decade.

  11. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  12. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency.

    PubMed

    Aniceto, Rodrigo; Xavier, Rene; Guimarães, Valeria; Hondo, Fernanda; Holanda, Maristela; Walter, Maria Emilia; Lifschitz, Sérgio

    2015-01-01

    Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.

  13. A Scheduling Algorithm for Computational Grids that Minimizes Centralized Processing in Genome Assembly of Next-Generation Sequencing Data

    PubMed Central

    Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes

    2012-01-01

    Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785

  14. Human genetics and genomics a decade after the release of the draft sequence of the human genome.

    PubMed

    Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng

    2011-10-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.

  15. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    PubMed Central

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  16. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    PubMed

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  17. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens.

    PubMed

    Wood, Henry M; Belvedere, Ornella; Conway, Caroline; Daly, Catherine; Chalkley, Rebecca; Bickerdike, Melissa; McKinley, Claire; Egan, Phil; Ross, Lisa; Hayward, Bruce; Morgan, Joanne; Davidson, Leslie; MacLennan, Ken; Ong, Thian K; Papagiannopoulos, Kostas; Cook, Ian; Adams, David J; Taylor, Graham R; Rabbitts, Pamela

    2010-08-01

    The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.

  18. Genome sequence of Phytophthora ramorum: implications for management

    Treesearch

    Brett Tyler; Sucheta Tripathy; Nik Grunwald; Kurt Lamour; Kelly Ivors; Matteo Garbelotto; Daniel Rokhsar; Nik Putnam; Igor Grigoriev; Jeffrey Boore

    2006-01-01

    A draft genome sequence has been determined for Phytophthora ramorum, together with a draft sequence of the soybean pathogen Phytophthora sojae. The P. ramorum genome was sequenced to a depth of 7-fold coverage, while the P. sojae genome was sequenced to a depth of 9-fold coverage. The genome...

  19. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  20. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1]. PMID:23163954

  1. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    PubMed

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  3. Microbial species delineation using whole genome sequences.

    PubMed

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences.

    PubMed

    Sun, Genlou; Komatsuda, Takao

    2010-08-01

    It is well known that Elymus arose through hybridization between representatives of different genera. Cytogenetic analyses show that all its members include the St genome in combination with one or more of four other genomes, the H, Y, P, and W genomes. The origins of the H, P, and W genomes are known, but not for the Y genome. We analyzed the single copy nuclear gene coding for elongation factor G (EF-G) from 28 accessions of polyploid Elymus species and 45 accessions of diploid Triticeae species in order to investigate origin of the Y genome and its relationship to other genomes in the tribe Triticeae. Sequence comparisons among the St, H, Y, P, W, and E genomes detected genome-specific polymorphisms at 66 nucleotide positions. The St and Y genomes are relatively dissimilar. The phylogeny of the Y genome sequences was investigated for the first time. They were most similar to the W genome sequences. The Y genome sequences were placed in two different groups. These two groups were included in an unresolved clade that included the W and E sequences as well as sequences from many annual species. The H genomes sequences were in a clade with the F, P, and Ns genome sequences as sister groups. These two clades were more closely related to each other and to the L and Xp genomes than they were to the St genome sequences. These data support the hypothesis that the Y genome evolved in a diploid species and has a different origin from the St genome. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Complete nucleotide sequence and annotation of the temperate corynephage ϕ16 genome.

    PubMed

    Lobanova, Juliya S; Gak, Evgueni R; Andreeva, Irina G; Rybak, Konstantin V; Krylov, Alexander A; Mashko, Sergey V

    2017-08-01

    The complete genome of ϕ16, a temperate corynephage from Corynebacterium glutamicum ATCC 21792, was sequenced and annotated (GenBank: KY250482). The electron microscopy study of ϕ16 virion confirmed that it belongs to the family Siphoviridae. The ϕ16 genome consists of a linear double-stranded DNA molecule of 58,200 bp (G+C = 52.2%) with protruding cohesive 3'-ends of 14 nt. Four major structural proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting technique. Using bioinformatics analysis, 101 putative ORFs and 5 tRNA genes were predicted. Only 27 putative gene products could be assigned to known biological functions. The ϕ16 genome was divided into functional modules. Seven putative promoters and eight putative unidirectional intrinsic terminators were predicted. One site of putative «-1» programmed ribosomal frameshifting was proposed in the phage tail assembly genome region. C. glutamicum genetic tools could be broadened by exploiting the known integrase gene (gp33) and the newly identified excisionase gene (gp47), participating in site-specific recombination between ϕ16-attP/attB.

  6. Company profile: Complete Genomics Inc.

    PubMed

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.

  7. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.

    PubMed

    Olova, Nelly; Krueger, Felix; Andrews, Simon; Oxley, David; Berrens, Rebecca V; Branco, Miguel R; Reik, Wolf

    2018-03-15

    Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets.

  8. A tag-based approach for high-throughput analysis of CCWGG methylation.

    PubMed

    Denisova, Oksana V; Chernov, Andrei V; Koledachkina, Tatyana Y; Matvienko, Nicholas I

    2007-10-15

    Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.

  9. Identifying Novel Helix–Loop–Helix Genes in Caenorhabditis elegans through a Classroom Demonstration of Functional Genomics

    PubMed Central

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036

  10. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm.

    PubMed

    Carone, Benjamin R; Hung, Jui-Hung; Hainer, Sarah J; Chou, Min-Te; Carone, Dawn M; Weng, Zhiping; Fazzio, Thomas G; Rando, Oliver J

    2014-07-14

    Mammalian embryonic stem cells (ESCs) and sperm exhibit unusual chromatin packaging that plays important roles in cellular function. Here, we extend a recently developed technique, based on deep paired-end sequencing of lightly digested chromatin, to assess footprints of nucleosomes and other DNA-binding proteins genome-wide in murine ESCs and sperm. In ESCs, we recover well-characterized features of chromatin such as promoter nucleosome depletion and further identify widespread footprints of sequence-specific DNA-binding proteins such as CTCF, which we validate in knockdown studies. We document global differences in nuclease accessibility between ESCs and sperm, finding that the majority of histone retention in sperm preferentially occurs in large gene-poor genomic regions, with only a small subset of nucleosomes being retained over promoters of developmental regulators. Finally, we describe evidence that CTCF remains associated with the genome in mature sperm, where it could play a role in organizing the sperm genome. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Curated eutherian third party data gene data sets.

    PubMed

    Premzl, Marko

    2016-03-01

    The free available eutherian genomic sequence data sets advanced scientific field of genomics. Of note, future revisions of gene data sets were expected, due to incompleteness of public eutherian genomic sequence assemblies and potential genomic sequence errors. The eutherian comparative genomic analysis protocol was proposed as guidance in protection against potential genomic sequence errors in public eutherian genomic sequences. The protocol was applicable in updates of 7 major eutherian gene data sets, including 812 complete coding sequences deposited in European Nucleotide Archive as curated third party data gene data sets.

  12. From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer.

    PubMed

    Weimann, Aaron; Mooren, Kyra; Frank, Jeremy; Pope, Phillip B; Bremges, Andreas; McHardy, Alice C

    2016-01-01

    The number of sequenced genomes is growing exponentially, profoundly shifting the bottleneck from data generation to genome interpretation. Traits are often used to characterize and distinguish bacteria and are likely a driving factor in microbial community composition, yet little is known about the traits of most microbes. We describe Traitar, the microbial trait analyzer, which is a fully automated software package for deriving phenotypes from a genome sequence. Traitar provides phenotype classifiers to predict 67 traits related to the use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis, and enzymatic activities. Furthermore, it suggests protein families associated with the presence of particular phenotypes. Our method uses L1-regularized L2-loss support vector machines for phenotype assignments based on phyletic patterns of protein families and their evolutionary histories across a diverse set of microbial species. We demonstrate reliable phenotype assignment for Traitar to bacterial genomes from 572 species of eight phyla, also based on incomplete single-cell genomes and simulated draft genomes. We also showcase its application in metagenomics by verifying and complementing a manual metabolic reconstruction of two novel Clostridiales species based on draft genomes recovered from commercial biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar. IMPORTANCE Bacteria are ubiquitous in our ecosystem and have a major impact on human health, e.g., by supporting digestion in the human gut. Bacterial communities can also aid in biotechnological processes such as wastewater treatment or decontamination of polluted soils. Diverse bacteria contribute with their unique capabilities to the functioning of such ecosystems, but lab experiments to investigate those capabilities are labor-intensive. Major advances in sequencing techniques open up the opportunity to study bacteria by their genome sequences. For this purpose, we have developed Traitar, software that predicts traits of bacteria on the basis of their genomes. It is applicable to studies with tens or hundreds of bacterial genomes. Traitar may help researchers in microbiology to pinpoint the traits of interest, reducing the amount of wet lab work required.

  13. Approaches for in silico finishing of microbial genome sequences

    PubMed Central

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    2017-01-01

    Abstract The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing. PMID:28898352

  14. Approaches for in silico finishing of microbial genome sequences.

    PubMed

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.

  15. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs.

    PubMed

    Auch, Alexander F; Klenk, Hans-Peter; Göker, Markus

    2010-01-28

    DNA-DNA hybridization (DDH) is a widely applied wet-lab technique to obtain an estimate of the overall similarity between the genomes of two organisms. To base the species concept for prokaryotes ultimately on DDH was chosen by microbiologists as a pragmatic approach for deciding about the recognition of novel species, but also allowed a relatively high degree of standardization compared to other areas of taxonomy. However, DDH is tedious and error-prone and first and foremost cannot be used to incrementally establish a comparative database. Recent studies have shown that in-silico methods for the comparison of genome sequences can be used to replace DDH. Considering the ongoing rapid technological progress of sequencing methods, genome-based prokaryote taxonomy is coming into reach. However, calculating distances between genomes is dependent on multiple choices for software and program settings. We here provide an overview over the modifications that can be applied to distance methods based in high-scoring segment pairs (HSPs) or maximally unique matches (MUMs) and that need to be documented. General recommendations on determining HSPs using BLAST or other algorithms are also provided. As a reference implementation, we introduce the GGDC web server (http://ggdc.gbdp.org).

  16. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.

    PubMed

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B

    2013-01-01

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  17. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    PubMed Central

    2011-01-01

    Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. Conclusion An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml). PMID:21266061

  18. The sequence of sequencers: The history of sequencing DNA.

    PubMed

    Heather, James M; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Whole Genome Sequencing of Greater Amberjack (Seriola dumerili) for SNP Identification on Aligned Scaffolds and Genome Structural Variation Analysis Using Parallel Resequencing

    PubMed Central

    Aokic, Jun-ya; Kawase, Junya; Hamada, Kazuhisa; Fujimoto, Hiroshi; Yamamoto, Ikki; Usuki, Hironori

    2018-01-01

    Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence. PMID:29785397

  20. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.

    PubMed

    Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos

    2016-01-01

    Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.

  1. Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome.

    PubMed

    Sola-Landa, Alberto; Rodríguez-García, Antonio; Barreiro, Carlos; Pérez-Redondo, Rosario

    2017-01-01

    The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.

  2. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    PubMed

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    PubMed Central

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  4. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    PubMed

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica

    PubMed Central

    2014-01-01

    Background Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear. Methods Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). Results The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. Conclusions The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries. PMID:24685294

  6. Next-Generation Sequencing and Genome Editing in Plant Virology

    PubMed Central

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  7. Complete mitochondrial genomes of the 'intermediate form' of Fasciola and Fasciola gigantica, and their comparison with F. hepatica.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Young, Neil D; Song, Hui-Qun; Ai, Lin; Zhu, Xing-Quan

    2014-03-31

    Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. ('intermediate form') is unclear. Single specimens inferred to represent Fasciola sp. ('intermediate form'; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries.

  8. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, R.D.; Adams, M.D.; White, O.

    1995-07-28

    An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism. 46 refs., 4 figs., 4 tabs.

  9. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas

    PubMed Central

    Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans–P. oryzihabitans, and P. kilonensis- P. brassicacearum, that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques. PMID:28747902

  10. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    PubMed

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  11. Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens

    PubMed Central

    Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.

    2018-01-01

    High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531

  12. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.

    PubMed

    Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A

    2010-02-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.

  13. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer

    PubMed Central

    Wojcik, Sylwia E.; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S.; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z.; Rai, Kanti R.; Kipps, Thomas J.; Keating, Michael J.

    2010-01-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas. PMID:19926640

  14. Bonus Organisms in High-Throughput Eukaryotic Whole-Genome Shorgun Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2006-02-06

    The DOE Joint Genome Institute has sequenced over 50 eukaryotic genomes, ranging in size from 15 MB to 1.6 GB, over a wide range of organism types. In the course of doing so, it has become clear that a substantial fraction of these data sets contains bonus organisms, usually prokaryotes, in addition to the desired genome. While some of these additional organisms are extraneous contamination, they are sometimes symbionts, and so can be of biological interest. Therefore, it is desirable to assemble the bonus organisms along with the main genome. This transforms the problem into one of metagenomic assembly, whichmore » is considerably more challenging than traditional whole-genome shotgun (WGS) assembly. The different organisms will usually be present at different sequence depths, which is difficult to handle in most WGS assemblers. In addition, with multiple distinct genomes present, chimerism can produce cross-organism combinations. Finally, there is no guarantee that only a single bonus organism will be present. For example, one JGI project contained at least two different prokaryotic contaminants, plus a 145 KB plasmid of unknown origin. We have developed techniques to routinely identify and handle such bonus organisms in a high-throughput sequencing environment. Approaches include screening and partitioning the unassembled data, and iterative subassemblies. These methods are applicable not only to bonus organisms, but also to desired components such as organelles. These procedures have the additional benefit of identifying, and allowing for the removal of, cloning artifacts such as E.coli and spurious vector inclusions.« less

  15. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics

    PubMed Central

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-01-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  16. Transmission of Methicillin-Resistant Staphylococcus aureus via Deceased Donor Liver Transplantation Confirmed by Whole Genome Sequencing

    PubMed Central

    Altman, D. R.; Sebra, R.; Hand, J.; Attie, O.; Deikus, G.; Carpini, K. W. D.; Patel, G.; Rana, M.; Arvelakis, A.; Grewal, P.; Dutta, J.; Rose, H.; Shopsin, B.; Daefler, S.; Schadt, E.; Kasarskis, A.; van Bakel, H.; Bashir, A.; Huprikar, S.

    2015-01-01

    Donor-derived bacterial infection is a recognized complication of solid organ transplantation (SOT). The present report describes the clinical details and successful outcome in a liver transplant recipient despite transmission of methicillin-resistant Staphylococcus aureus (MRSA) from a deceased donor with MRSA endocarditis and bacteremia. We further describe whole genome sequencing (WGS) and complete de novo assembly of the donor and recipient MRSA isolate genomes, which confirms that both isolates are genetically 100% identical. We propose that similar application of WGS techniques to future investigations of donor bacterial transmission would strengthen the definition of proven bacterial transmission in SOT, particularly in the presence of highly clonal bacteria such as MRSA. WGS will further improve our understanding of the epidemiology of bacterial transmission in SOT and the risk of adverse patient outcomes when it occurs. PMID:25250641

  17. “Guest list” or “Black list”? Heritable Small RNAs as Immunogenic Memories

    PubMed Central

    Rechavi, Oded

    2016-01-01

    Small RNA-mediated gene silencing plays a pivotal role in genome immunity by recognizing and eliminating viruses and transposons which otherwise may colonize the genome. However, this can be challenging since individual genomic parasites are highly diverse, and employ multiple immune evasion techniques. In this review, I discuss a new theory proposing that the integrity of the germline is maintained by transgenerationally-transmitted RNA “memories” that record ancestral gene expression patterns, and delineate “Self” from “Foreign” sequences. To maintain such recollection two tactics are employed in parallel: “black listing” of invading nucleic acids, and “guest listing” of endogenous genes. Studies in a number of organisms have shown that this memorization is used by the next generation small RNAs to act as “Inherited Vaccines” that ambush invading elements, or as “Inherited Licenses” that grant the transcription of autogenous sequences. PMID:24231398

  18. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency

    PubMed Central

    Aniceto, Rodrigo; Xavier, Rene; Guimarães, Valeria; Hondo, Fernanda; Holanda, Maristela; Walter, Maria Emilia; Lifschitz, Sérgio

    2015-01-01

    Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB. PMID:26558254

  19. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  20. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    PubMed

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  1. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  2. ChIP-seq: advantages and challenges of a maturing technology.

    PubMed

    Park, Peter J

    2009-10-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique for genome-wide profiling of DNA-binding proteins, histone modifications or nucleosomes. Owing to the tremendous progress in next-generation sequencing technology, ChIP-seq offers higher resolution, less noise and greater coverage than its array-based predecessor ChIP-chip. With the decreasing cost of sequencing, ChIP-seq has become an indispensable tool for studying gene regulation and epigenetic mechanisms. In this Review, I describe the benefits and challenges in harnessing this technique with an emphasis on issues related to experimental design and data analysis. ChIP-seq experiments generate large quantities of data, and effective computational analysis will be crucial for uncovering biological mechanisms.

  3. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics

    PubMed Central

    Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.

    2015-01-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  4. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    PubMed

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  5. Genome Improvement at JGI-HAGSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less

  6. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    USDA-ARS?s Scientific Manuscript database

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  7. Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onda, M.; Kudo, S.; Fukuda, M.

    Human glycophorin A, B, and E (GPA, GPB, and GPE) genes belong to a gene family located at the long arm of chromosome 4. These three genes are homologous from the 5'-flanking sequence to the Alu sequence, which is 1 kb downstream from the exon encoding the transmembrane domain. Analysis of the Alu sequence and flanking direct repeat sequences suggested that the GPA gene most closely resembles the ancestral gene, whereas the GPB and GPE gene arose by homologous recombination within the Alu sequence, acquiring 3' sequences from an unrelated precursor genomic segment. Here the authors describe the identification ofmore » this putative precursor genomic segment. A human genomic library was screened by using the sequence of the 3' region of the GPB gene as a probe. The genomic clones isolated were found to contain an Alu sequence that appeared to be involved in the recombination. Downstream from the Alu sequence, the nucleotide sequence of the precursor genomic segment is almost identical to that of the GPB or GPE gene. In contrast, the upstream sequence of the genomic segment differs entirely from that of the GPA, GPB, and GPE genes. Conservation of the direct repeats flanking the Alu sequence of the genomic segment strongly suggests that the sequence of this genomic segment has been maintained during evolution. This identified genomic segment was found to reside downstream from the GPA gene by both gene mapping and in situ chromosomal localization. The precursor genomic segment was also identified in the orangutan genome, which is known to lack GPB and GPE genes. These results indicate that one of the duplicated ancestral glycophorin genes acquired a unique 3' sequence by unequal crossing-over through its Alu sequence and the further downstream Alu sequence present in the duplicated gene. Further duplication and divergence of this gene yielded the GPB and GPE genes. 37 refs., 5 figs.« less

  8. Interactive Exploration on Large Genomic Datasets.

    PubMed

    Tu, Eric

    2016-01-01

    The prevalence of large genomics datasets has made the the need to explore this data more important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of publically available data. Meanwhile, existing genomic visualization tools have been unable to scale with the growing amount of larger, more complex data. This difficulty is acute when viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently viewing multiple samples of data. While genomic processing pipelines have shifted towards using distributed computing techniques, such as with ADAM [4], genomic visualization tools have not. In this work we present Mango, a scalable genome browser built on top of ADAM that can run both locally and on a cluster. Mango presents a combination of different optimizations that can be combined in a single application to drive novel genomic visualization techniques over terabytes of genomic data. By building visualization on top of a distributed processing pipeline, we can perform visualization queries over large regions that are not possible with current tools, and decrease the time for viewing large data sets. Mango is part of the Big Data Genomics project at University of California-Berkeley [25] and is published under the Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.

  9. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement.

    PubMed

    Bohra, Abhishek; Singh, Narendra P

    2015-08-01

    Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.

  10. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

    PubMed

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas

    2017-08-01

    Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  11. SNP discovery by high-throughput sequencing in soybean

    PubMed Central

    2010-01-01

    Background With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology. Results A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp. Conclusions We have demonstrated how to quickly identify large numbers of SNPs for fine mapping of QTL regions by applying massively parallel sequencing combined with genome complexity reduction techniques. This SNP discovery approach is more efficient for targeting multiple QTL regions in a same genetic population, which can be applied to other crops. PMID:20701770

  12. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaofan; Peris, David; Kominek, Jacek

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  13. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE PAGES

    Zhou, Xiaofan; Peris, David; Kominek, Jacek; ...

    2016-09-16

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  14. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.

    PubMed

    Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi

    2014-01-01

    A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

  15. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  16. Snake Genome Sequencing: Results and Future Prospects

    PubMed Central

    Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.

    2016-01-01

    Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957

  17. Snake Genome Sequencing: Results and Future Prospects.

    PubMed

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  18. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.

  19. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice

    PubMed Central

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong

    2014-01-01

    Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits. PMID:25295980

  20. Sequencing and comparative genomic analysis of 1227 Felis catus cDNA sequences enriched for developmental, clinical and nutritional phenotypes

    PubMed Central

    2012-01-01

    Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742

  1. Whole Genome Complete Resequencing of Bacillus subtilis Natto by Combining Long Reads with High-Quality Short Reads

    PubMed Central

    Kamada, Mayumi; Hase, Sumitaka; Sato, Kengo; Toyoda, Atsushi; Fujiyama, Asao; Sakakibara, Yasubumi

    2014-01-01

    De novo microbial genome sequencing reached a turning point with third-generation sequencing (TGS) platforms, and several microbial genomes have been improved by TGS long reads. Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and it has a function in the production of the traditional Japanese fermented food “natto.” The B. subtilis natto BEST195 genome was previously sequenced with short reads, but it included some incomplete regions. We resequenced the BEST195 genome using a PacBio RS sequencer, and we successfully obtained a complete genome sequence from one scaffold without any gaps, and we also applied Illumina MiSeq short reads to enhance quality. Compared with the previous BEST195 draft genome and Marburg 168 genome, we found that incomplete regions in the previous genome sequence were attributed to GC-bias and repetitive sequences, and we also identified some novel genes that are found only in the new genome. PMID:25329997

  2. Sequencing intractable DNA to close microbial genomes.

    PubMed

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  3. First complete genome sequence of infectious laryngotracheitis virus

    PubMed Central

    2011-01-01

    Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528

  4. Construction of a minimal genome as a chassis for synthetic biology.

    PubMed

    Sung, Bong Hyun; Choe, Donghui; Kim, Sun Chang; Cho, Byung-Kwan

    2016-11-30

    Microbial diversity and complexity pose challenges in understanding the voluminous genetic information produced from whole-genome sequences, bioinformatics and high-throughput '-omics' research. These challenges can be overcome by a core blueprint of a genome drawn with a minimal gene set, which is essential for life. Systems biology and large-scale gene inactivation studies have estimated the number of essential genes to be ∼300-500 in many microbial genomes. On the basis of the essential gene set information, minimal-genome strains have been generated using sophisticated genome engineering techniques, such as genome reduction and chemical genome synthesis. Current size-reduced genomes are not perfect minimal genomes, but chemically synthesized genomes have just been constructed. Some minimal genomes provide various desirable functions for bioindustry, such as improved genome stability, increased transformation efficacy and improved production of biomaterials. The minimal genome as a chassis genome for synthetic biology can be used to construct custom-designed genomes for various practical and industrial applications. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Computational pan-genomics: status, promises and challenges.

    PubMed

    2018-01-01

    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains. © The Author 2016. Published by Oxford University Press.

  6. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2018-01-01

    The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.

  7. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  8. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  9. RefSeq microbial genomes database: new representation and annotation strategy.

    PubMed

    Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor

    2014-01-01

    The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.

  10. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  11. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014.

    PubMed

    Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali

    2016-09-15

    Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.

  12. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension.

    PubMed

    Azam, Afifah Binti; Azizan, Elena Aisha Binti

    2018-01-01

    Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.

  13. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.

    PubMed

    Lagarde, Julien; Uszczynska-Ratajczak, Barbara; Carbonell, Silvia; Pérez-Lluch, Sílvia; Abad, Amaya; Davis, Carrie; Gingeras, Thomas R; Frankish, Adam; Harrow, Jennifer; Guigo, Roderic; Johnson, Rory

    2017-12-01

    Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.

  14. PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.

    PubMed

    Liu, Chao Chun; Ji, Hezhao

    2018-06-26

    The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  16. Transcriptome sequencing analysis of novel sRNAs of Kineococcus radiotolerans in response to ionizing radiation.

    PubMed

    Chen, Zhouwei; Li, Lufeng; Shan, Zhan; Huang, Hannian; Chen, Huan; Ding, Xianfeng; Guo, Jiangfeng; Liu, Lili

    2016-11-01

    Kineococcus radiotolerans is a Gram-positive, radio-resistant bacterium isolated from a radioactive environment. The small noncoding RNAs (sRNAs) in bacteria are reported to play roles in the immediate response to stress and/or the recovery from stress. The analysis of K. radiotolerans transcriptome sequencing results can identify these sRNAs in a genome-wide detection, using RNA sequencing (RNA-seq) by the deep sequencing technique. In this study, the raw data of radiation-exposed samples (RS) and control samples (CS) were acquired separately from the sequencing platform. There were 217 common sRNA candidates in the two samples screened in the genome-wide scale by bioinformatics analysis. There were 43 differentially expressed sRNA candidates, including 28 up-regulated and 15 down-regulated ones. The down-regulated sRNAs were selected for the sRNA target prediction, of which 12 sRNAs that may modulate the genes related to the transcription regulation and DNA repair were considered as the candidates involved in the radio-resistance regulation system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. HomSI: a homozygous stretch identifier from next-generation sequencing data.

    PubMed

    Görmez, Zeliha; Bakir-Gungor, Burcu; Sagiroglu, Mahmut Samil

    2014-02-01

    In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.

  18. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  19. Sequencing and assembly of the 22-gb loblolly pine genome.

    PubMed

    Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H

    2014-03-01

    Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.

  20. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.

    PubMed

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C

    2015-11-26

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.

  1. The first genome sequences of human bocaviruses from Vietnam

    PubMed Central

    Thanh, Tran Tan; Van, Hoang Minh Tu; Hong, Nguyen Thi Thu; Nhu, Le Nguyen Truc; Anh, Nguyen To; Tuan, Ha Manh; Hien, Ho Van; Tuong, Nguyen Manh; Kien, Trinh Trung; Khanh, Truong Huu; Nhan, Le Nguyen Thanh; Hung, Nguyen Thanh; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier; Tan, Le Van

    2017-01-01

    As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the virus. PMID:28090592

  2. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    PubMed

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  3. Analysis of secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  4. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    PubMed

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  5. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    PubMed Central

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  6. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    PubMed

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  7. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    PubMed

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance progress in elucidating transcription regulation mechanism, thus provide benefit to the genomic research community and prokaryotic genome researchers in particular.

  8. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    PubMed Central

    2010-01-01

    Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID:20609256

  9. Use of low-coverage, large-insert, short-read data for rapid and accurate generation of enhanced-quality draft Pseudomonas genome sequences.

    PubMed

    O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S

    2011-01-01

    Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.

  10. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  11. Illuminating the Black Box of Genome Sequence Assembly: A Free Online Tool to Introduce Students to Bioinformatics

    ERIC Educational Resources Information Center

    Taylor, D. Leland; Campbell, A. Malcolm; Heyer, Laurie J.

    2013-01-01

    Next-generation sequencing technologies have greatly reduced the cost of sequencing genomes. With the current sequencing technology, a genome is broken into fragments and sequenced, producing millions of "reads." A computer algorithm pieces these reads together in the genome assembly process. PHAST is a set of online modules…

  12. Lophotrochozoan mitochondrial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animalsmore » across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.« less

  13. Exome-wide DNA capture and next generation sequencing in domestic and wild species.

    PubMed

    Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon

    2011-07-05

    Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  14. ETS target genes: Identification of Egr1 as a target by RNA differential display and whole genome PCR techniques

    PubMed Central

    Robinson, Lois; Panayiotakis, Alexandra; Papas, Takis S.; Kola, Ismail; Seth, Arun

    1997-01-01

    ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene. PMID:9207063

  15. Mosaic Graphs and Comparative Genomics in Phage Communities

    PubMed Central

    Belcaid, Mahdi; Bergeron, Anne

    2010-01-01

    Abstract Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities. PMID:20874413

  16. Integrating multi-omic features exploiting Chromosome Conformation Capture data.

    PubMed

    Merelli, Ivan; Tordini, Fabio; Drocco, Maurizio; Aldinucci, Marco; Liò, Pietro; Milanesi, Luciano

    2015-01-01

    The representation, integration, and interpretation of omic data is a complex task, in particular considering the huge amount of information that is daily produced in molecular biology laboratories all around the world. The reason is that sequencing data regarding expression profiles, methylation patterns, and chromatin domains is difficult to harmonize in a systems biology view, since genome browsers only allow coordinate-based representations, discarding functional clusters created by the spatial conformation of the DNA in the nucleus. In this context, recent progresses in high throughput molecular biology techniques and bioinformatics have provided insights into chromatin interactions on a larger scale and offer a formidable support for the interpretation of multi-omic data. In particular, a novel sequencing technique called Chromosome Conformation Capture allows the analysis of the chromosome organization in the cell's natural state. While performed genome wide, this technique is usually called Hi-C. Inspired by service applications such as Google Maps, we developed NuChart, an R package that integrates Hi-C data to describe the chromosomal neighborhood starting from the information about gene positions, with the possibility of mapping on the achieved graphs genomic features such as methylation patterns and histone modifications, along with expression profiles. In this paper we show the importance of the NuChart application for the integration of multi-omic data in a systems biology fashion, with particular interest in cytogenetic applications of these techniques. Moreover, we demonstrate how the integration of multi-omic data can provide useful information in understanding why genes are in certain specific positions inside the nucleus and how epigenetic patterns correlate with their expression.

  17. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

    PubMed Central

    McCarter, James P; Dautova Mitreva, Makedonka; Martin, John; Dante, Mike; Wylie, Todd; Rao, Uma; Pape, Deana; Bowers, Yvette; Theising, Brenda; Murphy, Claire V; Kloek, Andrew P; Chiapelli, Brandi J; Clifton, Sandra W; Bird, David Mck; Waterston, Robert H

    2003-01-01

    Background Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita. Results From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases. Conclusions With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses. PMID:12702207

  18. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  19. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.

    PubMed

    Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R

    2017-07-01

    The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

  20. Newborn Sequencing in Genomic Medicine and Public Health

    PubMed Central

    Agrawal, Pankaj B.; Bailey, Donald B.; Beggs, Alan H.; Brenner, Steven E.; Brower, Amy M.; Cakici, Julie A.; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J.; Dukhovny, Dmitry; Green, Robert C.; Harris-Wai, Julie; Holm, Ingrid A.; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F.; Koenig, Barbara A.; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J.; Lewis, Megan A.; McGuire, Amy L.; Milko, Laura V.; Mooney, Sean D.; Parad, Richard B.; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C.; Powell, Cynthia M.; Puck, Jennifer M.; Rehm, Heidi L.; Risch, Neil; Roche, Myra; Shieh, Joseph T.; Veeraraghavan, Narayanan; Watson, Michael S.; Willig, Laurel; Yu, Timothy W.; Urv, Tiina; Wise, Anastasia L.

    2017-01-01

    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. PMID:28096516

  1. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.

    PubMed

    Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi

    2014-01-01

    With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).

  2. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  3. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.

    PubMed

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-02-24

    Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  4. Initial sequencing and comparative analysis of the mouse genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of themore » genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.« less

  5. Tapping the promise of genomics in species with complex, nonmodel genomes.

    PubMed

    Hirsch, Candice N; Buell, C Robin

    2013-01-01

    Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.

  6. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    PubMed

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  7. Parents' interest in whole-genome sequencing of newborns.

    PubMed

    Goldenberg, Aaron J; Dodson, Daniel S; Davis, Matthew M; Tarini, Beth A

    2014-01-01

    The aim of this study was to assess parents' interest in whole-genome sequencing for newborns. We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician's office. Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state's newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician's office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as "very important" in making a decision to have a newborn's whole genome sequenced. These data may help health departments and children's health-care providers anticipate parents' level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.

  8. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  9. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE PAGES

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne; ...

    2015-07-21

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  10. DNA methylation profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP)

    PubMed Central

    Suzuki, Masako; Greally, John M.

    2010-01-01

    The HELP assay is a technique that allows genome-wide analysis of cytosine methylation. Here we describe the assay, its relative strengths and weaknesses, and the transition of the assay from a microarray to massively-parallel sequencing-based foundation. PMID:20434563

  11. Coding Complete Genome for the Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil

    DTIC Science & Technology

    2017-05-04

    sequences for all four genome segments. We downloaded the raw Illumina sequence reads from the NCBI Short Read Archive (GenBank...MGTV genome segments through sequence similarity (BLASTN) to the published genome of Jingmen tick virus (JMTV) isolate SY84 (GenBank: KJ001579-KJ001582...2014. Standards for sequencing viral genomes in the era of high-throughput sequencing . MBio 5:e01360–14. 8. Bankevich A, Nurk S, Antipov

  12. A one-page summary report of genome sequencing for the healthy adult.

    PubMed

    Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.

  13. A One-Page Summary Report of Genome Sequencing for the Healthy Adult

    PubMed Central

    Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602

  14. De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes

    PubMed Central

    2013-01-01

    Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703

  15. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  16. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    PubMed

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  17. Personal Genome Sequencing in Ostensibly Healthy Individuals and the PeopleSeq Consortium

    PubMed Central

    Linderman, Michael D.; Nielsen, Daiva E.; Green, Robert C.

    2016-01-01

    Thousands of ostensibly healthy individuals have had their exome or genome sequenced, but a much smaller number of these individuals have received any personal genomic results from that sequencing. We term those projects in which ostensibly healthy participants can receive sequencing-derived genetic findings and may also have access to their genomic data as participatory predispositional personal genome sequencing (PPGS). Here we are focused on genome sequencing applied in a pre-symptomatic context and so define PPGS to exclude diagnostic genome sequencing intended to identify the molecular cause of suspected or diagnosed genetic disease. In this report we describe the design of completed and underway PPGS projects, briefly summarize the results reported to date and introduce the PeopleSeq Consortium, a newly formed collaboration of PPGS projects designed to collect much-needed longitudinal outcome data. PMID:27023617

  18. Fungal Genomics for Energy and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  19. Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing

    PubMed Central

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640

  20. Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.

    PubMed

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.

  1. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies

    PubMed Central

    Timmermans, Marshall L.; Paudel, Yagya P.; Ross, Avena C.

    2017-01-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria. PMID:28762997

  2. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies.

    PubMed

    Timmermans, Marshall L; Paudel, Yagya P; Ross, Avena C

    2017-08-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.

  3. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    PubMed

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  4. A short review of variants calling for single-cell-sequencing data with applications.

    PubMed

    Wei, Zhuohui; Shu, Chang; Zhang, Changsheng; Huang, Jingying; Cai, Hongmin

    2017-11-01

    The field of single-cell sequencing is fleetly expanding, and many techniques have been developed in the past decade. With this technology, biologists can study not only the heterogeneity between two adjacent cells in the same tissue or organ, but also the evolutionary relationships and degenerative processes in a single cell. Calling variants is the main purpose in analyzing single cell sequencing (SCS) data. Currently, some popular methods used for bulk-cell-sequencing data analysis are tailored directly to be applied in dealing with SCS data. However, SCS requires an extra step of genome amplification to accumulate enough quantity for satisfying sequencing needs. The amplification yields large biases and thus raises challenge for using the bulk-cell-sequencing methods. In order to provide guidance for the development of specialized analyzed methods as well as using currently developed tools for SNS, this paper aims to bridge the gap. In this paper, we firstly introduced two popular genome amplification methods and compared their capabilities. Then we introduced a few popular models for calling single-nucleotide polymorphisms and copy-number variations. Finally, break-through applications of SNS were summarized to demonstrate its potential in researching cell evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Why Assembling Plant Genome Sequences Is So Challenging

    PubMed Central

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  6. Insights from Human/Mouse genome comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less

  7. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.

    PubMed

    Parks, Donovan H; Rinke, Christian; Chuvochina, Maria; Chaumeil, Pierre-Alain; Woodcroft, Ben J; Evans, Paul N; Hugenholtz, Philip; Tyson, Gene W

    2017-11-01

    Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.

  8. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    PubMed

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  9. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P.

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less

  10. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum

    DOE PAGES

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...

    2015-11-11

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less

  11. It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research

    PubMed Central

    Richards, Stephen

    2015-01-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218

  12. It's more than stamp collecting: how genome sequencing can unify biological research.

    PubMed

    Richards, Stephen

    2015-07-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prediction of type III secretion signals in genomes of gram-negative bacteria.

    PubMed

    Löwer, Martin; Schneider, Gisbert

    2009-06-15

    Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).

  14. Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis guineensis).

    PubMed

    Pootakham, Wirulda; Sonthirod, Chutima; Naktang, Chaiwat; Jomchai, Nukoon; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke

    2016-01-01

    Advances in next generation sequencing have facilitated a large-scale single nucleotide polymorphism (SNP) discovery in many crop species. Genotyping-by-sequencing (GBS) approach couples next generation sequencing with genome complexity reduction techniques to simultaneously identify and genotype SNPs. Choice of enzymes used in GBS library preparation depends on several factors including the number of markers required, the desired level of multiplexing, and whether the enrichment of genic SNP is preferred. We evaluated various combinations of methylation-sensitive ( Aat II, Pst I, Msp I) and methylation-insensitive ( Sph I, Mse I) enzymes for their effectiveness in genome complexity reduction and enrichment of genic SNPs. We discovered that the use of two methylation-sensitive enzymes effectively reduced genome complexity and did not require a size selection step. On the contrary, the genome coverage of libraries constructed with methylation-insensitive enzymes was quite high, and the additional size selection step may be required to increase the overall read depth. We also demonstrated the effectiveness of methylation-sensitive enzymes in enriching for SNPs located in genic regions. When two methylation-insensitive enzymes were used, only 16% of SNPs identified were located in genes and 18% in the vicinity (± 5 kb) of the genic regions, while most SNPs resided in the intergenic regions. In contrast, a remarkable degree of enrichment was observed when two methylation-sensitive enzymes were employed. Almost two thirds of the SNPs were located either inside (32-36%) or in the vicinity (28-31%) of the genic regions. These results provide useful information to help researchers choose appropriate GBS enzymes in oil palm and other crop species.

  15. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway

    PubMed Central

    Muñoz-Ramírez, Zilia Y.; Mendez-Tenorio, Alfonso; Kato, Ikuko; Bravo, Maria M.; Rizzato, Cosmeri; Thorell, Kaisa; Torres, Roberto; Aviles-Jimenez, Francisco; Camorlinga, Margarita; Canzian, Federico; Torres, Javier

    2017-01-01

    Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk. PMID:28293542

  16. Complete Genome Sequence of Pigmentation Negative Yersinia Pestis strain Cadman Running head: Complete Genome Sequence of Y. pestis strain Cadman

    DTIC Science & Technology

    2016-10-27

    Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of

  17. MIPS: a database for genomes and protein sequences.

    PubMed Central

    Mewes, H W; Heumann, K; Kaps, A; Mayer, K; Pfeiffer, F; Stocker, S; Frishman, D

    1999-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried near Munich, Germany, develops and maintains genome oriented databases. It is commonplace that the amount of sequence data available increases rapidly, but not the capacity of qualified manual annotation at the sequence databases. Therefore, our strategy aims to cope with the data stream by the comprehensive application of analysis tools to sequences of complete genomes, the systematic classification of protein sequences and the active support of sequence analysis and functional genomics projects. This report describes the systematic and up-to-date analysis of genomes (PEDANT), a comprehensive database of the yeast genome (MYGD), a database reflecting the progress in sequencing the Arabidopsis thaliana genome (MATD), the database of assembled, annotated human EST clusters (MEST), and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). MIPS provides access through its WWW server (http://www.mips.biochem.mpg.de) to a spectrum of generic databases, including the above mentioned as well as a database of protein families (PROTFAM), the MITOP database, and the all-against-all FASTA database. PMID:9847138

  18. RNAi screen for rapid therapeutic target identification in leukemia patients

    PubMed Central

    Tyner, Jeffrey W.; Deininger, Michael W.; Loriaux, Marc M.; Chang, Bill H.; Gotlib, Jason R.; Willis, Stephanie G.; Erickson, Heidi; Kovacsovics, Tibor; O'Hare, Thomas; Heinrich, Michael C.; Druker, Brian J.

    2009-01-01

    Targeted therapy has vastly improved outcomes in certain types of cancer. Extension of this paradigm across a broad spectrum of malignancies will require an efficient method to determine the molecular vulnerabilities of cancerous cells. Improvements in sequencing technology will soon enable high-throughput sequencing of entire genomes of cancer patients; however, determining the relevance of identified sequence variants will require complementary functional analyses. Here, we report an RNAi-assisted protein target identification (RAPID) technology that individually assesses targeting of each member of the tyrosine kinase gene family. We demonstrate that RAPID screening of primary leukemia cells from 30 patients identifies targets that are critical to survival of the malignant cells from 10 of these individuals. We identify known, activating mutations in JAK2 and K-RAS, as well as patient-specific sensitivity to down-regulation of FLT1, CSF1R, PDGFR, ROR1, EPHA4/5, JAK1/3, LMTK3, LYN, FYN, PTK2B, and N-RAS. We also describe a previously undescribed, somatic, activating mutation in the thrombopoietin receptor that is sensitive to down-stream pharmacologic inhibition. Hence, the RAPID technique can quickly identify molecular vulnerabilities in malignant cells. Combination of this technique with whole-genome sequencing will represent an ideal tool for oncogenic target identification such that specific therapies can be matched with individual patients. PMID:19433805

  19. An overview of human genetic privacy

    PubMed Central

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. PMID:27626905

  20. A Chromosome-Scale Assembly of the Bactrocera cucurbitae Genome Provides Insight to the Genetic Basis of white pupae

    PubMed Central

    Sim, Sheina B.; Geib, Scott M.

    2017-01-01

    Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae (wp), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera. PMID:28450369

  1. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.

  2. Newborn Sequencing in Genomic Medicine and Public Health.

    PubMed

    Berg, Jonathan S; Agrawal, Pankaj B; Bailey, Donald B; Beggs, Alan H; Brenner, Steven E; Brower, Amy M; Cakici, Julie A; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J; Dukhovny, Dmitry; Green, Robert C; Harris-Wai, Julie; Holm, Ingrid A; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F; Koenig, Barbara A; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J; Lewis, Megan A; McGuire, Amy L; Milko, Laura V; Mooney, Sean D; Parad, Richard B; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C; Powell, Cynthia M; Puck, Jennifer M; Rehm, Heidi L; Risch, Neil; Roche, Myra; Shieh, Joseph T; Veeraraghavan, Narayanan; Watson, Michael S; Willig, Laurel; Yu, Timothy W; Urv, Tiina; Wise, Anastasia L

    2017-02-01

    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. Copyright © 2017 by the American Academy of Pediatrics.

  3. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  5. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    PubMed

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  6. Multiplexed fragaria chloroplast genome sequencing

    Treesearch

    W. Njuguna; A. Liston; R. Cronn; N.V. Bassil

    2010-01-01

    A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...

  7. Identification and analysis of multigene families by comparison of exon fingerprints.

    PubMed

    Brown, N P; Whittaker, A J; Newell, W R; Rawlings, C J; Beck, S

    1995-06-02

    Gene families are often recognised by sequence homology using similarity searching to find relationships, however, genomic sequence data provides gene architectural information not used by conventional search methods. In particular, intron positions and phases are expected to be relatively conserved features, because mis-splicing and reading frame shifts should be selected against. A fast search technique capable of detecting possible weak sequence homologies apparent at the intron/exon level of gene organization is presented for comparing spliceosomal genes and gene fragments. FINEX compares strings of exons delimited by intron/exon boundary positions and intron phases (exon fingerprint) using a global dynamic programming algorithm with a combined intron phase identity and exon size dissimilarity score. Exon fingerprints are typically two orders of magnitude smaller than their nucleic acid sequence counterparts giving rise to fast search times: a ranked search against a library of 6755 fingerprints for a typical three exon fingerprint completes in under 30 seconds on an ordinary workstation, while a worst case largest fingerprint of 52 exons completes in just over one minute. The short "sequence" length of exon fingerprints in comparisons is compensated for by the large exon alphabet compounded of intron phase types and a wide range of exon sizes, the latter contributing the most information to alignments. FINEX performs better in some searches than conventional methods, finding matches with similar exon organization, but low sequence homology. A search using a human serum albumin finds all members of the multigene family in the FINEX database at the top of the search ranking, despite very low amino acid percentage identities between family members. The method should complement conventional sequence searching and alignment techniques, offering a means of identifying otherwise hard to detect homologies where genomic data are available.

  8. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  9. Novel Degenerate PCR Method for Whole-Genome Amplification Applied to Peru Margin (ODP Leg 201) Subsurface Samples

    PubMed Central

    Martino, Amanda J.; Rhodes, Matthew E.; Biddle, Jennifer F.; Brandt, Leah D.; Tomsho, Lynn P.; House, Christopher H.

    2011-01-01

    A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g., Illumina, Ion Torrent). The method, which we have called random amplification metagenomic PCR (RAMP), involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3′ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10×. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin), and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa identified illustrates well the generally accepted view that community analysis is sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low-biomass samples. PMID:22319519

  10. Observation of quantum criticality with ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Xibo

    As biological problems are becoming more complex and data growing at a rate much faster than that of computer hardware, new and faster algorithms are required. This dissertation investigates computational problems arising in two of the fields: comparative genomics and epigenomics, and employs a variety of computational techniques to address the problems. One fundamental question in the studies of chromosome evolution is whether the rearrangement breakpoints are happening at random positions or along certain hotspots. We investigate the breakpoint reuse phenomenon, and show the analyses that support the more recently proposed fragile breakage model as opposed to the conventional random breakage models for chromosome evolution. The identification of syntenic regions between chromosomes forms the basis for studies of genome architectures, comparative genomics, and evolutionary genomics. The previous synteny block reconstruction algorithms could not be scaled to a large number of mammalian genomes being sequenced; neither did they address the issue of generating non-overlapping synteny blocks suitable for analyzing rearrangements and evolutionary history of large-scale duplications prevalent in plant genomes. We present a new unified synteny block generation algorithm based on A-Bruijn graph framework that overcomes these shortcomings. In the epigenome sequencing, a sample may contain a mixture of epigenomes and there is a need to resolve the distinct methylation patterns from the mixture. Many sequencing applications, such as haplotype inference for diploid or polyploid genomes, and metagenomic sequencing, share the similar objective: to infer a set of distinct assemblies from reads that are sequenced from a heterogeneous sample and subsequently aligned to a reference genome. We model the problem from both a combinatorial and a statistical angles. First, we describe a theoretical framework. A linear-time algorithm is then given to resolve a minimum number of assemblies that are consistent with all reads, substantially improving on previous algorithms. An efficient algorithm is also described to determine a set of assemblies that is consistent with a maximum subset of the reads, a previously untreated problem. We then prove that allowing nested reads or permitting mismatches between reads and their assemblies renders these problems NP-hard. Second, we describe a mixture model-based approach, and applied the model for the detection of allele-specific methylations.

  11. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416

  12. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    PubMed

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.

  13. A web-based genomic sequence database for the Streptomycetaceae: a tool for systematics and genome mining

    USDA-ARS?s Scientific Manuscript database

    The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...

  14. Complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1 using PacBio single-molecule real-time technology

    USDA-ARS?s Scientific Manuscript database

    We report the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1 isolated in Minnesota, USA. The R1-1 genome, generated by de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies....

  15. Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951

    DOE PAGES

    Toome, Merje; Kuo, Alan; Henrissat, Bernard; ...

    2014-06-12

    We present the draft genome sequence of the smut fungus Tilletiaria anomala UBC 951 (Basidiomycota, Ustilaginomycotina). The sequenced genome size is 18.7 Mb, consisting of 289 scaffolds and a total of 6,810 predicted genes. This is the first genome sequence published for a fungus in the order Georgefisheriales (Exobasidiomycetes).

  16. Reducing assembly complexity of microbial genomes with single-molecule sequencing.

    PubMed

    Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M

    2013-01-01

    The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.

  17. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  18. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    USDA-ARS?s Scientific Manuscript database

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  20. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  1. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    DOE PAGES

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...

    2017-08-08

    Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less

  2. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas

    Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less

  3. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer

    PubMed Central

    Johnson, Sarah S.; Zaikova, Elena; Goerlitz, David S.; Bai, Yu; Tighe, Scott W.

    2017-01-01

    The ability to sequence DNA outside of the laboratory setting has enabled novel research questions to be addressed in the field in diverse areas, ranging from environmental microbiology to viral epidemics. Here, we demonstrate the application of offline DNA sequencing of environmental samples using a hand-held nanopore sequencer in a remote field location: the McMurdo Dry Valleys, Antarctica. Sequencing was performed using a MK1B MinION sequencer from Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) that was equipped with software to operate without internet connectivity. One-direction (1D) genomic libraries were prepared using portable field techniques on DNA isolated from desiccated microbial mats. By adequately insulating the sequencer and laptop, it was possible to run the sequencing protocol for up to 2½ h under arduous conditions. PMID:28337073

  4. Partial Shotgun Sequencing of the Boechera stricta Genome Reveals Extensive Microsynteny and Promoter Conservation with Arabidopsis1[W

    PubMed Central

    Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas

    2006-01-01

    Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030

  5. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    PubMed Central

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  6. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    PubMed

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  7. Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs.

    PubMed

    Campbell, A J; Gasser, R B; Chilton, N B

    1995-03-01

    In the current study, molecular techniques were evaluated for the species identification of individual strongyle eggs. Adult worms of Strongylus edentatus, S. equinus and S. vulgaris were collected at necropsy from horses from Australia and the U.S.A. Genomic DNA was isolated and a ribosomal transcribed spacer (ITS-2) amplified and sequenced using polymerase chain reaction (PCR) techniques. The length of the ITS-2 sequence of S. edentatus, S. equinus and S. vulgaris ranged between 217 and 235 nucleotides. Extensive sequence analysis demonstrated a low degree (0-0.9%) of intraspecific variation in the ITS-2 for the Strongylus species examined, whereas the levels of interspecific differences (13-29%) were significantly greater. Interspecific differences in the ITS-2 sequences allowed unequivocal species identification of single worms and eggs using PCR-linked restriction fragment length polymorphism. These results demonstrate the potential of the ribosomal spacers as genetic markers for species identification of single strongyle eggs from horse faeces.

  8. Genomic diversity of cercarial clones of Himasthla elongata (Trematoda, Echinostomatidae) determined with AFLP technique.

    PubMed

    Galaktionov, N K; Podgornaya, O I; Strelkov, P P; Galaktionov, K V

    2016-12-01

    The aim of this study was to reveal genomic diversity formed during parthenogenetic reproduction of rediae of the trematode Himasthla elongata in its molluskan host Littorina littorea. We applied amplification fragment length polymorphism (AFLP) to determine the genomic diversity of individual cercariae within the clone, that is, the infrapopulation of parthenogenetic progeny in a single molluskan host. The level of genomic diversity of particular cercariae isolates from a single clone, detected with EcoR1/Mse1 AFLP reaction, was significantly lower than the variability of cercariae from different clones. The presence of intraclonal genomic diversity indicates a nonsexual shuffle of alleles during parthenogenesis in the rediae of H. elongata. The obtained polymorphic AFLP fragments were long enough to detect the sequences that may be responsible for clonal genomic variability. Based on this, AFLP can be recommended as a tool for the study of genetic mechanisms of this variability.

  9. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    PubMed Central

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  10. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand.

    PubMed

    Steel, Olivia; Kraberger, Simona; Sikorski, Alyssa; Young, Laura M; Catchpole, Ryan J; Stevens, Aaron J; Ladley, Jenny J; Coray, Dorien S; Stainton, Daisy; Dayaram, Anisha; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind

    2016-09-01

    In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Patterns of Viral DNA Integration in Cells Transformed by Wild Type or DNA-Binding Protein Mutants of Adenovirus Type 5 and Effect of Chemical Carcinogens on Integration

    PubMed Central

    Dorsch-Häsler, Karoline; Fisher, Paul B.; Weinstein, I. Bernard; Ginsberg, Harold S.

    1980-01-01

    The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration. Images PMID:6246266

  12. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    PubMed

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  13. Whole genome sequencing discriminates hepatocellular carcinoma with intrahepatic metastasis from multi-centric tumors.

    PubMed

    Furuta, Mayuko; Ueno, Masaki; Fujimoto, Akihiro; Hayami, Shinya; Yasukawa, Satoru; Kojima, Fumiyoshi; Arihiro, Koji; Kawakami, Yoshiiku; Wardell, Christopher P; Shiraishi, Yuichi; Tanaka, Hiroko; Nakano, Kaoru; Maejima, Kazuhiro; Sasaki-Oku, Aya; Tokunaga, Naoki; Boroevich, Keith A; Abe, Tetsuo; Aikata, Hiroshi; Ohdan, Hideki; Gotoh, Kunihito; Kubo, Michiaki; Tsunoda, Tatsuhiko; Miyano, Satoru; Chayama, Kazuaki; Yamaue, Hiroki; Nakagawa, Hidewaki

    2017-02-01

    Patients with hepatocellular carcinoma (HCC) have a high-risk of multi-centric (MC) tumor occurrence due to a strong carcinogenic background in the liver. In addition, they have a high risk of intrahepatic metastasis (IM). Liver tumors withIM or MC are profoundly different in their development and clinical outcome. However, clinically or pathologically discriminating between IM and MC can be challenging. This study investigated whether IM or MC could be diagnosed at the molecular level. We performed whole genome and RNA sequencing analyses of 49 tumors including two extra-hepatic metastases, and one nodule-in-nodule tumor from 23 HCC patients. Sequencing-based molecular diagnosis using somatic single nucleotide variation information showed higher sensitivity compared to previous techniques due to the inclusion of a larger number of mutation events. This proved useful in cases, which showed inconsistent clinical diagnoses. In addition, whole genome sequencing offered advantages in profiling of other genetic alterations, such as structural variations, copy number alterations, and variant allele frequencies, and helped to confirm the IM/MCdiagnosis. Divergent alterations between IM tumors with sorafenib treatment, long time-intervals, or tumor-in-tumor nodules indicated high intra-tumor heterogeneity, evolution, and clonal switching of liver cancers. It is important to analyze the differences between IM tumors, in addition to IM/MC diagnosis, before selecting a therapeutic strategy for multiple tumors in the liver. Whole genome sequencing of multiple liver tumors enabled the accuratediagnosis ofmulti-centric occurrence and intrahepatic metastasis using somatic single nucleotide variation information. In addition, genetic discrepancies between tumors help us to understand the physical changes during recurrence and cancer spread. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.

    PubMed

    El-Metwally, Sara; Zakaria, Magdi; Hamza, Taher

    2016-11-01

    The deluge of current sequenced data has exceeded Moore's Law, more than doubling every 2 years since the next-generation sequencing (NGS) technologies were invented. Accordingly, we will able to generate more and more data with high speed at fixed cost, but lack the computational resources to store, process and analyze it. With error prone high throughput NGS reads and genomic repeats, the assembly graph contains massive amount of redundant nodes and branching edges. Most assembly pipelines require this large graph to reside in memory to start their workflows, which is intractable for mammalian genomes. Resource-efficient genome assemblers combine both the power of advanced computing techniques and innovative data structures to encode the assembly graph efficiently in a computer memory. LightAssembler is a lightweight assembly algorithm designed to be executed on a desktop machine. It uses a pair of cache oblivious Bloom filters, one holding a uniform sample of [Formula: see text]-spaced sequenced [Formula: see text]-mers and the other holding [Formula: see text]-mers classified as likely correct, using a simple statistical test. LightAssembler contains a light implementation of the graph traversal and simplification modules that achieves comparable assembly accuracy and contiguity to other competing tools. Our method reduces the memory usage by [Formula: see text] compared to the resource-efficient assemblers using benchmark datasets from GAGE and Assemblathon projects. While LightAssembler can be considered as a gap-based sequence assembler, different gap sizes result in an almost constant assembly size and genome coverage. https://github.com/SaraEl-Metwally/LightAssembler CONTACT: sarah_almetwally4@mans.edu.egSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Large-scale contamination of microbial isolate genomes by Illumina PhiX control.

    PubMed

    Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos C; Pati, Amrita

    2015-01-01

    With the rapid growth and development of sequencing technologies, genomes have become the new go-to for exploring solutions to some of the world's biggest challenges such as searching for alternative energy sources and exploration of genomic dark matter. However, progress in sequencing has been accompanied by its share of errors that can occur during template or library preparation, sequencing, imaging or data analysis. In this study we screened over 18,000 publicly available microbial isolate genome sequences in the Integrated Microbial Genomes database and identified more than 1000 genomes that are contaminated with PhiX, a control frequently used during Illumina sequencing runs. Approximately 10% of these genomes have been published in literature and 129 contaminated genomes were sequenced under the Human Microbiome Project. Raw sequence reads are prone to contamination from various sources and are usually eliminated during downstream quality control steps. Detection of PhiX contaminated genomes indicates a lapse in either the application or effectiveness of proper quality control measures. The presence of PhiX contamination in several publicly available isolate genomes can result in additional errors when such data are used in comparative genomics analyses. Such contamination of public databases have far-reaching consequences in the form of erroneous data interpretation and analyses, and necessitates better measures to proofread raw sequences before releasing them to the broader scientific community.

  16. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    PubMed Central

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  17. Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes).

    PubMed

    Dessimoz, Christophe; Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro

    2011-09-01

    Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.

  18. Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes)

    PubMed Central

    Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro

    2011-01-01

    Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references. PMID:21712341

  19. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes.

    PubMed

    Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo

    2016-05-10

    Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.

  20. A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks

    PubMed Central

    Buultjens, Andrew H.; Chua, Kyra Y. L.; Baines, Sarah L.; Kwong, Jason; Gao, Wei; Cutcher, Zoe; Adcock, Stuart; Ballard, Susan; Schultz, Mark B.; Tomita, Takehiro; Subasinghe, Nela; Carter, Glen P.; Pidot, Sacha J.; Franklin, Lucinda; Seemann, Torsten; Gonçalves Da Silva, Anders

    2017-01-01

    ABSTRACT Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations. IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK. PMID:28821546

Top