Science.gov

Sample records for genome studies progress

  1. Progress and Promise of Genome-Wide Association Studies for Human Complex Trait Genetics

    PubMed Central

    Stranger, Barbara E.; Stahl, Eli A.; Raj, Towfique

    2011-01-01

    Enormous progress in mapping complex traits in humans has been made in the last 5 yr. There has been early success for prevalent diseases with complex phenotypes. These studies have demonstrated clearly that, while complex traits differ in their underlying genetic architectures, for many common disorders the predominant pattern is that of many loci, individually with small effects on phenotype. For some traits, loci of large effect have been identified. For almost all complex traits studied in humans, the sum of the identified genetic effects comprises only a portion, generally less than half, of the estimated trait heritability. A variety of hypotheses have been proposed to explain why this might be the case, including untested rare variants, and gene–gene and gene–environment interaction. Effort is currently being directed toward implementation of novel analytic approaches and testing rare variants for association with complex traits using imputed variants from the publicly available 1000 Genomes Project resequencing data and from direct resequencing of clinical samples. Through integration with annotations and functional genomic data as well as by in vitro and in vivo experimentation, mapping studies continue to characterize functional variants associated with complex traits and address fundamental issues such as epistasis and pleiotropy. This review focuses primarily on the ways in which genome-wide association studies (GWASs) have revolutionized the field of human quantitative genetics. PMID:21115973

  2. Genome-Wide Association of CKD Progression: The Chronic Renal Insufficiency Cohort Study.

    PubMed

    Parsa, Afshin; Kanetsky, Peter A; Xiao, Rui; Gupta, Jayanta; Mitra, Nandita; Limou, Sophie; Xie, Dawei; Xu, Huichun; Anderson, Amanda Hyre; Ojo, Akinlolu; Kusek, John W; Lora, Claudia M; Hamm, L Lee; He, Jiang; Sandholm, Niina; Jeff, Janina; Raj, Dominic E; Böger, Carsten A; Bottinger, Erwin; Salimi, Shabnam; Parekh, Rulan S; Adler, Sharon G; Langefeld, Carl D; Bowden, Donald W; Groop, Per-Henrik; Forsblom, Carol; Freedman, Barry I; Lipkowitz, Michael; Fox, Caroline S; Winkler, Cheryl A; Feldman, Harold I

    2017-03-01

    The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10(-6) for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10(-7); replication P=0.039; combined P=7.42×10(-9)). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10(-6)). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10(-4)) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.

  3. Current Progress in Sports Genomics.

    PubMed

    Ahmetov, Ildus I; Fedotovskaya, Olga N

    2015-01-01

    Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.

  4. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

    PubMed Central

    Hughes, Simon; Yoshimoto, Maisa; Beheshti, Ben; Houlston, Richard S; Squire, Jeremy A; Evans, Andrew

    2006-01-01

    Background Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample. Results To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH). Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed. Conclusion An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from small cell clusters and

  5. DOE Joint Genome Institute 2008 Progress Report

    SciTech Connect

    Gilbert, David

    2009-03-12

    dominated how sequencing was done in the last decade is being replaced by a variety of new processes and sequencing instruments. The JGI, with an increasing number of next-generation sequencers, whose throughput is 100- to 1,000-fold greater than the Sanger capillary-based sequencers, is increasingly focused in new directions on projects of scale and complexity not previously attempted. These new directions for the JGI come, in part, from the 2008 National Research Council report on the goals of the National Plant Genome Initiative as well as the 2007 National Research Council report on the New Science of Metagenomics. Both reports outline a crucial need for systematic large-scale surveys of the plant and microbial components of the biosphere as well as an increasing need for large-scale analysis capabilities to meet the challenge of converting sequence data into knowledge. The JGI is extensively discussed in both reports as vital to progress in these fields of major national interest. JGI's future plan for plants and microbes includes a systematic approach for investigation of these organisms at a scale requiring the special capabilities of the JGI to generate, manage, and analyze the datasets. JGI will generate and provide not only community access to these plant and microbial datasets, but also the tools for analyzing them. These activities will produce essential knowledge that will be needed if we are to be able to respond to the world's energy and environmental challenges. As the JGI Plant and Microbial programs advance, the JGI as a user facility is also evolving. The Institute has been highly successful in bending its technical and analytical skills to help users solve large complex problems of major importance, and that effort will continue unabated. The JGI will increasingly move from a central focus on 'one-off' user projects coming from small user communities to much larger scale projects driven by systematic and problem-focused approaches to selection of

  6. Genomic variation in maize. Progress report, 1990

    SciTech Connect

    Rivin, C.J.

    1990-12-31

    We have endeavored to learn to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in F1 hybrids, tissue culture cells and regenerated plants.

  7. Human Genome Program Report. Part 1, Overview and Progress

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  8. Human genome program report. Part 1, overview and progress

    SciTech Connect

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  9. Studying Culicoides vectors of BTV in the post-genomic era: resources, bottlenecks to progress and future directions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culicoides biting midges (Diptera: Ceratopogonidae) are a major vector group responsible for the biological transmission of a wide variety of globally significant arboviruses, including bluetongue virus (BTV). In this review we examine current biological resources for the study of this genus, with a...

  10. The Cassava Genome: Current Progress, Future Directions.

    PubMed

    Prochnik, Simon; Marri, Pradeep Reddy; Desany, Brian; Rabinowicz, Pablo D; Kodira, Chinnappa; Mohiuddin, Mohammed; Rodriguez, Fausto; Fauquet, Claude; Tohme, Joseph; Harkins, Timothy; Rokhsar, Daniel S; Rounsley, Steve

    2012-03-01

    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance.

  11. Genome Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Sebastiani, Paola; Solovieff, Nadia

    The availability of high throughput technology for parallel genotyping has opened the field of genetics to genome-wide association studies (GWAS). These studies generate massive amount of genetic data that challenge investigators with issues related to data management, statistical analysis of large data sets, visualization, and annotation of results. We will review the common approach to analysis of GWAS data and then discuss options to learn more from these data.

  12. 2013 Progress Report -- DOE Joint Genome Institute

    SciTech Connect

    2013-11-01

    In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale generation of sequence data, complemented by orthogonal new capabilities to functionally annotate these large sequence data sets. Our Strategic Vision lays out a path to guide our decisions and ensure that the evolving set of experimental and computational capabilities available to DOE JGI users will continue to enable groundbreaking science.

  13. Progressive alignment of genomic signals by multiple dynamic time warping.

    PubMed

    Skutkova, Helena; Vitek, Martin; Sedlar, Karel; Provaznik, Ivo

    2015-11-21

    This paper presents the utilization of progressive alignment principle for positional adjustment of a set of genomic signals with different lengths. The new method of multiple alignment of signals based on dynamic time warping is tested for the purpose of evaluating the similarity of different length genes in phylogenetic studies. Two sets of phylogenetic markers were used to demonstrate the effectiveness of the evaluation of intraspecies and interspecies genetic variability. The part of the proposed method is modification of pairwise alignment of two signals by dynamic time warping with using correlation in a sliding window. The correlation based dynamic time warping allows more accurate alignment dependent on local homologies in sequences without the need of scoring matrix or evolutionary models, because mutual similarities of residues are included in the numerical code of signals.

  14. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  15. In situ quantification of genomic instability in breast cancer progression

    SciTech Connect

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  16. White matter lesion progression: A genome-wide search for genetic influences

    PubMed Central

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C; DeCarli, Charles; Fornage, Myriam; Sigurdsson, Sigurdur; Srikanth, Velandai; Trompet, Stella; Verhaaren, Benjamin FJ; Wolf, Christiane; Yang, Qiong; Adams, Hieab HH; Amouyel, Philippe; Beiser, Alexa; Buckley, Brendan M; Callisaya, Michele; Chauhan, Ganesh; de Craen, Anton JM; Dufouil, Carole; van Duijn, Cornelia M; Ford, Ian; Freudenberger, Paul; Gottesman, Rebecca F; Gudnason, Vilmundur; Heiss, Gerardo; Hofman, Albert; Lumley, Thomas; Martinez, Oliver; Mazoyer, Bernard; Moran, Chris; Niessen, Wiro J.; Phan, Thanh; Psaty, Bruce M; Satizabal, Claudia L; Sattar, Naveed; Schilling, Sabrina; Shibata, Dean K; Slagboom, P Eline; Smith, Albert; Stott, David J; Taylor, Kent D; Thomson, Russell; Töglhofer, Anna M; Tzourio, Christophe; van Buchem, Mark; Wang, Jing; Westendorp, Rudi GJ; Windham, B Gwen; Vernooij, Meike W; Zijdenbos, Alex; Beare, Richard; Debette, Stéphanie; Ikram, M Arfan; Jukema, J Wouter; Launer, Lenore J; Longstreth, W T; Mosley, Thomas H; Seshadri, Sudha; Schmidt, Helena; Schmidt, Reinhold

    2016-01-01

    Background and Purpose White matter lesion (WML) progression on magnetic resonance imaging (MRI) is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from 10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in seven cohorts risk models including demographics, vascular risk factors plus single nucleotide polymorphisms (SNPs) that have been shown to be associated cross-sectionally with WML in the current and previous association studies. Results A total of 1085 subjects showed WML progression. The heritability estimate for WML progression was low at 6.5%, and no SNPs achieved genome-wide significance (p-value < 5×10−8). Four loci were suggestive (p-value < 1×10−5) of an association with WML progression: 10q24.32 (rs10883817, p=1.46×10−6); 12q13.13 (rs4761974, p=8.71×10−7); 20p12.1 (rs6135309, p=3.69×10−6); and 4p15.31 (rs7664442, p=2.26×10−6). Variants that have been previously related to WML explained only 0.8% to 11.7% more of the variance in WML progression than age, vascular risk factors and baseline WML burden. Conclusions Common genetic factors contribute little to the progression of age-related WML in middle-aged and older adults. Future research on determinants of WML progression should focus more on environmental, life-style or host-related biological factors. PMID:26451028

  17. Progression of Structural Change in the Breast Cancer Genome

    DTIC Science & Technology

    2012-08-01

    mutations),! NanoString !Copy!Number!Variation!beta!( NanoString !CNV;!targeted!copy!number),!bisulfite!converted! RainDance!targeted!amplification...process,!To!send=will!begin!in!~1!month.!! Patient Sample Type Site Tumor Type Affy6.0 AmpliSeq2.0 NanoString CNV RainDance Mate-Pair RJH-MET-1 Tumor...during# progression/metastasis.# In#addition#to#the#genomeHwide#copy#number#analysis,#a#targeted#approach#was#undertaken#using#the# NanoString # Copy

  18. Personal genomes in progress: from the human genome project to the personal genome project.

    PubMed

    Lunshof, Jeantine E; Bobe, Jason; Aach, John; Angrist, Misha; Thakuria, Joseph V; Vorhaus, Daniel B; Hoehe, Margret R; Church, George M

    2010-01-01

    The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.

  19. Progress in Genome Editing Technology and Its Application in Plants

    PubMed Central

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented. PMID:28261237

  20. Progress in Genome Editing Technology and Its Application in Plants.

    PubMed

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented.

  1. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics.

    PubMed

    Lehner, Thomas; Senthil, Geetha; Addington, Anjené M

    2015-01-01

    After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery.

  2. Comparative studies on the structure of human adenovirus genomes 4, 7 and 21. Annual progress report 1 Feb 80-2 Feb 81

    SciTech Connect

    Padmanabhan, R.

    1980-02-01

    A sensitive method was developed to label the 5' termini of Ad DNA which was found to be applicable to Ad 7, Ad 4 and Ad 21 DNA due to the presence of a tyrosine-containing peptide covalently attached to these DNA molecules. Ad 7 vaccine strain was passaged in 293 cells and then grown in large amounts in suspension cultures of KB cells. The DNA was extracted and purified. Restriction enzyme analysis of vaccine and Greider Ad 7 strains revealed that the two strains gave identical cleavage patterns with 8 restriction enzymes. Ad 4 prototype strain (ATCC) have been passaged in 293 cells and then grown in large amounts in suspension cultures of human KB cells. The DNA from these virions have been extracted and purified. Ad 21 vaccine strain has been passaged in 293 cells and then the virus was grown in KB cell suspension cultures. We are currently in the process of isolating the DNA and analyzing its genomic organization with several restriction enzymes. We analyzed the efficiencies of different protocols for titering the live Ad vaccine strains Ad 4, Ad 7 and Ad 21 present in enteric coated tablets.

  3. Progress from chicken genetics to the chicken genome.

    PubMed

    Siegel, P B; Dodgson, J B; Andersson, L

    2006-12-01

    The chicken has a proud history, both in genetic research and as a source of food. Here we attempt to provide an overview of past contributions of the chicken in both arenas and to link those contributions to the near future from a genetic perspective. Companion articles will discuss current poultry genetics research in greater detail. The chicken was the first animal species in which Mendelian inheritance was demonstrated. A century later, the chicken was the first among farm animals to have its genome sequenced. Between these firsts, the chicken remained a key organism used in genetic research. Breeding programs, based on sound genetic principles, facilitated the global emergence of the chicken meat and egg industries. Concomitantly, the chicken served as a model whose experimental populations and mutant stocks were used in basic and applied studies with broad application to other species, including humans. In this paper, we review some of these contributions, trace the path from the origin of molecular genetics to the sequence of the chicken genome, and discuss the merits of the chicken as a model organism for furthering our understanding of biology.

  4. The emerging genomics and systems biology research lead to systems genomics studies.

    PubMed

    Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A; Chen, Zhongxue; Arbania, Hamid R; Liu, Jun S; Niemierko, Andrzej; Yang, Jack Y

    2014-01-01

    Synergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.

  5. Genome-wide association and linkage analyses localize a progressive retinal atrophy locus in Persian cats.

    PubMed

    Alhaddad, Hasan; Gandolfi, Barbara; Grahn, Robert A; Rah, Hyung-Chul; Peterson, Carlyn B; Maggs, David J; Good, Kathryn L; Pedersen, Niels C; Lyons, Leslie A

    2014-08-01

    Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.

  6. Progress toward a low budget reference grade genome assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reference quality de novo genome assemblies were once solely the domain of large, well-funded genome projects. While next-generation short read technology removed some of the cost barriers, accurate chromosome-scale assembly remains a real challenge. Here we present efforts to de novo assemble the...

  7. Genome editing: progress and challenges for medical applications.

    PubMed

    Carroll, Dana

    2016-11-15

    The development of the CRISPR-Cas platform for genome editing has greatly simplified the process of making targeted genetic modifications. Applications of genome editing are expected to have a substantial impact on human therapies through the development of better animal models, new target discovery, and direct therapeutic intervention.

  8. Data management tools for genomic applications: A progress report

    SciTech Connect

    Markowitz, V.M.; Chen, I-Min A.

    1993-09-01

    We report in this paper on the development of data management tools that allow scientist to construct and manipulate genomic data bases in terms of application-specific objects and protocols. We are developing tools for specifying genomic database structures, as well as for entering, changing, maintaining, browsing and querying data in genomic data bases. These tools are based on the Object-protocol Model (OPM) developed by us and target commercial relational database management systems which are widely used in molecular biology laboratories. OPM allows scientists to interact with genomic databases in terms of their own frame or reference, namely genomic objects and protocols. Databases developed using the data management tools are easier to use, manage, and adapt.

  9. Genome-wide association studies in maize: praise and stargaze

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...

  10. Adaptive radiations: From field to genomic studies

    PubMed Central

    Hodges, Scott A.; Derieg, Nathan J.

    2009-01-01

    Adaptive radiations were central to Darwin's formation of his theory of natural selection, and today they are still the centerpiece for many studies of adaptation and speciation. Here, we review the advantages of adaptive radiations, especially recent ones, for detecting evolutionary trends and the genetic dissection of adaptive traits. We focus on Aquilegia as a primary example of these advantages and highlight progress in understanding the genetic basis of flower color. Phylogenetic analysis of Aquilegia indicates that flower color transitions proceed by changes in the types of anthocyanin pigments produced or their complete loss. Biochemical, crossing, and gene expression studies have provided a wealth of information about the genetic basis of these transitions in Aquilegia. To obtain both enzymatic and regulatory candidate genes for the entire flavonoid pathway, which produces anthocyanins, we used a combination of sequence searches of the Aquilegia Gene Index, phylogenetic analyses, and the isolation of novel sequences by using degenerate PCR and RACE. In total we identified 34 genes that are likely involved in the flavonoid pathway. A number of these genes appear to be single copy in Aquilegia and thus variation in their expression may have been key for floral color evolution. Future studies will be able to use these sequences along with next-generation sequencing technologies to follow expression and sequence variation at the population level. The genetic dissection of other adaptive traits in Aquilegia should also be possible soon as genomic resources such as whole-genome sequencing become available. PMID:19528644

  11. The sheep genome reference sequence: a work in progress.

    PubMed

    Archibald, A L; Cockett, N E; Dalrymple, B P; Faraut, T; Kijas, J W; Maddox, J F; McEwan, J C; Hutton Oddy, V; Raadsma, H W; Wade, C; Wang, J; Wang, W; Xun, X

    2010-10-01

    Until recently, the construction of a reference genome was performed using Sanger sequencing alone. The emergence of next-generation sequencing platforms now means reference genomes may incorporate sequence data generated from a range of sequencing platforms, each of which have different read length, systematic biases and mate-pair characteristics. The objective of this review is to inform the mammalian genomics community about the experimental strategy being pursued by the International Sheep Genomics Consortium (ISGC) to construct the draft reference genome of sheep (Ovis aries). Component activities such as data generation, sequence assembly and annotation are described, along with information concerning the key researchers performing the work. This aims to foster future participation from across the research community through the coordinated activities of the consortium. The review also serves as a 'marker paper' by providing information concerning the pre-publication release of the reference genome. This ensures the ISGC adheres to the framework for data sharing established at the recent Toronto International Data Release Workshop and provides guidelines for data users.

  12. From genome to proteome: great progress in the domesticated silkworm (Bombyx mori L.).

    PubMed

    Zhou, Zhonghua; Yang, Huijuan; Zhong, Boxiong

    2008-07-01

    As the only truly domesticated insect, the silkworm not only has great economic value, but it also has value as a model for genetics and molecular biology research. Genomics and proteomics have recently shown vast potential to be essential tools in domesticated silkworm research, especially after the completion of the Bombyx mori genome sequence. This paper reviews the progress of the domesticated silkworm genome, particularly focusing on its genetic map, physical map and functional genome. This review also presents proteomics, the proteomic technique and its application in silkworm research.

  13. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

    PubMed Central

    Assad-Garcia, Nacyra; Kostylev, Maxim; Noskov, Vladimir N.; Wise, Kim S.; Karas, Bogumil J.; Stam, Jason; Montague, Michael G.; Hanly, Timothy J.; Enriquez, Nico J.; Ramon, Adi; Goldgof, Gregory M.; Richter, R. Alexander; Vashee, Sanjay; Chuang, Ray-Yuan; Winzeler, Elizabeth A.; Hutchison, Clyde A.; Gibson, Daniel G.; Smith, Hamilton O.; Glass, John I.; Venter, J. Craig

    2015-01-01

    The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ∼10% of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes. PMID:25654978

  14. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

    SciTech Connect

    Suzuki, Yo; Assad-Garcia, Nacyra; Kostylev, Maxim; Noskov, Vladimir N.; Wise, Kim S.; Karas, Bogumil J.; Stam, Jason; Montague, Michael G.; Hanly, Timothy J.; Enriquez, Nico J.; Ramon, Adi; Goldgof, Gregory M.; Richter, R. Alexander; Vashee, Sanjay; Chuang, Ray-Yuan; Winzeler, Elizabeth A.; Hutchison, Clyde A.; Gibson, Daniel G.; Smith, Hamilton O.; Glass, John I.; Venter, J. Craig

    2015-02-05

    The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here in this paper we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ~10%of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.

  15. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling

    DOE PAGES

    Suzuki, Yo; Assad-Garcia, Nacyra; Kostylev, Maxim; ...

    2015-02-05

    The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here in this paper we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmalmore » genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ~10%of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.« less

  16. Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication.

    PubMed

    Trávníček, Pavel; Ponert, Jan; Urfus, Tomáš; Jersáková, Jana; Vrána, Jan; Hřibová, Eva; Doležel, Jaroslav; Suda, Jan

    2015-10-01

    Nuclear genome size is an inherited quantitative trait of eukaryotic organisms with both practical and biological consequences. A detailed analysis of major families is a promising approach to fully understand the biological meaning of the extensive variation in genome size in plants. Although Orchidaceae accounts for ∼10% of the angiosperm diversity, the knowledge of patterns and dynamics of their genome size is limited, in part due to difficulties in flow cytometric analyses. Cells in various somatic tissues of orchids undergo extensive endoreplication, either whole-genome or partial, and the G1-phase nuclei with 2C DNA amounts may be lacking, resulting in overestimated genome size values. Interpretation of DNA content histograms is particularly challenging in species with progressively partial endoreplication, in which the ratios between the positions of two neighboring DNA peaks are lower than two. In order to assess distributions of nuclear DNA amounts and identify tissue suitable for reliable estimation of nuclear DNA content, we analyzed six different tissue types in 48 orchid species belonging to all recognized subfamilies. Although traditionally used leaves may provide incorrect C-values, particularly in species with progressively partial endoreplication, young ovaries and pollinaria consistently yield 2C and 1C peaks of their G1-phase nuclei, respectively, and are, therefore, the most suitable parts for genome size studies in orchids. We also provide new DNA C-values for 22 orchid genera and 42 species. Adhering to the proposed methodology would allow for reliable genome size estimates in this largest plant family. Although our research was limited to orchids, the need to find a suitable tissue with dominant 2C peak of G1-phase nuclei applies to all endopolyploid species.

  17. Ancient population genomics and the study of evolution

    PubMed Central

    Parks, M.; Subramanian, S.; Baroni, C.; Salvatore, M. C.; Zhang, G.; Millar, C. D.; Lambert, D. M.

    2015-01-01

    Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution. PMID:25487332

  18. Progress of the rainbow trout reference genome assembly project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainbow trout are the most widely cultivated cold freshwater fish in the world and an important model species for many research areas. Despite this importance, the complex nature of the rainbow trout genome (pseudotetraploid and high repeat content) has hindered the production of a high-quality refe...

  19. The ISCE ECG genome pilot challenge: a 2004 progress report.

    PubMed

    Kligfield, Paul; Badilini, Fabio; Brown, Barry; Helfenbein, Erich; Kohls, Mark

    2004-01-01

    The International Society for Computerized Electrocardiography (ISCE) "genome project" began in 2000 as an open-ended discussion of ECG database needs and opportunities. Cooperation within ISCE led to a "pilot challenge" of the database concept, which called for establishment of methodology for transmission, storage, and integrated re-analysis of digitized waveforms of three different ECG manufacturers. The present report documents the early implementation of that goal.

  20. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.

  1. DOE project on genome mapping and sequencing. Progress report, 1992

    SciTech Connect

    Evans, G.A.

    1992-12-31

    These efforts on the human genome project were initiated in September, 1990, to contribute towards completion of the human genome project physical mapping effort. In the original application, the authors proposed a novel strategy for constructing a physical map of human chromosome 11, based upon techniques derived in this group and by others. The original goals were to (1) produce a set of cosmid reference clones mapped to specific sites by high resolution fluorescence in situ hybridization, (2) produce a set of associated STS sequences and PCR primers for each site, (3) isolate YAC clones corresponding to each STS and, (4) construct YAC contigs such that > 90% of the chromosome would be covered by contigs of 2 mb or greater. Since that time, and with the advent of new technology and reagents, the strategy has been modified slightly but still retains the same goals as originally proposed. The authors have added a project to produce chromosome 11-specific cDNAs and determine the map location and DNA sequence of a selected portion of them.

  2. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential.

    PubMed

    Bogdan, Ryan; Salmeron, Betty Jo; Carey, Caitlin E; Agrawal, Arpana; Calhoun, Vince D; Garavan, Hugh; Hariri, Ahmad R; Heinz, Andreas; Hill, Matthew N; Holmes, Andrew; Kalin, Ned H; Goldman, David

    2017-01-13

    Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.

  3. Recent progress in genome engineering techniques in the silkworm, Bombyx mori.

    PubMed

    Daimon, Takaaki; Kiuchi, Takashi; Takasu, Yoko

    2014-01-01

    Rapid advances in genome engineering tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced palindromic repeats/CRISPR-associated (CRISPR/Cas) system, have enabled efficient gene knockout experiments in a wide variety of organisms. Here, we review the recent progress in targeted gene disruption techniques in the silkworm, Bombyx mori. Although efficiency of targeted mutagenesis was very low in an early experiment using ZFNs, recent studies have shown that TALENs can induce highly efficient mutagenesis of desired target genes in Bombyx. Notably, mutation frequencies induced by TALENs can reach more than 50% of G0 gametes. Thus, TALENs can now be used as a standard tool for gene targeting studies, even when mutant phenotypes are unknown. We also propose guidelines for experimental design and strategy for knockout experiments in Bombyx. Genome editing technologies will greatly increase the usefulness of Bombyx as a model for lepidopteran insects, the major agricultural pests, and lead to sophisticated breeding of Bombyx for use in sericulture and biotechnology.

  4. Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis

    PubMed Central

    Quilez, Javier; Martínez, Verónica; Woolliams, John A.; Sanchez, Armand; Pong-Wong, Ricardo; Kennedy, Lorna J.; Quinnell, Rupert J.; Ollier, William E. R.; Roura, Xavier; Ferrer, Lluís; Altet, Laura; Francino, Olga

    2012-01-01

    Background The current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection. Methodology/Principal Findings Genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ∼170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease. Conclusions/Significance We estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2–76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ∼0.29 in new samples and that the affection status was correctly predicted in 60

  5. The TB Structural Genomics Consortium: A decade of progress

    PubMed Central

    Chim, Nicholas; Habel, Jeff E.; Johnston, Jodie M.; Krieger, Inna; Miallau, Linda; Sankaranarayanan, Ramasamy; Morse, Robert P.; Bruning, John; Swanson, Stephanie; Kim, Haelee; Kim, Chang-Yub; Li, Hongye; Bulloch, Esther M.; Payne, Richard J.; Manos-Turvey, Alexandra; Hung, Li-Wei; Baker, Edward N.; Lott, J. Shaun; James, Michael N.G.; Terwilliger, Thomas C.; Eisenberg, David S.; Sacchettini, James C.; Goulding, Celia W.

    2012-01-01

    Summary The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately leads to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design. PMID:21247804

  6. Molecular genetics and genomics progress in urothelial bladder cancer.

    PubMed

    Netto, George J

    2013-11-01

    The clinical management of solid tumor patients has recently undergone a paradigm shift as the result of the accelerated advances in cancer genetics and genomics. Molecular diagnostics is now an integral part of routine clinical management in lung, colon, and breast cancer patients. In a disappointing contrast, molecular biomarkers remain largely excluded from current management algorithms of urologic malignancies. The need for new treatment alternatives and validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management is pressing. Identifying robust predictive biomarkers that can stratify response to newly introduced targeted therapeutics is another crucially needed development. The following is a brief discussion of some promising candidate biomarkers that may soon become a part of clinical management of bladder cancers.

  7. Genomic tools to improve progress and preserve variation for future generations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of genomic tools has greatly decreased generation intervals and increased genetic progress in dairy cattle, but faster selection cycles can also increase rates of inbreeding per unit of time. Average pedigree inbreeding of Holstein cows increased from 4.6% in 2000 to 5.6% in 2009 to 6.6% in 201...

  8. Cancer genome-sequencing study design.

    PubMed

    Mwenifumbo, Jill C; Marra, Marco A

    2013-05-01

    Discoveries from cancer genome sequencing have the potential to translate into advances in cancer prevention, diagnostics, prognostics, treatment and basic biology. Given the diversity of downstream applications, cancer genome-sequencing studies need to be designed to best fulfil specific aims. Knowledge of second-generation cancer genome-sequencing study design also facilitates assessment of the validity and importance of the rapidly growing number of published studies. In this Review, we focus on the practical application of second-generation sequencing technology (also known as next-generation sequencing) to cancer genomics and discuss how aspects of study design and methodological considerations - such as the size and composition of the discovery cohort - can be tailored to serve specific research aims.

  9. [Research progress in developing reporter systems for the enrichment of positive cells with targeted genome modification].

    PubMed

    Bai, Yichun; Xu, Kun; Wei, Zehui; Ma, Zheng; Zhang, Zhiying

    2016-01-01

    Targeted genome editing technology plays an important role in studies of gene function, gene therapy and transgenic breeding. Moreover, the efficiency of targeted genome editing is increased dramatically with the application of recently developed artificial nucleases such as ZFNs, TALENs and CRISPR/Cas9. However, obtaining positive cells with targeted genome modification is restricted to some extent by nucleases expression plasmid transfection efficiency, nucleases expression and activity, and repair efficiency after genome editing. Thus, the enrichment and screening of positive cells with targeted genome modification remains a problem that need to be solved. Surrogate reporter systems could be used to reflect the efficiency of nucleases indirectly and enrich genetically modified positive cells effectively, which may increase the efficiency of the enrichment and screening of positive cells with targeted genome modification. In this review, we mainly summarized principles and applications of reporter systems based on NHEJ and SSA repair mechanisms, which may provide references for related studies in future.

  10. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement

    PubMed Central

    Darling, Aaron E.; Mau, Bob; Perna, Nicole T.

    2010-01-01

    . Conclusions The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve. PMID:20593022

  11. The origins and progress of genomics research on Tef (Eragrostis tef).

    PubMed

    Girma, Dejene; Assefa, Kebebew; Chanyalew, Solomon; Cannarozzi, Gina; Kuhlemeier, Cris; Tadele, Zerihun

    2014-06-01

    Tef, Eragrostis tef (Zucc.) Trotter, is the most important cereal in Ethiopia. Tef is cultivated by more than five million small-scale farmers annually and constitutes the staple food for more than half of the population of 80 million. The crop is preferred by both farmers and consumers due to its beneficial traits associated with its agronomy and utilization. The genetic and phenotypic diversity of tef in Ethiopia is a national treasure of potentially global importance. In order for this diversity to be effectively conserved and utilized, a better understanding at the genomic level is necessary. In the recent years, tef has become the subject of genomic research in Ethiopia and abroad. Genomic-assisted tef improvement holds tremendous potential for improving productivity, thereby benefiting the smallholder farmers who have cultivated and relied on the crop for thousands of years. It is hoped that such research endeavours will provide solutions to some of the age-old problems of tef's husbandry. In this review, we provide a brief description of the genesis and progress of tef genomic research to date, suggest ways to utilize the genomic tools developed so far, discuss the potential of genomics to enable sustainable conservation and use of tef genetic diversity and suggest opportunities for the future research.

  12. Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease

    PubMed Central

    Uchiya, Kei-ichi; Tomida, Shuta; Nakagawa, Taku; Asahi, Shoki; Nikai, Toshiaki; Ogawa, Kenji

    2017-01-01

    Pulmonary disease caused by nontuberculous mycobacteria (NTM) is increasing worldwide. Mycobacterium avium is the most clinically significant NTM species in humans and animals, and comprises four subspecies: M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS), M. avium subsp. paratuberculosis (MAP), and M. avium subsp. hominissuis (MAH). To improve our understanding of the genetic landscape and diversity of M. avium and its role in disease, we performed a comparative genome analysis of 79 M. avium strains. Our analysis demonstrated that MAH is an open pan-genome species. Phylogenetic analysis based on single nucleotide variants showed that MAH had the highest degree of sequence variability among the subspecies, and MAH strains isolated in Japan and those isolated abroad possessed distinct phylogenetic features. Furthermore, MAP strains, MAS and MAA strains isolated from birds, and many MAH strains that cause the progression of pulmonary disease were grouped in each specific cluster. Comparative genome analysis revealed the presence of genetic elements specific to each lineage, which are thought to be acquired via horizontal gene transfer during the evolutionary process, and identified potential genetic determinants accounting for the pathogenic and host range characteristics of M. avium. PMID:28045086

  13. ING2 controls the progression of DNA replication forks to maintain genome stability

    PubMed Central

    Larrieu, Delphine; Ythier, Damien; Binet, Romuald; Brambilla, Christian; Brambilla, Elisabeth; Sengupta, Sagar; Pedeux, Rémy

    2009-01-01

    Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S-phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity. PMID:19730436

  14. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges

    PubMed Central

    Bianchi, Diana W

    2015-01-01

    Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment. PMID:22772565

  15. Genome-Wide Association Studies of Cancer

    PubMed Central

    Stadler, Zsofia K.; Thom, Peter; Robson, Mark E.; Weitzel, Jeffrey N.; Kauff, Noah D.; Hurley, Karen E.; Devlin, Vincent; Gold, Bert; Klein, Robert J.; Offit, Kenneth

    2010-01-01

    Knowledge of the inherited risk for cancer is an important component of preventive oncology. In addition to well-established syndromes of cancer predisposition, much remains to be discovered about the genetic variation underlying susceptibility to common malignancies. Increased knowledge about the human genome and advances in genotyping technology have made possible genome-wide association studies (GWAS) of human diseases. These studies have identified many important regions of genetic variation associated with an increased risk for human traits and diseases including cancer. Understanding the principles, major findings, and limitations of GWAS is becoming increasingly important for oncologists as dissemination of genomic risk tests directly to consumers is already occurring through commercial companies. GWAS have contributed to our understanding of the genetic basis of cancer and will shed light on biologic pathways and possible new strategies for targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers remains limited. PMID:20585100

  16. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability

    PubMed Central

    Iimori, Makoto; Watanabe, Sugiko; Kiyonari, Shinichi; Matsuoka, Kazuaki; Sakasai, Ryo; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Temporal regulation of microtubule dynamics is essential for proper progression of mitosis and control of microtubule plus-end tracking proteins by phosphorylation is an essential component of this regulation. Here we show that Aurora B and CDK1 phosphorylate microtubule end-binding protein 2 (EB2) at multiple sites within the amino terminus and a cluster of serine/threonine residues in the linker connecting the calponin homology and end-binding homology domains. EB2 phosphorylation, which is strictly associated with mitotic entry and progression, reduces the binding affinity of EB2 for microtubules. Expression of non-phosphorylatable EB2 induces stable kinetochore microtubule dynamics and delays formation of bipolar metaphase plates in a microtubule binding-dependent manner, and leads to aneuploidy even in unperturbed mitosis. We propose that Aurora B and CDK1 temporally regulate the binding affinity of EB2 for microtubules, thereby ensuring kinetochore microtubule dynamics, proper mitotic progression and genome stability. PMID:27030108

  17. Genome-wide association study of swine farrowing traits. Part I: genetic and genomic parameter estimates.

    PubMed

    Schneider, J F; Rempel, L A; Rohrer, G A

    2012-10-01

    The primary objective of this study was to determine genetic and genomic parameters among swine (Sus scrofa) farrowing traits. Genetic parameters were obtained using MTDFREML. Genomic parameters were obtained using GENSEL. Genetic and residual variances obtained from MTDFREML were used as priors for the Bayes C analysis of GENSEL. Farrowing traits included total number born (TNB), number born alive (NBA), number born dead (NBD), number stillborn (NSB), number of mummies (MUM), litter birth weight (LBW), and average piglet birth weight (ABW). Statistically significant heritabilities included TNB (0.09, P = 0.048), NBA (0.09, P = 0.041), LBW (0.20, P = 0.002), and ABW (0.26, P < 0.0001). Statistically significant genetic correlations included TNB-NBA (0.97, P < 0.0001), TNB-LBW (0.74, P < 0.0001), NBA-LBW (0.56, P < 0.0017), NSB-LBW (0.87, P < 0.0395), and LBW-ABW (0.63, P < 0.0002). Genetic parameters are similar to others found in the literature. The proportion of phenotypic variance explained by genomic markers (GP) generated by GENSEL was TNB (0.04), NBA (0.06), NBD (0.00), NSB (0.01), MUM (0.00), LBW (0.11), and ABW (0.31). Limited information is available in the literature about genomic parameters. Only the GP estimate for NSB is significantly lower than what has been published. The GP estimate for ABW is greater than the estimate for heritability found in this study. Other traits with significant heritability had GP estimates half the value of heritability. This research indicates that significant genetic markers will be found for TNB, NBA, LBW, and ABW that will have either immediate use in industry or provide a roadmap to further research with fine mapping or sequencing of areas of significance. Furthermore, these results indicate that genomic selection implemented at an early age would have similar annual progress as traditional selection, and could be incorporated along with traditional selection procedures to improve genetic progress of litter traits.

  18. Structure and Functional Studies of DEN-2 Virus Genome.

    DTIC Science & Technology

    1982-09-01

    Structure and Functional Studies on Dengue -2 Progress Report Virus Genome 1 Mar 82 - I Sep 82 6. PERFORMING ORO. REPORT NUMBER 7. AUTHOR(e) 8. CONTRACT OR...Identify by block number) Complementdry DNA synthesis of Dengue -2 RNA by avian reverse transcriptase in vitro. The size of the DNA copy of Dengue RNA is in...Unannounced 0 Justification ............ By........... Di.A b-Aio: i Availability Codes S Avail and (or 2 Abstract 1. Dengue -2 RNA (DEN-2 RNA) was extracted

  19. Drosophila Sld5 is essential for normal cell cycle progression and maintenance of genomic integrity

    SciTech Connect

    Gouge, Catherine A.; Christensen, Tim W.

    2010-09-10

    Research highlights: {yields} Drosophila Sld5 interacts with Psf1, PPsf2, and Mcm10. {yields} Haploinsufficiency of Sld5 leads to M-phase delay and genomic instability. {yields} Sld5 is also required for normal S phase progression. -- Abstract: Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.

  20. Progressive hemifacial atrophy. A natural history study.

    PubMed Central

    Miller, M T; Spencer, M A

    1995-01-01

    PURPOSE: To describe two very different natural history courses in 2 patients with hemifacial atrophy. Progressive hemifacial atrophy (Parry-Romberg syndrome, Romberg syndrome, PHA) is characterized by slowly progressive atrophy, frequently involving only one side of the face, primarily affecting the subcutaneous tissue and fat. The onset usually occurs during the first 2 decades of life. The cause and pathophysiology are unknown. Ophthalmic involvement is common, with progressive enophthalmos a frequent finding. Pupillary disturbances, heterochromia, uveitis, pigmentary disturbances of the ocular fundus, and restrictive strabismus have also been reported. Neurologic findings may be present, but the natural history and progression of ocular findings are often not described in the literature. METHODS: We studied the records and present findings of 2 patients with progressive hemifacial atrophy who were observed in our institution over a 10-year period. RESULTS: Both patients showed progression of ophthalmic findings, primarily on the affected side. One patient has had chronic uveitis with secondary cataract and glaucoma, in addition to retinal pigmentary changes. She also had a third-nerve paresis of the contralateral eye and mild seizure activity. The other patient had mild uveitis, some progression of unilateral retinal pigmentary changes, and a significant increase in hyperopia in the affected eye, in addition to hypotony at age 19 without a clear cause, but with secondary retinal and refractive changes. CONCLUSION: Ocular manifestations of progressive hemifacial atrophy are varied, but can progress from mild visual impairment to blindness. Images FIGURE 1 FIGURE 2 FIGURE 3A FIGURE 3B FIGURE 4 FIGURE 5 FIGURE 6 PMID:8719679

  1. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  2. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  3. Genomics and disease resistance studies in livestock☆

    PubMed Central

    Bishop, Stephen C; Woolliams, John A

    2014-01-01

    This paper considers the application of genetic and genomic techniques to disease resistance, the interpretation of data arising from such studies and the utilisation of the research outcomes to breed animals for enhanced resistance. Resistance and tolerance are defined and contrasted, factors affecting the analysis and interpretation of field data presented, and appropriate experimental designs discussed. These general principles are then applied to two detailed case studies, infectious pancreatic necrosis in Atlantic salmon and bovine tuberculosis in dairy cattle, and the lessons learnt are considered in detail. It is concluded that the rate limiting step in disease genetic studies will generally be provision of adequate phenotypic data, and its interpretation, rather than the genomic resources. Lastly, the importance of cross-disciplinary dialogue between the animal health and animal genetics communities is stressed. PMID:26339300

  4. Comparative genomics approaches to study organism similarities and differences

    SciTech Connect

    Wei, Liping; Liu, Yueyi; Dubchak, Inna; Shon, John; Park, John

    2002-06-01

    Comparative genomics is a large-scale, holistic approach that compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparative studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms. We discuss in detail the type of analyses that offer significant biological insights in the comparisons of (1) genome structure including overall genome statistics, repeats, genome rearrangement at both DNA and gene level, synteny, and breakpoints; (2) coding regions including gene content, protein content, orthologs, and paralogs; and (3) noncoding regions including the prediction of regulatory elements. We also briefly review the currently available computational tools in comparative genomics such as algorithms for genome-scale sequence alignment, gene identification, and nonhomology-based function prediction.

  5. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies.

    PubMed

    Zoldoš, Vlatka; Horvat, Tomislav; Lauc, Gordan

    2013-02-01

    Majority of eukaryotic proteins are glycosylated and their glycan moieties have numerous important structural, functional and regulatory roles. Because of structural complexity of glycans and technological limitations glycomics, and particularly glycoproteomics was not able to follow rapid progress in genomics and proteomics over last 30 years. However, the field of glycan has been progressing rapidly and first large-scale studies of the glycome have been completed recently. These studies have revealed significant differences in glycome composition between individuals, which may contribute to the human phenotypic variability. The current state-of-the-art in high-throughput glycomics and its integration with genomics, epigenomics and lipidomics is reviewed in this article.

  6. Genomics approaches to study musical aptitude.

    PubMed

    Oikkonen, Jaana; Järvelä, Irma

    2014-11-01

    Although music and other forms of art can develop in diverse directions, they are linked to the genetic profiles of populations. Hearing music is a strong environmental trigger that serves as an excellent model to study the crosstalk between genes and the environment. We propose that the ability to enjoy and practice music requires musical aptitude, which is a common and innate trait facilitating the enjoyment and practice of music. The innate drive for music can only have arisen by exposure to music, and it develops with motivation and training in musically rich environments. Recent genomic approaches have shown that the genes responsible for inner ear development, auditory pathways and neurocognitive processes may underlay musical aptitude. It is expected that genomic approaches can be applied to musical traits and will reveal new biological mechanisms that affect human evolution, brain function, and civilisation.

  7. Recurrent genomic alterations in sequential progressive leukoplakia and oral cancer: drivers of oral tumorigenesis?

    PubMed

    Cervigne, Nilva K; Machado, Jerry; Goswami, Rashmi S; Sadikovic, Bekim; Bradley, Grace; Perez-Ordonez, Bayardo; Galloni, Natalie Naranjo; Gilbert, Ralph; Gullane, Patrick; Irish, Jonathan C; Jurisica, Igor; Reis, Patricia P; Kamel-Reid, Suzanne

    2014-05-15

    A significant proportion (up to 62%) of oral squamous cell carcinomas (OSCCs) may arise from oral potential malignant lesions (OPMLs), such as leukoplakia. Patient outcomes may thus be improved through detection of lesions at a risk for malignant transformation, by identifying and categorizing genetic changes in sequential, progressive OPMLs. We conducted array comparative genomic hybridization analysis of 25 sequential, progressive OPMLs and same-site OSCCs from five patients. Recurrent DNA copy number gains were identified on 1p in 20/25 cases (80%) with minimal, high-level amplification regions on 1p35 and 1p36. Other regions of gains were frequently observed: 11q13.4 (68%), 9q34.13 (64%), 21q22.3 (60%), 6p21 and 6q25 (56%) and 10q24, 19q13.2, 22q12, 5q31.2, 7p13, 10q24 and 14q22 (48%). DNA losses were observed in >20% of samples and mainly detected on 5q31.2 (35%), 16p13.2 (30%), 9q33.1 and 9q33.29 (25%) and 17q11.2, 3p26.2, 18q21.1, 4q34.1 and 8p23.2 (20%). Such copy number alterations (CNAs) were mapped in all grades of dysplasia that progressed, and their corresponding OSCCs, in 70% of patients, indicating that these CNAs may be associated with disease progression. Amplified genes mapping within recurrent CNAs (KHDRBS1, PARP1, RAB1A, HBEGF, PAIP2, BTBD7) were selected for validation, by quantitative real-time PCR, in an independent set of 32 progressive leukoplakia, 32 OSSCs and 21 non-progressive leukoplakia samples. Amplification of BTBD7, KHDRBS1, PARP1 and RAB1A was exclusively detected in progressive leukoplakia and corresponding OSCC. BTBD7, KHDRBS1, PARP1 and RAB1A may be associated with OSCC progression. Protein-protein interaction networks were created to identify possible pathways associated with OSCC progression.

  8. Simplified DGS procedure for large-scale genome structural study.

    PubMed

    Jung, Yong-Chul; Xu, Jia; Chen, Jun; Kim, Yeong; Winchester, David; Wang, San Ming

    2009-11-01

    Ditag genome scanning (DGS) uses next-generation DNA sequencing to sequence the ends of ditag fragments produced by restriction enzymes. These sequences are compared to known genome sequences to determine their structure. In order to use DGS for large-scale genome structural studies, we have substantially revised the original protocol by replacing the in vivo genomic DNA cloning with in vitro adaptor ligation, eliminating the ditag concatemerization steps, and replacing the 454 sequencer with Solexa or SOLiD sequencers for ditag sequence collection. This revised protocol further increases genome coverage and resolution and allows DGS to be used to analyze multiple genomes simultaneously.

  9. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    PubMed

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/.

  10. Human genome libraries. Final progress report, February 1, 1994--August 31, 1997

    SciTech Connect

    Kao, Fa-Ten

    1998-01-01

    The goal of this program is to use a novel technology of chromosome microdissection and microcloning to construct chromosome region-specific libraries as resources for various human genome program studies. Region specific libraries have been constructed for the entire human chromosomes 2 and 18.

  11. The search for host genetic factors of HIV/AIDS pathogenesis in the post-genome era: progress to date and new avenues for discovery.

    PubMed

    Aouizerat, Bradley E; Pearce, C Leigh; Miaskowski, Christine

    2011-03-01

    Though pursuit of host genetic factors that influence the pathogenesis of HIV began over two decades ago, progress has been slow. Initial genome-level searches for variations associated with HIV-related traits have yielded interesting candidates, but less in the way of novel pathways to be exploited for therapeutic targets. More recent genome-wide association studies (GWAS) that include different phenotypes, novel designs, and that have examined different population characteristics suggest novel targets and affirm the utility of additional searches. Recent findings from these GWAS are reviewed, new directions for research are identified, and the promise of systems biology to yield novel insights is discussed.

  12. HCV Genome-Wide Genetic Analyses in Context of Disease Progression and Hepatocellular Carcinoma

    PubMed Central

    Donlin, Maureen J.; Lomonosova, Elena; Kiss, Alexi; Cheng, Xiaohong; Cao, Feng; Curto, Teresa M.; Di Bisceglie, Adrian; Tavis, John E.

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients. PMID

  13. [Progress in molecular biology study of DNA computer].

    PubMed

    Zhang, Zhi-Zhou; Zhao, Jian; He, Lin

    2003-09-01

    DNA (deoxyribonucleotide acids) computer is an emerging new study area that basically combines molecular biology study of DNA molecules and computational study on how to employ these specific molecules to calculate. In 1994 Adleman described his pioneering research on DNA computing in Science. This is the first experimental report on DNA computer study. In 2001 Benenson et al published a paper in Nature regarding a programmable and autonomous DNA computing device. Because of its Turing-like functions, the device is regarded as another milestone progress for DNA computer study. The main features of DNA computer are massively parallel computing ability and potential enormous data storage capacity. Comparing with conventional electronic computers, DNA molecules provide conceptually a revolution in computing, and more and more implications have been found in various disciplines. DNA computer studies have brought great progress not only in its own computing mechanisms, but also in DNA manipulation technologies especially nano-technology. This article presents the basic principles of DNA computer, its applications, its important relationship with genomic research and our comments on all above issues.

  14. Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube.

    PubMed

    Eckert, Mark A; Pan, Shawn; Hernandez, Kyle M; Loth, Rachel M; Andrade, Jorge; Volchenboum, Samuel L; Faber, Pieter; Montag, Anthony; Lastra, Ricardo; Peter, Marcus E; Yamada, S Diane; Lengyel, Ernst

    2016-12-01

    Accumulating evidence has supported the fallopian tube rather than the ovary as the origin for high-grade serous ovarian cancer (HGSOC). To understand the relationship between putative precursor lesions and metastatic tumors, we performed whole-exome sequencing on specimens from eight HGSOC patient progression series consisting of serous tubal intraepithelial carcinomas (STIC), invasive fallopian tube lesions, invasive ovarian lesions, and omental metastases. Integration of copy number and somatic mutations revealed patient-specific patterns with similar mutational signatures and copy-number variation profiles across all anatomic sites, suggesting that genomic instability is an early event in HGSOC. Phylogenetic analyses supported STIC as precursor lesions in half of our patient cohort, but also identified STIC as metastases in 2 patients. Ex vivo assays revealed that HGSOC spheroids can implant in the fallopian tube epithelium and mimic STIC lesions. That STIC may represent metastases calls into question the assumption that STIC are always indicative of primary fallopian tube cancers.

  15. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.

    PubMed

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  16. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

    PubMed Central

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelbagi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbonnaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security. PMID:26322050

  17. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE PAGES

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; ...

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  18. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    SciTech Connect

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelgabi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbannaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  19. A New Model Army: Emerging fish models to study the genomics of vertebrate Evo-Devo

    PubMed Central

    Braasch, Ingo; Peterson, Samuel M.; Desvignes, Thomas; McCluskey, Braedan M.; Batzel, Peter; Postlethwait, John H.

    2014-01-01

    Many fields of biology – including vertebrate Evo-Devo research – are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this ‘genomic tsunami’. Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies - for which we introduce the term ‘chromonome’ – should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era. PMID:25111899

  20. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo.

    PubMed

    Braasch, Ingo; Peterson, Samuel M; Desvignes, Thomas; McCluskey, Braedan M; Batzel, Peter; Postlethwait, John H

    2015-06-01

    Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.

  1. cDNA expression map of the human genome: Methods development and applications using brain cDNAs. Progress report, October 15, 1991--March 14, 1992

    SciTech Connect

    Sikela, J.M.

    1991-12-31

    The following describes progress on human brain cDNA sequencing and mapping that our laboratory has made over the past few months. It should be noted that our first funding installment for the first phase of this grant was obtained approximately two weeks ago. Therefore, the progress that is described represents efforts that were carried out without DOE Genome funds and thus largely are a continuation of pilot studies we began last year. We anticipate, now that DOE funds have arrived, that we will be able to significantly scale up our efforts and productivity.

  2. Complete Genome Sequence of Mycobacterium tuberculosis Strain MtURU-001, Isolated from a Rapidly Progressing Outbreak in Uruguay

    PubMed Central

    Greif, Gonzalo; Iraola, Gregorio; Berná, Luisa; Coitinho, Cecilia; Rivas, Carlos M.; Naya, Hugo

    2014-01-01

    Despite efficient control programs, large clonal outbreaks of tuberculosis (TB) may arise in low-risk populations. Recently, an unusual TB outbreak was reported in Uruguay, reaching an elevated disease attack rate (53 to 69%). Here, we report the genome sequence of the Mycobacterium tuberculosis strain associated with this rapidly progressing outbreak, named MtURU-001. PMID:24459279

  3. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era.

    PubMed

    Verstraeten, Aline; Theuns, Jessie; Van Broeckhoven, Christine

    2015-03-01

    Parkinson disease (PD) and Parkinson-plus syndromes are genetically heterogeneous neurological diseases. Initial studies into the genetic causes of PD relied on classical molecular genetic approaches in well-documented case families. More recently, these approaches have been combined with exome sequencing and together have identified 15 causal genes. Additionally, genome-wide association studies (GWASs) have discovered over 25 genetic risk factors. Elucidation of the genetic architecture of sporadic and familial parkinsonism, however, has lagged behind that of simple Mendelian conditions, suggesting the existence of features confounding genetic data interpretation. Here we discuss the successes and potential pitfalls of gene discovery in PD and related disorders in the post-genomic era. With an estimated 30% of trait variance currently unexplained, tackling current limitations will further expedite gene discovery and lead to increased application of these genetic insights in molecular diagnostics using gene panel and exome sequencing strategies.

  4. Genome-wide association study for semen quality traits in German Warmblood stallions.

    PubMed

    Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-08-01

    We performed a genome-wide association study for semen quality traits in 139 German Warmblood stallions. Stallions were genotyped using the Illumina equine SNP50 Beadchip. Traits analysed were de-regressed estimated breeding values (EBVs) for gel-free volume, sperm concentration, total number of sperm, progressive motility and the total number of progressively motile sperm. The GWAS revealed 29 SNPs on 12 different chromosomes as genome-wide significantly associated with semen quality traits. For ten genomic regions we could retrieve candidate genes influencing stallion fertility. Among the candidate genes, we could find the genes encoding cysteine-rich secretory proteins (CRISP1, CRISP2 and CRISP3). This was the first GWAS in horses performed for semen quality traits.

  5. Coordination: southeast continental shelf studies. Progress report

    SciTech Connect

    Menzel, D.W.

    1980-03-01

    The GABEX I experiment is designed to provide synoptic coverage of a series of Gulf Stream wave-like disturbances, the effect of these on the circulation of the entire shelf, and on biological and chemical processes. This study was initiated in February 1980 when current meter arrays were deployed. These meters will be removed in July 1980. In April three ships will simultaneously study the effects of Gulf Stream disturbances on the hydrography, chemistry, and biology of the shelf. One vessel will track a specific wave-like disturbance and provide synoptic coverage of the shelf area. The second vessel will determine the effect of shelf break processes on adjacent shelf water; and the third will study trace metal distributions in and outside of disturbances. Research progress is reported in continental shelf studies, nearshore and estuarine studies (diffusion of freshwater out of nearshore zone), tidal currents and material transport, and mixing of inlet plumes.

  6. Genomic study of ossification of the posterior longitudinal ligament of the spine

    PubMed Central

    IKEGAWA, Shiro

    2014-01-01

    Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common disease after the middle age. OPLL frequently causes serious neurological problems due to compression of the spinal cord and/or nerve roots. OPLL occurs in patients with monogenic metabolic diseases including rickets/osteomalacia and hypoparathyroidism; however most of OPLL is idiopathic and is considered as a multi-factorial (polygenic) disease influenced by genetic and environmental factors. Genomic studies for the genetic factors of OPLL have been conducted, mainly in Japan, including linkage and association studies. This paper reviews the recent progress in the genomic study of OPLL and comments on its future direction. PMID:25504229

  7. Progress and knowledge gaps in Culicoides genetics, genomics and population modelling: 2003 to 2014.

    PubMed

    Carpenter, Simon

    2016-09-30

    In the 10 years, since the last international meeting on Bluetongue virus (BTV) and related Orbiviruses in Sicily, there have been huge advances in explorations of the genetics and genomics of Culicoides, culminating in the imminent release of the rst full genome de novo assembly for the genus. In parallel, mathematical models used to predict Culicoides adult distribution, seasonality, and dispersal have also increased in sophistication, re ecting advances in available computational power and expertise. While these advances have focused upon the outbreaks of BTV in Europe, there is an opportunity to extend these techniques to other regions as part of global studies of the genus. This review takes a selective approach to examining the past decade of research in these areas and provides a personal viewpoint of future directions of research that may prove productive.

  8. Computational Tools for Genomic Studies in Plants.

    PubMed

    Martinez, Manuel

    2016-12-01

    In recent years, the genomic sequence of numerous plant species including the main crop species has been determined. Computational tools have been developed to deal with the issue of which plant has been sequenced and where is the sequence hosted. In this mini-review, the databases for genome projects, the databases created to host species/clade projects and the databases developed to perform plant comparative genomics are revised. Because of their importance in modern research, an in-depth analysis of the plant comparative genomics databases has been performed. This comparative analysis is focused in the common and specific computational tools developed to achieve the particular objectives of each database. Besides, emerging high-performance bioinformatics tools specific for plant research are commented. What kind of computational approaches should be implemented in next years to efficiently analyze plant genomes is discussed.

  9. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Cancer.gov

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  10. Genomic Analyses of Breast Cancer Progression Reveal Distinct Routes of Metastasis Emergence

    PubMed Central

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Brasch-Andersen, Charlotte; Lænkholm, Anne-Vibeke; Knoop, Ann S.; Jensen, Jeanette Dupont; Bak, Martin; Mollenhauer, Jan; Thomassen, Mads; Kruse, Torben A.

    2017-01-01

    A main controversy in cancer research is whether metastatic abilities are present in the most advanced clone of the primary tumor or result from independently acquired aberrations in early disseminated cancer cells as suggested by the linear and the parallel progression models, respectively. The genetic concordance between different steps of malignant progression is mostly unexplored as very few studies have included cancer samples separated by both space and time. We applied whole exome sequencing and targeted deep sequencing to 26 successive samples from six patients with metastatic estrogen receptor (ER)-positive breast cancer. Our data provide support for both linear and parallel progression towards metastasis. We report for the first time evidence of metastasis-to-metastasis seeding in breast cancer. Our results point to three distinct routes of metastasis emergence. This may have profound clinical implications and provides substantial novel molecular insights into the timing and mutational evolution of breast cancer metastasis. PMID:28276460

  11. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-09-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.

  12. Integrated genomic analysis of colorectal cancer progression reveals activation of EGFR through demethylation of the EREG promoter

    PubMed Central

    Qu, X; Sandmann, T; Frierson, H; Fu, L; Fuentes, E; Walter, K; Okrah, K; Rumpel, C; Moskaluk, C; Lu, S; Wang, Y; Bourgon, R; Penuel, E; Pirzkall, A; Amler, L; Lackner, M R; Tabernero, J; Hampton, G M; Kabbarah, O

    2016-01-01

    Key molecular drivers that underlie transformation of colonic epithelium into colorectal adenocarcinoma (CRC) are well described. However, the mechanisms through which clinically targeted pathways are activated during CRC progression have yet to be elucidated. Here, we used an integrative genomics approach to examine CRC progression. We used laser capture microdissection to isolate colonic crypt cells, differentiated surface epithelium, adenomas, carcinomas and metastases, and used gene expression profiling to identify pathways that were differentially expressed between the different cell types. We identified a number of potentially important transcriptional changes in developmental and oncogenic pathways, and noted a marked upregulation of EREG in primary and metastatic cancer cells. We confirmed this pattern of gene expression by in situ hybridization and observed staining consistent with autocrine expression in the tumor cells. Upregulation of EREG during the adenoma–carcinoma transition was associated with demethylation of two key sites within its promoter, and this was accompanied by an increase in the levels of epidermal growth factor receptor (EGFR) phosphorylation, as assessed by reverse-phase protein analysis. In CRC cell lines, we demonstrated that EREG demethylation led to its transcriptional upregulation, higher levels of EGFR phosphorylation, and sensitization to EGFR inhibitors. Low levels of EREG methylation in patients who received cetuximab as part of a phase II study were associated with high expression of the ligand and a favorable response to therapy. Conversely, high levels of promoter methylation and low levels of EREG expression were observed in tumors that progressed after treatment. We also noted an inverse correlation between EREG methylation and expression levels in several other cancers, including those of the head and neck, lung and bladder. Therefore, we propose that upregulation of EREG expression through promoter demethylation

  13. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research.

    PubMed

    Carlton, Jane M; Volkman, Sarah K; Uplekar, Swapna; Hupalo, Daniel N; Pereira Alves, João Marcelo; Cui, Liwang; Donnelly, Martin; Roos, David S; Harb, Omar S; Acosta, Monica; Read, Andrew; Ribolla, Paulo E M; Singh, Om P; Valecha, Neena; Wassmer, Samuel C; Ferreira, Marcelo; Escalante, Ananias A

    2015-09-01

    The study of the three protagonists in malaria-the Plasmodium parasite, the Anopheles mosquito, and the human host-is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world.

  14. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes.

    PubMed

    Wang, Xuewen; Bennetzen, Jeffrey L

    2015-02-01

    Nicotiana, a member of the Solanaceae family, is one of the most important research model plants, and of high agricultural and economic value worldwide. To better understand the substantial and rapid research progress with Nicotiana in recent years, its genomics, genetics, and nicotine gene studies are summarized, with useful web links. Several important genetic maps, including a high-density map of N. tabacum consisting of ~2,000 markers published in 2012, provide tools for genetics research. Four whole genome sequences are from allotetraploid species, including N. benthamiana in 2012, and three N. tabacum cultivars (TN90, K326, and BX) in 2014. Three whole genome sequences are from diploids, including progenitors N. sylvestris and N. tomentosiformis in 2013 and N. otophora in 2014. These and additional studies provide numerous insights into genome evolution after polyploidization, including changes in gene composition and transcriptome expression in N. tabacum. The major genes involved in the nicotine biosynthetic pathway have been identified and the genetic basis of the differences in nicotine levels among Nicotiana species has been revealed. In addition, other progress on chloroplast, mitochondrial, and NCBI-registered projects on Nicotiana are discussed. The challenges and prospects for genomic, genetic and application research are addressed. Hence, this review provides important resources and guidance for current and future research and application in Nicotiana.

  15. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era.

    PubMed

    Mora-Montes, Héctor M; Dantas, Alessandra da Silva; Trujillo-Esquivel, Elías; de Souza Baptista, Andrea R; Lopes-Bezerra, Leila M

    2015-09-01

    Sporotrichosis has been attributed for more than a century to one single etiological agent, Sporothrix schencki. Only eight years ago, it was described that, in fact, the disease is caused by several pathogenic cryptic species. The present review will focus on recent advances to understand the biology and virulence of epidemiologically relevant pathogenic species of the S. schenckii complex. The main subjects covered are the new clinical and epidemiological aspects including diagnostic and therapeutic challenges, the development of molecular tools, the genome database and the perspectives for study of virulence of emerging Sporothrix species.

  16. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies.

    PubMed

    Zhou, Xiaofan; Peris, David; Kominek, Jacek; Kurtzman, Cletus P; Hittinger, Chris Todd; Rokas, Antonis

    2016-09-16

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in non-model organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimental design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.

  17. In Silico Whole Genome Sequencer and Analyzer (iWGS): a Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    PubMed Central

    Zhou, Xiaofan; Peris, David; Kominek, Jacek; Kurtzman, Cletus P.; Hittinger, Chris Todd; Rokas, Antonis

    2016-01-01

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimental design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS. PMID:27638685

  18. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  19. in silico Whole Genome Sequencer & Analyzer (iWGS): a computational pipeline to guide the design and analysis of de novo genome sequencing studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding it...

  20. DNA methylation in schizophrenia: progress and challenges of epigenetic studies

    PubMed Central

    2012-01-01

    Schizophrenia is a severe psychiatric disease affecting about 1% of the world's population, with significant effects on patients and society. Genetic studies have identified several candidate risk genes or genomic regions for schizophrenia, and epidemiological studies have revealed several environmental risk factors. However, the etiology of schizophrenia still remains largely unknown. Epigenetic mechanisms such as DNA methylation and histone modifications can explain the interaction between genetic and environmental factors at the molecular level, and accumulating evidence suggests that such epigenetic alterations are involved in the pathophysiology of schizophrenia. However, replication studies to validate previous findings and investigations of the causality of epigenetic alterations in schizophrenia are needed. Here, we review epigenetic studies of schizophrenia patients using postmortem brains or peripheral tissues, focusing mainly on DNA methylation. We also highlight the recent progress and challenges in characterizing the potentially complex and dynamic patterns of epigenomic variations. Such studies are expected to contribute to our understanding of schizophrenia etiology and should provide novel opportunities for the development of therapeutic drugs. PMID:23234572

  1. Galaxy tools to study genome diversity

    PubMed Central

    2013-01-01

    Background Intra-species genetic variation can be used to investigate population structure, selection, and gene flow in non-model vertebrates; and due to the plummeting costs for genome sequencing, it is now possible for small labs to obtain full-genome variation data from their species of interest. However, those labs may not have easy access to, and familiarity with, computational tools to analyze those data. Results We have created a suite of tools for the Galaxy web server aimed at handling nucleotide and amino-acid polymorphisms discovered by full-genome sequencing of several individuals of the same species, or using a SNP genotyping microarray. In addition to providing user-friendly tools, a main goal is to make published analyses reproducible. While most of the examples discussed in this paper deal with nuclear-genome diversity in non-human vertebrates, we also illustrate the application of the tools to fungal genomes, human biomedical data, and mitochondrial sequences. Conclusions This project illustrates that a small group can design, implement, test, document, and distribute a Galaxy tool collection to meet the needs of a particular community of biologists. PMID:24377391

  2. Genomic Study of Cardiovascular Continuum Comorbidity

    PubMed Central

    Makeeva, O. A.; Sleptsov, A. A.; Kulish, E. V.; Barbarash, O. L.; Mazur, A. M.; Prokhorchuk, E. B.; Chekanov, N. N.; Stepanov, V. A.; Puzyrev, V. P.

    2015-01-01

    Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non–random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the “My Gene” genomic service (www.i–gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype “IHD only,” including those in the APOB, CD226, NKX2–5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the “IHD and AH” phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the

  3. Appearance traits in fish farming: progress from classical genetics to genomics, providing insight into current and potential genetic improvement

    PubMed Central

    Colihueque, Nelson; Araneda, Cristian

    2014-01-01

    Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years. PMID:25140172

  4. R for genome-wide association studies.

    PubMed

    Gondro, Cedric; Porto-Neto, Laercio R; Lee, Seung Hwan

    2013-01-01

    In recent years R has become de facto statistical programming language of choice for statisticians and it is also arguably the most widely used generic environment for analysis of high-throughput genomic data. In this chapter we discuss some approaches to improve performance of R when working with large SNP datasets.

  5. A progress report on seismic model studies

    USGS Publications Warehouse

    Healy, J.H.; Mangan, G.B.

    1963-01-01

    The value of seismic-model studies as an aid to understanding wave propagation in the Earth's crust was recognized by early investigators (Tatel and Tuve, 1955). Preliminary model results were very promising, but progress in model seismology has been restricted by two problems: (1) difficulties in the development of models with continuously variable velocity-depth functions, and (2) difficulties in the construction of models of adequate size to provide a meaningful wave-length to layer-thickness ratio. The problem of a continuously variable velocity-depth function has been partly solved by a technique using two-dimensional plate models constructed by laminating plastic to aluminum, so that the ratio of plastic to aluminum controls the velocity-depth function (Healy and Press, 1960). These techniques provide a continuously variable velocity-depth function, but it is not possible to construct such models large enough to study short-period wave propagation in the crust. This report describes improvements in our ability to machine large models. Two types of models are being used: one is a cylindrical aluminum tube machined on a lathe, and the other is a large plate machined on a precision planer. Both of these modeling techniques give promising results and are a significant improvement over earlier efforts.

  6. FY-1979 progress report. Hydrotransport plugging study.

    SciTech Connect

    Eyler, L.L.; Lombardo, N.J.

    1980-01-01

    The objective of the Hydrotransport Plugging Study is to investigate phenomena associated with predicting the onset and occurrence of plugging in pipeline transport of coal. This study addresses large particle transport plugging phenomena that may be encountered in run-of-mine operations. The project is being conducted in four tasks: review and analysis of current capabilities and available data, analytical modeling, experimental investigations, and unplugging and static start-up. This report documents work completed in FY-1979 as well as work currently in progress. A review of currently available prediction methods was completed. Applicability of the methods to large particle hydrotransport and the prediction of plugging was evaluated. It was determined that available models were inadequate, either because they are empirical and tuned to a given solid or because they are simplified analytical models incapable of accounting for a wide range of parameters. Complicated regression curve fit models lacking a physical basis cannot be extrapolated with confidence. Several specific conclusions were reached: Recent developments in mechanistic modeling, describing flow conditions at the limit of stationary deposition, provide the best basis for prediction and extrapolation of large particle flow. Certain modeled phenomena require further analytical and experimental investigation to improve confidence levels. Experimental work needs to be performed to support modeling and to provide an adequate data base for comparison purposes. No available model permits treatment of solids mixtures such as coal and rock.

  7. Promoter-Targeted Histone Acetylation of Chromatinized Parvoviral Genome Is Essential for the Progress of Infection

    PubMed Central

    Mäntylä, Elina; Salokas, Kari; Oittinen, Mikko; Aho, Vesa; Mäntysaari, Pekka; Palmujoki, Lassi; Kalliolinna, Olli; Ihalainen, Teemu O.; Niskanen, Einari A.; Timonen, Jussi

    2016-01-01

    ABSTRACT The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging and in situ proximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy. PMID:26842481

  8. Chemical genomics for studying parasite gene function and interaction

    PubMed Central

    Li, Jian; Yuan, Jing; Chen, Chin-chien; Inglese, James; Su, Xin-zhuan

    2013-01-01

    With the development of new technologies in genome sequencing, gene expression profiling, genotyping, and high-throughput screening of chemical compound libraries, small molecules are playing increasingly important roles in studying gene expression regulation, gene-gene interaction, and gene function. Here we briefly review and discuss some recent advancements in drug target identification and phenotype characterization using combinations of high-throughput screening of small-molecule libraries and various genome-wide methods such as whole genome sequencing, genome-wide association studies, and genome-wide expressional analysis. These approaches can be used to search for new drugs against parasitic infections, to identify drug targets or drug-resistance genes, and to infer gene function. PMID:24215777

  9. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens).

    PubMed

    de Lafontaine, Guillaume; Prunier, Julien; Gérardi, Sébastien; Bousquet, Jean

    2015-10-01

    The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor-derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.

  10. Study of heavy flavored particles. Progress report

    SciTech Connect

    Not Available

    1991-12-31

    This report discusses progress on the following topics: time-of- flight system; charmed baryon production and decays; D decays to baryons; measurement of sigma plus particles magnetic moments; and strong interaction coupling. (LSP)

  11. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    SciTech Connect

    Gilbert, David

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  12. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.

  13. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  14. The contribution of genomics to the study of Q fever.

    PubMed

    D'Amato, Felicetta; Eldin, Carole; Raoult, Didier

    2016-01-01

    Coxiella burnetii is the etiological agent of Q fever, a worldwide zoonosis that can result in large outbreaks. The birth of genomics and sequencing of C. burnetii strains has revolutionized many fields of study of this infection. Accurate genotyping methods and comparative genomic analysis have enabled description of the diversity of strains around the world and their link with pathogenicity. Genomics has also permitted the development of qPCR tools and axenic culture medium, facilitating the diagnosis of Q fever. Moreover, several pathophysiological mechanisms can now be predicted and therapeutic strategies can be determined thanks to in silico genome analysis. An extensive pan-genomic analysis will allow for a comprehensive view of the clonal diversity of C. burnetii and its link with virulence.

  15. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis

    PubMed Central

    Gibson, William J.; Hoivik, Erling A.; Halle, Mari K.; Taylor-Weiner, Amaro; Cherniack, Andrew D.; Berg, Anna; Holst, Frederik; Zack, Travis I.; Werner, Henrica M. J.; Staby, Kjersti M.; Rosenberg, Mara; Stefansson, Ingunn M.; Kusonmano, Kanthida; Chevalier, Aaron; Mauland, Karen K.; Trovik, Jone; Krakstad, Camilla; Giannakis, Marios; Hodis, Eran; Woie, Kathrine; Bjorge, Line; Vintermyr, Olav K.; Wala, Jeremiah A.; Lawrence, Michael S.; Getz, Gad; Carter, Scott L.; Beroukhim, Rameen; Salvesen, Helga B.

    2016-01-01

    Recent studies have detailed the genomic landscape of primary endometrial cancers, but their evolution into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors, and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed TCGA-data, identifying novel recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor NRIP1 in 12% of patients. We found that likely driver events tended to be shared by primary and metastatic tissue-samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity within endometrial cancers and relative homogeneity across metastatic sites. PMID:27348297

  16. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments

    PubMed Central

    Zhao, Xin-Qing

    2011-01-01

    Marine microorganisms are rich source for natural products which play important roles in pharmaceutical industry. Over the past decade, genome-based studies of marine microorganisms have unveiled the tremendous diversity of the producers of natural products and also contributed to the efficiency of harness the strain diversity and chemical diversity, as well as the genetic diversity of marine microorganisms for the rapid discovery and generation of new natural products. In the meantime, genomic information retrieved from marine symbiotic microorganisms can also be employed for the discovery of new medical molecules from yet-unculturable microorganisms. In this paper, the recent progress in the genomic research of marine microorganisms is reviewed; new tools of genome mining as well as the advance in the activation of orphan pathways and metagenomic studies are summarized. Genome-based research of marine microorganisms will maximize the biodiscovery process and solve the problems of supply and sustainability of drug molecules for medical treatments. PMID:21826184

  17. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  18. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

    PubMed Central

    2012-01-01

    The pace of exome and genome sequencing is accelerating, with the identification of many new disease-causing mutations in research settings, and it is likely that whole exome or genome sequencing could have a major impact in the clinical arena in the relatively near future. However, the human genomics community is currently facing several challenges, including phenotyping, sample collection, sequencing strategies, bioinformatics analysis, biological validation of variant function, clinical interpretation and validity of variant data, and delivery of genomic information to various constituents. Here we review these challenges and summarize the bottlenecks for the clinical application of exome and genome sequencing, and we discuss ways for moving the field forward. In particular, we urge the need for clinical-grade sample collection, high-quality sequencing data acquisition, digitalized phenotyping, rigorous generation of variant calls, and comprehensive functional annotation of variants. Additionally, we suggest that a 'networking of science' model that encourages much more collaboration and online sharing of medical history, genomic data and biological knowledge, including among research participants and consumers/patients, will help establish causation and penetrance for disease causal variants and genes. As we enter this new era of genomic medicine, we envision that consumer-driven and consumer-oriented efforts will take center stage, thus allowing insights from the human genome project to translate directly back into individualized medicine. PMID:22830651

  19. The International Pea Genome Sequencing Project: Sequencing and Assembly Progresses Updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Consortium for the Pea Genome Sequencing (ICPG) includes scientists from six countries around the world. Its aim is to provide a high quality reference of the pea genome to the scientific community as well as to the pea breeder community. The consortium proposed a strategy that int...

  20. Integrated Genome-Based Studies of Shewanella Ecophysiology

    SciTech Connect

    Zhou, Jizhong; He, Zhili

    2014-04-08

    As a part of the Shewanella Federation project, we have used integrated genomic, proteomic and computational technologies to study various aspects of energy metabolism of two Shewanella strains from a systems-level perspective.

  1. Genome-Wide Association Studies: Contribution of Genomics to Understanding Blood Pressure and Essential Hypertension

    PubMed Central

    2010-01-01

    Contemporary genomic tools now allow the fast and reliable genotyping of hundreds of thousands of variants and permit an unbiased interrogation of the common variability across the human genome. These technical advances have been the basis of numerous recent investigations of genes underlying complex genetic traits, and the results for blood pressure and hypertension have been of particular interest. The pathophysiology of the complex genetic trait blood pressure and hypertension is unclear. The heritability of essential hypertension is high and insights can be gained by finding associated genes. Current genome-wide association studies (GWAS) have identified 10 to 20 loci in or near genes that generally were not expected to be associated with blood pressure or essential hypertension; more significant variants will be discovered when even larger and more refined studies become available. This article gives a short introduction to GWAS and summarizes the current findings for blood pressure and hypertension. PMID:20425154

  2. Genomic imprinting--insights from studies in mice.

    PubMed

    Ferguson-Smith, Anne; Lin, Shau-Ping; Tsai, Chen-En; Youngson, Neil; Tevendale, Maxine

    2003-02-01

    A subset of mammalian genes is controlled by genomic imprinting. This process causes a gene to be expressed from only one chromosome homologue depending on whether it originally came from the egg or the sperm. Parental origin-specific gene regulation is controlled by epigenetic modifications to DNA and chromatin. Genomic imprinting is therefore a useful model system to study the epigenetic control of genome function. Here we consider the value of the mouse as an experimental organism to address questions about the role of imprinted genes, about the regulation of mono-allelic gene expression and about the evolution of the imprinting function and mechanism.

  3. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity.

    PubMed

    Farré, Marta; Robinson, Terence J; Ruiz-Herrera, Aurora

    2015-05-01

    Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.

  4. Personal Commitment, Support and Progress in Doctoral Studies

    ERIC Educational Resources Information Center

    Martinsuo, Miia; Turkulainen, Virpi

    2011-01-01

    Earlier research on doctoral education has associated study progress with the student's own capabilities and faculty support. The purpose of this study is to investigate how students' personal commitment and various forms of support, as well as their complementary effects, explain progress in doctoral studies. Data were collected by a…

  5. Recent progress on bioinformatics, functional genomics, and metabolomics research of cytochrome P450 and its impact on drug discovery.

    PubMed

    Zhang, Tao; Zhao, Mingzhu; Pang, Yushu; Zhang, Wen; Angela Liu, Limin; Wei, Dong-Qing

    2012-01-01

    The cytochrome P450 superfamily is responsible primarily for human drug metabolism, which is of critical importance for the drug discovery and development. Rapid advancement of bioinformatics, functional genomics and metabolomics has been made over the last decade. These disciplines are essential in target identification, lead discovery and optimization. In this review, we summarize the recent progress on cytochrome P450 and its role on drug metabolism in the context of bioinformatics, functional genomics and metabolomics. Data are integrated into various databases and web-based platforms on cytochrome P450. These research tools and resources are playing an increasingly important role in drug discovery, and are helping in achieving the ultimate goal of personalized medicine, that is, to prescribe personalized drugs according to each person's genetic makeup, metabolic level, and drug disposition.

  6. Have genomic discoveries in inflammatory bowel disease translated into clinical progress?

    PubMed

    Weizman, Adam V; Silverberg, Mark S

    2012-04-01

    Inflammatory bowel disease (IBD) is a heterogeneous disease that can be challenging to diagnose and manage. As a result, significant efforts have been made in attempting to identify clinical, genomic, and serologic markers of disease that can aid in patient assessment and treatment. Recent genomic discoveries have the potential to change clinical practice by identifying those susceptible to IBD, predict natural history and guide choice of therapy. Panels of genetic and genomic markers are more likely to emerge as clinical tools, as opposed to individual allelic variants. Serology and biomarkers are already being used and guiding management but await integration with genomic panels before achieving their maximal potential. This article reviews the current state of IBD genetics and evolving molecular approaches that may have potential clinical impact.

  7. 78 FR 47674 - Genome in a Bottle Consortium-Progress and Planning Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ...: select appropriate sources for whole genome RMs and identify or design synthetic DNA constructs that... and synthetic DNA RMs along with the methods (documentary standards) and reference data necessary...

  8. Genome-Wide Association Studies and Liver Disease

    PubMed Central

    Speliotes, Elizabeth K.

    2016-01-01

    Sequencing of the human genome has opened up many opportunities to learn about our own genetic susceptibilities to disease. In this Foreword to this issue of Seminars in Liver Disease, I provide some required background to understanding genome-wide association analyses in general, including a list of terms (Table 1) often used in such studies. Five areas of particular significance are then reviewed in detail in the articles that follow. PMID:26676811

  9. Use of information theory to study genome sequences

    NASA Astrophysics Data System (ADS)

    Ohya, Masanori; Sato, Keiko

    2000-12-01

    The genome sequence carries information about life as an order of four bases. It is considered that this order indicates a special code structure. In this paper we discuss how the mutual entropy, the main concept in Shannon's communication theory, can be used to study genome sequences, and how a measure introduced in our previous paper [10] for the analysis of similarities of code structures is applied for examining the coding structure of several species, in particular, HIV-1.

  10. Coordination: southeast continental shelf studies. Progress report

    SciTech Connect

    Menzel, D.W.

    1981-02-01

    The objectives are to identify important physical, chemical and biological processes which affect the transfer of materials on the southeast continental shelf, determine important parameters which govern observed temporal and spatial varibility on the continental shelf, determine the extent and modes of coupling between events at the shelf break and nearshore, and determine physical, chemical and biological exchange rates on the inner shelf. Progress in meeting these research objectives is presented. (ACR)

  11. Integrated genome based studies of Shewanella ecophysiology

    SciTech Connect

    Saffarini, Daad A

    2013-03-07

    Progress is reported in these areas: Regulation of anaerobic respiration by cAMP receptor protein and role of adenylate cyclases; Identification of an octaheme c cytochrome as the terminal sulfite reductase in S. oneidensis MR-1; Identification and analysis of components of the electron transport chains that lead to reduction of thiosulfate, tetrathionate, and elemental sulfur in MR-1; Involvement of pili and flagella in metal reduction by S. oneidensis MR-1; and work suggesting that HemN1 is the major enzyme that is involved in heme biosynthesis under anaerobic conditions.

  12. Study of Transposable Elements and Their Genomic Impact.

    PubMed

    Muñoz-Lopez, Martin; Vilar-Astasio, Raquel; Tristan-Ramos, Pablo; Lopez-Ruiz, Cesar; Garcia-Pérez, Jose L

    2016-01-01

    Transposable elements (TEs) have been considered traditionally as junk DNA, i.e., DNA sequences that despite representing a high proportion of genomes had no evident cellular functions. However, over the last decades, it has become undeniable that not only TE-derived DNA sequences have (and had) a fundamental role during genome evolution, but also TEs have important implications in the origin and evolution of many genomic disorders. This concise review provides a brief overview of the different types of TEs that can be found in genomes, as well as a list of techniques and methods used to study their impact and mobilization. Some of these techniques will be covered in detail in this Method Book.

  13. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  14. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia.

    PubMed

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-03-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38-0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear.

  15. Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue

    SciTech Connect

    Pohjanvirta, Raimo Boutros, Paul C.; Moffat, Ivy D.; Linden, Jere; Wendelin, Dominique; Okey, Allan B.

    2008-07-01

    Acute progressive feed restriction (APFR) represents a specific form of caloric restriction in which feed availability is increasingly curtailed over a period of a few days to a few weeks. It is often used for control animals in toxicological and pharmacological studies on compounds causing body weight loss to equalize weight changes between experimental and control groups and thereby, intuitively, to also set their metabolic states to the same phase. However, scientific justification for this procedure is lacking. In the present study, we analyzed by microarrays the impact on hepatic gene expression in rats of two APFR regimens that caused identical diminution of body weight (19%) but differed slightly in duration (4 vs. 10 days). In addition, white adipose tissue (WAT) was also subjected to the transcriptomic analysis on day-4. The data revealed that the two regimens led to distinct patterns of differentially expressed genes in liver, albeit some major pathways of energy metabolism were similarly affected (particularly fatty acid and amino acid catabolism). The reason for the divergence appeared to be entrainment by the longer APFR protocol of peripheral oscillator genes, which resulted in derailment of circadian rhythms and consequent interaction of altered diurnal fluctuations with metabolic adjustments in gene expression activities. WAT proved to be highly unresponsive to the 4-day APFR as only 17 mRNA levels were influenced by the treatment. This study demonstrates that body weight is a poor proxy of metabolic state and that the customary protocols of feed restriction can lead to rhythm entrainment.

  16. Proteomic and genomic studies of non-alcoholic fatty liver disease--clues in the pathogenesis.

    PubMed

    Lim, Jun Wei; Dillon, John; Miller, Michael

    2014-07-14

    Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.

  17. Genome-wide association studies of chronic kidney disease: what have we learned?

    PubMed Central

    O'Seaghdha, Conall M.; Fox, Caroline S.

    2015-01-01

    The past 3 years have witnessed a dramatic expansion in our knowledge of the genetic determinants of estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD). However, heritability estimates of eGFR indicate that we have only identified a small proportion of the total heritable contribution to the phenotypic variation. The majority of associations reported from genome-wide association studies identify genomic regions of interest and further work will be required to identify the causal variants responsible for a specific phenotype. Progress in this area is likely to stem from the identification of novel risk genotypes, which will offer insight into the pathogenesis of disease and potential novel therapeutic targets. Follow-up studies stimulated by findings from genome-wide association studies of kidney disease are already yielding promising results, such as the identification of an association between urinary uromodulin levels and incident CKD. Although this work is at an early stage, prospects for progress in our understanding of CKD and its treatment look more promising now than at any point in the past. PMID:22143329

  18. Construction of a genome-wide human BAC-Unigene resource. Final progress report, 1989--1996

    SciTech Connect

    Lim, C.S.; Xu, R.X.; Wang, M.

    1996-12-31

    Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes (non-redundant, unigene sets of cDNA representing EST clusters) are available for human alone. A total of 44,000 Unigene cDNA clones have been supplied by Research Genetics. Unigenes, or cDNAs are excellent resource for map building for two reasons. Firstly, they exist in two alternative forms -- as both sequence information for PCR primer pairs, and cDNA clones -- thus making library screening by colony hybridization as well as pooled library PCR possible. The authors have developed an efficient and robust procedure to screen genomic libraries with large number of DNA probes. Secondly, the linkage and order of expressed sequences, or genes are highly conserved among human, mouse and other mammalian species. Therefore, mapping with cDNA markers rather than random anonymous STSs will greatly facilitate comparative, evolutionary studies as well as physical map building. They have currently deconvoluted over 10,000 Unigene probes against a 4X coverage human BAC clones from the approved library D by high density colony hybridization method. 10,000 batches of Unigenes are arrayed in an imaginary 100 X 100 matrix from which 100 row pools and 100 column pools are obtained. Library filters are hybridized with pooled probes, thus reducing the number of hybridization required for addressing the positives for each Unigene from 10,000 to 200. Details on the experimental scheme as well as daily progress report is posted on the Web site (http://www.tree.caltech.edu).

  19. Genome-wide study of correlations between genomic features and their relationship with the regulation of gene expression

    PubMed Central

    Kravatsky, Yuri V.; Chechetkin, Vladimir R.; Tchurikov, Nikolai A.; Kravatskaya, Galina I.

    2015-01-01

    The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics. We developed the criteria for the assessment of genome track inhomogeneity and correlations between two genome tracks. We also developed a software package, Genome Track Analyzer, based on this theory. The theory and software were tested on simulated data and were applied to the study of correlations between CpG islands and transcription start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the H. sapiens genome. Significant correlations between transcription start sites on the forward and the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/. PMID:25627242

  20. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    PubMed Central

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  1. Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm

    PubMed Central

    Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. PMID:25573960

  2. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation

    PubMed Central

    Serrano, Lourdes; Martínez-Redondo, Paloma; Marazuela-Duque, Anna; Vazquez, Berta N.; Dooley, Scott J.; Voigt, Philipp; Beck, David B.; Kane-Goldsmith, Noriko; Tong, Qiang; Rabanal, Rosa M.; Fondevila, Dolors; Muñoz, Purificación; Krüger, Marcus; Tischfield, Jay A.; Vaquero, Alejandro

    2013-01-01

    The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1–3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle. PMID:23468428

  3. BACs as tools for the study of genomic imprinting.

    PubMed

    Tunster, S J; Van De Pette, M; John, R M

    2011-01-01

    Genomic imprinting in mammals results in the expression of genes from only one parental allele. Imprinting occurs as a consequence of epigenetic marks set down either in the father's or the mother's germ line and affects a very specific category of mammalian gene. A greater understanding of this distinctive phenomenon can be gained from studies using large genomic clones, called bacterial artificial chromosomes (BACs). Here, we review the important applications of BACs to imprinting research, covering physical mapping studies and the use of BACs as transgenes in mice to study gene expression patterns, to identify imprinting centres, and to isolate the consequences of altered gene dosage. We also highlight the significant and unique advantages that rapid BAC engineering brings to genomic imprinting research.

  4. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.

    PubMed

    Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin

    2016-10-13

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions.

  5. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  6. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma

    PubMed Central

    Chahal, Harvind S.; Wu, Wenting; Ransohoff, Katherine J.; Yang, Lingyao; Hedlin, Haley; Desai, Manisha; Lin, Yuan; Dai, Hong-Ji; Qureshi, Abrar A.; Li, Wen-Qing; Kraft, Peter; Hinds, David A.; Tang, Jean Y.; Han, Jiali; Sarin, Kavita Y.

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10−8, logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC. PMID:27539887

  7. Using high-throughput genomics to study hepatitis C: what determines the outcome of infection?

    PubMed Central

    Walters, Kathie-Anne; Katze, Michael G.

    2009-01-01

    High-throughput genomics methods are now being used to study a wide variety of viral diseases, in an effort to understand how host responses to infection can lead either to efficient elimination of the pathogen or the development of severe disease. This article reviews how gene expression studies are addressing important clinical issues related to hepatitis C virus infection, in which some 15–25% of infected individuals are able to clear the virus without treatment, while the remainder progress to chronic liver disease that can lead to cirrhosis and death. Similar methods are also being used in an effort to identify the mechanisms underlying the failure of some hepatitis C patients to respond to interferon-α/ribavirin therapy. By providing a detailed picture of virus-host interactions, high-throughput genomics could potentially lead to the identification of novel cellular targets for the treatment of hepatitis C. PMID:19135090

  8. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    SciTech Connect

    TIEDJE, JAMES M; KONSTANTINIDIS, KOSTAS; WORDEN, MARK

    2014-01-08

    The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The tasks supporting this aim are: to study genetic and ecophysiological bases defining the core and diversification of Shewanella species; to determine gene content patterns along redox gradients; and to Investigate the evolutionary processes, patterns and mechanisms of Shewanella.

  9. Structure and Functional Studies on Dengue-2 Virus Genome

    DTIC Science & Technology

    1986-03-01

    AD STRUCTURE AND FUNCTIONAL STUDIES ON DENGUE -2 VIRUS GENOME FINAL Report Lfl C’) Radha Krishnan Padmanabhan, Ph.D. 0) March 1, 1986 Supported by U.S...and Functional Studies on Dengue -2 Virus Genome 12. PERSONAL AUTHOR(S) Radha Krishnan Padmanabhan 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF...3’-end of Dengue RNA in order to facilitate cDNA synthesis by oligo d(T) priming as proposed in the original research project. 2. We also showed that

  10. Structure and Functional Studies on Dengue-2 Virus Genome

    DTIC Science & Technology

    1986-03-01

    AD_ _ _ Lfl oSTRUCTURE AND FUNCTIONAL STUDIES ON DENGUE -2 VIRUS GENOME 0Annual Report Radha Krishnan Padmanabhan, Ph.D. March 1, 1986 Supported by...Studies on Dengue -2 Virus Genome 12 PERSONAL AUTHOR(S) Radha Krishnan Padmanabhan 13a TYPE OF REPORT 1 3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day...analysis of these clones totalling 06 01 14,586 nucleotides: Deduced amino acid sequences of dengue virI 19 ABSTRACT (Continue on reverse of

  11. Advances in genome studies in plants and animals.

    PubMed

    Appels, R; Nystrom-Persson, J; Keeble-Gagnere, G

    2014-03-01

    The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.

  12. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    PubMed Central

    Winham, Stacey J; Biernacka, Joanna M.

    2013-01-01

    Background Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift towards genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. Methods We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. Results Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychological and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. Conclusions Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry. PMID:23808649

  13. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].

    PubMed

    Li, Hao; Qiu, Shaofu; Song, Hongbin

    2013-10-04

    In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.

  14. Evaluation of Genomic Instability as an Early Event in the Progression of Breast Cancer

    DTIC Science & Technology

    2006-04-01

    dysfunctional telomeres and genomic instability implies that shortened telomeres are also associated with altered gene expression. The latter is a primary...2005;173:610-4. 29. Odagiri E, Kanada N, Jibiki K, Demura R, Aikawa E, Demura H. Reduction of telomeric length and c-erbB-2 gene amplification in human...loss or structural rearrangement of a critical gene or genes - occurs in virtually all cancers [6]. The phenotype of a tumor is a reflection of its

  15. Genome-Wide Analysis of Copy Number Variation Identifies Candidate Gene Loci Associated with the Progression of Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Zain, Shamsul Mohd; Mohamed, Rosmawati; Cooper, David N.; Razali, Rozaimi; Rampal, Sanjay; Mahadeva, Sanjiv; Chan, Wah-Kheong; Anwar, Arif; Rosli, Nurul Shielawati Mohamed; Mahfudz, Anis Shafina; Cheah, Phaik-Leng; Basu, Roma Choudhury; Mohamed, Zahurin

    2014-01-01

    Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in ‘second hit’ hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH. PMID:24743702

  16. [Study progress in Sinomenium acutum (Thunb.) Rehd. et Wils].

    PubMed

    Wang, Yan; Zhou, Liling; Li, Rui

    2002-03-01

    This article reviewed the progress in the study of the pharmacognosy, chemical compositions, pharmacological actions and clinical practices of Sinomenium acutum (Thunb.) Rehd. et Wils. An expectation for the further development and utilization of this plant was put forward.

  17. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View across the International Centers of Excellence for Malaria Research

    PubMed Central

    Carlton, Jane M.; Volkman, Sarah K.; Uplekar, Swapna; Hupalo, Daniel N.; Alves, João Marcelo Pereira; Cui, Liwang; Donnelly, Martin; Roos, David S.; Harb, Omar S.; Acosta, Monica; Read, Andrew; Ribolla, Paulo E. M.; Singh, Om P.; Valecha, Neena; Wassmer, Samuel C.; Ferreira, Marcelo; Escalante, Ananias A.

    2015-01-01

    The study of the three protagonists in malaria—the Plasmodium parasite, the Anopheles mosquito, and the human host—is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world. PMID:26259940

  18. EPA releases progress report on hydraulic fracturing study

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) provided a 21 December progress report on its ongoing national study about the potential impacts of hydraulic fracturing on drinking water resources. The agency said that a draft of the congressionally requested study will be released in 2014 for public and peer review and that its progress report does not draw conclusions about the potential impacts of hydraulic fracturing, often referred to as fracking.

  19. Case Study Evaluations: A Decade of Progress?

    ERIC Educational Resources Information Center

    Yin, Robert K.

    1997-01-01

    In the last 10 years, there has been increased use of case study methodology, with accompanying refinement and improvement of the methods. Case studies have become legitimate research methods in evaluation, but it is too soon to say whether improvements in methodology are really resulting in improvements in the case studies conducted. (SLD)

  20. A super powerful method for genome wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-Wide Association Studies shed light on the identification of genes underlying human diseases and agriculturally important traits. This potential has been shadowed by false positive findings. The Mixed Linear Model (MLM) method is flexible enough to simultaneously incorporate population struct...

  1. Genomic Diversity and the Microenvironment as Drivers of Progression in DCIS

    DTIC Science & Technology

    2015-10-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The project is designed to test whether genetic and/or tumor environmental heterogeneity is a...TERMS DCIS, intra-tumor heterogeneity, genetic diversity, phenotypic diversity, somatic evolution, microenvironment, mammographic biomarkers 16...DCIS, cancer progression, intra-tumor heterogeneity, genetic diversity, phenotypic diversity, somatic evolution, microenvironment, mammographic

  2. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  3. Studies in genetic discrimination. Final progress report

    SciTech Connect

    Not Available

    1994-06-01

    We have screened 1006 respondents in a study of genetic discrimination. Analysis of these responses has produced evidence of the range of institutions engaged in genetic discrimination and demonstrates the impact of this discrimination on the respondents to the study. We have found that both ignorance and policy underlie genetic discrimination and that anti-discrimination laws are being violated.

  4. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    PubMed Central

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  5. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity

    PubMed Central

    McDonald, Karin R.; Pourbozorgi-Langroudi, Parham; Cristea, Ileana M.; Zakian, Virginia A.; Capra, John A.; Sabouri, Nasim

    2016-01-01

    Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5’-to-3’ DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These

  6. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    SciTech Connect

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  7. Elucidation and pharmacological targeting of novel molecular drivers of follicular lymphoma progression | Office of Cancer Genomics

    Cancer.gov

    Follicular lymphoma (FL), the most common indolent subtype of non-Hodgkin's lymphoma, is associated with a relatively long overall survival rate ranging from 6 to 10 years from time of diagnosis. However, in 20-60% of FL patients, transformation to aggressive diffuse large B-cell lymphoma (DLBCL) reduces median survival to only 1.2 years. The specific functional and genetic determinants of FL transformation remain elusive, and genomic alterations underlying disease advancement have only been identified for a subset of cases.

  8. Applying functional genomics research to the study of pig reproduction.

    PubMed

    Pomp, D; Caetano, A R; Bertani, G R; Gladney, C D; Johnson, R K

    2001-01-01

    Functional genomics is an experimental approach that incorporates genome-wide or system-wide experimentation, expanding the scope of biological investigation from studying single genes to studying potentially all genes at once in a systematic manner. This technology is highly appealing because of its high throughput and relatively low cost. Furthermore, analysis of gene expression using microarrays is likely to be more biologically relevant than the conventional paradigm of reductionism, because it has the potential to uncover new biological connections between genes and biochemical pathways. However, functional genomics is still in its infancy, especially with regard to the study of pig reproduction. Currently, efforts are centred on developing the necessary resources to enable high throughput evaluation and comparison of gene expression. However, it is clear that in the near future functional genomics will be applied on a large scale to study the biology and physiology of reproduction in pigs, and to understand better the complex nature of genetic control over polygenic characteristics, such as ovulation rate and litter size. We can look forward to generating a significant amount of new data on differences in gene expression between genotypes, treatments, or at various temporal and spatial coordinates within a variety of reproductively relevant systems. Along with this capability will be the challenge of collating, analysing and interpreting datasets that are orders of magnitude more extensive and complex than those currently used. Furthermore, integration of functional genomics with traditional genetic approaches and with detailed analysis of the proteome and relevant whole animal phenotypes will be required to make full use of this powerful new experimental paradigm as a beneficial research tool.

  9. Recent Progress in Presolar Grain Studies.

    PubMed

    Amari, Sachiko

    2014-01-01

    Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies.

  10. Recent Progress in Presolar Grain Studies

    PubMed Central

    Amari, Sachiko

    2014-01-01

    Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies. PMID:26819886

  11. Genomic approaches to studying the human microbiota

    PubMed Central

    Weinstock, George M.

    2013-01-01

    The human body is colonized by a vast array of microbes, which form communities of bacteria, viruses and microbial eukaryotes that are specific to each anatomical environment. Every community must be studied as a whole because many organisms have never been cultured independently, and this poses formidable challenges. The advent of next-generation DNA sequencing has allowed more sophisticated analysis and sampling of these complex systems by culture-independent methods. These methods are revealing differences in community structure between anatomical sites, between individuals, and between healthy and diseased states, and are transforming our view of human biology. PMID:22972298

  12. Human genome research and the public interest: Progress notes from an American Science Policy Experiment

    SciTech Connect

    Juengst, E.T. )

    1994-01-01

    This essay reviews the efforts of the US Human Genome Project to anticipate and address the ethical, legal, and social implications of new advances in human genetics. Since 1990, approximately $10 million has been awarded by the National Institutes of Health and the DOE, in support of 65 research, education, and public discussion projects. These projects address four major areas of need: (1) the need for both client-centered assessments of new genetic services and for improved knowledge of the psychosocial and ethnocultural factors that shape clients' clinical genetic experiences; (2) the need for clear professional policies regarding human-subject research, clinical practical standards, and public health goals in human genetics; (3) the need for social policy protection against unfair access to and use of personal genetic information; (4) the need for improved public and professional understanding and discussion of these issues. The Human Genome Project's goal is to have defined, by 1995, policy options and programs capable of addressing these needs. 47 refs.

  13. Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heralds a new era.

    PubMed

    Laible, Götz; Wei, Jingwei; Wagner, Stefan

    2015-01-01

    Humans have a long history in shaping the genetic makeup of livestock to optimize production and meet growing human demands for food and other animal products. Until recently, this has only been possible through traditional breeding and selection, which is a painstakingly slow process of accumulating incremental gains over a long period. The development of transgenic livestock technology offers a more direct approach with the possibility for making genetic improvements with greater impact and within a single generation. However, initially the technology was hampered by technical difficulties and limitations, which have now largely been overcome by progressive improvements over the past 30 years. Particularly, the advent of genome editing in combination with homologous recombination has added a new level of efficiency and precision that holds much promise for the genetic improvement of livestock using the increasing knowledge of the phenotypic impact of genetic sequence variants. So far not a single line of transgenic livestock has gained approval for commercialization. The step change to genome-edited livestock with precise sequence changes may accelerate the path to market, provided applications of this new technology for agriculture can deliver, in addition to economic incentives for producers, also compelling benefits for animals, consumers, and the environment.

  14. Progression or Resolution of Coxsackievirus B4-Induced Pancreatitis: a Genomic Analysis†

    PubMed Central

    Ostrowski, Stephanie E.; Reilly, Andrew A.; Collins, Doris N.; Ramsingh, Arlene I.

    2004-01-01

    Group B coxsackieviruses are associated with chronic inflammatory diseases of the pancreas, heart, and central nervous system. Chronic pancreatitis, which can develop from acute pancreatitis, is considered a premalignant disorder because it is a major risk factor for pancreatic cancer. To explore the genetic events underlying the progression of acute to chronic disease, a comparative analysis of global gene expression during coxsackievirus B4-induced acute and chronic pancreatitis was undertaken. A key feature of acute pancreatitis that resolved was tissue regeneration, which was accompanied by increased expression of genes involved in cell growth, inhibition of apoptosis, and embryogenesis and by increased division of acinar cells. Acute pancreatitis that progressed to chronic pancreatitis was characterized by lack of tissue repair, and the expression map highlighted genes involved in apoptosis, acinoductular metaplasia, remodeling of the extracellular matrix, and fibrosis. Furthermore, immune responses appeared skewed toward development of alternatively activated (M2) macrophages and T helper 2 (Th2) cells during disease that resolved and toward classically activated (M1) macrophages and Th1 cells during disease that progressed. Our hypothesis is that growth and differentiation signals coupled with the M2/Th2 milieu favor acinar cell proliferation, while diminished growth signals and the M1/Th1 milieu favor apoptosis of acinar cells and remodeling/proliferation of the extracellular matrix, resulting in fibrosis. PMID:15254194

  15. ICPP water inventory study progress report

    SciTech Connect

    Richards, B.T.

    1993-05-01

    Recent data from the Idaho Chemical Processing Plant (ICPP) indicate that water is entering the sumps located in the bottom of Tank Firm Vaults in quantities that exceed expected levels. In addition, perched water body(s) exist beneath the northern portion of the ICPP. Questions have been raised concerning the origin of water entering the Tank Farm sumps and the recharge sources for the perched water bodies. Therefore, in an effort to determine the source of water, a project has been initiated to identify the source of water for Tank Farm sumps and the perched water bodies. In addition, an accurate water balance for the ICPP will be developed. The purpose of this report is to present the specific results and conclusions for the ICPP water balance portion of the study. In addition, the status of the other activities being conducted as part of study, along with the associated action plans, is provided.

  16. Progress Report: Pressure Vessel Burst Test Study

    DTIC Science & Technology

    1994-08-01

    report is provided on a program developed to study through test and analysis, the characteristics of blast waves and fragmentation generated by ruptured ...vessels were composite overwrapped pressure vessels ( COPV ) and were cut with a shaped charge (no groove) around its center. The burst location on the...and the shaped charge cut area (shown with dotted lines). BURST INITIATION Longitudinal stress in the circumferential grooves (for developing axial

  17. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  18. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  19. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    PubMed Central

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  20. Genome-wide association study identifies five new schizophrenia loci

    PubMed Central

    2012-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9). PMID:21926974

  1. Evaluation of the National Assessment of Educational Progress. Study Reports

    ERIC Educational Resources Information Center

    Buckendahl, Chad W.; Davis, Susan L.; Plake, Barbara S.; Sireci, Stephen G.; Hambleton, Ronald K.; Zenisky, April L.; Wells, Craig S.

    2009-01-01

    The "Evaluation of the National Assessment of Educational Progress: Study Reports" describes the special studies that comprised the design of the evaluation. In the Final Report, the authors presented a practical discussion of the evaluation studies to its primary, intended audience, namely policymakers. On this accompanying CD, readers…

  2. STUDIES IN LANGUAGE AND LANGUAGE BEHAVIOR. PROGRESS REPORT NO. 3.

    ERIC Educational Resources Information Center

    LANE, HARLAN L.

    THE FOUR STUDIES INCORPORATED IN THIS PROGRESS REPORT ATTEMPTED TO ANALYZE STABILIZED LANGUAGE PROCESSES AND TO EXAMINE THE COMPONENTS OF LANGUAGE PERFORMANCE, RANGING FROM SYSTEMATIC PHONETICS TO LOGICAL DISCOURSE. THE FIRST STUDY REPORTED WORK ON HUMAN AUDITORY SENSITIVITY AS A FUNCTION OF FREQUENCY AND INTENSITY. THE NEXT TWO STUDIES WERE…

  3. Modeling Grade Progression In An Active Surveillance Study

    PubMed Central

    Inoue, Lurdes Y.T.; Trock, Bruce J.; Partin, Alan W.; Carter, H. Ballentine; Etzioni, Ruth

    2013-01-01

    Prostate cancer grade, assessed with the Gleason score, describes how abnormal the tumor tissue and cells appear and it is an important prognostic indicator of disease progression. Whether prostate tumors change grade is a question that has implications for screening and treatment. Empirical data on tumor grade over time have become available from men biopsied regularly as part of active surveillance (AS). However, biopsy grade is subject to misclassification. In this article we develop a model that allows for estimation of the time of grade change while accounting for the misclassification error from biopsy grade. We use misclassification rates from studies of prostate cancer biopsies followed by radical prostatectomy. Estimation of the transition times from true low-grade to high-grade disease is conducted within a Bayesian framework. We apply our model to serial observations on biopsy grade among 627 cases enrolled in a cohort of AS patients at Johns Hopkins University who were biopsied annually and referred to treatment if there was any evidence of disease progression on biopsy. We consider different prior distributions for the time to true grade progression. The estimated likelihood of grade progression within 10 years of study entry ranges from 12% to 24% depending on the prior. We conclude that knowledge of rates of grade misclassification allows for determination of true grade progression rates among men with serial biopsies on AS. While our results are sensitive to prior specifications they indicate that in a non-trivial fraction of the patient population, tumor grade can progress. PMID:24123208

  4. Modeling grade progression in an active surveillance study.

    PubMed

    Inoue, Lurdes Y T; Trock, Bruce J; Partin, Alan W; Carter, Herbert B; Etzioni, Ruth

    2014-03-15

    Prostate cancer grade, assessed with the Gleason score, describes how abnormal the tumor tissue and cells appear, and it is an important prognostic indicator of disease progression. Whether prostate tumors change grade is a question that has implications for screening and treatment. Empirical data on tumor grade over time have become available from men biopsied regularly as part of active surveillance (AS). However, biopsy (BX) grade is subject to misclassification. In this article, we develop a model that allows for estimation of the time of grade change while accounting for the misclassification error from BX grade. We use misclassification rates from studies of prostate cancer BXs followed by radical prostatectomy. Estimation of the transition times from true low-grade to high-grade disease is conducted within a Bayesian framework. We apply our model to serial observations on BX grade among 627 cases enrolled in a cohort of AS patients at Johns Hopkins University who were biopsied annually and referred to treatment if there was any evidence of disease progression on BX. We consider different prior distributions for the time to true grade progression. The estimated likelihood of grade progression within 10 years of study entry ranges from 12% to 24% depending on the prior. We conclude that knowledge of rates of grade misclassification allows for determination of true grade progression rates among men with serial BXs on AS. Although our results are sensitive to prior specifications, they indicate that in a nontrivial fraction of the patient population, tumor grade can progress.

  5. Beyond Genomics: Studying Evolution with Gene Coexpression Networks.

    PubMed

    Ruprecht, Colin; Vaid, Neha; Proost, Sebastian; Persson, Staffan; Mutwil, Marek

    2017-04-01

    Understanding how genomes change as organisms become more complex is a central question in evolution. Molecular evolutionary studies typically correlate the appearance of genes and gene families with the emergence of biological pathways and morphological features. While such approaches are of great importance to understand how organisms evolve, they are also limited, as functionally related genes work together in contexts of dynamic gene networks. Since functionally related genes are often transcriptionally coregulated, gene coexpression networks present a resource to study the evolution of biological pathways. In this opinion article, we discuss recent developments in this field and how coexpression analyses can be merged with existing genomic approaches to transfer functional knowledge between species to study the appearance or extension of pathways.

  6. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  7. Patella malalignment, pain and patellofemoral progression: The Health ABC Study

    PubMed Central

    Hunter, DJ; Zhang, YQ; Niu, JB; Felson, DT; Kwoh, K; Newman, A; Kritchevsky, S; Harris, T; Carbone, L; Nevitt, M

    2007-01-01

    Objective Patellofemoral (PF) joint OA is strongly correlated with lower extremity disability and knee pain. Risk factors for pain and structural progression in patellofemoral OA are poorly understood. Our objective was to determine the association between patella malalignment and its relation to pain severity, and PF OA disease progression. Methods We conducted an analysis of data from the Health ABC knee OA study. Health ABC is a community based, multi-center cohort study of 3,075 Caucasian and Black men and women aged 70–79 at enrollment. Weight bearing skyline knee x-rays were obtained in a subset (595) of subjects, with and without knee pain, at year 2 and year 5 (mean follow-up 36 months). Films were read paired, and patellofemoral osteophytes (OST) and narrowing (JSN) were scored on a 0–3 scale using the OARSI atlas. We defined progression of PF OA as any increase in JSN score. 3 measures of patella malalignment were made: sulcus angle; patella tilt angle; and patella subluxation medially or laterally (bisect offset). Knee symptoms were assessed using a knee specific WOMAC knee pain subscale. We assessed the relationship between baseline patella malalignment and pain severity (linear regression for WOMAC) and compartment specific PF OA progression (logistic regression for dichotomous outcomes). We classified continuous measures of patella alignment into quartile groups. We performed multivariable adjusted logistic regression models, including age, gender and BMI to assess the relation of baseline patella alignment to the occurrence of PF JSN progression using generalized estimating equations. Results The subjects had a mean age 73.6 (SD 2.9), BMI 28.8 (SD 4.9), 40.3% male, and 46% were Black. Medial displacement of the patella predisposed to medial JSN progression; odds for each quartile 1, 1.2, 1.2, 2.2 (p for trend=0.03), whilst protecting from lateral JSN progression; odds for each quartile 1, 0.7, 0.6, 0.4 (p for trend=0.0004). Increasing patella

  8. New study reveals relatively few mutations in AML genomes - TCGA

    Cancer.gov

    Investigators for The Cancer Genome Atlas (TCGA) Research Network have detailed and broadly classified the genomic alterations that frequently underlie the development of acute myeloid leukemia (AML).

  9. Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies

    PubMed Central

    Abdul-Aziz, Muslihudeen A.; Cooper, Alan; Weyrich, Laura S.

    2016-01-01

    As our understanding of the human microbiome expands, impacts on health and disease continue to be revealed. Alterations in the microbiome can result in dysbiosis, which has now been linked to subsequent autoimmune and metabolic diseases, highlighting the need to identify factors that shape the microbiome. Research has identified that the composition and functions of the human microbiome can be influenced by diet, age, sex, and environment. More recently, studies have explored how human genetic variation may also influence the microbiome. Here, we review several recent analytical advances in this new research area, including those that use genome-wide association studies to examine host genome–microbiome interactions, while controlling for the influence of other factors. We find that current research is limited by small sample sizes, lack of cohort replication, and insufficient confirmatory mechanistic studies. In addition, we discuss the importance of understanding long-term interactions between the host genome and microbiome, as well as the potential impacts of disrupting this relationship, and explore new research avenues that may provide information about the co-evolutionary history of humans and their microorganisms. PMID:27785127

  10. Public attitudes to the promotion of genomic crop studies in Japan: correlations between genomic literacy, trust, and favourable attitude.

    PubMed

    Ishiyama, Izumi; Tanzawa, Tetsuro; Watanabe, Maiko; Maeda, Tadahiko; Muto, Kaori; Tamakoshi, Akiko; Nagai, Akiko; Yamagata, Zentaro

    2012-05-01

    This study aimed to assess public attitudes in Japan to the promotion of genomic selection in crop studies and to examine associated factors. We analysed data from a nationwide opinion survey. A total of 4,000 people were selected from the Japanese general population by a stratified two-phase sampling method, and 2,171 people participated by post; this survey asked about the pros and cons of crop-related genomic studies promotion, examined people's scientific literacy in genomics, and investigated factors thought to be related to genomic literacy and attitude. The relationships were examined using logistic regression models stratified by gender. Survey results showed that 50.0% of respondents approved of the promotion of crop-related genomic studies, while 6.7% disapproved. No correlation was found between literacy and attitude towards promotion. Trust in experts, belief in science, an interest in genomic studies and willingness to purchase new products correlated with a positive attitude towards crop-related genomic studies.

  11. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  12. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable.

  13. Integrated metabolomics and phytochemical genomics approaches for studies on rice.

    PubMed

    Okazaki, Yozo; Saito, Kazuki

    2016-01-01

    Metabolomics is widely employed to monitor the cellular metabolic state and assess the quality of plant-derived foodstuffs because it can be used to manage datasets that include a wide range of metabolites in their analytical samples. In this review, we discuss metabolomics research on rice in order to elucidate the overall regulation of the metabolism as it is related to the growth and mechanisms of adaptation to genetic modifications and environmental stresses such as fungal infections, submergence, and oxidative stress. We also focus on phytochemical genomics studies based on a combination of metabolomics and quantitative trait locus (QTL) mapping techniques. In addition to starch, rice produces many metabolites that also serve as nutrients for human consumers. The outcomes of recent phytochemical genomics studies of diverse natural rice resources suggest there is potential for using further effective breeding strategies to improve the quality of ingredients in rice grains.

  14. Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study

    PubMed Central

    Hu, Zhen-Yan; Pang, Li-Juan; Qi, Yan; Kang, Xue-Ling; Hu, Jian-Ming; Wang, Lianghai; Liu, Kun-Peng; Ren, Yuan; Cui, Mei; Song, Li-Li; Li, Hong-An; Zou, Hong; Li, Feng

    2014-01-01

    Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future. PMID:25120763

  15. Preterm Birth Genome Project (PGP) -- validation of resources for preterm birth genome-wide studies.

    PubMed

    Pennell, Craig E; Vadillo-Ortega, Felipe; Olson, David M; Ha, Eun-Hee; Williams, Scott; Frayling, Tim M; Dolan, Siobhan; Katz, Michael; Merialdi, Mario; Menon, Ramkumar

    2013-01-01

    We determined a series of quality control (QC) analyses to assess the usability of DNA collected and processed from different countries utilizing different DNA extraction techniques prior to genome-wide association studies (GWAS). The quality of DNA collected utilizing four different DNA extraction techniques and the impact of shipping DNA at different temperatures on array performance were evaluated. Fifteen maternal-fetal pairs were used from four countries. DNA was extracted using four approaches: whole blood, blood spots with whole genome amplification (WGA), saliva and buccal swab. Samples were sent to a genotyping facility, either on dry ice or at room temperature and genotyped using Affymetrix SNP array 6.0. QC measured included extraction techniques, effect of shipping temperatures, accuracy and Mendelian concordance. Significantly fewer (50 % ) single nucleotide polymorphisms (SNPs) passed QC metrics for buccal swab DNA (P < 0.0001) due to missing genotype data (P < 0.0001). Whole blood or saliva DNA had the highest call rates (99.2 0.4 % and 99.3 0.2 % , respectively) and Mendelian concordance. Shipment temperature had no effect. DNA from blood or saliva had the highest call rate accuracy, and buccal swabs had the lowest. DNA extracted from blood, saliva and blood spots were found suitable for GWAS in our study.

  16. Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer.

    PubMed

    Hopman, A H N; Theelen, W; Hommelberg, P P H; Kamps, M A F; Herrington, C S; Morrison, L E; Speel, E-J M; Smedts, F; Ramaekers, F C S

    2006-12-01

    Recently proposed events associated with the progression of cervical intraepithelial neoplasia (CIN) 2/3 to cervical carcinoma include integration of human papillomavirus (HPV) into the host genome, genomic instability, and an increase in chromosome 3q copy number. In particular, the gene coding for the RNA component of telomerase (TERC) at 3q26 has been implicated as a possible candidate gene. Since it is not known to date how these events are temporally related during cervical carcinogenesis, the aim of the present study was to assess the correlation between TERC gene copy number and the physical status of HPV during progression in cervical neoplasia. Solitary precursor lesions of the uterine cervix (CIN 2/3, n = 17), lesions associated with a micro-invasive carcinoma (CIN 3&mCA, n = 13), and advanced invasive carcinomas (invCA, n = 7) were analysed by fluorescence in situ hybridization (FISH) to determine the physical status of the virus and TERC gene copy number. The TERC gene was increasingly gained with progression of CIN 2/3 (3 of 17) through CIN 3&mCA (7 of 13) to invCA (5 of 7). In the lesions exhibiting gain of TERC, the virus was predominantly integrated. This was seen in eight of ten diploid lesions, indicating that these events can occur prior to aneuploidization and are strongly associated with the progression of CIN 3 to mCA and invCA (p < 0.001). With progression to carcinoma, a number of these lesions show polyploidization, resulting in aneuploidy and high TERC gene copy numbers. In conclusion, genomic integration of oncogenic HPV and gain of the human telomerase gene TERC appear to be important associated genetic events in the progression of uterine cervical dysplasia to invasive cancer.

  17. Social Studies Progress Monitoring and Intervention for Middle School Students

    ERIC Educational Resources Information Center

    Beyers, Sarah J.; Lembke, Erica S.; Curs, Bradley

    2013-01-01

    This study examined the technical adequacy of vocabulary-matching curriculum-based measurement (CBM) to identify and monitor the progress of 148 middle school students in social studies. In addition, the effectiveness of a reading comprehension intervention, Collaborative Strategic Reading (Klingner, Vaughn, Dimino, Schumm, & Bryant, 2001),…

  18. Big data challenges in bone research: genome-wide association studies and next-generation sequencing

    PubMed Central

    Alonso, Nerea; Lucas, Gavin; Hysi, Pirro

    2015-01-01

    Genome-wide association studies (GWAS) have been developed as a practical method to identify genetic loci associated with disease by scanning multiple markers across the genome. Significant advances in the genetics of complex diseases have been made owing to advances in genotyping technologies, the progress of projects such as HapMap and 1000G and the emergence of genetics as a collaborative discipline. Because of its great potential to be used in parallel by multiple collaborators, it is important to adhere to strict protocols assuring data quality and analyses. Quality control analyses must be applied to each sample and each single-nucleotide polymorphism (SNP). The software package PLINK is capable of performing the whole range of necessary quality control tests. Genotype imputation has also been developed to substantially increase the power of GWAS methodology. Imputation permits the investigation of associations at genetic markers that are not directly genotyped. Results of individual GWAS reports can be combined through meta-analysis. Finally, next-generation sequencing (NGS) has gained popularity in recent years through its capacity to analyse a much greater number of markers across the genome. Although NGS platforms are capable of examining a higher number of SNPs compared with GWA studies, the results obtained by NGS require careful interpretation, as their biological correlation is incompletely understood. In this article, we will discuss the basic features of such protocols. PMID:25709812

  19. Xenopus egg extract to study regulation of genome-wide and locus-specific DNA replication.

    PubMed

    Raspelli, Erica; Falbo, Lucia; Costanzo, Vincenzo

    2017-01-01

    Faithful DNA replication, coupled with accurate repair of DNA damage, is essential to maintain genome stability and relies on different DNA metabolism genes. Many of these genes are involved in the assembly of replication origins, in the coordination of DNA repair to protect replication forks progression in the presence of DNA damage and in the replication of repetitive chromatin regions. Some DNA metabolism genes are essential in higher eukaryotes, suggesting the existence of specialized mechanisms of repair and replication in organisms with complex genomes. The impact on cell survival of many of these genes has so far precluded in depth molecular analysis of their function. The cell-free Xenopus laevis egg extract represents an ideal system to overcome survival issues and to facilitate the biochemical study of replication-associated functions of essential proteins in vertebrate organisms. Here, we will discuss how Xenopus egg extracts have been used to study cellular and molecular processes, such as DNA replication and DNA repair. In particular, we will focus on innovative imaging and proteomic-based experimental approaches to characterize the molecular function of a number of essential DNA metabolism factors involved in the duplication of complex vertebrate genomes.

  20. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    PubMed

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  1. Voxelwise genome-wide association study (vGWAS).

    PubMed

    Stein, Jason L; Hua, Xue; Lee, Suh; Ho, April J; Leow, Alex D; Toga, Arthur W; Saykin, Andrew J; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J; Craig, David W; Gerber, Jill D; Allen, April N; Corneveaux, Jason J; Dechairo, Bryan M; Potkin, Steven G; Weiner, Michael W; Thompson, Paul

    2010-11-15

    The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.

  2. A Pooled Genome-Wide Association Study of Asperger Syndrome

    PubMed Central

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E.; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision. PMID:26176695

  3. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure

    SciTech Connect

    Huang Shing; Chueh Pinju; Lin Yunwei; Shih Tungsheng; Chuang Showmei

    2009-12-01

    Titanium dioxide (TiO2) nano-particles (< 100 nm in diameter) have been of interest in a wide range of applications, such as in cosmetics and pharmaceuticals because of their low toxicity. However, recent studies have shown that TiO2 nano-particles (nano-TiO2) induce cytotoxicity and genotoxicity in various lines of cultured cells as well as tumorigenesis in animal models. The biological roles of nano-TiO2 are shown to be controversial and no comprehensive study paradigm has been developed to investigate their molecular mechanisms. In this study, we showed that short-term exposure to nano-TiO2 enhanced cell proliferation, survival, ERK signaling activation and ROS production in cultured fibroblast cells. Moreover, long-term exposure to nano-TiO2 not only increased cell survival and growth on soft agar but also the numbers of multinucleated cells and micronucleus (MN) as suggested in confocal microscopy analysis. Cell cycle phase analysis showed G2/M delay and slower cell division in long-term exposed cells. Most importantly, long-term TiO2 exposure remarkably affected mitotic progression at anaphase and telophase leading to aberrant multipolar spindles and chromatin alignment/segregation. Moreover, PLK1 was demonstrated as the target for nano-TiO2 in the regulation of mitotic progression and exit. Notably, a higher fraction of sub-G1 phase population appeared in TiO2-exposed cells after releasing from G2/M synchronization. Our results demonstrate that long-term exposure to nano-TiO2 disturbs cell cycle progression and duplicated genome segregation, leading to chromosomal instability and cell transformation.

  4. Genome-wide association study of paliperidone efficacy

    PubMed Central

    Wineinger, Nathan E.; Fu, Dong-Jing; Libiger, Ondrej; Alphs, Larry; Savitz, Adam; Gopal, Srihari; Cohen, Nadine; Schork, Nicholas J.

    2017-01-01

    Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples. PMID:27846195

  5. The application of genome editing in studying hearing loss.

    PubMed

    Zou, Bing; Mittal, Rahul; Grati, M'hamed; Lu, Zhongmin; Shu, Yilai; Tao, Yong; Feng, Youg; Xie, Dinghua; Kong, Weijia; Yang, Shiming; Chen, Zheng-Yi; Liu, Xuezhong

    2015-09-01

    Targeted genome editing mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) technology has emerged as one of the most powerful tools to study gene functions, and with potential to treat genetic disorders. Hearing loss is one of the most common sensory disorders, affecting approximately 1 in 500 newborns with no treatment. Mutations of inner ear genes contribute to the largest portion of genetic deafness. The simplicity and robustness of CRISPR/Cas9-directed genome editing in human cells and model organisms such as zebrafish, mice and primates make it a promising technology in hearing research. With CRISPR/Cas9 technology, functions of inner ear genes can be studied efficiently by the disruption of normal gene alleles through non-homologous-end-joining (NHEJ) mechanism. For genetic hearing loss, CRISPR/Cas9 has potential to repair gene mutations by homology-directed-repair (HDR) or to disrupt dominant mutations by NHEJ, which could restore hearing. Our recent work has shown CRISPR/Cas9-mediated genome editing can be efficiently performed in the mammalian inner ear in vivo. Thus, application of CRISPR/Cas9 in hearing research will open up new avenues for understanding the pathology of genetic hearing loss and provide new routes in the development of treatment to restore hearing. In this review, we describe major methodologies currently used for genome editing. We will highlight applications of these technologies in studies of genetic disorders and discuss issues pertaining to applications of CRISPR/Cas9 in auditory systems implicated in genetic hearing loss.

  6. Mitochondrial genome interrogation for forensic casework and research studies.

    PubMed

    Roby, Rhonda K; Sprouse, Marc; Phillips, Nicole; Alicea-Centeno, Alessandra; Shewale, Shantanu; Shore, Sabrina; Paul, Natasha

    2014-04-24

    This unit describes methods used in the analysis of mitochondrial DNA (mtDNA) for forensic and research applications. UNIT describes procedures specifically for forensic casework where the DNA from evidentiary material is often degraded or inhibited. In this unit, protocols are described for quantification of mtDNA before amplification; amplification of the entire control region from high-quality samples as well as procedures for interrogating the whole mitochondrial genome (mtGenome); quantification of mtDNA post-amplification; and, post-PCR cleanup and sequencing. The protocols for amplification were developed for high-throughput databasing applications for forensic DNA testing such as reference samples and population studies. However, these same protocols can be applied to biomedical research such as age-related disease and health disparities research.

  7. Genome-wide association studies of obesity and metabolic syndrome.

    PubMed

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years.

  8. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  9. Functional Genomics in the Study of Mind-Body Therapies

    PubMed Central

    Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.

    2014-01-01

    Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735

  10. A Genome-Wide Association Study of Aging

    PubMed Central

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W.; Garcia, Melissa E.; Kaplan, Robert C.; Kumari, Meena; Lunetta, Kathryn L.; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J.; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J.; Biffar, Reiner; Buchman, Aron S.; Boerwinkle, Eric; Couper, David; De Jager, Philip L.; Evans, Denis A.; Harris, Tamara B.; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P.; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J.; Lohman, Kurt K.; Lutsey, Pamela L.; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M.; Reiman, Eric M.; Rotter, Jerome I.; Seshadri, Sudha; Shardell, Michelle D.; Smith, Albert V.; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M. Carola; Bandinelli, Stefania; Baumeister, Sebastian E.; Bennett, David A.; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M.; Newman, Anne B.; Tiemeier, Henning; Franceschini, Nora

    2011-01-01

    Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-analysis of genome-wide association studies from nine studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. PMID:21782286

  11. A genome-wide association study of aging.

    PubMed

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  12. Genome-wide Association Studies from the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative | Office of Cancer Genomics

    Cancer.gov

    CGEMS identifies common inherited genetic variations associated with a number of cancers, including breast and prostate. Data from these genome-wide association studies (GWAS) are available through the Division of Cancer Epidemiology & Genetics website.

  13. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study

    PubMed Central

    Zhu, Bin; Wang, Mingyi; Pariscenti, Gianluca; Jones, Kristine; Bouk, Aaron J.; Boland, Joseph; Luke, Brian T.; Song, Lei; Duan, Jubao; Liu, Pengyuan; Kohno, Takashi; Chen, Qingrong; Meerzaman, Daoud; Marconett, Crystal; Mills, Ian; Caporaso, Neil E.; Gail, Mitchell H.; Pesatori, Angela C.; Consonni, Dario; Bertazzi, Pier Alberto; Chanock, Stephen J.; Landi, Maria Teresa

    2016-01-01

    Background Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. Methods and Findings We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10−50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10−4) were

  14. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    PubMed Central

    Koop, Ben F; von Schalburg, Kristian R; Leong, Jong; Walker, Neil; Lieph, Ryan; Cooper, Glenn A; Robb, Adrienne; Beetz-Sargent, Marianne; Holt, Robert A; Moore, Richard; Brahmbhatt, Sonal; Rosner, Jamie; Rexroad, Caird E; McGowan, Colin R; Davidson, William S

    2008-01-01

    Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is consistent with an ancestral

  15. [Application progress of CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection].

    PubMed

    Han, Yinglun; Li, Qingwei

    2016-01-01

    The goal of gene therapy is to introduce foreign genes into human target cells in a certain way to correct or compensate diseases caused by defective or abnormal genes. Therefore, gene therapy has great practical significance in studying the treatment of persistent or latent HIV-1 infection. At present, the existing methods of gene therapy have some major defects such as limited target site recognition and high frequency of off-targets. The latest research showed that the clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea has been successfully reformed to a targeted genome editing tool. Thus, how to achieve the goal of treating HIV-1 infection by modifying targeted HIV-1 virus genome effectively using the CRISPR/Cas9 system has become a current research focus. Here we review the latest achievements worldwide and briefly introduce applications of the CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection, including CCR5 gene editing, removal of HIV-1 virus and activation of HIV-1 virus, in order to provide reference for the prevention and treatment of HIV-1 infection.

  16. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    PubMed Central

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10−5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  17. Biological Sciences Curriculum Study Newsletter Number 56, Progress Report.

    ERIC Educational Resources Information Center

    Clark, George M., Ed.

    This newsletter presents a progress report for the 1973-74 year for the Biological Sciences Curriculum Study (BSCS). The program for the Educable Mentally Handicapped is reviewed and a new series of Animal Behavior films is described. Other articles in the newsletter include information on the Human Sciences Program with emphasis on the…

  18. On Studies of Moral Socialization of Students: Progress and Perplexities

    ERIC Educational Resources Information Center

    Zhang, Renjie

    2008-01-01

    Moral socialization of students consists of five elements: process, subject, agent, content and pattern. This paper discusses the studies of the former three: their progress and perplexities, covering the following puzzles: "Why does the youth socialization take longer time?" "Are there any critical periods in student…

  19. Using Genomics to Study Human Biology and Disease

    SciTech Connect

    Myers, Ricard M.

    2005-04-06

    The Human Genome Project culminated in April 2003 with the finished DNA sequence of all of the human chromosomes. This book of information, particularly in conjunction with the genome sequences of many other organisms, has already begun to revolutionize the way that biomedical scientists study our species. The identification of essentially all of our genes has provided a template upon which researchers can discover basic processes that govern cells, organs, and the whole organism, and to understand the fundamental causes of the diseases that occur when something goes wrong with a gene or a set of genes. The Genome Project has already made it possible to identify the genes that are defective in more than 1,000 rare inherited diseases, and these discoveries have helped to understand the mechanisms of the more common forms of these disorders. This understanding of primary defects in diseases - which is translated as mutations in genes that encode proteins that serve specific functions - is transforming the way that biotechnology and pharmaceutical companies identify drug targets, and a few notable cases have already had a striking impact on specific diseases. In addition, it has become clear that the differential response to drugs in human populations is heavily influenced by genes, and a whole field called pharmacogenetics has begun to identify these genetic factors. Such knowledge will allow physicians to prescribe drugs targeted to each individual, with the potential to increase efficacy and decrease side-effects. Determining the DNA sequence of the human genome and identifying the genes has been an exciting endeavor, but we are only just beginning to understand the treasures present in all of our DNA. My presentation will briefly describe the road we took to get the sequence, as well as the tools that we are developing to unlock its secrets.

  20. Preface: Recent progress from networked studies based around MST radar

    NASA Astrophysics Data System (ADS)

    Hocking, Wayne K.; Lehmann, Volker; Singer, Werner; Yamamoto, Masayuki

    2014-10-01

    Studies of the mesosphere, stratosphere, and troposphere by radar, application of networks, and multi-instrument studies have grown significantly in recent years, and have covered a wide range of areas in technology, fundamental research, and application. This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics on "Recent progress from networked studies based around MST radar" focuses primarily on selected papers presented at the 13th International Workshops on Scientific and Technical Aspects of MST Radar (MST13).

  1. Genome-wide Association Studies for Osteoporosis: A 2013 Update

    PubMed Central

    Liu, Yong-Jun; Zhang, Lei; Papasian, Christopher J.

    2014-01-01

    In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies. PMID:25006567

  2. Genome-wide association studies and contribution to cardiovascular physiology

    PubMed Central

    Munroe, Patricia B.

    2015-01-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology. PMID:26106147

  3. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  4. Sources for Comparative Studies of Placentation. II. Genomic Resources

    PubMed Central

    Wildman, Derek E.

    2008-01-01

    The genomes of dozens of placental mammal species are now publicly available. These genome sequences have the potential to provide insight into the development and evolution of the placenta. In particular, the variable anatomy of the placenta has likely been affected by natural selection on the genomes of living and extinct mammals. In this note the current availability of mammal genome sequences is reviewed, and strengths and limitations of these data are discussed. Additionally, museums, zoos, and commercial entities are available to provide genomic resources to the placental research community. Recommendations for tissue storage conditions of placentas in genomic research are given. PMID:18155141

  5. Genome-wide association study of parity in Bangladeshi women.

    PubMed

    Aschebrook-Kilfoy, Briseis; Argos, Maria; Pierce, Brandon L; Tong, Lin; Jasmine, Farzana; Roy, Shantanu; Parvez, Faruque; Ahmed, Alauddin; Islam, Tariqul; Kibriya, Muhammad G; Ahsan, Habibul

    2015-01-01

    Human fertility is a complex trait determined by gene-environment interactions in which genetic factors represent a significant component. To better understand inter-individual variability in fertility, we performed one of the first genome-wide association studies (GWAS) of common fertility phenotypes, lifetime number of pregnancies and number of children in a developing country population. The fertility phenotype data and DNA samples were obtained at baseline recruitment from individuals participating in a large prospective cohort study in Bangladesh. GWAS analyses of fertility phenotypes were conducted among 1,686 married women. One SNP on chromosome 4 was non-significantly associated with number of children at P <10(-7) and number of pregnancies at P <10(-6). This SNP is located in a region without a gene within 1 Mb. One SNP on chromosome 6 was non-significantly associated with extreme number of children at P <10(-6). The closest gene to this SNP is HDGFL1, a hepatoma-derived growth factor. When we excluded hormonal contraceptive users, a SNP on chromosome 5 was non-significantly associated at P <10(-5) for number of children and number of pregnancies. This SNP is located near C5orf64, an open reading frame, and ZSWIM6, a zinc ion binding gene. We also estimated the heritability of these phenotypes from our genotype data using GCTA (Genome-wide Complex Trait Analysis) for number of children (hg2 = 0.149, SE = 0.24, p-value = 0.265) and number of pregnancies (hg2 = 0.007, SE = 0.22, p-value = 0.487). Our genome-wide association study and heritability estimates of number of pregnancies and number of children in Bangladesh did not confer strong evidence of common variants for parity variation. However, our results suggest that future studies may want to consider the role of 3 notable SNPs in their analysis.

  6. Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies

    PubMed Central

    Thibessard, Annabelle

    2016-01-01

    The sequence of Streptomyces ambofaciens DSM 40697 was completely determined. The genome consists of an 8.1-Mbp linear chromosome with terminal inverted repeats of 210 kb. Genomic islands were identified, one of which corresponds to a new putative integrative and conjugative element (ICE) called pSAM3. PMID:27257195

  7. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori.

    PubMed

    Xia, Qingyou; Li, Sheng; Feng, Qili

    2014-01-01

    Significant progress has been achieved in silkworm (Bombyx mori) research since the last review on this insect was published in this journal in 2005. In this article, we review the new and exciting progress and discoveries that have been made in B. mori during the past 10 years, which include the construction of a fine genome sequence and a genetic variation map, the evolution of genomes, the advent of functional genomics, the genetic basis of silk production, metamorphic development, immune response, and the advances in genetic manipulation. These advances, which were accelerated by the genome sequencing project, have promoted B. mori as a model organism not only for lepidopterans but also for general biology.

  8. [New insight of genome-wide association study (GWAS)].

    PubMed

    Hotta, Kikuko

    2013-02-01

    The number of obese patients is increasing in Japan, due to the westernization of lifestyle. Obesity, especially visceral fat obesity, is important for the development of metabolic syndrome. Genetic factors are important for the development of obesity as well as environmental factors. Importance of genetic factors of fat distribution is also reported. Recent genome-wide association studies (GWASs) have revealed the obesity and fat distribution-related polymorphisms. GWAS will highlight a better understanding of the underlying molecular mechanisms in the regulation of obesity and distribution of body fat.

  9. Genomics for public health improvement: relevant international ethical and policy issues around genome-wide association studies and biobanks.

    PubMed

    Pang, T

    2013-01-01

    Genome-wide association studies and biobanks are at the forefront of genomics research and possess unprecedented potential to improve public health. However, for public health genomics to ultimately fulfill its potential, technological and scientific advances alone are insufficient. Scientists, ethicists, policy makers, and regulators must work closely together with research participants and communities in order to craft an equitable and just ethical framework, and a sustainable environment for effective policies. Such a framework should be a 'hybrid' form which balances equity and solidarity with entrepreneurship and scientific advances. A good balance between research and policy on one hand, and privacy, protection and trust on the other is the key for public health improvement based on advances in genomics science.

  10. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    PubMed

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features.

  11. Genome-Wide Association Study of Metabolic Syndrome in Koreans

    PubMed Central

    Jeong, Seok Won; Chung, Myungguen; Park, Soo-Jung; Cho, Seong Beom

    2014-01-01

    Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10-8), 8 SNPs with genome-wide suggestive p-values (5 × 10-8 ≤ p < 1 × 10-5), and 2 SNPs of more functional variants with borderline p-values (5 × 10-5 ≤ p < 1 × 10-4). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. PMID:25705157

  12. Defining personal utility in genomics: A Delphi study.

    PubMed

    Kohler, J; Turbitt, E; Lewis, K L; Wilfond, B S; Jamal, L; Peay, H L; Biesecker, L G; Biesecker, B B

    2017-02-20

    Individual genome sequencing results are valued by patients in ways distinct from clinical utility. Such outcomes have been described as components of "personal utility," a concept that broadly encompasses patient-endorsed benefits, that is operationally defined as non-clinical outcomes. No empirical delineation of these outcomes has been reported. To address this gap, we administered a Delphi survey to adult participants in a NIH clinical exome study to extract the most highly endorsed outcomes constituting personal utility. Forty research participants responded to a Delphi survey to rate 35 items identified by a systematic literature review of personal utility. Two rounds of ranking resulted in 24 items that represented 14 distinct elements of personal utility. Elements most highly endorsed by participants were: increased self-knowledge, knowledge of "the condition," altruism, and anticipated coping. Our findings represent the first systematic effort to delineate elements of personal utility that may be used to anticipate participant expectation and inform genetic counseling prior to sequencing. The 24 items reported need to be studied further in additional clinical genome sequencing studies to assess generalizability in other populations. Further research will help to understand motivations and to predict the meaning and use of results.

  13. ETS-Associated Genomic Alterations including ETS2 Loss Markedly Affect Prostate Cancer Progression

    DTIC Science & Technology

    2015-10-01

    suffering prior to death. Current investigations study the molecular and genetic basis of the disease, to identify potential new drug targets and therapies...interplay between RAS/MAPK pathway and screen hits via drugs such as MEK inhibitor PD98059 is potentially interesting, but such pathway analysis has...it lays the foundation for future investigations to identify novel drug targets. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS Presentations include

  14. Relationship between public attitudes toward genomic studies related to medicine and their level of genomic literacy in Japan.

    PubMed

    Ishiyama, Izumi; Nagai, Akiko; Muto, Kaori; Tamakoshi, Akiko; Kokado, Minori; Mimura, Kyoko; Tanzawa, Tetsuro; Yamagata, Zentaro

    2008-07-01

    The aim of this study was to assess public attitudes toward the promotion of genomic studies related to medicine and to examine the relationship between public attitudes and the level of genomic literacy by analyzing data from a nationwide opinion survey. The participants comprised 4,000 people (age, 20-69) selected from the Japanese general population by using the two-step stratified random sampling method. They were queried on the following topics in a mail survey: (1) pros and cons of the promotion of genomic studies related to medicine, (2) level of scientific literacy in genomics, (3) demographic and socioeconomic background, and (4) knowledge and attitudes toward science in general and genetic testing in particular. We examined the relationship between the approval of promotion and literacy level, using logistic regression models stratified by gender. Our results showed the response rate was 54.3% (2,171/4,000), and 69.4% participants favored the promotion of genomic studies related to medicine. Only 1.3% participants expressed a negative attitude. Multivariate analysis revealed that approval of promotion was related to a high literacy score. This relationship was stronger in males than in females (the highest quartile of score vs. the lowest: adjusted odds ratio, 3.36 for males and 1.86 for females; 95% confidence interval, 1.88-5.98 for males and 1.17-2.95 for females). We determined that a majority of the Japanese participants currently approved of the promotion of genomic studies related to medicine and that people with a high level of genomic literacy tended to approve the promotion.

  15. A Review on Progress in QSPR Studies for Surfactants

    PubMed Central

    Hu, Jiwei; Zhang, Xiaoyi; Wang, Zhengwu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated. PMID:20479997

  16. Study Progress on Tissue Culture of Maize Mature Embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  17. A whole genome association study of neuroticism using DNA pooling

    PubMed Central

    Shifman, S; Bhomra, A; Smiley, S; Wray, NR; James, MR; Martin, NG; Hettema, JM; An, SS; Neale, MC; van den Oord, EJCG; Kendler, KS; Chen, X; Boomsma, DI; Middeldorp, CM; Hottenga, JJ; Slagboom, PE; Flint, J

    2014-01-01

    We describe a multistage approach to identify single nucleotide polymorphisms (SNPs) associated with neuroticism, a personality trait that shares genetic determinants with major depression and anxiety disorders. Whole genome association with 452 574 SNPs was performed on DNA pools from ~2000 individuals selected on extremes of neuroticism scores from a cohort of 88 142 people from southwest England. The most significant SNPs were then genotyped on independent samples to replicate findings. We were able to replicate association of one SNP within the PDE4D gene in a second sample collected by our laboratory and in a family-based test in an independent sample; however, the SNP was not significantly associated with neuroticism in two other independent samples. We also observed an enrichment of low P-values in known regions of copy number variations. Simulation indicates that our study had ~80% power to identify neuroticism loci in the genome with odds ratio (OR) > 2, and ~50% power to identify small effects (OR = 1.5). Since we failed to find any loci accounting for more than 1% of the variance, the heritability of neuroticism probably arises from many loci each explaining much less than 1%. Our findings argue the need for much larger samples than anticipated in genetic association studies and that the biological basis of emotional disorders is extremely complex. PMID:17667963

  18. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 depositi...

  19. Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred

    SciTech Connect

    Barr, C.L.; Kennedy, J.L.; Pakstis, A.J.

    1994-03-15

    Genetic linkage studies of a kindred from Sweden segregating for schizophrenia have been performed using a genetic model (autosomal dominant, f - 0.72, q - 0.02, phenocopies=0.001) as described in Kennedy et al., 1988. Analyses of the restriction fragment length polymorphism (RFLP), allele-specific oligonucleotides (ASO), and short tandem repeat (STR also called microsatellite) data for 180 polymorphisms (individual probe-enzyme, ASO, or STR systems) at 155 loci have been completed using the MLINK and LIPED programs. Linkage to schizophrenia was excluded, under the given model, at 47 loci; indeterminate lod scores occurred at 108 loci. The total exclusion region across 20 chromosomes is estimated at 330 cM; 211 cM excluded by pairwise analyses and 119 cM previously excluded by multipoint analyses. 37 refs., 2 tabs.

  20. A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting

    SciTech Connect

    Mariman, E.C.M.; Beersum, S.E.C. van; Ropers, H.H.

    1994-09-01

    Non-chromaffin paragangliomas are autosomal dominantly inherited tumors of the head and neck region (frequency: 1:30,000). Genomic imprinting influences the expression of the disorder. Tumor development is restricted to offspring of male disease gene carriers. By linkage analysis and haplotyping of a single family, in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at {theta}=0.0 was obtained for D11S480. This interval does not overlap with the segment 11q22.3-q23.3, to which a locus for glomus tumors has been assigned in other families. Moreover, the 5cM interval was excluded as the location of the disease gene in a second family showing the imprinting phenomenon, whereas an indication for linkage was obtained (Z=+2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for paragangliomas on 11q. Clinical findings suggest that at least one, but probably both genes code for tumor suppressor required for tumor initiation. According to this model, imprinting would account for the silencing of the two maternal copies, whereas a paternal copy would be inactive due to an inherited mutation. Tumors would then result from somatic inactivation of the other paternal gene copy in individual cells. In tumors, relaxation of imprinting seems to be a frequent feature. Here, it would necessitate subsequent inactivation of maternal gene copies to allow tumor progression. Indeed, selective loss of maternal alleles in paragangliomas has been observed with markers from 11 q. Definite proof for this model should come from the isolation and expression studies of the involved genes.

  1. Genome-wide association studies in pharmacogenomics of antidepressants.

    PubMed

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  2. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    SciTech Connect

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  3. Patient safety in genomic medicine: an exploratory study

    PubMed Central

    Korngiebel, Diane M.; Fullerton, Stephanie M.; Burke, Wylie

    2016-01-01

    Purpose Concerns about patient safety and the potential for medical error are largely unexplored for genetic testing despite the expansion of test use. In this preliminary qualitative study we sought the views of genetics professionals about error and patient safety concerns in genomic medicine and factors that might mitigate them. Methods Twelve semi-structured interviews with experienced genetics professionals were conducted. Transcripts were analyzed using selective coding for issues related to error definition, mitigation, and communication. Additional thematic analysis captured themes across content categories. Results Key informants suggested that the potential for adverse events exists in all phases of genetic testing, from ordering to analysis, interpretation, and follow-up. A perceived contributor was lack of physician knowledge about genetics, resulting in errors in test ordering and interpretation. The limitations and uncertainty inherent to rapidly evolving technology were also seen as contributing factors. Strategies to prevent errors included physician education, availability of genetic experts for consultation, and enhanced communication such as improved test reports and electronic decision support. Conclusion Genetic testing poses concerns for patient safety, due to errors and the limitations of current tests. As genomic tests are integrated into medical care, anticipating and addressing the patient safety concerns these key informants identified will be crucial. PMID:27011058

  4. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies

    PubMed Central

    Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang

    2016-01-01

    Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. PMID:27474172

  5. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    PubMed

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  6. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  7. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  8. The Human Genome Diversity Project: past, present and future.

    PubMed

    Cavalli-Sforza, L Luca

    2005-04-01

    The Human Genome Project, in accomplishing its goal of sequencing one human genome, heralded a new era of research, a component of which is the systematic study of human genetic variation. Despite delays, the Human Genome Diversity Project has started to make progress in understanding the patterns of this variation and its causes, and also promises to provide important information for biomedical studies.

  9. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J; Wullschleger, Stan D; Tuskan, Gerald A

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  10. Genome-wide association study of antisocial personality disorder

    PubMed Central

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  11. Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains.

    PubMed

    Rasmussen, Thomas Bovbjerg; Danielsen, Morten; Valina, Ondrej; Garrigues, Christel; Johansen, Eric; Pedersen, Martin Bastian

    2008-08-01

    A DNA microarray platform based on 2,200 genes from publicly available sequences was designed for Streptococcus thermophilus. We determined how single-nucleotide polymorphisms in the 65- to 75-mer oligonucleotide probe sequences affect the hybridization signals. The microarrays were then used for comparative genome hybridization (CGH) of 47 dairy S. thermophilus strains. An analysis of the exopolysaccharide genes in each strain confirmed previous findings that this class of genes is indeed highly variable. A phylogenetic tree based on the CGH data showed similar distances for most strains, indicating frequent recombination or gene transfer within S. thermophilus. By comparing genome sizes estimated from the microarrays and pulsed-field gel electrophoresis, the amount of unknown DNA in each strain was estimated. A core genome comprised of 1,271 genes detected in all 47 strains was identified. Likewise, a set of noncore genes detected in only some strains was identified. The concept of an industrial core genome is proposed. This is comprised of the genes in the core genome plus genes that are necessary in an applied industrial context.

  12. Study of atmospheric pollution scavenging. Twenty-fourth progress report

    SciTech Connect

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980`s became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  13. Genome-Wide Association Studies for Comb Traits in Chickens

    PubMed Central

    Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  14. Genome-wide association study of atypical psychosis.

    PubMed

    Kanazawa, Tetsufumi; Ikeda, Masashi; Glatt, Stephen J; Tsutsumi, Atsushi; Kikuyama, Hiroki; Kawamura, Yoshiya; Nishida, Nao; Miyagawa, Taku; Hashimoto, Ryota; Takeda, Masatoshi; Sasaki, Tsukasa; Tokunaga, Katsushi; Koh, Jun; Iwata, Nakao; Yoneda, Hiroshi

    2013-10-01

    Atypical psychosis with a periodic course of exacerbation and features of major psychiatric disorders [schizophrenia (SZ) and bipolar disorder (BD)] has a long history in clinical psychiatry in Japan. Based upon the new criteria of atypical psychosis, a Genome-Wide Association Study (GWAS) was conducted to identify the risk gene or variants. The relationships between atypical psychosis, SZ and BD were then assessed using independent GWAS data. Forty-seven patients with solid criteria of atypical psychosis and 882 normal controls (NCs) were scanned using an Affymetrics 6.0 chip. GWAS SZ data (560 SZ cases and 548 NCs) and GWAS BD (107 cases with BD type 1 and 107 NCs) were compared using gene-based analysis. The most significant SNPs were detected around the CHN2/CPVL genes (rs245914, P = 1.6 × 10(-7)) , COL21A1 gene (rs12196860, P = 2.45 × 10(-7) ), and PYGL/TRIM9 genes (rs1959536, P = 7.73 × 10(-7) ), although none of the single-nucleotide polymorphisms exhibited genome-wide significance (P = 5 × 10(-8) ). One of the highest peaks was detected on the major histocompatibility complex region, where large SZ GWASs have previously disclosed an association. The gene-based analysis suggested significant enrichment between SZ and atypical psychosis (P = 0.01), but not BD. This study provides clues about the types of patient whose diagnosis lies between SZ and BD. Studies with larger samples are required to determine the causal variant.

  15. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources.

    PubMed

    Ramos, Erin M; Hoffman, Douglas; Junkins, Heather A; Maglott, Donna; Phan, Lon; Sherry, Stephen T; Feolo, Mike; Hindorff, Lucia A

    2014-01-01

    Rapidly accumulating data from genome-wide association studies (GWASs) and other large-scale studies are most useful when synthesized with existing databases. To address this opportunity, we developed the Phenotype-Genotype Integrator (PheGenI), a user-friendly web interface that integrates various National Center for Biotechnology Information (NCBI) genomic databases with association data from the National Human Genome Research Institute GWAS Catalog and supports downloads of search results. Here, we describe the rationale for and development of this resource. Integrating over 66,000 association records with extensive single nucleotide polymorphism (SNP), gene, and expression quantitative trait loci data already available from the NCBI, PheGenI enables deeper investigation and interrogation of SNPs associated with a wide range of traits, facilitating the examination of the relationships between genetic variation and human diseases.

  16. The revolution of whole genome sequencing to study parasites.

    PubMed

    Forrester, Sarah Jayne; Hall, Neil

    2014-07-01

    Genome sequencing has revolutionized the way in which we approach biological research from fundamental molecular biology to ecology and epidemiology. In the last 10 years the field of genomics has changed enormously as technology has improved and the tools for genomic sequencing have moved out of a few dedicated centers and now can be performed on bench-top instruments. In this review we will cover some of the key discoveries that were catalyzed by some of the first genome projects and discuss how this field is developing, what the new challenges are and how this may impact on research in the near future.

  17. Genome instability mechanisms and the structure of cancer genomes.

    PubMed

    Cassidy, Liam D; Venkitaraman, Ashok R

    2012-02-01

    Genomic instability is a hallmark of cancer cells, and arises from the aberrations that these cells exhibit in the normal biological mechanisms that repair and replicate the genome, or ensure its accurate segregation during cell division. Increasingly detailed descriptions of cancer genomes have begun to emerge from next-generation sequencing (NGS), providing snapshots of their nature and heterogeneity in different cancers at different stages in their evolution. Here, we attempt to extract from these sequencing studies insights into the role of genome instability mechanisms in carcinogenesis, and to identify challenges impeding further progress.

  18. Life Sciences Division and Center for Human Genome Studies 1994

    SciTech Connect

    Cram, L.S.; Stafford, C.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  19. Genome-wide studies of telomere biology in budding yeast

    PubMed Central

    Harari, Yaniv; Kupiec, Martin

    2014-01-01

    Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  20. [Genetics and genomics for the study of bacterial resistance].

    PubMed

    Garza-Ramos, Ulises; Silva-Sánchez, Jesús; Martínez-Romero, Esperanza

    2009-01-01

    Bacterial resistance is a public health problem causing high rates of morbidity and mortality in hospital settings. To the extent that different antibiotics are used, bacteria resistant to multiple drugs are selected. The development of new molecular genomic and proteomic tools such as real-time PCR, DNA pyrosequencing, mass spectrometry, DNA microarrays, and bioinformatics allow for more in-depth knowledge about the physiology and structure of bacteria and mechanisms involved in antibiotic resistance. These studies identify new targets for drugs and design specific antibiotics to provide more accurate treatments to combat infections caused by bacteria. Using these techniques, it will also be possible to rapidly identify genes that confer resistance to antibiotics, and to identify complex genetic structures, such as integrons that are involved in the spread of genes that confer multidrug-resistance.

  1. From genome-wide arrays to tailor-made biomarker readout - Progress towards routine analysis of skin sensitizing chemicals with GARD.

    PubMed

    Forreryd, Andy; Zeller, Kathrin S; Lindberg, Tim; Johansson, Henrik; Lindstedt, Malin

    2016-12-01

    Allergic contact dermatitis (ACD) initiated by chemical sensitizers is an important public health concern. To prevent ACD, it is important to identify chemical allergens to limit the use of such compounds in various products. EU legislations, as well as increased mechanistic knowledge of skin sensitization have promoted development of non-animal based approaches for hazard classification of chemicals. GARD is an in vitro testing strategy based on measurements of a genomic biomarker signature. However, current GARD protocols are optimized for identification of predictive biomarker signatures, and not suitable for standardized screening. This study describes improvements to GARD to progress from biomarker discovery into a reliable and cost-effective assay for routine testing. Gene expression measurements were transferred to NanoString nCounter platform, normalization strategy was adjusted to fit serial arrival of testing substances, and a novel strategy to correct batch variations was presented. When challenging GARD with 29 compounds, sensitivity, specificity and accuracy could be estimated to 94%, 83% and 90%, respectively. In conclusion, we present a GARD workflow with improved sample capacity, retained predictive performance, and in a format adapted to standardized screening. We propose that GARD is ready to be considered as part of an integrated testing strategy for skin sensitization.

  2. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.

    PubMed

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul

    2016-07-01

    Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.

  3. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma

    PubMed Central

    Chahal, Harvind S.; Lin, Yuan; Ransohoff, Katherine J.; Hinds, David A.; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A.; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y.; Han, Jiali; Sarin, Kavita Y.

    2016-01-01

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7–11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10−8) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma. PMID:27424798

  4. Structure and Functional Studies of DEN-2 Virus Genome.

    DTIC Science & Technology

    1983-09-01

    No. 3. RECIPIENT’S CAT ALO NUMBER 4. TI TL E (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED Structure and Functional Studies on Dengue -2 Progress... Dengue virus glycoprotein antigen E. . Cloning of complementary DNA (eDNA) copy of Dengue viral RNA into E. coli HB101/pBR322 host/vector system and...characterization of a alone that containe-a 400 bp insert complementary to Dengue RNA will be described. 2. Construction of a cDNA library using Dengue

  5. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Slof-Op t Landt, Margarita CT; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O’Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2013-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10−7) in SOX2OT and rs17030795 (P=5.84×10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10−6) between CUL3 and FAM124B and rs1886797 (P=8.05×10−6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P= 4×10−6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:21079607

  6. A genome-wide association study of anorexia nervosa.

    PubMed

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  7. A Whole Genome Association Study on Meat Palatability in Hanwoo

    PubMed Central

    Hyeong, K.-E.; Lee, Y.-M.; Kim, Y.-S.; Nam, K. C.; Jo, C.; Lee, K.-H.; Lee, J.-E.; Kim, J.-J.

    2014-01-01

    A whole genome association (WGA) study was carried out to find quantitative trait loci (QTL) for sensory evaluation traits in Hanwoo. Carcass samples of 250 Hanwoo steers were collected from National Agricultural Cooperative Livestock Research Institute, Ansung, Gyeonggi province, Korea, between 2011 and 2012 and genotyped with the Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip. Among the SNPs in the chip, a total of 322,160 SNPs were chosen after quality control tests. After adjusting for the effects of age, slaughter-year-season, and polygenic effects using genome relationship matrix, the corrected phenotypes for the sensory evaluation measurements were regressed on each SNP using a simple linear regression additive based model. A total of 1,631 SNPs were detected for color, aroma, tenderness, juiciness and palatability at 0.1% comparison-wise level. Among the significant SNPs, the best set of 52 SNP markers were chosen using a forward regression procedure at 0.05 level, among which the sets of 8, 14, 11, 10, and 9 SNPs were determined for the respectively sensory evaluation traits. The sets of significant SNPs explained 18% to 31% of phenotypic variance. Three SNPs were pleiotropic, i.e. AX-26703353 and AX-26742891 that were located at 101 and 110 Mb of BTA6, respectively, influencing tenderness, juiciness and palatability, while AX-18624743 at 3 Mb of BTA10 affected tenderness and palatability. Our results suggest that some QTL for sensory measures are segregating in a Hanwoo steer population. Additional WGA studies on fatty acid and nutritional components as well as the sensory panels are in process to characterize genetic architecture of meat quality and palatability in Hanwoo. PMID:25178363

  8. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  9. Novel Genetic Analysis for Case-Control Genome-Wide Association Studies: Quantification of Power and Genomic Prediction Accuracy

    PubMed Central

    Lee, Sang Hong; Wray, Naomi R.

    2013-01-01

    Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations. PMID:23977056

  10. Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA

    PubMed Central

    Prakash, Ashwin; Bechtel, Jason; Fedorov, Alexei

    2011-01-01

    Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition. PMID:21610667

  11. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  12. Effects of General Medical Health on Alzheimer Progression: the Cache County Dementia Progression Study

    PubMed Central

    Leoutsakos, Jeannie-Marie S.; Han, Dingfen; Mielke, Michelle M.; Forrester, Sarah N.; Tschanz, JoAnn T.; Corcoran, Chris D.; Green, Robert C.; Norton, Maria C.; Welsh-Bohmer, Kathleen A.; Lyketsos, Constantine G.

    2012-01-01

    Background Several observational studies suggested a link between health status and rate of decline among individuals with Alzheimer’s disease (AD). We sought to quantify the relationship in a population-based study of incident AD, and to compare global comorbidity ratings to counts of comorbid conditions and medications as predictors of AD progression. Methods Design Case-only cohort study arising from population-based longitudinal study of memory and aging. Setting Cache County, Utah Participants 335 individuals with incident AD followed for up to 11 years. Measurements Patient descriptors included sex, age, education, dementia duration at baseline, and APOE genotype. Measures of health status made at each visit included the GMHR (General Medical Health Rating), number of comorbid medical conditions, and number of non-psychiatric medications. Dementia outcomes included the Mini-Mental State Exam (MMSE), Clinical Dementia Rating – sum of boxes (CDR-sb), and the Neuropsychiatric Inventory (NPI). Results Health Status tended to fluctuate over time within individuals. None of the baseline medical variables (GMHR, comorbidities, non-psychiatric medications) were associated with differences in rates of decline in longitudinal linear mixed effects models. Over time, low GMHR ratings, but not comorbidities or medications, were associated with poorer outcomes (MMSE: β=−1.07 p=0.01; CDR-sb: β=1.79 p<0.001; NPI: β=4.57 p=0.01) Conclusions Given that time-varying GMHR, but not baseline GMHR, was associated with the outcomes, there is likely a dynamic relationship between medical and cognitive health. GMHR is a more sensitive measure of health than simple counts of comorbidities or medications. Since health status is a potentially modifiable risk factor, further study is warranted. PMID:22687143

  13. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.

    PubMed

    Calus, M P L; de Haas, Y; Veerkamp, R F

    2013-10-01

    Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction

  14. Retinopathy and Progression of CKD: The CRIC Study

    PubMed Central

    Pistilli, Maxwell; Ying, Gui-Shuang; Daniel, Ebenezer; Maguire, Maureen G.; Xie, Dawei; Whittock-Martin, Revell; Parker Ostroff, Candace; Lo, Joan C.; Townsend, Raymond R.; Gadegbeku, Crystal A.; Lash, James P.; Fink, Jeffrey C.; Rahman, Mahboob; Feldman, Harold I.; Kusek, John W.

    2014-01-01

    Background and objectives Retinal abnormalities may be associated with changes in the renal vasculature. This study assessed the association between retinopathy and progression of kidney disease in participants of the Chronic Renal Insufficiency Cohort (CRIC) study. Design, setting, participants, & measurements This was a prospective study in which patients with CKD enrolled in CRIC had nonmydriatic fundus photographs of both eyes. All CRIC participants in six clinical sites in which fundus cameras were deployed were offered participation. Photographs were reviewed at a reading center. The presence and severity of retinopathy and vessel calibers were assessed using standard protocols by graders masked to clinical information. The associations of retinal features with changes in eGFR and the need for RRT (ESRD) were assessed. Results Retinal images and renal progression outcomes were obtained from 1852 of the 2605 participants (71.1%) approached. During follow-up (median 2.3 years), 152 participants (8.2%) developed ESRD. Presence and severity of retinopathy at baseline were strongly associated with the risk of subsequent progression to ESRD and reductions in eGFR in unadjusted analyses. For example, participants with retinopathy were 4.4 times (95% confidence interval [95% CI], 3.12 to 6.31) more likely to develop ESRD than those without retinopathy (P<0.001). However, this association was not statistically significant after adjustment for initial eGFR and 24-hour proteinuria. Venular and arteriolar diameter calibers were not associated with ESRD or eGFR decline. The results showed a nonlinear relationship between mean ratio of arteriole/vein calibers and the risk of progression to ESRD; participants within the fourth arteriole/vein ratio quartile were 3.11 times (95% CI, 1.51 to 6.40) more likely to develop ESRD than those in the first quartile (P<0.001). Conclusions The presence and severity of retinopathy were not associated with ESRD and decline in eGFR after

  15. Snake Genome Sequencing: Results and Future Prospects

    PubMed Central

    Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.

    2016-01-01

    Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957

  16. Implications of genome wide association studies for addiction: Are our a priori assumptions all wrong?

    PubMed Central

    Hall, F. Scott; Drgonova, Jana; Jain, Siddharth; Uhl, George R.

    2013-01-01

    Substantial genetic contributions to addiction vulnerability are supported by data from twin studies, linkage studies, candidate gene association studies and, more recently, Genome Wide Association Studies (GWAS). Parallel to this work, animal studies have attempted to identify the genes that may contribute to responses to addictive drugs and addiction liability, initially focusing upon genes for the targets of the major drugs of abuse. These studies identified genes/proteins that affect responses to drugs of abuse; however, this does not necessarily mean that variation in these genes contributes to the genetic component of addiction liability. One of the major problems with initial linkage and candidate gene studies was an a priori focus on the genes thought to be involved in addiction based upon the known contributions of those proteins to drug actions, making the identification of novel genes unlikely. The GWAS approach is systematic and agnostic to such a priori assumptions. From the numerous GWAS now completed several conclusions may be drawn: (1) addiction is highly polygenic; each allelic variant contributing in a small, additive fashion to addiction vulnerability; (2) unexpected, compared to our a priori assumptions, classes of genes are most important in explaining addiction vulnerability; (3) although substantial genetic heterogeneity exists, there is substantial convergence of GWAS signals on particular genes. This review traces the history of this research; from initial transgenic mouse models based upon candidate gene and linkage studies, through the progression of GWAS for addiction and nicotine cessation, to the current human and transgenic mouse studies post-GWAS. PMID:23872493

  17. Implications of genome wide association studies for addiction: are our a priori assumptions all wrong?

    PubMed

    Hall, F Scott; Drgonova, Jana; Jain, Siddharth; Uhl, George R

    2013-12-01

    Substantial genetic contributions to addiction vulnerability are supported by data from twin studies, linkage studies, candidate gene association studies and, more recently, Genome Wide Association Studies (GWAS). Parallel to this work, animal studies have attempted to identify the genes that may contribute to responses to addictive drugs and addiction liability, initially focusing upon genes for the targets of the major drugs of abuse. These studies identified genes/proteins that affect responses to drugs of abuse; however, this does not necessarily mean that variation in these genes contributes to the genetic component of addiction liability. One of the major problems with initial linkage and candidate gene studies was an a priori focus on the genes thought to be involved in addiction based upon the known contributions of those proteins to drug actions, making the identification of novel genes unlikely. The GWAS approach is systematic and agnostic to such a priori assumptions. From the numerous GWAS now completed several conclusions may be drawn: (1) addiction is highly polygenic; each allelic variant contributing in a small, additive fashion to addiction vulnerability; (2) unexpected, compared to our a priori assumptions, classes of genes are most important in explaining addiction vulnerability; (3) although substantial genetic heterogeneity exists, there is substantial convergence of GWAS signals on particular genes. This review traces the history of this research; from initial transgenic mouse models based upon candidate gene and linkage studies, through the progression of GWAS for addiction and nicotine cessation, to the current human and transgenic mouse studies post-GWAS.

  18. Genome-wide association study of circulating retinol levels.

    PubMed

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  19. The Siblings With Ischemic Stroke Study (SWISS): A Progress Report

    PubMed Central

    Meschia, James F.; Kissela, Brett M.; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Beck, Jeanne; Skarp, Alexa N.

    2006-01-01

    There is increasing evidence that genetic factors are associated with ischemic stroke, including multiple recent reports of association with the gene PDE4D, encoding phosphodiesterase 4D, on chromosome 5q12. Genetic studies of stroke are important but can be logistically difficult to perform. This article reviews the design of the Siblings With Ischemic Stroke Study (SWISS) and discusses problems in performing a sibling-based pedigree study where proband-initiated consent is used to enroll pedigree members. Proband-initiated enrollment optimizes privacy protections for family members, but it is associated with a substantial pedigree non-completion rate such that 3 to 4 probands must be identified to obtain one completed sibling pedigree. This report updates the progress of enrollment in the SWISS protocol, discusses barriers to pedigree completion and describes innovative approaches used by the SWISS investigators to enhance enrollment. PMID:16595789

  20. Epidemiological studies of esophageal cancer in the era of genome-wide association studies

    PubMed Central

    Wang, An-Hui; Liu, Yuan; Wang, Bo; He, Yi-Xuan; Fang, Ye-Xian; Yan, Yong-Ping

    2014-01-01

    Esophageal cancer (EC) caused about 395000 deaths in 2010. China has the most cases of EC and EC is the fourth leading cause of cancer death in China. Esophageal squamous cell carcinoma (ESCC) is the predominant histologic type (90%-95%), while the incidence of esophageal adenocarcinoma (EAC) remains extremely low in China. Traditional epidemiological studies have revealed that environmental carcinogens are risk factors for EC. Molecular epidemiological studies revealed that susceptibility to EC is influenced by both environmental and genetic risk factors. Of all the risk factors for EC, some are associated with the risk of ESCC and others with the risk of EAC. However, the details and mechanisms of risk factors involved in the process for EC are unclear. The advanced methods and techniques used in human genome studies bring a great opportunity for researchers to explore and identify the details of those risk factors or susceptibility genes involved in the process of EC. Human genome epidemiology is a new branch of epidemiology, which leads the epidemiology study from the molecular epidemiology era to the era of genome wide association studies (GWAS). Here we review the epidemiological studies of EC (especially ESCC) in the era of GWAS, and provide an overview of the general risk factors and those genomic variants (genes, SNPs, miRNAs, proteins) involved in the process of ESCC. PMID:25133033

  1. Genomic Rearrangements in Prostate Cancer

    PubMed Central

    Barbieri, Christopher E.; Rubin, Mark A.

    2014-01-01

    Purpose of review Genomic instability is a fundamental feature of human cancer, leading to the activation of oncogenes and inactivation of tumor suppressors. In prostate cancer, structural genomic rearrangements, resulting in gene fusions, amplifications and deletions, are a critical mechanism effecting these alterations. Here we review recent literature regarding the importance of genomic rearrangements in the pathogenesis of prostate cancer and the potential impact on patient care. Recent findings Next generation sequencing has revealed a striking abundance, complexity, and heterogeneity of genomic rearrangements in prostate cancer. These recent studies have nominated a number of processes in predisposing prostate cancer to genomic rearrangements, including androgen-induced transcription. Summary Structural rearrangements are the critical mechanism resulting in the characteristic genomic changes associated with prostate cancer pathogenesis and progression. Future studies will determine if the impact of these events on tumor phenotypes can be translated to clinical utility for patient prognosis and choices of management strategies. PMID:25393273

  2. The human genome project: Information management, access, and regulation. Technical progress report, 1 April--31 August 1993

    SciTech Connect

    McInerney, J.D.; Micikas, L.B.

    1993-09-10

    Efforts are described to prepare educational materials including computer based as well as conventional type teaching materials for training interested high school and elementary students in aspects of Human Genome Project.

  3. Distinguishing true from false positives in genomic studies: p values.

    PubMed

    Broer, Linda; Lill, Christina M; Schuur, Maaike; Amin, Najaf; Roehr, Johannes T; Bertram, Lars; Ioannidis, John P A; van Duijn, Cornelia M

    2013-02-01

    Distinguishing true from false positive findings is a major challenge in human genetic epidemiology. Several strategies have been devised to facilitate this, including the positive predictive value (PPV) and a set of epidemiological criteria, known as the "Venice" criteria. The PPV measures the probability of a true association, given a statistically significant finding, while the Venice criteria grade the credibility based on the amount of evidence, consistency of replication and protection from bias. A vast majority of journals use significance thresholds to identify the true positive findings. We studied the effect of p value thresholds on the PPV and used the PPV and Venice criteria to define usable thresholds of statistical significance. Theoretical and empirical analyses of data published on AlzGene show that at a nominal p value threshold of 0.05 most "positive" findings will turn out to be false if the prior probability of association is below 0.10 even if the statistical power of the study is higher than 0.80. However, in underpowered studies (0.25) with a low prior probability of 1 × 10(-3), a p value of 1 × 10(-5) yields a high PPV (>96 %). Here we have shown that the p value threshold of 1 × 10(-5) gives a very strong evidence of association in almost all studies. However, in the case of a very high prior probability of association (0.50) a p value threshold of 0.05 may be sufficient, while for studies with very low prior probability of association (1 × 10(-4); genome-wide association studies for instance) 1 × 10(-7) may serve as a useful threshold to declare significance.

  4. FLAGdb(++): A Bioinformatic Environment to Study and Compare Plant Genomes.

    PubMed

    Tamby, Jean Philippe; Brunaud, Véronique

    2017-01-01

    Today, the growing knowledge and data accumulation on plant genomes do not solve in a simple way the task of gene function inference. Because data of different types are coming from various sources, we need to integrate and analyze them to help biologists in this task. We created FLAGdb(++) ( http://tools.ips2.u-psud.fr/FLAGdb ) to take up this challenge for a selection of plant genomes. In order to enrich gene function predictions, structural and functional annotations of the genomes are explored to generate meta-data and to compare them. Since data are numerous and complex, we focused on accessibility and visualization with an original and user-friendly interface. In this chapter we present the main tools of FLAGdb(++) and a use-case to explore a gene family: structural and functional properties of this family and research of orthologous genes in the other plant genomes.

  5. CRISPR system for genome engineering: the application for autophagy study.

    PubMed

    Cui, Jianzhou; Chew, Shirley Jia Li; Shi, Yin; Gong, Zhiyuan; Shen, Han-Ming

    2017-03-14

    CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research.

  6. Study establishes basis for genomic classification of endometrial cancers

    Cancer.gov

    A comprehensive genomic analysis of nearly 400 endometrial tumors suggests that certain molecular characteristics – such as the frequency of mutations – could complement current pathology methods and help distinguish between principal types of endometrial

  7. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    PubMed

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  8. A genome-wide association study in multiple system atrophy

    PubMed Central

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  9. Geneious! Simplified genome skimming methods for phylogenetic systematic studies: A case study in Oreocarya (Boraginaceae)1

    PubMed Central

    Ripma, Lee A.; Simpson, Michael G.; Hasenstab-Lehman, Kristen

    2014-01-01

    • Premise of the study: As systematists grapple with how to best harness the power of next-generation sequencing (NGS), a deluge of review papers, methods, and analytical tools make choosing the right method difficult. Oreocarya (Boraginaceae), a genus of 63 species, is a good example of a group lacking both species-level resolution and genomic resources. The use of Geneious removes bioinformatic barriers and makes NGS genome skimming accessible to even the least tech-savvy systematists. • Methods: A combination of de novo and reference-guided assemblies was used to process 100-bp single-end Illumina HiSeq 2000 reads. A subset of 25 taxa was used to test the suitability of genome skimming for future systematic studies in recalcitrant lineages like Oreocarya. • Results: The nuclear ribosomal cistron, the plastome, and 12 mitochondrial genes were recovered from all 25 taxa. All data processing and phylogenomic analyses were performed in Geneious. We report possible future multiplexing levels and published low-copy nuclear genes represented within de novo contigs. • Discussion: Genome skimming represents a much-improved primary data collection over PCR+Sanger sequencing when chloroplast DNA (cpDNA), nuclear ribosomal DNA (nrDNA), and mitochondrial DNA (mtDNA) are the target sequences. This study details methods that plant systematists can employ to study their own taxa of interest. PMID:25506521

  10. Genome-Wide Association Studies of Multiple Keratinocyte Cancers

    PubMed Central

    Verkouteren, Joris A. C.; Hofman, Albert; Uitterlinden, André G.; Kraft, Peter; Turman, Constance; Han, Jiali; Cho, Eunyoung; Murabito, Joanne M.; Levy, Daniel; Qureshi, Abrar A.; Nijsten, Tamar

    2017-01-01

    There is strong evidence for a role of environmental risk factors involved in susceptibility to develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in mKCs susceptibility has not been thoroughly investigated. We investigated whether single nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC (sKCs; controls) from Harvard cohorts (the Nurses' Health Study [NHS], NHS II, and the Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical associations (p-value≤ 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-value ≤5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In stage-2, none of these SNPs replicated and only two of them were associated with mKCs in the same direction in the combined meta-analysis. We tested the associations for 19 previously reported basal cell carcinoma-related SNPs (candidate gene association analysis), and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not replicated, we found that previously identified BCC variants may also be associated with mKC, which the most significant association (rs1805007) located at the MC1R gene. PMID:28081215

  11. Replication Study: Melanoma genome sequencing reveals frequent PREX2 mutations

    PubMed Central

    Horrigan, Stephen K; Courville, Pascal; Sampey, Darryl; Zhou, Faren; Cai, Steve

    2017-01-01

    In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result. DOI: http://dx.doi.org/10.7554/eLife.21634.001 PMID:28100394

  12. Genetic Studies of Quantitative MCI and AD Phenotypes in ADNI: Progress, Opportunities, and Plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Yao, Xiaohui; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Ramanan, Vijay K.; Foroud, Tatiana M.; Faber, Kelly M.; Sarwar, Nadeem; Munsie, Leanne M.; Hu, Xiaolan; Soares, Holly D.; Potkin, Steven G.; Thompson, Paul M.; Kauwe, John S.K.; Kaddurah-Daouk, Rima; Green, Robert C.; Toga, Arthur W.; Weiner, Michael W.

    2015-01-01

    INTRODUCTION Genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been crucial in advancing the understanding of AD pathophysiology. Here we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing (WES, WGS) data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times and over 300 publications have resulted, including reports of large scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies employed ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first WES and WGS data sets and reports in healthy controls, MCI, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data, and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multi-omics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological

  13. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  14. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  15. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.

  16. Rare variant genotype imputation with thousands of study-specific whole-genome sequences: implications for cost-effective study designs

    PubMed Central

    Pistis, Giorgio; Porcu, Eleonora; Vrieze, Scott I; Sidore, Carlo; Steri, Maristella; Danjou, Fabrice; Busonero, Fabio; Mulas, Antonella; Zoledziewska, Magdalena; Maschio, Andrea; Brennan, Christine; Lai, Sandra; Miller, Michael B; Marcelli, Marco; Urru, Maria Francesca; Pitzalis, Maristella; Lyons, Robert H; Kang, Hyun M; Jones, Chris M; Angius, Andrea; Iacono, William G; Schlessinger, David; McGue, Matt; Cucca, Francesco; Abecasis, Gonçalo R; Sanna, Serena

    2015-01-01

    The utility of genotype imputation in genome-wide association studies is increasing as progressively larger reference panels are improved and expanded through whole-genome sequencing. Developing general guidelines for optimally cost-effective imputation, however, requires evaluation of performance issues that include the relative utility of study-specific compared with general/multipopulation reference panels; genotyping with various array scaffolds; effects of different ethnic backgrounds; and assessment of ranges of allele frequencies. Here we compared the effectiveness of study-specific reference panels to the commonly used 1000 Genomes Project (1000G) reference panels in the isolated Sardinian population and in cohorts of European ancestry including samples from Minnesota (USA). We also examined different combinations of genome-wide and custom arrays for baseline genotypes. In Sardinians, the study-specific reference panel provided better coverage and genotype imputation accuracy than the 1000G panels and other large European panels. In fact, even gene-centered custom arrays (interrogating ~200 000 variants) provided highly informative content across the entire genome. Gain in accuracy was also observed for Minnesotans using the study-specific reference panel, although the increase was smaller than in Sardinians, especially for rare variants. Notably, a combined panel including both study-specific and 1000G reference panels improved imputation accuracy only in the Minnesota sample, and only at rare sites. Finally, we found that when imputation is performed with a study-specific reference panel, cutoffs different from the standard thresholds of MACH-Rsq and IMPUTE-INFO metrics should be used to efficiently filter badly imputed rare variants. This study thus provides general guidelines for researchers planning large-scale genetic studies. PMID:25293720

  17. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    SciTech Connect

    NEALSON, KENNETH H.

    2013-10-15

    This project had as its goals the understanding of the ecophysiology of the genus Shewanella using various genomics approaches. As opposed to other programs involving Shewanella, this one branched out into the various areas in which Shewanella cells are active, and included both basic and applied studies. All of the work was, to some extent, related to the ability of the bacteria to accomplish electron exchange between the cell and solid state electron acceptors and/or electron donors, a process we call Extracellular Electron Transport, or EET. The major accomplishments related to several different areas: Basic Science Studies: 1. Genetics and genomics of nitrate reduction, resulting in elucidation of atypical nitrate reduction systems in Shewanella oneidensis (MR-1)[2]. 2. Influence of bacterial strain and growth conditions on iron reduction, showing that rates of reduction, extents of reduction, and the formation of secondary minerals were different for different strains of Shewanella [3,4,9]. 3. Comparative genomics as a tool for comparing metabolic capacities of different Shewanella strains, and for predicting growth and metabolism [6,10,15]. In these studies, collaboration with ORNL, PNNL, and 4. Basic studies of electron transport in strain MR-1, both to poised electrodes, and via conductive nanowires [12,13]. This included the first accurate measurements of electrical energy generation by a single cell during electrode growth [12], and the demonstration of electrical conductivity along the length of bacterial nanowires [13]. 5. Impact of surface charge and electron flow on cell movement, cell attachment, cell growth, and biofilm formation [7.18]. The demonstration that interaction with solid state electron acceptors resulted in increased motility [7] led to the description of a phenomenon called electrokinesis. The importance of this for biofilm formation and for electron flow was hypothesized by Nealson & Finkel [18], and is now under study in several

  18. Identification of differential translation in genome wide studies.

    PubMed

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  19. Genome-wide association study of aggressive behaviour in chicken

    PubMed Central

    Li, Zhenhui; Zheng, Ming; Abdalla, Bahareldin Ali; Zhang, Zhe; Xu, Zhenqiang; Ye, Qiao; Xu, Haiping; Luo, Wei; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine. After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1, DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that SORCS2 might play an important role in chicken aggressive behaviour through the regulation of dopaminergic pathways and NGF. PMID:27485826

  20. Weighted SNP set analysis in genome-wide association study.

    PubMed

    Dai, Hui; Zhao, Yang; Qian, Cheng; Cai, Min; Zhang, Ruyang; Chu, Minjie; Dai, Juncheng; Hu, Zhibin; Shen, Hongbing; Chen, Feng

    2013-01-01

    Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk. Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis (wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population. Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than the linear kernel, IBS kernel and PCA.

  1. Multicentric Genome-Wide Association Study for Primary Spontaneous Pneumothorax

    PubMed Central

    Abrantes, Patrícia; Francisco, Vânia; Teixeira, Gilberto; Monteiro, Marta; Neves, João; Norte, Ana; Robalo Cordeiro, Carlos; Moura e Sá, João; Reis, Ernestina; Santos, Patrícia; Oliveira, Manuela; Sousa, Susana; Fradinho, Marta; Malheiro, Filipa; Negrão, Luís

    2016-01-01

    Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08–2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29–2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis. PMID:27203581

  2. Genome-wide association study of sleep in Drosophila melanogaster

    PubMed Central

    2013-01-01

    Background Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. Results We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. Conclusions We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes. PMID:23617951

  3. Molecular studies of functional aspects of plant mitochondria. Progress report

    SciTech Connect

    Siedow, J.N.

    1992-03-03

    The goal of this research is to characterize the mechanism by which a protein encoded by mitochondrial genome of cms-T maize (URF13) interacts with a family of the compounds produced by certain fungi (T-toxins) to permeabilize biological membranes. The research carried out during the current funding period has focused on the structure of URF13, and the results support the validity of the three-helix model of URF13 and provide direct evidence for the oligomeric nature of at least some of the URF13 molecules in the membrane. In addition, the toxin binding studies have provided insight into the dynamic nature of the T-toxin:URF13 interaction and the extent to which Asp-39 is crucial to the interaction that leads to membrane pore formation. Additional knowledge of the structure of URF13 is needed if the nature of the interaction between URF13 and T-toxin to produce a hydrophilic pore within the membrane is to ultimately be understood.

  4. [Recent progress of neuroimaging studies on sleeping brain].

    PubMed

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  5. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  6. The Chlamydomonas genome project: a decade on

    PubMed Central

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  7. Massive parallel sequencing of human whole mitochondrial genomes with Ion Torrent technology: an optimized workflow for Anthropological and Population Genetics studies.

    PubMed

    De Fanti, Sara; Vianello, Dario; Giuliani, Cristina; Quagliariello, Andrea; Cherubini, Anna; Sevini, Federica; Iaquilano, Nicoletta; Franceschi, Claudio; Sazzini, Marco; Luiselli, Donata

    2016-11-08

    Investigation of human mitochondrial DNA variation patterns and phylogeny has been extensively used in Anthropological and Population Genetics studies and sequencing the whole mitochondrial genome is progressively becoming the gold standard. Among the currently available massive parallel sequencing technologies, Ion Torrent™ semiconductor sequencing represents a promising approach for such studies. Nevertheless, an experimental protocol conceived to enable the achievement of both as high as possible yield and of the most homogeneous sequence coverage through the whole mitochondrial genome is still not available. The present work was thus aimed at improving the overall performance of whole mitochondrial genomes Ion Torrent™ sequencing, with special focus on the capability to obtain robust coverage and highly reliable variants calling. For this purpose, a series of cost-effective modifications in standard laboratory workflows was fine-tuned to optimize them for medium- and large-scale population studies. A total of 54 human samples were thus subjected to sequencing of the whole mitochondrial genome with the Ion Personal Genome Machine™ System in four distinct experiments and using Ion 314 chips. Seven of the selected samples were also characterized by means of conventional Sanger sequencing for the sake of comparison. Obtained results demonstrated that the implemented optimizations had definitely improved sequencing outputs in terms of both variants calling efficiency and coverage uniformity, enabling to setup an effective and accurate protocol for whole mitochondrial genome sequencing and a considerable reduction in experimental time consumption and sequencing costs.

  8. Genomic imprinting and reproduction.

    PubMed

    Swales, A K E; Spears, N

    2005-10-01

    Genomic imprinting is the parent-of-origin specific gene expression which is a vital mechanism through both development and adult life. One of the key elements of the imprinting mechanism is DNA methylation, controlled by DNA methyltransferase enzymes. Germ cells undergo reprogramming to ensure that sex-specific genomic imprinting is initiated, thus allowing normal embryo development to progress after fertilisation. In some cases, errors in genomic imprinting are embryo lethal while in others they lead to developmental disorders and disease. Recent studies have suggested a link between the use of assisted reproductive techniques and an increase in normally rare imprinting disorders. A greater understanding of the mechanisms of genomic imprinting and the factors that influence them are important in assessing the safety of these techniques.

  9. Databases and Web Tools for Cancer Genomics Study

    PubMed Central

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-01-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. PMID:25707591

  10. Databases and web tools for cancer genomics study.

    PubMed

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-02-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  11. Current progress of DNA vaccine studies in humans.

    PubMed

    Lu, Shan; Wang, Shixia; Grimes-Serrano, Jill M

    2008-03-01

    Despite remarkable progress in the field of DNA vaccine research since its discovery in the early 1990 s, the formal acceptance of this novel technology as a new modality of human vaccines depends on the successful demonstration of its safety and efficacy in advanced clinical trials. Although clinical trials conducted so far have provided overwhelming evidence that DNA vaccines are well tolerated and have an excellent safety profile, the early designs of DNA vaccines failed to demonstrate sufficient immunogenicity in humans. However, studies conducted over the last few years have led to promising results, particularly when DNA vaccines were used in combination with other forms of vaccines. Here, we provide a review of the data from reported DNA vaccine clinical studies with an emphasis on the ability of DNA vaccines to elicit antigen-specific, cell-mediated and antibody responses in humans. The majority of these trials are designed to test candidate vaccines against several major human pathogens and the remaining studies tested the immunogenicity of therapeutic vaccines against cancer.

  12. Implementing Meta-analysis for genome-wide association studies of pork quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pork quality is a critical concern in the meat industry. Implementation of genome-wide association studies (GWA) allows identification of genomic regions that explain a substantial portion of the variation of relevant traits. It is also important to determine the consistency of results of GWA across...

  13. More heritability probably captured by psoriasis genome-wide association study in Han Chinese.

    PubMed

    Jiang, Long; Liu, Lu; Cheng, Yuyan; Lin, Yan; Shen, Changbing; Zhu, Caihong; Yang, Sen; Yin, Xianyong; Zhang, Xuejun

    2015-11-15

    Missing heritability is a common problem in genome-wide association studies in complex diseases/traits. To quantify the unbiased heritability estimate, we applied the phenotype correlation-genotype correlation regression in psoriasis genome-wide association data in Han Chinese which comprises 1139 cases and 1132 controls. We estimated that 45.7% heritability of psoriasis in Han Chinese were captured by common variants (s.e.=12.5%), which reinforced that the majority of psoriasis heritability can be covered by common variants in genome-wide association data (68.2%). The results provided evidence that the heritability covered by psoriasis genome-wide genotyping data was probably underestimated in previous restricted maximum likelihood method. Our study highlights the broad role of common variants in the etiology of psoriasis and sheds light on the possibility to identify more common variants of small effect by increasing the sample size in psoriasis genome-wide association studies.

  14. Application of genome editing technologies to the study and treatment of hematological disease.

    PubMed

    Pellagatti, Andrea; Dolatshad, Hamid; Yip, Bon Ham; Valletta, Simona; Boultwood, Jacqueline

    2016-01-01

    Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.

  15. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies.

    PubMed

    Billon, Nathalie; Dani, Christian

    2012-03-01

    The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.

  16. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies.

    PubMed

    Wang, Tao; Jia, Weiping; Hu, Cheng

    2015-06-01

    Obesity prevalence has increased in recent years. Lifestyle change fuels obesity, but genetic factors cause more than 50% of average variations in obesity. The advent of genome-wide association studies (GWAS) has hastened the progress of polygenic obesity research. As of this writing, more than 73 obesity susceptibility loci have been identified in ethnic groups through GWAS. The identified loci explain only 2% to 4% of obesity heritability, thereby indicating that a large proportion of loci remain undiscovered. Thus, the next step is to identify and confirm novel loci, which may exhibit smaller effects and lower allele frequencies than established loci. However, achieving these tasks has been difficult for researchers. GWAS help researchers discover the causal loci. Moreover, numerous biological studies have been performed on the polygenic effects on obesity, such as studies on fat mass- and obesity-associated gene (FTO), but the role of these polygenic effects in the mechanism of obesity remains unclear. Thus, obesity-causing variations should be identified, and insights into the biology of polygenic effects on obesity are needed.

  17. Genome-Wide Association Study of Schizophrenia in Japanese Population

    PubMed Central

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  18. A genome-wide DNA methylation study in azoospermia.

    PubMed

    Ferfouri, F; Boitrelle, F; Ghout, I; Albert, M; Molina Gomes, D; Wainer, R; Bailly, M; Selva, J; Vialard, F

    2013-11-01

    The objective of this study was to assess genome-wide DNA methylation in testicular tissue from azoospermic patients. A total of 94 azoospermic patients were recruited and classified into three groups: 29 patients presented obstructive azoospermia (OA), 26 displayed non-obstructive azoospermia (NOA) and successful retrieval of spermatozoa by testicular sperm extraction (TESE+) and 39 displayed NOA and failure to retrieve spermatozoa by TESE (TESE-). An Illumina Infinium Human Methylation27 BeadChip DNA methylation array was used to establish a testicular DNA methylation pattern for each type of azoospermic patient. The OA and NOA groups were compared in terms of the relative M-value (the log2 ratio between methylated and non-methylated probe intensities) for each CpG site. We observed significantly different DNA methylation profiles for the NOA and OA groups, with differences at over 9000 of the 27 578 CpG sites; 212 CpG sites had a relative M-value >3. The results highlighted 14 testis-specific genes. Patient clustering with respect to these 212 CpG sites corresponded closely to the clinical classification. The DNA methylation patterns showed that in the NOA group, 78 of the 212 CpG sites were hypomethylated and 134 were hypermethylated (relative to the OA group). On the basis of these DNA methylation profiles, azoospermic patients could be classified as OA or NOA by considering the 212 CpG sites with the greatest methylation differences. Furthermore, we identified genes that may provide insight into the mechanism of idiopathic NOA.

  19. Personal Genomic Testing for Cancer Risk: Results From the Impact of Personal Genomics Study.

    PubMed

    Gray, Stacy W; Gollust, Sarah E; Carere, Deanna Alexis; Chen, Clara A; Cronin, Angel; Kalia, Sarah S; Rana, Huma Q; Ruffin, Mack T; Wang, Catharine; Roberts, J Scott; Green, Robert C

    2017-02-20

    Purpose Significant concerns exist regarding the potential for unwarranted behavior changes and the overuse of health care resources in response to direct-to-consumer personal genomic testing (PGT). However, little is known about customers' behaviors after PGT. Methods Longitudinal surveys were given to new customers of 23andMe (Mountain View, CA) and Pathway Genomics (San Diego, CA). Survey data were linked to individual-level PGT results through a secure data transfer process. Results Of the 1,042 customers who completed baseline and 6-month surveys (response rate, 71.2%), 762 had complete cancer-related data and were analyzed. Most customers reported that learning about their genetic risk of cancers was a motivation for testing (colorectal, 88%; prostate, 95%; breast, 94%). No customers tested positive for pathogenic mutations in highly penetrant cancer susceptibility genes. A minority of individuals received elevated single nucleotide polymorphism-based PGT cancer risk estimates (colorectal, 24%; prostate, 24%; breast, 12%). At 6 months, customers who received elevated PGT cancer risk estimates were not significantly more likely to change their diet, exercise, or advanced planning behaviors or engage in cancer screening, compared with individuals at average or reduced risk. Men who received elevated PGT prostate cancer risk estimates changed their vitamin and supplement use more than those at average or reduced risk (22% v 7.6%, respectively; adjusted odds ratio, 3.41; 95% CI, 1.44 to 8.18). Predictors of 6-month behavior include baseline behavior (exercise, vitamin or supplement use, and screening), worse health status (diet and vitamin or supplement use), and older age (advanced planning, screening). Conclusion Most adults receiving elevated direct-to-consumer PGT single nucleotide polymorphism-based cancer risk estimates did not significantly change their diet, exercise, advanced care planning, or cancer screening behaviors.

  20. Computational Study of the Genomic and Epigenomic Phenomena

    NASA Astrophysics Data System (ADS)

    Yang, Wenjing

    Biological systems are perhaps the ultimate complex systems, uniquely capable of processing and communicating information, reproducing in their lifetimes, and adapting in evolutionary time scales. My dissertation research focuses on using computational approaches to understand the biocomplexity manifested in the multitude of length scales and time scales. At the molecular and cellular level, central to the complex behavior of a biological system is the regulatory network. My research study focused on epigenetics, which is essential for multicellular organisms to establish cellular identity during development or in response to intracellular and environmental stimuli. My computational study of epigenomics is greatly facilitated by recent advances in high-throughput sequencing technology, which enables high-resolution snapshots of epigenomes and transcriptomes. Using human CD4+ T cell as a model system, the dynamical changes in epigenome and transcriptome pertinent to T cell activation were investigated at the genome scale. Going beyond traditional focus on transcriptional regulation, I provided evidences that post-transcriptional regulation may serve as a major component of the regulatory network. In addition, I explored alternative polyadenylation, another novel aspect of gene regulation, and how it cross-talks with the local chromatin structure. As the renowned theoretical biologist Theodosius Dobzhansky said eloquently, "Nothing in biology makes sense except in the light of evolution''. To better understand this ubiquitous driving force in the biological world, I went beyond molecular events in a single organism, and investigated the dynamical changes of population structure along the evolutionary time scale. To this end, we used HIV virus population dynamics in the host immune system as a model system. The evolution of HIV viral population plays a key role in AIDS immunopathogenesis with its exceptionally high mutation rate. However, the theoretical studies of

  1. The Progress of Metabolomics Study in Traditional Chinese Medicine Research.

    PubMed

    Wang, Pengcheng; Wang, Qiuhong; Yang, Bingyou; Zhao, Shan; Kuang, Haixue

    2015-01-01

    Traditional Chinese medicine (TCM) has played important roles in health protection and disease treatment for thousands of years in China and has gained the gradual acceptance of the international community. However, many intricate issues, which cannot be explained by traditional methods, still remain, thus, new ideas and technologies are needed. As an emerging system biology technology, the holistic view adopted by metabolomics is similar to that of TCM, which allows us to investigate TCM with complicated conditions and multiple factors in depth. In this paper, we tried to give a timely and comprehensive update about the methodology progression of metabolomics, as well as its applications, in different fields of TCM studies including quality control, processing, safety and efficacy evaluation. The herbs investigated by metabolomics were selected for detailed examination, including Anemarrhena asphodeloides Bunge, Atractylodes macrocephala Kidd, Pinellia ternate, etc.; furthermore, some valuable results have been obtained and summarized. In conclusion, although the study of metabolomics is at the early phase and requires further scrutiny and validation, it still provides bright prospects to dissect the synergistic action of multiple components from TCM. Overall, with the further development of analytical techniques, especially multi-analysis techniques, we expect that metabolomics will greatly promote TCM research and the establishment of international standards, which is beneficial to TCM modernization.

  2. Using the Human Genome: A Case Study in Education

    ERIC Educational Resources Information Center

    Boyle, John A.

    2002-01-01

    The working drafts of the human genome, announced in February 2001, have clearly provided a breakthrough in biochemistry and molecular biology research. The scientific data also provide an opportunity to vary a typical approach to teaching. Advanced graduate students at our university can elect to take a course in molecular genetics. The human…

  3. Evaluating Theobroma grandiflorum for comparative genomic studies with Theobroma cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The seeds of Theobroma cacao (cacao) are the source of cocoa, the raw material for the multi-billion dollar chocolate industry. Cacao’s two most important traits are its unique seed storage triglyceride (cocoa butter) and the flavor of its fermented beans (chocolate). The genome of T. cacao is bei...

  4. Beyond the genome: functional studies of phototrophic sulfur oxidation.

    PubMed

    Hanson, Thomas E; Morgan-Kiss, Rachael M; Chan, Leong-Keat; Hiras, Jennifer

    2010-01-01

    The increasing availability of complete genomic sequences for cultured phototrophic bacteria and assembled metagenomes from environments dominated by phototrophs has reinforced the need for a "post-genomic" analytical effort to test models of cellular structure and function proposed from genomic data. Comparative genomics has produced a testable model for pathways of sulfur compound oxidation in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide dehydrogenase. However, these models do not predict which enzyme is important under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium, a combination of genetics and physiological analysis of mutant strains has led to the realization that this organism contains at least two active sulfide:quinone oxidoreductases and that there is significant interaction between sulfide oxidation and light harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown structure has been proposed to activate elemental sulfur for transport into the cytoplasm where it can be oxidized or assimilated, and recent approaches using classical metabolite analysis have begun to shed light on this issue both in C. tepidum and the purple sulfur bacterium Allochromatium vinosum.

  5. Genomic resources for the study of neuropsychiatric disorders.

    PubMed

    Senthil, G; Dutka, T; Bingaman, L; Lehner, T

    2017-03-21

    The National Institute of Mental Health (NIMH) has made sustained investments in the development of genomic resources over the last two decades. These investments have led to the development of the largest biorepository for psychiatric genetics as a centralized national resource. In the realm of genomic resources, NIMH has been supporting large team science (TS) consortia focused on gene discovery, fine mapping of loci, and functional genomics using state-of-the-art technologies. The scientific output from these efforts has not only begun to transform our understanding of the genetic architecture of neuropsychiatric disorders, but it has also led to a broader cultural change among the investigator community towards deeper collaborations and broad pre-publication sharing of data and resources. The NIMH supported efforts have led to a vast increase in the amount of genetic and genomic resources available to the mental health research community. Here we provide an account of the existing resources and estimates of the scale and scope of what will be available in the near future. All biosamples and data described are intended for broad sharing with researchers worldwide, as allowed by the subject consent and applicable laws.Molecular Psychiatry advance online publication, 21 March 2017; doi:10.1038/mp.2017.29.

  6. Progressive statistics for studies in sports medicine and exercise science.

    PubMed

    Hopkins, William G; Marshall, Stephen W; Batterham, Alan M; Hanin, Juri

    2009-01-01

    Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.

  7. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms

    PubMed Central

    Kameshwar, Ayyappa kumar Sista; Qin, Wensheng

    2016-01-01

    Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation. PMID:26884714

  8. Progress of pharmacological studies on alkaloids from Apocynaceae.

    PubMed

    Liu, Lu; Cao, Jian-Xin; Yao, Yuan-Cheng; Xu, Sheng-Ping

    2013-01-01

    Alkaloid was a kind of biological active ingredient. There were various types of alkaloids in Apocynaceae. This paper reviewed the progress on alkaloids from Apocynaceae, which contained origin, structure, and pharmacological activity.

  9. HuGE Watch: tracking trends and patterns of published studies of genetic association and human genome epidemiology in near-real time.

    PubMed

    Yu, Wei; Wulf, Anja; Yesupriya, Ajay; Clyne, Melinda; Khoury, Muin Joseph; Gwinn, Marta

    2008-09-01

    HuGE Watch is a web-based application for tracking the evolution of published studies on genetic association and human genome epidemiology in near-real time. The application allows users to display temporal trends and spatial distributions as line charts and google maps, providing a quick overview of progress in the field. http://www.hugenavigator.net/HuGENavigator/startPageWatch.do

  10. Progress on upwelling studies in the China seas

    NASA Astrophysics Data System (ADS)

    Hu, Jianyu; Wang, Xiao Hua

    2016-09-01

    East Asian marginal seas surrounding China exhibit rich ocean upwelling, mostly in response to the southwesterly summer monsoon. Upwelling in the China seas, namely, the South China Sea, the Taiwan Strait, the East China Sea, the Yellow Sea, and the Bohai Sea, has become increasingly important because the potential changes in the upwelling may have dramatic ecosystem, socioeconomic, and climate impacts. This paper reviews the progress of upwelling studies in the China seas since the year 2000, by presenting the principal characteristics and new understanding of 12 major upwelling regions in the China seas. Upwelling exhibits long-term variability at intraseasonal to multidecadal scales as well as short-term variability frequently caused by tropical cyclones. It is also associated with the El Niño-Southern Oscillation, local environmental variation, and biogeochemical factors. The coastal upwelling around Hainan Island and the upwelling or cold dome northeast of Taiwan Island are specifically highlighted because they have attracted great interest for decades. This paper summarizes upwelling mechanisms in terms of wind, topography, tide, stratification, and background flow, with applications mostly to the China seas. Finally, we propose some topics for future upwelling research, i.e., potential intensification of coastal upwelling under global climate change, downwelling, intrusion of upwelling into coastal embayments, and the influence of upwelling on fishery and biogeochemical processes.

  11. Progressive macular hypomelanosis among Egyptian patients: a clinicopathological study

    PubMed Central

    Selim, Mohamed Khaled; Ahmed, El-Shahat Farag; Abdelgawad, Mamdouh Morsy; El-Kamel, Mohammed Fawzy

    2011-01-01

    Background: Progressive macular hypomelanosis (PMH) is a disease of unclear etiology. Propionbacterium acnes (P. acnes) was claimed to be an etiological factor. Objectives: The purpose of this study was to document the clinicopathological features of PMH in Egyptian patients and to evaluate the therapeutic outcome. Methods: Patients with clinical features of PMH were recruited. Wood’s lamp examination, skin scrapings for fungi, and skin biopsy specimens were obtained. Biopsies were stained with hematoxylin and eosin, PAS, Fontana-Masson, and S100 protein. Patients received either narrow-band UVB (nbUVB) or nbUVB plus daily topical clindamycin 1% and benzoyl peroxide gel 5% (bcUVB). The period of active treatment was 14 weeks followed by a follow-up period of 24 weeks. Results: Twenty-nine patients were included. Microscopic evaluation of skin biopsy specimens showed no significant differences between lesional and normal skin. Fontana-Masson stained sections showed overall reduction of melanin granules in the basal layer of lesional skin only and S100 staining did not detect significant differences in the number of melanocytes in lesional and normal skin. Nearly complete repigmentation was reported in 10 patients treated with bcUVB compared to 9 patients treated with nbUVb with no significant differences between both groups after 14 weeks. Only 2 patients in each group retained the pigmentation and the remaining patients returned to the baseline color before treatment. Conclusions: This study documented the clinicopathological features of PMH among Egyptians. No permanently effective treatment is available. Further studies are needed to prove or disprove the pathogenic role of P. acnes in PMH. PMID:24396712

  12. Progress in preliminary studies at Ottana Solar Facility

    NASA Astrophysics Data System (ADS)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  13. Integrated Genome-Based Studies of Shewanella Echophysiology

    SciTech Connect

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high

  14. Advances in genome editing technology and its promising application in evolutionary and ecological studies

    PubMed Central

    2014-01-01

    Genetic modification has long provided an approach for “reverse genetics”, analyzing gene function and linking DNA sequence to phenotype. However, traditional genome editing technologies have not kept pace with the soaring progress of the genome sequencing era, as a result of their inefficiency, time-consuming and labor-intensive methods. Recently, invented genome modification technologies, such as ZFN (Zinc Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), and CRISPR/Cas9 nuclease (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 nuclease) can initiate genome editing easily, precisely and with no limitations by organism. These new tools have also offered intriguing possibilities for conducting functional large-scale experiments. In this review, we begin with a brief introduction of ZFN, TALEN, and CRISPR/Cas9 technologies, then generate an extensive prediction of effective TALEN and CRISPR/Cas9 target sites in the genomes of a broad range of taxonomic species. Based on the evidence, we highlight the potential and practicalities of TALEN and CRISPR/Cas9 editing in non-model organisms, and also compare the technologies and test interesting issues such as the functions of candidate domesticated, as well as candidate genes in life-environment interactions. When accompanied with a high-throughput sequencing platform, we forecast their potential revolutionary impacts on evolutionary and ecological research, which may offer an exciting prospect for connecting the gap between DNA sequence and phenotype in the near future. PMID:25414792

  15. Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities.

    PubMed

    Seifert, Jana; Herbst, Florian-Alexander; Halkjaer Nielsen, Per; Planes, Francisco J; Jehmlich, Nico; Ferrer, Manuel; von Bergen, Martin

    2013-10-01

    Metaproteomics of microbial communities promises to add functional information to the blueprint of genes derived from metagenomics. Right from its beginning, the achievements and developments in metaproteomics were closely interlinked with metagenomics. In addition, the evaluation, visualization, and interpretation of metaproteome data demanded for the developments in bioinformatics. This review will give an overview about recent strategies to use genomic data either from public databases or organismal specific genomes/metagenomes to increase the number of identified proteins obtained by mass spectrometric measurements. We will review different published metaproteogenomic approaches in respect to the used MS pipeline and to the used protein identification workflow. Furthermore, different approaches of data visualization and strategies for phylogenetic interpretation of metaproteome data are discussed as well as approaches for functional mapping of the results to the investigated biological systems. This information will in the end allow a comprehensive analysis of interactions and interdependencies within microbial communities.

  16. Utilization of the human louse genome to study insecticide resistance and innate immune response

    PubMed Central

    Clark, J. Marshall; Yoon, Kyong Sup; Kim, Ju Hyeon; Lee, Si Hyeock; Pittendrigh, Barry R.

    2015-01-01

    Since sequencing the human body louse genome, substantial advances have occurred in the utilization of the information gathered from louse genomes and transcriptomes. Comparatively, the body louse genome contains far fewer genes involved in environmental response, such as xenobiotic detoxification and innate immune response. Additionally, the body louse maintains a primary bacterial endosymbiont, Candidatus Riesia pediculicola, and a number of bacterial pathogens that it vectors, which have genomes that are also reduced in size. Thus, human louse genomes offer unique information and tools for use in advancing our understanding of coevolution among vectors, endosymbionts and pathogens. In this review, we summarize the current literature on the extent of pediculicide resistance, the availability of new pediculicides and information establishing this organism as an efficient model to study how xenobiotic metabolism, which is involved in insecticide resistance, is induced and how insects modify their innate immune response upon bacterial challenge resulting in enhanced vector competence. PMID:25987230

  17. Integrated Genome-Based Studies of Shewanella Ecophysiology

    SciTech Connect

    Andrei L. Osterman, Ph.D.

    2012-12-17

    Integration of bioinformatics and experimental techniques was applied to mapping and characterization of the key components (pathways, enzymes, transporters, regulators) of the core metabolic machinery in Shewanella oneidensis and related species with main focus was on metabolic and regulatory pathways involved in utilization of various carbon and energy sources. Among the main accomplishments reflected in ten joint publications with other participants of Shewanella Federation are: (i) A systems-level reconstruction of carbohydrate utilization pathways in the genus of Shewanella (19 species). This analysis yielded reconstruction of 18 sugar utilization pathways including 10 novel pathway variants and prediction of > 60 novel protein families of enzymes, transporters and regulators involved in these pathways. Selected functional predictions were verified by focused biochemical and genetic experiments. Observed growth phenotypes were consistent with bioinformatic predictions providing strong validation of the technology and (ii) Global genomic reconstruction of transcriptional regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors, 8 riboswitches and 6 translational attenuators. Of those, 45 regulons were inferred directly from the genome context analysis, whereas others were propagated from previously characterized regulons in other species. Selected regulatory predictions were experimentally tested. Integration of this analysis with microarray data revealed overall consistency and provided additional layer of interactions between regulons. All the results were captured in the new database RegPrecise, which is a joint development with the LBNL team. A more detailed analysis of the individual subsystems, pathways and regulons in Shewanella spp included bioinfiormatics-based prediction and experimental characterization of: (i) N-Acetylglucosamine catabolic pathway; (ii)Lactate utilization machinery; (iii) Novel Nrt

  18. The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies

    PubMed Central

    Zhang, Pan

    2017-01-01

    High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin fixed-paraffin-embedded (FFPE) tissue processing remains the most economical approach for longitudinal tissue specimen storage. Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery. Many studies have measured the accuracy and repeatability of data generated from FFPE specimens using high throughput genomic assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here, we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens across several platforms that include microarray, high throughput sequencing, and NanoString. PMID:28246590

  19. Genetic determinants of coronary heart disease: new discoveries and insights from genome-wide association studies.

    PubMed

    Patel, Riyaz S; Ye, Shu

    2011-09-01

    With the advent of the Human Genome Project and the genomic era, new tools and methodologies have revitalised genetic research into coronary heart disease (CHD). Unprecedented collaborative efforts are discovering novel risk variants for CHD, with most in hitherto unknown molecular pathways. These findings have stimulated a plethora of follow-up of functional and risk prediction studies to mine this wealth of new data. This review will explore the current state of knowledge of the genetic basis of CHD, with an emphasis on recent genomic studies and how these may eventually lead to the promised goals of new therapeutics and personalised medicine.

  20. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    PubMed Central

    de Vries, Paul S.; Sabater-Lleal, Maria; Chasman, Daniel I.; Trompet, Stella; Kleber, Marcus E.; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R.; Marioni, Riccardo E.; Weng, Lu-Chen; Grossmann, Vera; Brody, Jennifer A.; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M.; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J.; Rumley, Ann; Mulas, Antonella; de Craen, Anton J. M.; Grotevendt, Anne; Taylor, Kent D.; Delgado, Graciela E.; Kifley, Annette; Lopez, Lorna M.; Berentzen, Tina L.; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C.; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P. M.; Draisma, Harmen H. M.; Lowe, Gordon D.; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J.; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G.; McEvoy, Mark A.; Starr, John M.; Hysi, Pirro G.; Hernandez, Dena G.; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L.; Slagboom, P. Eline; Zeller, Tanja; Psaty, Bruce M.; Uitterlinden, André G.; de Geus, Eco J. C.; Stott, David J.; Binder, Harald; Hofman, Albert; Franco, Oscar H.; Rotter, Jerome I.; Ferrucci, Luigi; Spector, Tim D.; Deary, Ian J.; März, Winfried; Greinacher, Andreas; Wild, Philipp S.; Cucca, Francesco; Boomsma, Dorret I.; Watkins, Hugh; Tang, Weihong; Ridker, Paul M.; Jukema, Jan W.; Scott, Rodney J.; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher J.; Smith, Nicholas L.; Strachan, David P.

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10−8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10−8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development. PMID:28107422

  1. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  2. Genome-wide association study of intracranial aneurysm identifies three new risk loci

    PubMed Central

    Yasuno, Katsuhito; Bilguvar, Kaya; Bijlenga, Philippe; Low, Siew Kee; Krischek, Boris; Auburger, Georg; Simon, Matthias; Krex, Dietmar; Arlier, Zulfikar; Nayak, Nikhil; Ruigrok, Ynte M; Niemela, Mika; Tajima, Atsushi; von und zu Fraunberg, Mikael; Doczi, Tamas; Wirjatijasa, Florentina; Hata, Akira; Blasco, Jordi; Oszvald, Agi; Kasuya, Hidetoshi; Zilani, Gulam; Schoch, Beate; Singh, Pankaj; Stüer, Carsten; Risselada, Roelof; Beck, Jürgen; Sola, Teresa; Ricciardi, Filomena; Aromaa, Arpo; Illig, Thomas; Schreiber, Stefan; van Duijn, Cornelia M; van den Berg, Leonard H; Perret, Claire; Proust, Carole; Roder, Constantin; Ozturk, Ali K; Gaál, Emília; Berg, Daniela; Geisen, Christof; Friedrich, Christoph M; Summers, Paul; Frangi, Alejandro F; State, Matthew W; Wichmann, HErich; Breteler, Monique M B; Wijmenga, Cisca; Mane, Shrikant; Peltonen, Leena; Elio, Vivas; Sturkenboom, Miriam CJM; Lawford, Patricia; Byrne, James; Macho, Juan; Sandalcioglu, Erol I; Meyer, Bernhard; Raabe, Andreas; Steinmetz, Helmuth; Rüfenacht, Daniel; Jääskeläinen, Juha E; Hernesniemi, Juha; Rinkel, Gabriel J E; Zembutsu, Hitoshi; Inoue, Ituro; Palotie, Aarno; Cambien, François; Nakamura, Yusuke; Lifton, Richard P; Günel, Murat

    2010-01-01

    Saccular intracranial aneurysms (IAs) are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with ∼832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with IA in the combined data set, including intervals near RBBP8 on 18q11.2 (OR=1.22, P=1.1×10-12), STARD13/KL on 13q13.1 (OR=1.20, P=2.5×10-9) and a gene-rich region on 10q24.32 (OR=1.29, P=1.2×10-9). We also confirmed prior associations near SOX17 (8q11.23-q12.1; OR=1.28, P=1.3×10-12) and CDKN2A/B (9p21.3; OR=1.31, P=1.5×10-22). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting proliferation and senescence of progenitor cell populations that are responsible for vascular formation and repair. PMID:20364137

  3. Genome-wide association study of intracranial aneurysm identifies three new risk loci.

    PubMed

    Yasuno, Katsuhito; Bilguvar, Kaya; Bijlenga, Philippe; Low, Siew-Kee; Krischek, Boris; Auburger, Georg; Simon, Matthias; Krex, Dietmar; Arlier, Zulfikar; Nayak, Nikhil; Ruigrok, Ynte M; Niemelä, Mika; Tajima, Atsushi; von und zu Fraunberg, Mikael; Dóczi, Tamás; Wirjatijasa, Florentina; Hata, Akira; Blasco, Jordi; Oszvald, Agi; Kasuya, Hidetoshi; Zilani, Gulam; Schoch, Beate; Singh, Pankaj; Stüer, Carsten; Risselada, Roelof; Beck, Jürgen; Sola, Teresa; Ricciardi, Filomena; Aromaa, Arpo; Illig, Thomas; Schreiber, Stefan; van Duijn, Cornelia M; van den Berg, Leonard H; Perret, Claire; Proust, Carole; Roder, Constantin; Ozturk, Ali K; Gaál, Emília; Berg, Daniela; Geisen, Christof; Friedrich, Christoph M; Summers, Paul; Frangi, Alejandro F; State, Matthew W; Wichmann, H Erich; Breteler, Monique M B; Wijmenga, Cisca; Mane, Shrikant; Peltonen, Leena; Elio, Vivas; Sturkenboom, Miriam C J M; Lawford, Patricia; Byrne, James; Macho, Juan; Sandalcioglu, Erol I; Meyer, Bernhard; Raabe, Andreas; Steinmetz, Helmuth; Rüfenacht, Daniel; Jääskeläinen, Juha E; Hernesniemi, Juha; Rinkel, Gabriel J E; Zembutsu, Hitoshi; Inoue, Ituro; Palotie, Aarno; Cambien, François; Nakamura, Yusuke; Lifton, Richard P; Günel, Murat

    2010-05-01

    Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with approximately 832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with intracranial aneurysms in the combined dataset, including intervals near RBBP8 on 18q11.2 (odds ratio (OR) = 1.22, P = 1.1 x 10(-12)), STARD13-KL on 13q13.1 (OR = 1.20, P = 2.5 x 10(-9)) and a gene-rich region on 10q24.32 (OR = 1.29, P = 1.2 x 10(-9)). We also confirmed prior associations near SOX17 (8q11.23-q12.1; OR = 1.28, P = 1.3 x 10(-12)) and CDKN2A-CDKN2B (9p21.3; OR = 1.31, P = 1.5 x 10(-22)). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting the proliferation and senescence of progenitor-cell populations that are responsible for vascular formation and repair.

  4. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease

    PubMed Central

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.

    2014-01-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615

  5. Dissecting Inflammatory Complications in Critically Injured Patients by Within-Patient Gene Expression Changes: A Longitudinal Clinical Genomics Study

    PubMed Central

    Leek, Jeffrey T.; Maier, Ronald V.; Tompkins, Ronald G.; Storey, John D.

    2011-01-01

    Background Trauma is the number one killer of individuals 1–44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition. Methods and Findings We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure) clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40–80 h window post-injury. Conclusions The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions. Trial Registration ClinicalTrials.gov NCT00257231 Please see later in the article for the Editors

  6. [Electromagnetic studies of nuclear structure and reactions]. Progress summary

    SciTech Connect

    Not Available

    1992-12-31

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of {sup 16}O(e,e{prime}p), {sup 12}C(e,e{prime}pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in {sup 12}C(e,e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 0}), comparison of the {sup 12}C(e, e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 3}) reactions, quadrupole strength in the {sup 16}O(e,e{prime}{alpha}{sub 0}) reaction, quadrupole strength in the {sup 12}C(e,e{prime}{alpha}) reaction, analysis of the {sup 12}C(e,e{prime}p{sub 1}) and {sup 16}O(e,e{prime}p{sub 3}) angular distributions, analysis of the {sup 40}Ca(e,e{prime}x) reaction at low q, analysis of the higher-q {sup 12}C(e,e{prime}x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

  7. Identification of biomarkers for pseudo and true progression of GBM based on radiogenomics study

    PubMed Central

    Qian, Xiaohua; Tan, Hua; Zhang, Jian; Liu, Keqin; Yang, Tielin; Wang, Maode; Debinskie, Waldemar; Zhao, Weilin; Chan, Michael D.; Zhou, Xiaobo

    2016-01-01

    The diagnosis for pseudoprogression (PsP) and true tumor progression (TTP) of GBM is a challenging task in clinical practices. The purpose of this study is to identify potential genetic biomarkers associated with PsP and TTP based on the clinical records, longitudinal imaging features, and genomics data. We are the first to introduce the radiogenomics approach to identify candidate genes for PsP and TTP of GBM. Specifically, a novel longitudinal sparse regression model was developed to construct the relationship between gene expression and imaging features. The imaging features were extracted from tumors along the longitudinal MRI and provided diagnostic information of PsP and TTP. The 33 candidate genes were selected based on their association with the imaging features, reflecting their relation with the development of PsP and TTP. We then conducted biological relevance analysis for 33 candidate genes to identify the potential biomarkers, i.e., Interferon regulatory factor (IRF9) and X-ray repair cross-complementing gene (XRCC1), which were involved in the cancer suppression and prevention, respectively. The IRF9 and XRCC1 were further independently validated in the TCGA data. Our results provided the first substantial evidence that IRF9 and XRCC1 can serve as the potential biomarkers for the development of PsP and TTP. PMID:27421136

  8. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice

    PubMed Central

    McIntyre, Rebecca E.; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G.; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J.

    2016-01-01

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. PMID:27233670

  9. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.

    PubMed

    McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J

    2016-08-09

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males.

  10. Progress in pathogenesis studies of spinocerebellar ataxia type 1.

    PubMed

    Cummings, C J; Orr, H T; Zoghbi, H Y

    1999-06-29

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited disorder characterized by progressive loss of coordination, motor impairment and the degeneration of cerebellar Purkinje cells, spinocerebellar tracts and brainstem nuclei. Many dominantly inherited neurodegenerative diseases share the mutational basis of SCA1: the expansion of a translated CAG repeat coding for glutamine. Mice lacking ataxin-1 display learning deficits and altered hippocampal synaptic plasticity but none of the abnormalities seen in human SCA1; mice expressing ataxin-1 with an expanded CAG tract (82 glutamine residues), however, develop Purkinje cell pathology and ataxia. These results suggest that mutant ataxin-1 gains a novel function that leads to neuronal degeneration. This novel function might involve aberrant interaction(s) with cell-specific protein(s), which in turn might explain the selective neuronal pathology. Mutant ataxin-1 interacts preferentially with a leucine-rich acidic nuclear protein that is abundantly expressed in cerebellar Purkinje cells and other brain regions affected in SCA1. Immunolocalization studies in affected neurons of patients and SCA1 transgenic mice showed that mutant ataxin-1 localizes to a single, ubiquitin-positive nuclear inclusion (NI) that alters the distribution of the proteasome and certain chaperones. Further analysis of NIs in transfected HeLa cells established that the proteasome and chaperone proteins co-localize with ataxin-1 aggregates. Moreover, overexpression of the chaperone HDJ-2/HSDJ in HeLa cells decreased ataxin-1 aggregation, suggesting that protein misfolding might underlie NI formation. To assess the importance of the nuclear localization of ataxin-1 and its role in SCA1 pathogenesis, two lines of transgenic mice were generated. In the first line, the nuclear localization signal was mutated so that full-length mutant ataxin-1 would remain in the cytoplasm; mice from this line did not develop any ataxia or pathology. This

  11. Genome-wide association study of personality traits in the long life family study.

    PubMed

    Bae, Harold T; Sebastiani, Paola; Sun, Jenny X; Andersen, Stacy L; Daw, E Warwick; Terracciano, Antonio; Ferrucci, Luigi; Perls, Thomas T

    2013-01-01

    Personality traits have been shown to be associated with longevity and healthy aging. In order to discover novel genetic modifiers associated with personality traits as related with longevity, we performed a genome-wide association study (GWAS) on personality factors assessed by NEO-five-factor inventory in individuals enrolled in the Long Life Family Study (LLFS), a study of 583 families (N up to 4595) with clustering for longevity in the United States and Denmark. Three SNPs, in almost perfect LD, associated with agreeableness reached genome-wide significance (p < 10(-8)) and replicated in an additional sample of 1279 LLFS subjects, although one (rs9650241) failed to replicate and the other two were not available in two independent replication cohorts, the Baltimore Longitudinal Study of Aging and the New England Centenarian Study. Based on 10,000,000 permutations, the empirical p-value of 2 × 10(-7) was observed for the genome-wide significant SNPs. Seventeen SNPs that reached marginal statistical significance in the two previous GWASs (p-value <10(-4) and 10(-5)), were also marginally significantly associated in this study (p-value <0.05), although none of the associations passed the Bonferroni correction. In addition, we tested age-by-SNP interactions and found some significant associations. Since scores of personality traits in LLFS subjects change in the oldest ages, and genetic factors outweigh environmental factors to achieve extreme ages, these age-by-SNP interactions could be a proxy for complex gene-gene interactions affecting personality traits and longevity.

  12. Functional genomics in the study of yeast cell polarity: moving in the right direction.

    PubMed

    Styles, Erin; Youn, Ji-Young; Mattiazzi Usaj, Mojca; Andrews, Brenda

    2013-01-01

    The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.

  13. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  14. Pewaukee School District, Wisconsin. Case Study: Measures of Academic Progress

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2015

    2015-01-01

    For more than a decade, Pewaukee School District Superintendent JoAnn Sternke has watched her district get better and better at its mission: opening the door to each student's future. The Wisconsin district began using Measures of Academic Progress® (MAP®) computer adaptive interim assessments from Northwest Evaluation Association™ (NWEA™) in 2004…

  15. Studies in iodine metabolism. Progress report, 1982-1983

    SciTech Connect

    Van Middlesworth, L.

    1983-01-01

    Research progress is reported for the period 1982 to 1983 in the following areas: (1) monitoring of animal thyroids for /sup 129/I, /sup 125/I, /sup 131/I, /sup 226/Ra, and /sup 228/Ra; and (2) neonatal hypo-l thyroidism in laboratory rats. (ACR)

  16. Failure to detect genomic material of HTLV-I or HTLV-II in mononuclear cells of Italian patients with multiple sclerosis and chronic progressive myelopathy.

    PubMed

    Merelli, E; Sola, P; Marasca, R; Salati, R; Torelli, G

    1993-01-01

    To contribute to the undecided question if a retrovirus of the human T-cell lymphotropic virus (HTLV) family may be involved in the development of multiple sclerosis (MS), we investigated by the polymerase chain reaction (PCR) the presence of HTLV-I and HTLV-II sequences in the peripheral blood mononuclear cell DNAs from 30 patients affected by MS and 15 by chronic progressive myelopathy. Moreover a control group of 14 blood donors was examined. All these patients were devoid of anti-HTLV-I antibody in the serum and cerebrospinal fluid at ELISA. For the PCR, primers and probes specific for the tax region common to HTLV-I and HTLV-II, for the pol region of HTLV-I, and for the pol region of HTLV-II were used. In spite of the high sensitivity of the technique used, the three groups of subjects were negative for HTLV-I and HTLV-II genomic sequences.

  17. Progression from Sustained BK Viruria to Sustained BK Viremia with Immunosuppression Reduction Is Not Associated with Changes in the Noncoding Control Region of the BK Virus Genome

    PubMed Central

    Memon, Imran A.; Parikh, Bijal A.; Gaudreault-Keener, Monique; Skelton, Rebecca; Storch, Gregory A.; Brennan, Daniel C.

    2012-01-01

    Changes in the BK virus archetypal noncoding control region (NCCR) have been associated with BK-virus-associated nephropathy (BKVAN). Whether sustained viremia, a surrogate for BKVAN, is associated with significant changes in the BK-NCCR is unknown. We performed PCR amplification and sequencing of (1) stored urine and (2) plasma samples from the time of peak viremia from 11 patients with sustained viremia who participated in a 200-patient clinical trial. The antimetabolite was withdrawn for BK viremia and reduction of the calcineurin inhibitor for sustained BK viremia. DNA sequencing from the 11 patients with sustained viremia revealed 8 insertions, 16 transversions, 3 deletions, and 17 transitions. None were deemed significant. No patient developed clinically evident BKVAN. Our data support, at a genomic level, the effectiveness of reduction of immunosuppression for prevention of progression from viremia to BKVAN. PMID:22701777

  18. A genomic case study of mixed fibrolamellar hepatocellular carcinoma

    PubMed Central

    Griffith, O. L.; Griffith, M.; Krysiak, K.; Magrini, V.; Ramu, A.; Skidmore, Z. L.; Kunisaki, J.; Austin, R.; McGrath, S.; Zhang, J.; Demeter, R.; Graves, T.; Eldred, J. M.; Walker, J.; Larson, D. E.; Maher, C. A.; Lin, Y.; Chapman, W.; Mahadevan, A.; Miksad, R.; Nasser, I.; Hanto, D. W.; Mardis, E. R.

    2016-01-01

    Background Mixed fibrolamellar hepatocellular carcinoma (mFL-HCC) is a rare liver tumor defined by the presence of both pure FL-HCC and conventional HCC components, represents up to 25% of cases of FL-HCC, and has been associated with worse prognosis. Recent genomic characterization of pure FL-HCC identified a highly recurrent transcript fusion (DNAJB1:PRKACA) not found in conventional HCC. Patients and Methods We performed exome and transcriptome sequencing of a case of mFL-HCC. A novel BAC-capture approach was developed to identify a 400 kb deletion as the underlying genomic mechanism for a DNAJB1:PRKACA fusion in this case. A sensitive Nanostring Elements assay was used to screen for this transcript fusion in a second case of mFL-HCC, 112 additional HCC samples and 44 adjacent non-tumor liver samples. Results We report the first comprehensive genomic analysis of a case of mFL-HCC. No common HCC-associated mutations were identified. The very low mutation rate of this case, large number of mostly single-copy, long-range copy number variants, and high expression of ERBB2 were more consistent with previous reports of pure FL-HCC than conventional HCC. In particular, the DNAJB1:PRKACA fusion transcript specifically associated with pure FL-HCC was detected at very high expression levels. Subsequent analysis revealed the presence of this fusion in all primary and metastatic samples, including those with mixed or conventional HCC pathology. A second case of mFL-HCC confirmed our finding that the fusion was detectable in conventional components. An expanded screen identified a third case of fusion-positive HCC, which upon review, also had both conventional and fibrolamellar features. This screen confirmed the absence of the fusion in all conventional HCC and adjacent non-tumor liver samples. Conclusion These results indicate that mFL-HCC is similar to pure FL-HCC at the genomic level and the DNAJB1:PRKACA fusion can be used as a diagnostic tool for both pure and m

  19. Population genetic studies in the genomic sequencing era

    PubMed Central

    CHEN, Hua

    2015-01-01

    Recent advances in high-throughput sequencing technologies have revolutionized the field of population genetics. Data now routinely contain genomic level polymorphism information, and the low cost of DNA sequencing enables researchers to investigate tens of thousands of subjects at a time. This provides an unprecedented opportunity to address fundamental evolutionary questions, while posing challenges on traditional population genetic theories and methods. This review provides an overview of the recent methodological developments in the field of population genetics, specifically methods used to infer ancient population history and investigate natural selection using large-sample, large-scale genetic data. Several open questions are also discussed at the end of the review. PMID:26228473

  20. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  1. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  2. Integrated genome-based studies of Shewanella ecophysiology

    SciTech Connect

    Segre Daniel; Beg Qasim

    2012-02-14

    This project was a component of the Shewanella Federation and, as such, contributed to the overall goal of applying the genomic tools to better understand eco-physiology and speciation of respiratory-versatile members of Shewanella genus. Our role at Boston University was to perform bioreactor and high throughput gene expression microarrays, and combine dynamic flux balance modeling with experimentally obtained transcriptional and gene expression datasets from different growth conditions. In the first part of project, we designed the S. oneidensis microarray probes for Affymetrix Inc. (based in California), then we identified the pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, using our newly designed high-density oligonucleotide Affymetrix microarray on Shewanella cells grown with various carbon sources. Next, using a combination of experimental and computational approaches, we built algorithm and methods to integrate the transcriptional and metabolic regulatory networks of S. oneidensis. Specifically, we combined mRNA microarray and metabolite measurements with statistical inference and dynamic flux balance analysis (dFBA) to study the transcriptional response of S. oneidensis MR-1 as it passes through exponential, stationary, and transition phases. By measuring time-dependent mRNA expression levels during batch growth of S. oneidensis MR-1 under two radically different nutrient compositions (minimal lactate and nutritionally rich LB medium), we obtain detailed snapshots of the regulatory strategies used by this bacterium to cope with gradually changing nutrient availability. In addition to traditional clustering, which provides a first indication of major regulatory trends and transcription factors activities, we developed and implemented a new computational approach for Dynamic Detection of Transcriptional Triggers (D2T2). This new method allows us to infer a putative topology of transcriptional dependencies

  3. Experimental Approaches to Study Genome Packaging of Influenza A Viruses

    PubMed Central

    Isel, Catherine; Munier, Sandie; Naffakh, Nadia

    2016-01-01

    The genome of influenza A viruses (IAV) consists of eight single-stranded negative sense viral RNAs (vRNAs) encapsidated into viral ribonucleoproteins (vRNPs). It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles), follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH) and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level. PMID:27517951

  4. Genomics of Salmonella Species

    NASA Astrophysics Data System (ADS)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  5. Assessing the Role of Copy Number Variants in Prostate Cancer Risk and Progression Using a Novel Genome-Wide Screening Method

    DTIC Science & Technology

    2013-10-01

    Chromosomal region 8q24 is of interest due to its consistent implication in GWA studies for prostate cancer. A rare non-recurrent 8486 base pair...indicates that some common CNVs have already been indirectly assessed for association with traits in SNP-based genome-wide association studies ( GWAS ...However, recurrent variants and risk-bearing alleles with low minor allele frequencies (MAF) may not be well tagged by SNPs in GWAS , and these variants

  6. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  7. snpGeneSets: An R Package for Genome-Wide Study Annotation.

    PubMed

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-12-07

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/.

  8. Efficient multivariate linear mixed model algorithms for genome-wide association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2014-04-01

    Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.

  9. [Progress on study of achromatopsia and targeted gene therapy].

    PubMed

    Dai, Xu-feng; Pang, Ji-jing

    2012-08-01

    Achromatopsia is an early onset retinal dystrophy that causes severe visual impairment. To date, four genes have been found to be implicated in achromatopsia-associated mutations: guanine nucleotide-binding protein (GNAT2), cyclic nucleotide-gated channel alpha-3 (CNGA3), cyclic nucleotide-gated channel beta-3 (CNGB3) and phosphodiesterase 6C (PDE6C). Even with early onset, the slow progress and the good responses to gene therapy in animal models render achromatopsia a very attractive candidate for human gene therapy after the successful of the Phase I clinical trials of Leber's congenital amaurosis. With the development of molecular genetics and the therapeutic gene replacement technology, the adeno-associated viral (AAV) vector-mediated gene therapy for achromatopsia in the preclinical animal experiments achieved encouraging progress in the past years. This article briefly reviews the recent research achievements of achromatopsia with gene therapy.

  10. Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup

    PubMed Central

    Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.

    2010-01-01

    Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing

  11. Progressive Failure Studies of Composite Panels with and without Cutouts

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Ambur, Damodar R.; Davila, Carlos G.; Hilburger, Mark; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Progressive failure analyses results are presented for composite panels with and without a cutout and subjected to in-plane shear loading and compression loading well into their postbuckling regime. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Results from finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for most structural configurations when initial geometric imperfections are appropriately modeled.

  12. Residents' awareness and attitudes about an ongoing community-based genome cohort study in Nagahama, Japan.

    PubMed

    Miyamoto, Keiko; Iwakuma, Miho; Nakayama, Takeo

    2015-11-01

    This study's objective was to examine residents' attitudes toward and factors associated with an ongoing, real genome cohort study based on a community in Japan. After the genome cohort study's launch in 2007, in November and December 2009, a self-administered questionnaire survey was conducted with 2500 randomly sampled residents aged 30-74 years, living in Nagahama, Japan. Responses were received from 1363 people (response rate = 54.5%), of whom 187 respondents had already participated in the study. Although the local government and researchers disseminated information through leaflets and citizen-information papers to every household, sent notices by personalized letter, and held symposia and other meetings, 65.7% of males and 47.2% of females first became aware of the study when they received our questionnaire. Among all respondents, 81.2% of those who knew that the genome cohort study had begun and 68.6% of those who did not know had a positive attitude toward the study. Their attitudes were significantly associated with high health consciousness and the desire for an extensive health check-up. Although for males there were no particular negative aspects of the genome study, for females, positive aspects were associated with participating in community activities and desiring an extensive health check-up. Although promoting a community-based genome cohort study requires huge effort, it is essential to popularize it. Actions are vital both for monitoring public awareness and attitudes at a community level and for keeping communication channels open.

  13. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes.

    PubMed

    Sharma, Swarkar; Gao, Xiaochong; Londono, Douglas; Devroy, Shonn E; Mauldin, Kristen N; Frankel, Jessica T; Brandon, January M; Zhang, Dongping; Li, Quan-Zhen; Dobbs, Matthew B; Gurnett, Christina A; Grant, Struan F A; Hakonarson, Hakon; Dormans, John P; Herring, John A; Gordon, Derek; Wise, Carol A

    2011-04-01

    Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10(-8) for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case-control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29-1.73, P = 2.58 × 10(-8)), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease.

  14. [Study on the identification of genomic modified foods].

    PubMed

    Deng, Pingjian; Zhao, Jin; Liu, Jianjun; Fang, Shisong

    2002-02-01

    Nucleotide-based amplification method is an important system for the identification of genomic modified foods (GMF). Roundup Ready Soybeans (Monsanto company), Bt 176 GM maize (Novartis/Ciba-Geigy company) and Cecropin D capsicum was used as material to search for the feasibility of investigating the safety of GMF by PCR method. Primers specific for inserted genes and crop endogenous genes in Roundup Ready Soybeans, Bt 176 maize and Cecropin D capsicum were applied. The discrimination system for GM soybeans, GM maize and GM capsicum from the counterpart of non-GM products and the detection system for correlating marker genes and transgenes are established. The method was easy and fast, and the corresponding results fixed the standard or declared data.

  15. Genome Wide Association Study (GWAS) of Chagas Cardiomyopathy in Trypanosoma cruzi Seropositive Subjects

    PubMed Central

    Deng, Xutao; Sabino, Ester C.; Cunha-Neto, Edecio; Ribeiro, Antonio L.; Ianni, Barbara; Mady, Charles; Busch, Michael P.; Seielstad, Mark; Component, International

    2013-01-01

    Background Familial aggregation of Chagas cardiac disease in T. cruzi–infected persons suggests that human genetic variation may be an important determinant of disease progression. Objective To perform a GWAS using a well-characterized cohort to detect single nucleotide polymorphisms (SNPs) and genes associated with cardiac outcomes. Methods A retrospective cohort study was developed by the NHLBI REDS-II program in Brazil. Samples were collected from 499 T. cruzi seropositive blood donors who had donated between1996 and 2002, and 101 patients with clinically diagnosed Chagas cardiomyopathy. In 2008–2010, all subjects underwent a complete medical examination. After genotype calling, quality control filtering with exclusion of 20 cases, and imputation of 1,000 genomes variants; association analysis was performed for 7 cardiac and parasite related traits, adjusting for population stratification. Results The cohort showed a wide range of African, European, and modest Native American admixture proportions, consistent with the recent history of Brazil. No SNPs were found to be highly (P<10−8) associated with cardiomyopathy. The two mostly highly associated SNPs for cardiomyopathy (rs4149018 and rs12582717; P-values <10−6) are located on Chromosome 12p12.2 in the SLCO1B1 gene, a solute carrier family member. We identified 44 additional genic SNPs associated with six traits at P-value <10-6: Ejection Fraction, PR, QRS, QT intervals, antibody levels by EIA, and parasitemia by PCR. Conclusion This GWAS identified suggestive SNPs that may impact the risk of progression to cardiomyopathy. Although this Chagas cohort is the largest examined by GWAS to date, (580 subjects), moderate sample size may explain in part the limited number of significant SNP variants. Enlarging the current sample through expanded cohorts and meta-analyses, and targeted studies of candidate genes, will be required to confirm and extend the results reported here. Future studies should also

  16. 21 CFR 601.70 - Annual progress reports of postmarketing studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... received or otherwise obtained during the annual reporting interval which ends on the U.S. anniversary date... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Annual progress reports of postmarketing studies... SERVICES (CONTINUED) BIOLOGICS LICENSING Postmarketing Studies § 601.70 Annual progress reports...

  17. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak

    PubMed Central

    Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  18. Genetic and statistical study of HIV integration in the human genome

    NASA Astrophysics Data System (ADS)

    Sequeira, Inês J.; Gonçalves, Juliana; Moreira, Elsa; Mexia, João T.; Rueff, José; Brás, Aldina

    2013-10-01

    Integration of the human immunodeficiency virus (HIV) DNA into human genome is essential for HIV-induced disease. The human genome is organized into chromosomes and within these we can define the chromosomal fragile sites. Our aim is to contribute to help clarifying the integration sites preferences of HIV1 and HIV2 in fragile or non-fragile regions. Here we apply statistical techniques, namely non-parametric tests and analysis of variance for analyzing two sets of data of HIV1 and HIV2 integrations in the human genome. The results show that the integrations occur significantly with more intensity in the non-fragile regions of the human genome and that the HIV1 in particular has the major contribution to this fact. This study could have implications in human disease.

  19. A Hybrid Approach for de novo Human Genome Sequence Assembly and Phasing

    PubMed Central

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A.; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D.; Kwok, Pui-Yan

    2016-01-01

    Despite tremendous progress in genome sequencing, the basic goal of producing phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe a new approach to perform de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics Linked-Read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome. PMID:27159086

  20. Chromosome region-specific libraries for human genome analysis. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Kao, Fa-Ten

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  1. Genome-wide association studies and genetic architecture of common human diseases.

    PubMed

    Montgomery, Grant W

    2011-06-03

    Genome-wide association scans provide the first successful method to identify genetic variation contributing to risk for common complex disease. Progress in identifying genes associated with melanoma show complex relationships between genes for pigmentation and the development of melanoma. Novel risk loci account for only a small fraction of the genetic variation contributing to this and many other diseases. Large meta-analyses find additional variants, but there is current debate about the contribution of common polymorphisms, rare polymorphisms or mutations to disease risk.

  2. Whole genome association study of rheumatoid arthritis using 27 039 microsatellites.

    PubMed

    Tamiya, Gen; Shinya, Minori; Imanishi, Tadashi; Ikuta, Tomoki; Makino, Satoshi; Okamoto, Koichi; Furugaki, Koh; Matsumoto, Toshiko; Mano, Shuhei; Ando, Satoshi; Nozaki, Yasuyuki; Yukawa, Wataru; Nakashige, Ryo; Yamaguchi, Daisuke; Ishibashi, Hideo; Yonekura, Manabu; Nakami, Yuu; Takayama, Seiken; Endo, Takaho; Saruwatari, Takuya; Yagura, Masaru; Yoshikawa, Yoko; Fujimoto, Kei; Oka, Akira; Chiku, Suenori; Linsen, Samuel E V; Giphart, Marius J; Kulski, Jerzy K; Fukazawa, Toru; Hashimoto, Hiroshi; Kimura, Minoru; Hoshina, Yuuichi; Suzuki, Yasuo; Hotta, Tomomitsu; Mochida, Joji; Minezaki, Takatoshi; Komai, Koichiro; Shiozawa, Shunichi; Taniguchi, Atsuo; Yamanaka, Hisashi; Kamatani, Naoyuki; Gojobori, Takashi; Bahram, Seiamak; Inoko, Hidetoshi

    2005-08-15

    A major goal of current human genome-wide studies is to identify the genetic basis of complex disorders. However, the availability of an unbiased, reliable, cost efficient and comprehensive methodology to analyze the entire genome for complex disease association is still largely lacking or problematic. Therefore, we have developed a practical and efficient strategy for whole genome association studies of complex diseases by charting the human genome at 100 kb intervals using a collection of 27,039 microsatellites and the DNA pooling method in three successive genomic screens of independent case-control populations. The final step in our methodology consists of fine mapping of the candidate susceptible DNA regions by single nucleotide polymorphisms (SNPs) analysis. This approach was validated upon application to rheumatoid arthritis, a destructive joint disease affecting up to 1% of the population. A total of 47 candidate regions were identified. The top seven loci, withstanding the most stringent statistical tests, were dissected down to individual genes and/or SNPs on four chromosomes, including the previously known 6p21.3-encoded Major Histocompatibility Complex gene, HLA-DRB1. Hence, microsatellite-based genome-wide association analysis complemented by end stage SNP typing provides a new tool for genetic dissection of multifactorial pathologies including common diseases.

  3. RPAN: rice pan-genome browser for ∼3000 rice genomes

    PubMed Central

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-01

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. PMID:27940610

  4. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum.

    PubMed

    Adeyanju, Adedayo; Little, Christopher; Yu, Jianming; Tesso, Tesfaye

    2015-04-16

    Stalk rots are important biotic constraints to sorghum production worldwide. Several pathogens may be associated with the disease, but Macrophomina phaseolina and Fusarium thapsinum are recognized as the major causal organisms. The diseases become more aggressive when drought and high-temperature stress occur during grain filling. Progress in genetic improvement efforts has been slow due to lack of effective phenotyping protocol and the strong environmental effect on disease incidence and severity. Deployment of modern molecular tools is expected to accelerate efforts to develop resistant hybrids. This study was aimed at identifying genomic regions associated with resistance to both causal organisms. A sorghum diversity panel consisting of 300 genotypes assembled from different parts of the world was evaluated for response to infection by both pathogens. Community resources of 79,132 single nucleotide polymorphic (SNP) markers developed on the panel were used in association studies using a multi-locus mixed model to map loci associated with stalk rot resistance. Adequate genetic variation was observed for resistance to both pathogens. Structure analysis grouped the genotypes into five subpopulations primarily based on the racial category of the genotypes. Fourteen loci and a set of candidate genes appear to be involved in connected functions controlling plant defense response. However, each associated SNP had relatively small effect on the traits, accounting for 19-30% of phenotypic variation. Linkage disequilibrium analyses suggest that significant SNPs are genetically independent. Estimation of frequencies of associated alleles revealed that durra and caudatum subpopulations were enriched for resistant alleles, but the results suggest complex molecular mechanisms underlying resistance to both pathogens.

  5. Frontotemporal dementia and its subtypes: a genome-wide association study

    PubMed Central

    Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A; Rohrer, Jonathan D; Ramasamy, Adaikalavan; Kwok, John B J; Dobson-Stone, Carol; Brooks, William S; Schofield, Peter R; Halliday, Glenda M; Hodges, John R; Piguet, Olivier; Bartley, Lauren; Thompson, Elizabeth; Haan, Eric; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Borroni, Barbara; Padovani, Alessandro; Cruchaga, Carlos; Cairns, Nigel J; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Forloni, Gianluigi; Galimberti, Daniela; Fenoglio, Chiara; Serpente, Maria; Scarpini, Elio; Clarimón, Jordi; Lleó, Alberto; Blesa, Rafael; Waldö, Maria Landqvist; Nilsson, Karin; Nilsson, Christer; Mackenzie, Ian R A; Hsiung, Ging-Yuek R; Mann, David M A; Grafman, Jordan; Morris, Christopher M; Attems, Johannes; Griffiths, Timothy D; McKeith, Ian G; Thomas, Alan J; Pietrini, P; Huey, Edward D; Wassermann, Eric M; Baborie, Atik; Jaros, Evelyn; Tierney, Michael C; Pastor, Pau; Razquin, Cristina; Ortega-Cubero, Sara; Alonso, Elena; Perneczky, Robert; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Kurz, Alexander; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Rogaeva, Ekaterina; George-Hyslop, Peter St; Rossi, Giacomina; Tagliavini, Fabrizio; Giaccone, Giorgio; Rowe, James B; Schlachetzki, J C M; Uphill, James; Collinge, John; Mead, S; Danek, Adrian; Van Deerlin, Vivianna M; Grossman, Murray; Trojanowsk, John Q; van der Zee, Julie; Deschamps, William; Van Langenhove, Tim; Cruts, Marc; Van Broeckhoven, Christine; Cappa, Stefano F; Le Ber, Isabelle; Hannequin, Didier; Golfier, Véronique; Vercelletto, Martine; Brice, Alexis; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Piaceri, Irene; Nielsen, Jørgen E; Hjermind, Lena E; Riemenschneider, Matthias; Mayhaus, Manuel; Ibach, Bernd; Gasparoni, Gilles; Pichler, Sabrina; Gu, Wei; Rossor, Martin N; Fox, Nick C; Warren, Jason D; Spillantini, Maria Grazia; Morris, Huw R; Rizzu, Patrizia; Heutink, Peter; Snowden, Julie S; Rollinson, Sara; Richardson, Anna; Gerhard, Alexander; Bruni, Amalia C; Maletta, Raffaele; Frangipane, Francesca; Cupidi, Chiara; Bernardi, Livia; Anfossi, Maria; Gallo, Maura; Conidi, Maria Elena; Smirne, Nicoletta; Rademakers, Rosa; Baker, Matt; Dickson, Dennis W; Graff-Radford, Neill R; Petersen, Ronald C; Knopman, David; Josephs, Keith A; Boeve, Bradley F; Parisi, Joseph E; Seeley, William W; Miller, Bruce L; Karydas, Anna M; Rosen, Howard; van Swieten, John C; Dopper, Elise G P; Seelaar, Harro; Pijnenburg, Yolande AL; Scheltens, Philip; Logroscino, Giancarlo; Capozzo, Rosa; Novelli, Valeria; Puca, Annibale A; Franceschi, M; Postiglione, Alfredo; Milan, Graziella; Sorrentino, Paolo; Kristiansen, Mark; Chiang, Huei-Hsin; Graff, Caroline; Pasquier, Florence; Rollin, Adeline; Deramecourt, Vincent; Lebert, Florence; Kapogiannis, Dimitrios; Ferrucci, Luigi; Pickering-Brown, Stuart; Singleton, Andrew B; Hardy, John; Momeni, Parastoo

    2014-01-01

    Summary Background Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. All participants had European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) and suggestive single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8) that encompassed the HLA locus at 6p21.3 in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC, for the behavioural FTD subtype. Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation incis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and possibly to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of

  6. The recent progress in astroseismology study in Yunnan

    NASA Astrophysics Data System (ADS)

    Luo, Bao-Rong

    The recent progress in astroseismology study in Yunnan after 1996 is summarized in this paper. The breakthrough in some scientific fields is specially discussed. The main contents are as follows: 1. The triggering effect of the tidal force on the seismic event (1) The seismic events responding to the different triggering effects have different distribution in location. The seismic events are often triggered in a relatively concentrated period. (2) The seismic center with the largest tidal force is not the sub-stellar point of the Sun and the Moon. The Sun and the Moon are even not in the elevated region of 54.7° where is the zenith distance of the seismic event center, but are about 90°. In other words, the Sun, the Moon, the Earth center and the seismic center are not in one straight line. Judging from this, the main factor of triggering the seismic event is the horizontal component of the tidal force. (3) It is demonstrated that the triggering effect of the tidal force on the seismic event is, in substance, the effect of the advance slide on the seismic fault. 2. The relation between other special positions of the heave solar system objects and the seismic event. Some special points are called as astronomical strange points. The points include that at which certain planets are in opposition or conjunction to the Moon, and the points at which some of the heave solar system objects are in the elevated region of 54.7° where is the zenith distance of the seismic event center. And some special positions of the lunar longitude ascending node, as well as some special phases of the obliquity of the lunar path and equator are all belong to this category. It is shown that the astronomical strange points and eruptions of the seismic event are closely related. 3. The relation among the Earth rotation, the time-latitude residual and the eruption of the seismic event. It is found that the increase of the Earth rotation speed can cause large seismic event. The unusual time

  7. Cancer Genome Sequencing: Understanding Malignancy as a Disease of the Genome, its Conformation, and its Evolution

    PubMed Central

    Patel, Lalit R.; Nykter, Matti; Chen, Kexin; Zhang, Wei

    2013-01-01

    Advances in cancer genomics have been propelled by the steady evolution of molecular profiling technologies. Over the past decade, high-throughput sequencing technologies have matured to the point necessary to support disease-specific shotgun sequencing. This has compelled whole-genome sequencing studies across a broad panel of malignancies. The emergence of high-throughput sequencing technologies has inspired new chemical and computational techniques enabling interrogation of cancer-specific genomic and transcriptomic variants, previously unannotated genes, and chromatin structure. Finally, recent progress in single-cell sequencing holds great promise for studies interrogating the consequences of tumor evolution in cancers presenting with genomic heterogeneity. PMID:23111104

  8. Progressive Failure Studies of Composite Panels With and Without Cutouts

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Davila, Carlos G.; Hilburger, Mark

    2001-01-01

    Progressive failure analyses results are presented for composite panels with and without a cutout and are subjected to in-plane shear loading and compression loading well into their post-buckling regime. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Results from finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for most structural configurations when initial geometric imperfections are appropriately modeled.

  9. Control selection options for genome-wide association studies in cohorts.

    PubMed

    Wacholder, Sholom; Rotunno, Melissa

    2009-03-01

    Investigators planning studies within cohorts have many options for choosing an efficient sampling design for genome-wide association and other molecular epidemiology studies. Consideration of person-year and proportional hazards analyses of full cohorts may add further insight into ramifications of different designs. Empirical evidence from genome-wide association studies can supplement intuition and simulations in comparing properties of various case-control designs within cohorts. Additional theoretical and empirical work, justification of sampling choice in publications, and consideration of context and scientific aims can improve designs and, thereby, increase the scientific value and cost effectiveness of future studies.

  10. From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development.

    PubMed

    Ogura, Takehiko; Busch, Wolfgang

    2015-02-01

    Tremendous natural variation of growth and development exists within species. Uncovering the molecular mechanisms that tune growth and development promises to shed light on a broad set of biological issues including genotype to phenotype relations, regulatory mechanisms of biological processes and evolutionary questions. Recent progress in sequencing and data processing capabilities has enabled Genome Wide Association Studies (GWASs) to identify DNA sequence polymorphisms that underlie the variation of biological traits. In the last years, GWASs have proven powerful in revealing the complex genetic bases of many phenotypes in various plant species. Here we highlight successful recent GWASs that uncovered mechanistic and sequence bases of trait variation related to plant growth and development and discuss important considerations for conducting successful GWASs.

  11. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  12. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications.

    PubMed

    Neelakandan, Anjanasree K; Wang, Kan

    2012-04-01

    In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.

  13. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    PubMed

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia.

  14. 3D structures of individual mammalian genomes studied by single-cell Hi-C.

    PubMed

    Stevens, Tim J; Lando, David; Basu, Srinjan; Atkinson, Liam P; Cao, Yang; Lee, Steven F; Leeb, Martin; Wohlfahrt, Kai J; Boucher, Wayne; O'Shaughnessy-Kirwan, Aoife; Cramard, Julie; Faure, Andre J; Ralser, Meryem; Blanco, Enrique; Morey, Lluis; Sansó, Miriam; Palayret, Matthieu G S; Lehner, Ben; Di Croce, Luciano; Wutz, Anton; Hendrich, Brian; Klenerman, Dave; Laue, Ernest D

    2017-04-06

    The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.

  15. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  16. Genetic Variants Modulating CRIPTO Serum Levels Identified by Genome-Wide Association Study in Cilento Isolates

    PubMed Central

    Ruggiero, Daniela; Nappo, Stefania; Nutile, Teresa; Sorice, Rossella; Talotta, Francesco; Giorgio, Emilia; Bellenguez, Celine; Leutenegger, Anne-Louise; Liguori, Giovanna L.; Ciullo, Marina

    2015-01-01

    Cripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-β, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form. Cripto is not significantly expressed in adult somatic tissues and its re-expression has been observed associated to pathological conditions, mainly cancer. Accordingly, CRIPTO has been detected at very low levels in the plasma of healthy volunteers, whereas its levels are significantly higher in patients with breast, colon or glioblastoma tumors. These data suggest that CRIPTO levels in human plasma or serum may have clinical significance. However, very little is known about the variability of serum levels of CRIPTO at a population level and the genetic contribution underlying this variability remains unknown. Here, we report the first genome-wide association study of CRIPTO serum levels in isolated populations (n = 1,054) from Cilento area in South Italy. The most associated SNPs (p-value<5*10-8) were all located on chromosome 3p22.1-3p21.3, in the CRIPTO gene region. Overall six CRIPTO associated loci were replicated in an independent sample (n = 535). Pathway analysis identified a main network including two other genes, besides CRIPTO, in the associated regions, involved in cell movement and proliferation. The replicated loci explain more than 87% of the CRIPTO variance, with 85% explained by the most associated SNP. Moreover, the functional analysis of the main associated locus identified a causal variant in the 5’UTR of CRIPTO gene which is able to strongly modulate CRIPTO expression through an AP-1-mediate transcriptional regulation. PMID:25629528

  17. Progression of Microstructural Degeneration in Progressive Supranuclear Palsy and Corticobasal Syndrome: A Longitudinal Diffusion Tensor Imaging Study

    PubMed Central

    Walter, Rudolph; Ng, Peter; Luong, Phi N.; Dutt, Shubir; Heuer, Hilary; Rojas-Rodriguez, Julio C.; Tsai, Richard; Litvan, Irene; Dickerson, Bradford C.; Tartaglia, Maria Carmela; Rabinovici, Gil; Miller, Bruce L.; Rosen, Howard J.

    2016-01-01

    Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are both 4 microtubule binding repeat tauopathy related disorders. Clinical trials need new biomarkers to assess the effectiveness of tau-directed therapies. This study investigated the regional distribution of longitudinal diffusion tensor imaging changes, measured by fractional anisotropy, radial and axial diffusivity over 6 months median interval, in 23 normal control subjects, 35 patients with PSP, and 25 patients with CBS. A mixed-effects framework was used to test longitudinal changes within and between groups. Correlations between changes in diffusion variables and clinical progression were also tested. The study found that over a 6 month period and compared to controls, the most prominent changes in PSP were up to 3±1% higher rates of FA reduction predominantly in superior cerebellar peduncles, and up to 18±6% higher rates of diffusivity increases in caudate nuclei. The most prominent changes in CBS compared to controls were up to 4±1% higher rates of anisotropy reduction and 18±6% higher rates of diffusivity increase in basal ganglia and widespread white matter regions. Compared to PSP, CBS was mainly associated with up to 3±1% greater rates of anisotropy reduction around the central sulci, and 11±3% greater rates of diffusivity increase in superior fronto-occipital fascicules. Rates of diffusivity increases in the superior cerebellar peduncle correlated with rates of ocular motor decline in PSP patients. This study demonstrated that longitudinal diffusion tensor imaging measurement is a promising surrogate marker of disease progression in PSP and CBS over a relatively short period. PMID:27310132

  18. Feasibility Study of Health Effect in Pinellas area. Progress report, September 1, 1992--August 31, 1993

    SciTech Connect

    Not Available

    1993-05-31

    This report describes the progress and the plan of activities in the Feasibility Study of Health Effect in populations residing near the Pinellas Plant. The period covered by the work progress is September 1, 1992 through April 30, 1993 and the period covered by the plan of the project activities is May 1 through August 31, 1993.

  19. Inflectional morphology in primary progressive aphasia: an elicited production study.

    PubMed

    Wilson, Stephen M; Brandt, Temre H; Henry, Maya L; Babiak, Miranda; Ogar, Jennifer M; Salli, Chelsey; Wilson, Lisa; Peralta, Karen; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2014-09-01

    Inflectional morphology lies at the intersection of phonology, syntax and the lexicon, three language domains that are differentially impacted in the three main variants of primary progressive aphasia (PPA). To characterize spared and impaired aspects of inflectional morphology in PPA, we elicited inflectional morphemes in 48 individuals with PPA and 13 healthy age-matched controls. We varied the factors of regularity, frequency, word class, and lexicality, and used voxel-based morphometry to identify brain regions where atrophy was predictive of deficits on particular conditions. All three PPA variants showed deficits in inflectional morphology, with the specific nature of the deficits dependent on the anatomical and linguistic features of each variant. Deficits in inflecting low-frequency irregular words were associated with semantic PPA, with lexical/semantic deficits, and with left temporal atrophy. Deficits in inflecting pseudowords were associated with non-fluent/agrammatic and logopenic variants, with phonological deficits, and with left frontal and parietal atrophy.

  20. Inflectional morphology in primary progressive aphasia: An elicited production study

    PubMed Central

    Wilson, Stephen M.; Brandt, Temre H.; Henry, Maya L.; Babiak, Miranda; Ogar, Jennifer M.; Salli, Chelsey; Wilson, Lisa; Peralta, Karen; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2014-01-01

    Inflectional morphology lies at the intersection of phonology, syntax and the lexicon, three language domains that are differentially impacted in the three main variants of primary progressive aphasia (PPA). To characterize spared and impaired aspects of inflectional morphology in PPA, we elicited inflectional morphemes in 48 individuals with PPA and 13 healthy age-matched controls. We varied the factors of regularity, frequency, word class, and lexicality, and used voxel-based morphometry to identify brain regions where atrophy was predictive of deficits on particular conditions. All three PPA variants showed deficits in inflectional morphology, with the specific nature of the deficits dependent on the anatomical and linguistic features of each variant. Deficits in inflecting low-frequency irregular words were associated with semantic PPA, with lexical/semantic deficits, and with left temporal atrophy. Deficits in inflecting pseudowords were associated with non-fluent/agrammatic and logopenic variants, with phonological deficits, and with left frontal and parietal atrophy. PMID:25129631

  1. Erosion studies of pipe-lining materials - fifth progress report

    SciTech Connect

    Johns, H.

    1984-05-01

    This is the fifth report on laboratory tests to evaluate the erosion resistance of the inner surface of water-bearing pipe. Erosion resistance is defined as the resistance to the wearing effect produced by abrasive particles such as would be encountered in steel pipe carrying sand or sand- and gravel-laden water. Erosive conditions are simulated by rotating a lined pipe containing a sand-water or gravel-water slurry. Coal-tar enamel has good erosion resistance and is used as the standard for comparing other materials. Seventeen RPM pipe liners, concrete, steel, synthetic and natural rubber sheet, PVC, polyethylene, and ABS pipe had better erosion resistance than coal-tar enamel; four RPM liners, three RTRP liners, and one vinyl resin liner for asbestos-cement pipe were less resistant. Results from four previous progress reports are included.

  2. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  3. The human genome project.

    PubMed Central

    Olson, M V

    1993-01-01

    The Human Genome Project in the United States is now well underway. Its programmatic direction was largely set by a National Research Council report issued in 1988. The broad framework supplied by this report has survived almost unchanged despite an upheaval in the technology of genome analysis. This upheaval has primarily affected physical and genetic mapping, the two dominant activities in the present phase of the project. Advances in mapping techniques have allowed good progress toward the specific goals of the project and are also providing strong corollary benefits throughout biomedical research. Actual DNA sequencing of the genomes of the human and model organisms is still at an early stage. There has been little progress in the intrinsic efficiency of DNA-sequence determination. However, refinements in experimental protocols, instrumentation, and project management have made it practical to acquire sequence data on an enlarged scale. It is also increasingly apparent that DNA-sequence data provide a potent means of relating knowledge gained from the study of model organisms to human biology. There is as yet little indication that the infusion of technology from outside biology into the Human Genome Project has been effectively stimulated. Opportunities in this area remain large, posing substantial technical and policy challenges. PMID:8506271

  4. The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells

    PubMed Central

    Matijasevic, Z; Krzywicka-Racka, A; Sluder, G; Gallant, J; Jones, S N

    2016-01-01

    The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity. PMID:27694836

  5. Genomics and proteomics in cancer.

    PubMed

    Baak, J P A; Path, F R C; Hermsen, M A J A; Meijer, G; Schmidt, J; Janssen, E A M

    2003-06-01

    Cancer development is driven by the accumulation of DNA changes in the approximately 40000 chromosomal genes. In solid tumours, chromosomal numerical/structural aberrations are common. DNA repair defects may lead to genome-wide genetic instability, which can drive further cancer progression. The genes code the actual players in the cellular processes, the 100000-10 million proteins, which in (pre)malignant cells can also be altered in a variety of ways. Over the past decade, our knowledge of the human genome and Genomics (the study of the human genome) in (pre)malignancies has increased enormously and Proteomics (the analysis of the protein complement of the genome) has taken off as well. Both will play an increasingly important role. In this article, a short description of the essential molecular biological cell processes is given. Important genomic and proteomic research methods are described and illustrated. Applications are still limited, but the evidence so far is exciting. Will genomics replace classical diagnostic or prognostic procedures? In breast cancers, the gene expression array is stronger than classical criteria, but in endometrial hyperplasia, quantitative morphological features are more cost-effective than genetic testing. It is still too early to make strong statements, the more so because it is expected that genomics and proteomics will expand rapidly. However, it is likely that they will take a central place in the understanding, diagnosis, monitoring and treatment of (pre)cancers of many different sites.

  6. 1/f correlations in viral genomes--a Fast-Fourier Transformation (FFT) Study.

    PubMed

    Rekha, T Shashi; Mitra, Chanchal K

    2006-06-01

    We have studied the presence of long-range correlations in the complete genomes of ten different dsDNA viruses and Saccharomyces cerevisiae (bakers' yeast) chromosome I. We have also studied the correlation between the distribution of the gene length and the domain of "1/f region" of their genomes. Linear regression analysis was done for the power-law region of these organisms and the slope values obtained were approximately -1, which signify the existence of "1/f noise" in the low and medium (intermediate) frequency regions. This suggests the presence of long-range correlations in their genomes. The presence of 1/f noise in a given frequency interval indicates the existence of a fractal (self-similar) structure in the corresponding range of wavelengths. The results of our study suggest that genes have correlations within themselves, and the correlations appear to be related with the scaling exponent alpha.

  7. [Analysis of population stratification using random SNPs in genome-wide association studies].

    PubMed

    Cao, Zong-Fu; Ma, Chuan-Xiang; Wang, Lei; Cai, Bin

    2010-09-01

    Since population genetic STRUCTURE can increase false-positive rate in genome-wide association studies (GWAS) for complex diseases, the effect of population stratification should be taken into account in GWAS. However, the effect of randomly selected SNPs in population stratification analysis is underdetermined. In this study, based on the genotype data generated on Genome-Wide Human SNP Array 6.0 from unrelated individuals of HapMap Phase2, we randomly selected SNPs that were evenly distributed across the whole-genome, and acquired Ancestry Informative Markers (AIMs) by the method of f value and allelic Fisher exact test. F-statistics and STRUCTURE analysis based on the select different sets of SNPs were used to evaluate the effect of distinguishing the populations from HapMap Phase3. We found that randomly selected SNPs that were evenly distributed across the whole-genome were able to be used to identify the population structure. This study further indicated that more than 3 000 randomly selected SNPs that were evenly distributed across the whole-genome were substituted for AIMs in population stratification analysis, when there were no available AIMs for spe-cific populations.

  8. Advancing our understanding of functional genome organisation through studies in the fission yeast.

    PubMed

    Olsson, Ida; Bjerling, Pernilla

    2011-02-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.

  9. Genome-wide association study of generalized anxiety symptoms in the Hispanic Community Health Study/Study of Latinos.

    PubMed

    Dunn, Erin C; Sofer, Tamar; Gallo, Linda C; Gogarten, Stephanie M; Kerr, Kathleen F; Chen, Chia-Yen; Stein, Murray B; Ursano, Robert J; Guo, Xiuqing; Jia, Yucheng; Qi, Qibin; Rotter, Jerome I; Argos, Maria; Cai, Jianwen; Penedo, Frank J; Perreira, Krista; Wassertheil-Smoller, Sylvia; Smoller, Jordan W

    2017-03-01

    Although generalized anxiety disorder (GAD) is heritable and aggregates in families, no genomic loci associated with GAD have been reported. We aimed to discover potential loci by conducting a genome-wide analysis of GAD symptoms in a large, population-based sample of Hispanic/Latino adults. Data came from 12,282 participants (aged 18-74) in the Hispanic Community Health Study/Study of Latinos. Using a shortened Spielberger Trait Anxiety measure, we analyzed the following: (i) a GAD symptoms score restricted to the three items tapping diagnostic features of GAD as defined by DSM-V; and (ii) a total trait anxiety score based on summing responses to all ten items. We first calculated the heritability due to common variants (h(2)SNP ) and then conducted a genome-wide association study (GWAS) of GAD symptoms. Replication was attempted in three independent Hispanic cohorts (Multi-Ethnic Study of Atherosclerosis, Women's Health Initiative, Army STARRS). The GAD symptoms score showed evidence of modest heritability (7.2%; P = 0.03), while the total trait anxiety score did not (4.97%; P = 0.20). One genotyped SNP (rs78602344) intronic to thrombospondin 2 (THBS2) was nominally associated (P = 5.28 × 10(-8) ) in the primary analysis adjusting for psychiatric medication use and significantly associated with the GAD symptoms score in the analysis excluding medication users (P = 4.18 × 10(-8) ). However, meta-analysis of the replication samples did not support this association. Although we identified a genome-wide significant locus in this sample, we were unable to replicate this finding. Evidence for heritability was also only detected for GAD symptoms, and not the trait anxiety measure, suggesting differential genetic influences within the domain of trait anxiety. © 2016 Wiley Periodicals, Inc.

  10. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits

    PubMed Central

    Wangler, Michael F.; Hu, Yanhui

    2017-01-01

    ABSTRACT Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease. PMID:28151408

  11. [Study on an inquiry-based teaching case in genomics curriculum: identifying virulence factors of Escherichia coli by using comparative genomics].

    PubMed

    Jidong, Zhou; Yudong, Li

    2015-02-01

    Genomics is the core subject of various "omics" and it also becomes a topic of increasing interest in undergraduate curricula of biological sciences. However, the study on teaching methodology of genomics courses was very limited so far. Here we report an application of inquiry-based teaching in genomics courses by using virulence factors of Escherichia coli as an example of comparative genomics study. Specially, students first built a multiple-genome alignment of different E. coli strains to investigate the gene conservation using the Mauve tool; then putative virulence factor genes were identified by using BLAST tool to obtain gene annotations. The teaching process was divided into five modules: situation, resources, task, process and evaluation. Learning-assessment results revealed that students had acquired the knowledge and skills of genomics, and their learning interest and ability of self-study were also motivated. Moreover, the special teaching case can be applied to other related courses, such as microbiology, bioinformatics, molecular biology and food safety detection technology.

  12. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  13. A genome-wide association study platform built on iPlant cyber-infrastructure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We demonstrated a flexible Genome-Wide Association (GWA) Study (GWAS) platform built upon the iPlant Collaborative Cyber-infrastructure. The platform supports big data management, sharing, and large scale study of both genotype and phenotype data on clusters. End users can add their own analysis too...

  14. Progress in the characterization of a human genomic YAC library selected on the basis of homology to T{sub 2}AG{sub 3}

    SciTech Connect

    Vocero-Akbani, A.; Sanjurjo, H.; Fair, K.

    1994-09-01

    Using a combination of physical and genetic mapping methods we have characterized more than 190 YAC clones originally isolated on the basis of hybridization to the human telomere regions by FISH (using Alu-PCR products or YAC subclones individually or pooled as probes). Thirty-seven of the YACs mapped to single telomeres while 16 mapped to more than one telomere, or to interstitial regions, including centromeres. Subclone libraries were constructed for a subset of YACs, genetic markers developed, and the loci incorporated into genetic maps for chromosomes 2, 6, 7, 8, 10, 12, 13, 14 and 20. Altogether 28 different telomeres are now defined by chromosomally mapped STSs which were derived from YACs that were FISH mapped to the termini of 1p, 2p{sup *}, 2q{sup +}, 3p, 3q, 4q, 5q, 6q{sup *}, 7p, 7q{sup *+}, 8p{sup +}, 9q, 10p{sup *}, 10q, 11q, 12p{sup *}, 13q{sup *+}, 14q{sup *+}, 16p, 16q, 17p, 17q, 18p, 18q, 20p, 21q, and 22q ({sup *} microsatellite marker, {sup +}RFLP). Development of microsatellite genetic markers for the five additional telomeres is currently in progress [7p (50 b), 10q (275 kb). 17p (100 kb), 17q (175 kb), and 18p (225 kb)]. For YACs that have been localized to telomeres by FISH and to chromosomes by STS mapping to a rodent/human somatic cell hybrid chromosome panel, five genome equivalent bacteriophage lamda subclone libraries have been constructed and screened for the presence of human DNA and CA{sub n} dinucleotide repeats by plaque filter hybridization. A number of CA positive clones have been sequenced revealing simple repeats of 12 or more CAs per clone. STS development and testing for polymorphism using the CEPH pedigree resource is in progress.

  15. A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum

    PubMed Central

    Shinzato, Chuya; Mungpakdee, Sutada; Satoh, Nori; Shoguchi, Eiichi

    2014-01-01

    Far more intimate knowledge of scleractinian coral biology is essential in order to understand how diverse coral-symbiont endosymbioses have been established. In particular, molecular and cellular mechanisms enabling the establishment and maintenance of obligate endosymbiosis with photosynthetic dinoflagellates require further clarification. By extension, such understanding may also shed light upon environmental conditions that promote the collapse of this mutualism. Genomic data undergird studies of all symbiotic processes. Here we review recent genomic data derived from the scleractinian coral, Acropora digitifera, and the endosymbiotic dinoflagellate, Symbiodinium minutum. We discuss Acropora genes involved in calcification, embryonic development, innate immunity, apoptosis, autophagy, UV resistance, fluorescence, photoreceptors, circadian clocks, etc. We also detail gene loss in amino acid metabolism that may explain at least part of the Acropora stress-response. Characteristic features of the Symbiodinium genome are also reviewed, focusing on the expansion of certain gene families, the molecular basis for permanently condensed chromatin, unique spliceosomal splicing, and unusual gene arrangement. Salient features of the Symbiodinium plastid and mitochondrial genomes are also illuminated. Although many questions regarding these interdependent genomes remain, we summarize information necessary for future studies of coral-dinoflagellate endosymbiosis. PMID:25071748

  16. Integrating genomics, proteomics and bioinformatics in translational studies of molecular medicine.

    PubMed

    Ostrowski, Jerzy; Wyrwicz, Lucjan S

    2009-09-01

    Understanding the molecular mechanisms of disease requires the introduction of molecular diagnostics into medical practice. Current medicine employs only elements of molecular diagnostics, which are usually applied on the scale of single genes. Medicine in the postgenomic era will utilize thousands of disease-associated molecular markers provided by high-throughput sequencing and functional genomic, proteomic and metabolomic studies. Such a spectrum of techniques will link clinical medicine based on molecularly oriented diagnostics with the prediction and prevention of disease. To achieve this task, large-scale and genome-wide biological and medical data must be combined with biostatistical and bioinformatic analyses to model biological systems. Collecting, cataloging and comparing data from molecular studies, and the subsequent development of conclusions, creates the fundamentals of systems biology. This highly complex analytical process reflects a new scientific paradigm known as integrative genomics.

  17. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals

    PubMed Central

    Chen, Wei; Wang, Wensheng; Peng, Meng; Gong, Liang; Gao, Yanqiang; Wan, Jian; Wang, Shouchuang; Shi, Lei; Zhou, Bin; Li, Zongmei; Peng, Xiaoxi; Yang, Chenkun; Qu, Lianghuan; Liu, Xianqing; Luo, Jie

    2016-01-01

    The plant metabolome is characterized by extensive diversity and is often regarded as a bridge between genome and phenome. Here we report metabolic and phenotypic genome-wide studies (mGWAS and pGWAS) in rice grain that, in addition to previous metabolic GWAS in rice leaf and maize kernel, show both distinct and overlapping aspects of genetic control of metabolism within and between species. We identify new candidate genes potentially influencing important metabolic and/or morphological traits. We show that the differential genetic architecture of rice metabolism between different tissues is in part determined by tissue specific expression. Using parallel mGWAS and pGWAS we identify new candidate genes potentially responsible for variation in traits such as grain colour and size, and provide evidence of metabotype-phenotype linkage. Our study demonstrates a powerful strategy for interactive functional genomics and metabolomics in plants, especially the cloning of minor QTLs for complex phenotypic traits. PMID:27698483

  18. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  19. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    SciTech Connect

    Mader, Kevin; Stampanoni, Marco

    2016-01-28

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  20. The Human Genome Initiative of the Department of Energy

    SciTech Connect

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative. 34 refs.

  1. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  2. New Genetic and Genomic Approaches After the Genome-wide Association Study Era--Back to the Future.

    PubMed

    Ngeow, Joanne; Eng, Charis

    2015-10-01

    Identification of all human genes and their regulatory regions provides the essential framework for our understanding of the molecular basis of disease. There is a lot of enthusiasm for applying next-generation sequencing methods toward achieving the goals of precision medicine. To do so will require us to go beyond genomics and fundamentally understand how genomics impacts on biology and clinical outcomes through gene-gene and gene-environmental interactions. Clinicians and healthcare systems alike need to embrace the cultural and mindset change needed for the implementation of genomics in the clinic.

  3. Genome-wide RNAi screening identifies TMIGD3 isoform1 as a suppressor of NF-κB and osteosarcoma progression

    PubMed Central

    Iyer, Swathi V.; Ranjan, Atul; Elias, Harold K.; Parrales, Alejandro; Sasaki, Hiromi; Roy, Badal C.; Umar, Shahid; Tawfik, Ossama W.; Iwakuma, Tomoo

    2016-01-01

    The ability of cancer cells to survive and grow in anchorage- and serum-independent conditions is well correlated with their aggressiveness. Here, using a human whole-genome shRNA library, we identify TMIGD3 isoform1 (i1) as a factor that suppresses this ability in osteosarcoma (OS) cells, mainly by inhibiting NF-κB activity. Knockdown of TMIGD3 increases proliferation, tumour formation and metastasis of OS cells. Overexpression of TMIGD3 isoform1 (i1), but not isoform3 (i3) which shares a common C-terminal region, suppresses these malignant properties. Adenosine A3 receptor (A3AR) having an identical N-terminal region shows similar biological profiles to TMIGD3 i1. Protein expression of TMIGD3 and A3AR is lower in human OS tissues than normal tissues. Mechanistically, TMIGD3 i1 and A3AR commonly inhibit the PKA−Akt−NF-κB axis. However, TMIGD3 i1 only partially rescues phenotypes induced by A3AR knockdown, suggesting the presence of distinct pathways. Our findings reveal an unappreciated role for TMIGD3 i1 as a suppressor of NF-κB activity and OS progression. PMID:27886186

  4. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    PubMed Central

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association approach. Method The authors administered 4 Internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2,329 twelve-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and 1 million imputed SNPs were included in a genome-wide association analysis of receptive language composite scores. Results No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p < 5 × 10–8). The strongest SNP association did not replicate in an additional sample of 2,639 twelve-year-olds. Conclusions These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for more than 3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants. PMID:24687471

  5. The mitochondrial genome of Protostrongylus rufescens – implications for population and systematic studies

    PubMed Central

    2013-01-01

    Background Protostrongylus rufescens is a metastrongyloid nematode of small ruminants, such as sheep and goats, causing protostrongylosis. In spite of its importance, the ecology and epidemiology of this parasite are not entirely understood. In addition, genetic data are scant for P. rufescens and related metastrongyloids. Methods The mt genome was amplified from a single adult worm of P. rufescens (from sheep) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of the mt genomes were concatenated and subjected to phylogenetic analysis using Bayesian inference. Results The circular mitochondrial genome was 13,619 bp in length and contained two ribosomal RNA, 12 protein-coding and 22 transfer RNA genes, consistent with nematodes of the order Strongylida for which mt genomes have been determined. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that P. rufescens was closely related to Aelurostrongylus abstrusus, Angiostrongylus vasorum, Angiostrongylus cantonensis and Angiostrongylus costaricensis. Conclusions The mt genome determined herein provides a source of markers for future investigations of P. rufescens. Molecular tools, employing such mt markers, are likely to find applicability in studies of the population biology of this parasite and the systematics of lungworms. PMID:24025317

  6. Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation

    PubMed Central

    Sunnucks, Paul; Morales, Hernán E.; Lamb, Annika M.; Pavlova, Alexandra; Greening, Chris

    2017-01-01

    In animals, interactions among gene products of mitochondrial and nuclear genomes (mitonuclear interactions) are of profound fitness, evolutionary, and ecological significance. Most fundamentally, the oxidative phosphorylation (OXPHOS) complexes responsible for cellular bioenergetics are formed by the direct interactions of 13 mitochondrial-encoded and ∼80 nuclear-encoded protein subunits in most animals. It is expected that organisms will develop genomic architecture that facilitates co-adaptation of these mitonuclear interactions and enhances biochemical efficiency of OXPHOS complexes. In this perspective, we present principles and approaches to understanding the co-evolution of these interactions, with a novel focus on how genomic architecture might facilitate it. We advocate that recent interdisciplinary advances assist in the consolidation of links between genotype and phenotype. For example, advances in genomics allow us to unravel signatures of selection in mitochondrial and nuclear OXPHOS genes at population-relevant scales, while newly published complete atomic-resolution structures of the OXPHOS machinery enable more robust predictions of how these genes interact epistatically and co-evolutionarily. We use three case studies to show how integrative approaches have improved the understanding of mitonuclear interactions in OXPHOS, namely those driving high-altitude adaptation in bar-headed geese, allopatric population divergence in Tigriopus californicus copepods, and the genome architecture of nuclear genes coding for mitochondrial functions in the eastern yellow robin. PMID:28316610

  7. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study

    PubMed Central

    Mottok, Anja; Boyle, Merrill; Tan, King; Meissner, Barbara; Bashashati, Ali; Roth, Andrew; Shumansky, Karey; Nielsen, Cydney; Giné, Eva; Moore, Richard; Morin, Ryan D.; Sehn, Laurie H.; Tousseyn, Thomas; Dogan, Ahmet; Scott, David W.; Steidl, Christian; Gascoyne, Randy D.; Shah, Sohrab P.

    2016-01-01

    Background Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Methods and Findings Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2

  8. Leveraging epidemiologic and clinical collections for genomic studies of complex traits

    PubMed Central

    Crawford, Dana C.; Goodloe, Robert; Farber-Eger, Eric; Boston, Jonathan; Pendergrass, Sarah A.; Haines, Jonathan L.; Ritchie, Marylyn D.; Bush, William S.

    2015-01-01

    Background/Aims Present day limited resources demand DNA and phenotyping alternatives to the traditional prospective population-based epidemiologic collections. Methods To accelerate genomic discovery with an emphasis on diverse populations, we as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study accessed all non-European American samples (n=15,863) available in BioVU, the Vanderbilt University biorepository linked to de-identified electronic medical records, for genomic studies as part of the larger Population Architecture using Genomics and Epidemiology (PAGE) I Study. Given previous studies have cautioned against the secondary use of clinically collected data compared with epidemiologically-collected data, we present here a characterization of EAGLE BioVU, including the billing and diagnostic (ICD-9) code distributions for adult and pediatric patients as well as comparisons made for select health metrics (body mass index, glucose, HbA1c, HDL-C, LDL-C, and triglycerides) with the population-based National Health and Nutrition Examination Surveys (NHANES) linked to DNA samples (NHANES III; n=7,159 and NHANES 1999–2002; n=7,839). Results Overall, the distributions of billing and diagnostic codes suggest this clinical sample is mixture of healthy and sick patients like that expected for a contemporary American population. Conclusion Little bias is observed among health metrics suggesting this clinical collection is suitable for genomic studies along with traditional epidemiologic cohorts. PMID:26201699

  9. Comparative studies of transcriptional regulation mechanisms in a group of eight gamma-proteobacterial genomes.

    PubMed

    Espinosa, Vladimir; González, Abel D; Vasconcelos, Ana T; Huerta, Araceli M; Collado-Vides, Julio

    2005-11-18

    Experimental data on the Escherichia coli transcriptional regulation has enabled the construction of statistical models to predict new regulatory elements within its genome. Far less is known about the transcriptional regulatory elements in other gamma-proteobacteria with sequenced genomes, so it is of great interest to conduct comparative genomic studies oriented to extracting biologically relevant information about transcriptional regulation in these less studied organisms using the knowledge from E. coli. In this work, we use the information stored in the TRACTOR_DB database to conduct a comparative study on the mechanisms of transcriptional regulation in eight gamma-proteobacteria and 38 regulons. We assess the conservation of transcription factors binding specificity across all the eight genomes and show a correlation between the conservation of a regulatory site and the structure of the transcription unit it regulates. We also find a marked conservation of site-promoter distances across the eight organisms and a correspondence of the statistical significance of co-occurrence of pairs of transcription factor binding sites in the regulatory regions, which is probably related to a conserved architecture of higher-order regulatory complexes in the organisms studied. The results obtained in this study using the information on transcriptional regulation in E. coli enable us to conclude that not only transcription factor-binding sites are conserved across related species but also several of the transcriptional regulatory mechanisms previously identified in E. coli.

  10. Life Sciences Division and Center for Human Genome Studies Annual report 1989

    SciTech Connect

    Spitzmiller, D.; Bradbury, M.; Cram, L.S.

    1990-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1989. Future editions will include all human genome research projects. The technical portion of the report is divided into two parts: selected research highlights, and project descriptions and accomplishments. Research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail to permit the informed reader to assess their scope and significance. 2 figs.

  11. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies.

    PubMed

    Chen, Chia-Yen; Liu, Xiang; Boris-Lawrie, Kathleen; Sharma, Amit; Jeang, Kuan-Teh

    2013-02-01

    RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.

  12. Genome-wide association study of 12 agronomic traits in peach

    PubMed Central

    Cao, Ke; Zhou, Zhengkui; Wang, Qi; Guo, Jian; Zhao, Pei; Zhu, Gengrui; Fang, Weichao; Chen, Changwen; Wang, Xinwei; Wang, Xiaoli; Tian, Zhixi; Wang, Lirong

    2016-01-01

    Peach (Prunus persica L.) is a highly valuable crop species and is recognized by molecular researchers as a model fruit for the Rosaceae family. Using whole-genome sequencing data generated from 129 peach accessions, here we perform a comprehensive genome-wide association study for 12 key agronomic traits. We show that among the 10 qualitative traits investigated, nine exhibit consistent and more precise association signals than previously identified by linkage analysis. For two of the qualitative traits, we describe candidate genes, one potentially involved in cell death and another predicted to encode an auxin-efflux carrier, that are highly associated with fruit shape and non-acidity, respectively. Furthermore, we find that several genomic regions harbouring association signals for fruit weight and soluble solid content overlapped with predicted selective sweeps that occurred during peach domestication and improvement. Our findings contribute to the large-scale characterization of genes controlling agronomic traits in peach. PMID:27824331

  13. Genome-wide efficient mixed-model analysis for association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2012-06-17

    Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.

  14. Comparative genomics study for identification of putative drug targets in Salmonella typhi Ty2.

    PubMed

    Batool, Nisha; Waqar, Maleeha; Batool, Sidra

    2016-01-15

    Typhoid presents a major health concern in developing countries with an estimated annual infection rate of 21 million. The disease is caused by Salmonella typhi, a pathogenic bacterium acquiring multiple drug resistance. We aim to identify proteins that could prove to be putative drug targets in the genome of S. typhi str. Ty2. We employed comparative and subtractive genomics to identify targets that are absent in humans and are essential to S. typhi Ty2. We concluded that 46 proteins essential to pathogen are absent in the host genome. Filtration on the basis of drug target prioritization singled out 20 potentially therapeutic targets. Their absence in the host and specificity to S. typhi Ty2 makes them ideal targets for treating typhoid in Homo sapiens. 3D structures of two of the final target enzymes, MurA and MurB have been predicted via homology modeling which are then used for a docking study.

  15. A genome-wide association study of chemotherapy-induced alopecia in breast cancer patients

    PubMed Central

    2013-01-01

    Introduction Chemotherapy-induced alopecia is one of the most common adverse events caused by conventional cytotoxic chemotherapy, yet there has been very little progress in the prevention or treatment of this side effect. Although this is not a life-threatening event, alopecia is very psychologically difficult for many women to manage. In order to improve the quality of life for these women, it is important to elucidate the molecular mechanisms of chemotherapy-induced alopecia and develop ways to effectively prevent and/or treat it. To identify the genetic risk factors associated with chemotherapy-induced alopecia, we conducted a genome-wide association study (GWAS) using DNA samples from breast cancer patients who were treated with chemotherapy. Methods We performed a case-control association study of 303 individuals who developed grade 2 alopecia, and compared them with 880 breast cancer patients who did not show hair loss after being treated with conventional chemotherapy. In addition, we separately analyzed a subset of patients who received specific combination therapies by GWASs and applied the weighted genetic risk scoring (wGRS) system to investigate the cumulative effects of the associated SNPs. Results We identified an SNP significantly associated with drug-induced grade 2 alopecia (rs3820706 in CACNB4 (calcium channel voltage-dependent subunit beta 4) on 2q23, P = 8.13 × 10-9, OR = 3.71) and detected several SNPs that showed some suggestive associations by subgroup analyses. We also classified patients into four groups on the basis of wGRS analysis and found that patients who classified in the highest risk group showed 443 times higher risk of antimicrotubule agents-induced alopecia than the lowest risk group. Conclusions Our study suggests several associated genes and should shed some light on the molecular mechanism of alopecia in chemotherapy-treated breast cancer patients and hopefully will contribute to development of interventions that will

  16. Genetic susceptibility to male infertility: news from genome-wide association studies.

    PubMed

    Aston, K I

    2014-05-01

    A thorough understanding of the genetic basis of male infertility has eluded researchers in spite of significant efforts to identify novel genetic causes of the disease, particularly over the past decade. Approximately half of male factor infertility cases have no known cause; however, it is likely that the majority of idiopathic male factor infertility cases have some unidentified genetic basis. Well-established genetic causes of male infertility are limited to Y chromosome microdeletions and Klinefelter's syndrome, together accounting for 10-20% of cases of severe spermatogenic failure. In addition to these, several genetic polymorphisms have been demonstrated to be significantly associated with male infertility. The discovery of new genetic associations with male infertility has been hampered by two primary factors. First, most studies are underpowered because of insufficient sample size and ethnic and phenotypic heterogeneity. Second, most studies evaluate a single gene, an approach that is very inefficient in the context of male infertility, considering that many hundreds of genes are involved in the process of testicular development and spermatogenesis. Significant recent advances in microarray and next-generation sequencing technologies have enabled the application of whole-genome approaches to the study of male infertility. We recently performed a pilot genome-wide association study (GWAS) for severe spermatogenic failure, and several additional male infertility GWAS have since been published. More recently, genomic microarray tools have been applied to the association of copy number variants with male infertility. These studies are beginning to shed additional light on the genetic architecture of male infertility, and whole-genome studies have proven effective in identifying novel genetic causes of the disease. This review will discuss some of the recent findings of these whole-genome studies as well as future directions for this research that will likely

  17. Evaluation of Study and Patient Characteristics of Clinical Studies in Primary Progressive Multiple Sclerosis: A Systematic Review

    PubMed Central

    Ziemssen, T.; Rauer, S.; Stadelmann, C.; Henze, T.; Koehler, J.; Penner, I.-K.; Lang, M.; Poehlau, D.; Baier-Ebert, M.; Schieb, H.; Meuth, S.

    2015-01-01

    Background So far, clinical studies in primary progressive MS (PPMS) have failed to meet their primary efficacy endpoints. To some extent this might be attributable to the choice of assessments or to the selection of the study population. Objective The aim of this study was to identify outcome influencing factors by analyzing the design and methods of previous randomized studies in PPMS patients without restriction to intervention or comparator. Methods A systematic literature search was conducted in MEDLINE, EMBASE, BIOSIS and the COCHRANE Central Register of Controlled Trials (inception to February 2015). Keywords included PPMS, primary progressive multiple sclerosis and chronic progressive multiple sclerosis. Randomized, controlled trials of at least one year’s duration were selected if they included only patients with PPMS or if they reported sufficient PPMS subgroup data. No restrictions with respect to intervention or comparator were applied. Study quality was assessed by a biometrics expert. Relevant baseline characteristics and outcomes were extracted and compared. Results Of 52 PPMS studies identified, four were selected. Inclusion criteria were notably different among studies with respect to both the definition of PPMS and the requirements for the presence of disability progression at enrolment. Differences between the study populations included the baseline lesion load, pretreatment status and disease duration. The rate of disease progression may also be an important factor, as all but one of the studies included a large proportion of patients with a low progression rate. In addition, the endpoints specified could not detect progression adequately. Conclusion Optimal PPMS study methods involve appropriate patient selection, especially regarding the PPMS phenotype and progression rate. Functional composite endpoints might be more sensitive than single endpoints in capturing progression. PMID:26393519

  18. [Genomic approach to pathophysiology of rheumatoid arthritis].

    PubMed

    Yamada, Ryo

    2012-11-01

    Genetic studies identified multiple genes and polymorphisms that increase risk to develop rheumatoid arthritis. Genomic approach is characterized with its integrative style using mathematical and statistical models. Its main targets include (1)combinatorial effect of multiple genetic and environmental factors, (2)heterogeneity of pathological states and its individuality, and (3)their chronological heterogeneity. Genomic approach will clarify pathophysiology of various diseases along with the progresses in molecular biology and other researches on individual molecules.

  19. Genome-wide association studies in Africans and African Americans: Expanding the Framework of the Genomics of Human Traits and Disease

    PubMed Central

    Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D.

    2014-01-01

    Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance, and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago, and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent-African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions. PMID:25427668

  20. Genome-Wide Association Study in African-Americans with Systemic Lupus Erythematosus

    DTIC Science & Technology

    2013-09-01

    Americans with Systemic Lupus Erythematosus PRINCIPAL INVESTIGATOR: John Harley, M.D., Ph.D...September 2012 – 31 August 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genome-Wide Association Study in African-Americans with Systemic Lupus ...SUPPLEMENTARY NOTES 14. ABSTRACT Systemic lupus erythematosus ( lupus ) is a potentially deadly systemic autoimmune disease that disproportionately

  1. Genome-wide association study of maize identifies genes affecting leaf architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. maize yield has increased eightfold in the past 80 years with half of the improvement attributed to genetics. Changes in maize leaf angle and size provided a basis for more efficient light capture as plant densities increased. Through a genome wide association study (GWAS) of the maize nested a...

  2. Development and characterization of rice mutants for functional genomic studies and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutagenesis is a powerful tool for creating genetic materials for studying functional genomics, breeding, and understanding the molecular basis of disease resistance. Approximately 100,000 putative mutants of rice (Oryza sativa L.) have been generated with mutagens. Numerous mutant genes involved in...

  3. Engagement and communication among participants in the ClinSeq Genomic Sequencing Study

    PubMed Central

    Hooker, Gillian W.; Umstead, Kendall L.; Lewis, Katie L.; Koehly, Laura K.; Biesecker, Leslie G.; Biesecker, Barbara B

    2016-01-01

    Purpose As clinical genome sequencing expand its reach, understanding how individuals engage with this process are of critical importance. In this study, we aimed to describe internal engagement and its correlates among a ClinSeq cohort of adults consented to genome sequencing and receipt of results. Methods This study was framed using the precaution adoption process model (PAPM), in which knowledge predicts engagement and engagement predicts subsequent behaviors. Prior to receipt of sequencing results, 630 participants in the study completed a baseline survey. Engagement was assessed as the frequency with which participants thought about their participation in ClinSeq since enrollment. Results Results were consistent with the PAPM: those with higher genomics knowledge reported higher engagement (r = 0.13, P = 0.001) and those who were more engaged reported more frequent communication with their physicians (r = 0.28, P < 0.001) and family members (r = 0.35, P < 0.001) about ClinSeq. Characteristics of those with higher engagement included poorer overall health (r = −0.13, P = 0.002), greater seeking of health information (r = 0.16, P < 0.001), and more recent study enrollment (r = −0.21, P < 0.001). Conclusion These data support the importance of internal engagement in communication related to genomic sequencing. PMID:27763633

  4. Mixed linear model approach adapted for genome-wide association studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed linear model (MLM) methods have proven useful in controlling for population structure and relatedness within genome-wide association studies. However, MLM-based methods can be computationally challenging for large datasets. We report a compression approach, called ‘compressed MLM,’ that decrea...

  5. Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproductive efficiency has a great impact on the economic success of pork production. Number born alive (NBA) and average piglet birth weight (ABW) contribute greatly to reproductive efficiency. To better understand the underlying genetics of birth traits, a genome wide association study (GWAS) w...

  6. Software engineering the mixed model for genome-wide association studies on large samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  7. Implementing meta-analysis from genome-wide association studies for pork quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pork quality plays an important role in the meat processing industry, thus different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. Howe...

  8. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  9. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    ERIC Educational Resources Information Center

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  10. Methods for meta-analysis of genome-wide association studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. For increasing N, results from different GWA can be combined in a meta-analysis (MA-...

  11. Meta-analysis of genome wide association studies for pork quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the importance of pork quality in the meat processing industry, genome-wide association studies were performed for eight meat quality traits and also, a meta-analysis (MA) of GWA was implemented combining independent results from pig populations. Data from three pig datasets (USMARC, Commercia...

  12. FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption

    PubMed Central

    2015-01-01

    Background The increasing availability of genome data motivates massive research studies in personalized treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been widely concerned when sharing the sensitive information in a cloud environment. Methods We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and accuracy in computing chi-square statistics. Results The proposed framework was evaluated for the task of chi-square statistic computation with two case-control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation. Remarkably, the secure approximation division provides significant performance gain, but without missing any significance SNPs in the chi-square association test using the aforementioned datasets. Conclusions Unlike many existing HME based studies, in which final results need to be computed by the data owner due to the lack of the secure division operation, the proposed FORESEE framework support complete outsourcing to the cloud and output the final encrypted chi-square statistics. PMID:26733391

  13. Genome-wide association study of agronomic traits in common bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genome-wide association study (GWAS) using a global Andean diversity panel (ADP) of 237 genotypes of common bean, Phaseolus vulgaris was conducted to gain insight into the genetic architecture of several agronomic traits controlling phenology, biomass, yield components and seed yield. The panel wa...

  14. CNV-based genome wide association study reveals additional variants contributing to meat quality in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pork quality is important both to the meat processing industry and consumers’ purchasing attitudes. Copy number variation (CNV) is a burgeoning kind of variant that may influence meat quality. Herein, a genome-wide association study (GWAS) was performed between CNVs and meat quality traits in swine....

  15. Navajo Reading Study. Progress Report No. 4, December 1969.

    ERIC Educational Resources Information Center

    Murphy, Paul, Ed.

    A summary of the discussions of the Navajo Reading Study Conference, held on December 4-5, 1969, in Albuquerque, New Mexico, was presented in this report. A group of consultants met to discuss the collection of data and its analysis for a study on Navajo reading materials and the language of 6-year-old Navajo children. The consultants included Mr.…

  16. North Dakota Social Studies Standards. Draft in Progress, Spring 1999.

    ERIC Educational Resources Information Center

    Ahmann, Debi; Berkey, Jack; Bisenias, Mike; Christen, Tom; Dawley, Debby; Gallagher, Karen; Henry, Al; Johnson, Ruth; Kautzman, Darlene; Laskowski, Dina; Mowers, Erin; Netland, Arlys; Nix, Alice; Sheehan, Jim; Trotter, Maxine; Whitney, Paul; Vainonen, Dan

    This document outlines the Spring 1999 draft of new social studies standards for the state of North Dakota. The standards in the document are based on previous North Dakota standards, national standards, and standards from other states. The primary reason for teaching social studies is to transfer and extend knowledge about the principles upon…

  17. Family-based designs for genome-wide association studies.

    PubMed

    Ott, Jurg; Kamatani, Yoichiro; Lathrop, Mark

    2011-06-01

    Association mapping has successfully identified common SNPs associated with many diseases. However, the inability of this class of variation to account for most of the supposed heritability has led to a renewed interest in methods - primarily linkage analysis - to detect rare variants. Family designs allow for control of population stratification, investigations of questions such as parent-of-origin effects and other applications that are imperfectly or not readily addressed in case-control association studies. This article guides readers through the interface between linkage and association analysis, reviews the new methodologies and provides useful guidelines for applications. Just as effective SNP-genotyping tools helped to realize the potential of association studies, next-generation sequencing tools will benefit genetic studies by improving the power of family-based approaches.

  18. A systematic study of genome context methods: calibration, normalization and combination

    PubMed Central

    2010-01-01

    Background Genome context methods have been introduced in the last decade as automatic methods to predict functional relatedness between genes in a target genome using the patterns of existence and relative locations of the homologs of those genes in a set of reference genomes. Much work has been done in the application of these methods to different bioinformatics tasks, but few papers present a systematic study of the methods and their combination necessary for their optimal use. Results We present a thorough study of the four main families of genome context methods found in the literature: phylogenetic profile, gene fusion, gene cluster, and gene neighbor. We find that for most organisms the gene neighbor method outperforms the phylogenetic profile method by as much as 40% in sensitivity, being competitive with the gene cluster method at low sensitivities. Gene fusion is generally the worst performing of the four methods. A thorough exploration of the parameter space for each method is performed and results across different target organisms are presented. We propose the use of normalization procedures as those used on microarray data for the genome context scores. We show that substantial gains can be achieved from the use of a simple normalization technique. In particular, the sensitivity of the phylogenetic profile method is improved by around 25% after normalization, resulting, to our knowledge, on the best-performing phylogenetic profile system in the literature. Finally, we show results from combining the various genome context methods into a single score. When using a cross-validation procedure to train the combiners, with both original and normalized scores as input, a decision tree combiner results in gains of up to 20% with respect to the gene neighbor method. Overall, this represents a gain of around 15% over what can be considered the state of the art in this area: the four original genome context methods combined using a procedure like that used in

  19. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants.

    PubMed

    Zou, Fanggeng; Chai, High Seng; Younkin, Curtis S; Allen, Mariet; Crook, Julia; Pankratz, V Shane; Carrasquillo, Minerva M; Rowley, Christopher N; Nair, Asha A; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P; Jen, Jin; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Petersen, Ronald C; Graff-Radford, Neill R; Dickson, Dennis W; Younkin, Steven G; Ertekin-Taner, Nilüfer

    2012-01-01

    Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings

  20. Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants

    PubMed Central

    Crook, Julia; Pankratz, V. Shane; Carrasquillo, Minerva M.; Rowley, Christopher N.; Nair, Asha A.; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G.; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P.; Jen, Jin; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Schellenberg, Gerard D.; Petersen, Ronald C.; Graff-Radford, Neill R.; Dickson, Dennis W.; Younkin, Steven G.; Ertekin-Taner, Nilüfer

    2012-01-01

    Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n = 197, temporal cortex n = 202) and with other brain pathologies (non–AD, cerebellar n = 177, temporal cortex n = 197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ±100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non–ADs (q<0.05, p = 7.70×10−5–1.67×10−82). Of these, 2,089 were also significant in the temporal cortex (p = 1.85×10−5–1.70×10−141). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10−6). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9–3.3 fold enrichment (p<10−6) of significant cisSNPs with suggestive AD–risk association (p<10−3) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non–CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with

  1. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species.

    PubMed

    Nazareno, Alison G; Bemmels, Jordan B; Dick, Christopher W; Lohmann, Lúcia G

    2017-01-12

    High-throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double-digest restriction-associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations of Amphirrhox longifolia (Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra- and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations of A. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity within A. longifolia populations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates of FST can be obtained with a large number of SNPs (≥1500). These results highlight the potential of high-throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.

  2. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma†

    PubMed Central

    Amos, Christopher I.; Wang, Li-E; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Chen, Wei V.; Fang, Shenying; Kosoy, Roman; Zhang, Mingfeng; Qureshi, Abrar A.; Vattathil, Selina; Schacherer, Christopher W.; Gardner, Julie M.; Wang, Yuling; Tim Bishop, D.; Barrett, Jennifer H.; MacGregor, Stuart; Hayward, Nicholas K.; Martin, Nicholas G.; Duffy, David L.; Mann, Graham J.; Cust, Anne; Hopper, John; Brown, Kevin M.; Grimm, Elizabeth A.; Xu, Yaji; Han, Younghun; Jing, Kaiyan; McHugh, Caitlin; Laurie, Cathy C.; Doheny, Kim F.; Pugh, Elizabeth W.; Seldin, Michael F.; Han, Jiali; Wei, Qingyi

    2011-01-01

    We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10−10). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma. PMID:21926416

  3. Genomic approaches in marine biodiversity and aquaculture.

    PubMed

    Huete-Pérez, Jorge A; Quezada, Fernando

    2013-01-01

    Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  4. InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor.

    PubMed

    Coletta, Alain; Molter, Colin; Duqué, Robin; Steenhoff, David; Taminau, Jonatan; de Schaetzen, Virginie; Meganck, Stijn; Lazar, Cosmin; Venet, David; Detours, Vincent; Nowé, Ann; Bersini, Hugues; Weiss Solís, David Y

    2012-11-18

    Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platform is a powerful collaborative environment, with advanced capabilities for biocuration, dataset sharing, and dataset subsetting and combination. InSilico DB is available from https://insilicodb.org.

  5. InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor

    PubMed Central

    2012-01-01

    Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platform is a powerful collaborative environment, with advanced capabilities for biocuration, dataset sharing, and dataset subsetting and combination. InSilico DB is available from https://insilicodb.org. PMID:23158523

  6. Identification of a whitefly species by genomic and behavioral studies

    USGS Publications Warehouse

    Perring, T.M.; Cooper, A.D.; Rodriguez, R.J.; Farrar, C.A.; Bellows, T.S.

    1993-01-01

    An introduced whitefly species, responsible for over a half billion dollars in damage to U.S. agricultural production in 1991, is morphologically indistinguishable from Bemisia tabaci (Gennadius). However, with the use of polymerase chain reaction-based DNA differentiation tests, allozymic frequency analyses, crossing experiments, and mating behavior studies, the introduced whitefly is found to be a distinct species. Recognition of this new species, the silverleaf whitefly, is critical in the search for management options.

  7. Great Basin paleoenvironmental studies project; Technical progress report: First quarter (January--August 1993)

    SciTech Connect

    1993-12-31

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project.

  8. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma.

    PubMed

    Yucesoy, Berran; Kaufman, Kenneth M; Lummus, Zana L; Weirauch, Matthew T; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B; Bernstein, David I

    2015-07-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10(-14)). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10(-9) and rs2514805, p = 1.22 × 10(-8), respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10(-6)). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies.

  9. Dividing wall studies. Progress report, October 1971--December 1971

    SciTech Connect

    Crutchmer, J.A.

    1997-09-01

    With the resumption of the Dividing Wall Studies most of this quarter was devoted to preliminary preparations for the proposed series of tests. Two shots involving one-fourth scale untreated walls were fired and analyzed. Four batches of foamed concrete were made and poured into one and one-half inch thick test slabs for future test fires. Seven day and twenty-eight day compression tests were completed on each of the batches. The purpose of this project is to finalize the studies of foamed concrete wall treatment with respect to its effectiveness in reducing wall missile velocities resulting from blast loading conditions.

  10. Progress on field study with precision mobile drip irrigation technologly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...

  11. Making Progress: A Case Study of Academic Literacy Development

    ERIC Educational Resources Information Center

    Takano, Naoko

    2013-01-01

    The processes by which unprepared freshmen are able to develop their academic literacy are overlooked by those in the academy. The author will describe a case study of the development of a student's academic literacy in the 1st 3 semesters of college. The information for this project was obtained through interviews with the student and her…

  12. Genome-wide association study identifies three novel loci for type 2 diabetes.

    PubMed

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A; Yamauchi, Toshimasa; Yasuda, Kazuki; Horikoshi, Momoko; Peng, Chen; Hu, Cheng; Ma, Ronald C W; Imamura, Minako; Iwata, Minoru; Tsunoda, Tatsuhiko; Morizono, Takashi; Shojima, Nobuhiro; So, Wing Yee; Leung, Ting Fan; Kwan, Patrick; Zhang, Rong; Wang, Jie; Yu, Weihui; Maegawa, Hiroshi; Hirose, Hiroshi; Kaku, Kohei; Ito, Chikako; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kashiwagi, Atsunori; Kawamori, Ryuzo; Jia, Weiping; Chan, Juliana C N; Teo, Yik Ying; Shyong, Tai E; Kamatani, Naoyuki; Kubo, Michiaki; Maeda, Shiro; Kadowaki, Takashi

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13 (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.

  13. A Fast Implementation of a Scan Statistic for Identifying Chromosomal Patterns of Genome Wide Association Studies.

    PubMed

    Sun, Yan V; Jacobsen, Douglas M; Turner, Stephen T; Boerwinkle, Eric; Kardia, Sharon L R

    2009-03-15

    In order to take into account the complex genomic distribution of SNP variations when identifying chromosomal regions with significant SNP effects, a single nucleotide polymorphism (SNP) association scan statistic was developed. To address the computational needs of genome wide association (GWA) studies, a fast Java application, which combines single-locus SNP tests and a scan statistic for identifying chromosomal regions with significant clusters of significant SNP effects, was developed and implemented. To illustrate this application, SNP associations were analyzed in a pharmacogenomic study of the blood pressure lowering effect of thiazide-diuretics (N=195) using the Affymetrix Human Mapping 100K Set. 55,335 tagSNPs (pair-wise linkage disequilibrium R(2)<0.5) were selected to reduce the frequency correlation between SNPs. A typical workstation can complete the whole genome scan including 10,000 permutation tests within 3 hours. The most significant regions locate on chromosome 3, 6, 13 and 16, two of which contain candidate genes that may be involved in the underlying drug response mechanism. The computational performance of ChromoScan-GWA and its scalability were tested with up to 1,000,000 SNPs and up to 4,000 subjects. Using 10,000 permutations, the computation time grew linearly in these datasets. This scan statistic application provides a robust statistical and computational foundation for identifying genomic regions associated with disease and provides a method to compare GWA results even across different platforms.

  14. Dark matter RNA illuminates the puzzle of genome-wide association studies

    PubMed Central

    2014-01-01

    In the past decade, numerous studies have made connections between sequence variants in human genomes and predisposition to complex diseases. However, most of these variants lie outside of the charted regions of the human genome whose function we understand; that is, the sequences that encode proteins. Consequently, the general concept of a mechanism that translates these variants into predisposition to diseases has been lacking, potentially calling into question the validity of these studies. Here we make a connection between the growing class of apparently functional RNAs that do not encode proteins and whose function we do not yet understand (the so-called ‘dark matter’ RNAs) and the disease-associated variants. We review advances made in a different genomic mapping effort – unbiased profiling of all RNA transcribed from the human genome – and provide arguments that the disease-associated variants exert their effects via perturbation of regulatory properties of non-coding RNAs existing in mammalian cells. PMID:24924000

  15. A universal method for the study of CR1 retroposons in nonmodel bird genomes.

    PubMed

    Suh, Alexander; Kriegs, Jan Ole; Donnellan, Stephen; Brosius, Jürgen; Schmitz, Jürgen

    2012-10-01

    Presence/absence patterns of retroposon insertions at orthologous genomic loci constitute straightforward markers for phylogenetic or population genetic studies. In birds, the convenient identification and utility of these markers has so far been mainly restricted to the lineages leading to model birds (i.e., chicken and zebra finch). We present an easy-to-use, rapid, and cost-effective method for the experimental isolation of chicken repeat 1 (CR1) insertions from virtually any bird genome and potentially nonavian genomes. The application of our method to the little grebe genome yielded insertions belonging to new CR1 subfamilies that are scattered all across the phylogenetic tree of avian CR1s. Furthermore, presence/absence analysis of these insertions provides the first retroposon evidence grouping flamingos + grebes as Mirandornithes and several markers for all subsequent branching events within grebes (Podicipediformes). Five markers appear to be species-specific insertions, including the hitherto first evidence in birds for biallelic CR1 insertions that could be useful in future population genetic studies.

  16. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  17. Radioactivity studies. Progress report, April 30, 1984-June 1, 1985

    SciTech Connect

    Cohen, N.

    1985-06-01

    This report includes information pertaining to metabolic studies of neptunium and protactinium in the adult baboon. Recent investigations have provided additional data on the uptake, distribution, retention and excretion of Np-237, Np-239 and Pa-233 in baboons following single intravenous and gavage administrations. Data is also presented on the gastrointestinal absorption of isotopes of uranium, neptunium and plutonium in individual baboons after receiving multiple gavage administrations at selected time intervals and nutritional states. The gastrointestinal (GI) absorption (f/sub 1/ values) and retention factors have been calculated for each of these nuclides. We have begun metabolic studies on the adult tamarin (Saquinis labiatus). Data are presented in this report on the preliminary results of the metabolism of Np-239 bicarbonate intravenously injected into three females and one male tamarin. These data are discussed in comparison with similar results obtained with our baboons and with other species. 28 refs., 20 figs., 14 tabs.

  18. Recent Progress of RF Cavity Study at Mucool Test Area

    SciTech Connect

    Yonehara, Katsuya; /Fermilab

    2011-12-02

    Summar of presentation is: (1) MTA is a multi task working space to investigate RF cavities for R&D of muon beam cooling channel - (a) Intense 400 MeV H{sup -} beam, (b) Handle hydrogen (flammable) gas, (c) 5 Tesla SC solenoid magnet, (d) He cryogenic/recycling system; (2) Pillbox cavity has been refurbished to search better RF material - Beryllium button test will be happened soon; (3) E x B effect has been tested in a box cavity - Under study (result seems not to be desirable); (4) 201 MHz RF cavity with SRF cavity treatment has been tested at low magnetic field - (a) Observed some B field effect on maximum field gradient and (b) Further study is needed (large bore SC magnet will be delivered end of 2011); and (5) HPRF cavity beam test has started - (a) No RF breakdown observed and (b) Design a new HPRF cavity to investigate more plasma loading effect.

  19. Introduction. Progress in Earth science and climate studies.

    PubMed

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  20. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    PubMed

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  1. Replicability and robustness of genome-wide-association studies for behavioral traits.

    PubMed

    Rietveld, Cornelius A; Conley, Dalton; Eriksson, Nicholas; Esko, Tõnu; Medland, Sarah E; Vinkhuyzen, Anna A E; Yang, Jian; Boardman, Jason D; Chabris, Christopher F; Dawes, Christopher T; Domingue, Benjamin W; Hinds, David A; Johannesson, Magnus; Kiefer, Amy K; Laibson, David; Magnusson, Patrik K E; Mountain, Joanna L; Oskarsson, Sven; Rostapshova, Olga; Teumer, Alexander; Tung, Joyce Y; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-11-01

    A recent genome-wide-association study of educational attainment identified three single-nucleotide polymorphisms (SNPs) whose associations, despite their small effect sizes (each R (2) ≈ 0.02%), reached genome-wide significance (p < 5 × 10(-8)) in a large discovery sample and were replicated in an independent sample (p < .05). The study also reported associations between educational attainment and indices of SNPs called "polygenic scores." In three studies, we evaluated the robustness of these findings. Study 1 showed that the associations with all three SNPs were replicated in another large (N = 34,428) independent sample. We also found that the scores remained predictive (R (2) ≈ 2%) in regressions with stringent controls for stratification (Study 2) and in new within-family analyses (Study 3). Our results show that large and therefore well-powered genome-wide-association studies can identify replicable genetic associations with behavioral traits. The small effect sizes of individual SNPs are likely to be a major contributing factor explaining the striking contrast between our results and the disappointing replication record of most candidate-gene studies.

  2. Support effects studied on model supported catalysts. Progress report

    SciTech Connect

    Gorte, R.J.

    1993-02-01

    Composition and structure of oxide support materials can change the catalytic behavior of metal and oxide catalysts. Model catalysts are being studied in which the active phase is deposited on flat oxide substrates, with emphasis on metals catalysis for automotive emissions control and acidity in supported oxides. Research is reported in the following areas: particle-size effects, support effects on ZnO and zirconia, support effects on ceria, supported oxides, and low energy ion scattering (no results in the latter).

  3. Progress in Fast Ignition Studies with Electrons and Protons

    SciTech Connect

    MacKinnon, A. J.; Chen, H.; Hey, D.; Key, M. H.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, S.; Higginson, D.; King, J. A.; Ma, T.; Wei, M. S.; Chen, C. D.; Chowdhury, E.; Link, A.

    2009-09-10

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone--wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  4. Study and Therapeutic Progress on Intracranial Serpentine Aneurysms

    PubMed Central

    Xu, Kan; Yu, Tiecheng; Guo, Yunbao; Yu, Jinlu

    2016-01-01

    An intracranial serpentine aneurysm (SA) is a clinically rare entity, and very few multi-case studies on SA have been published. The present study reviewed the relevant literature available on PubMed. The studied information included the formation mechanism and natural history of SA as well as its clinical manifestation, imaging characteristics, and current treatments. After reviewing the literature, we conclude that intracranial SA can be managed surgically and by endovascular embolization, but the degree of blood flow in normal brain tissue distal to the SA must be evaluated. A balloon occlusion test (BOT) or cross compression test is recommended for this evaluation. If the collateral circulation is sufficiently compensatory, direct excision or embolization can be performed. However, if the compensatory collateral circulation is poor, a bypass surgery is necessary. Satisfactory results can be achieved in the majority of SA patients after treatment. However, the size of the aneurysm may increase in some patients after endovascular treatment. Special attention should be paid to cases exhibiting a significant mass effect to avoid subsequent SA excision due to an intolerable mass effect. Satisfactory results can be achieved with careful treatment of SA. PMID:27279792

  5. Recent Progress in Studies of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2008-01-01

    The synchrotron-emitting nebulae formed by energetic winds from young pulsars provide information on a wide range phenomena that contribute to their structure. High resolution X-ray observations reveal jets and toroidal structures in many systems, along with knot-like structures whose emission is observed to be time-variable. Large-scale filaments seen in optical and radio images mark instability regions where the expanding nebulae interact with the surrounding ejecta, and spectral studies reveal the presence of these ejecta in the form of thermal X-ray emission. Infrared studies probe the frequency region where evolutionary and magnetic field effects conspire to change the broadband synchrotron spectrum dramatically, and studies of the innermost regions of the nebulae provide constraints on the spectra of particles entering the nebula. At the highest energies, TeV gamma-ray observations provide a probe of the spectral region that, for low magnetic fields, corresponds to particles with energies just below the X-ray-emitting regime. Here I summarize the structure of pulsar wind nebulae and review several new observations that have helped drive a recent resurgence in theoretical modeling of these systems.

  6. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels.

    PubMed

    Draisma, Harmen H M; Pool, René; Kobl, Michael; Jansen, Rick; Petersen, Ann-Kristin; Vaarhorst, Anika A M; Yet, Idil; Haller, Toomas; Demirkan, Ayşe; Esko, Tõnu; Zhu, Gu; Böhringer, Stefan; Beekman, Marian; van Klinken, Jan Bert; Römisch-Margl, Werner; Prehn, Cornelia; Adamski, Jerzy; de Craen, Anton J M; van Leeuwen, Elisabeth M; Amin, Najaf; Dharuri, Harish; Westra, Harm-Jan; Franke, Lude; de Geus, Eco J C; Hottenga, Jouke Jan; Willemsen, Gonneke; Henders, Anjali K; Montgomery, Grant W; Nyholt, Dale R; Whitfield, John B; Penninx, Brenda W; Spector, Tim D; Metspalu, Andres; Eline Slagboom, P; van Dijk, Ko Willems; 't Hoen, Peter A C; Strauch, Konstantin; Martin, Nicholas G; van Ommen, Gert-Jan B; Illig, Thomas; Bell, Jordana T; Mangino, Massimo; Suhre, Karsten; McCarthy, Mark I; Gieger, Christian; Isaacs, Aaron; van Duijn, Cornelia M; Boomsma, Dorret I

    2015-06-12

    Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.

  7. Use of DBD-FISH for the study of cervical cancer progression.

    PubMed

    Cortés-Gutiérrez, Elva I; Fernández, Jose Luis; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Gosálvez, Jaime

    2015-01-01

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a procedure to detect and quantify DNA breaks in single cells, either in the whole genome or within specific DNA sequences. This methodology combines microgel embedding of cells and DNA unwinding procedures with the power of FISH coupled to digital image analysis. Cells trapped within an agarose matrix are lysed and immersed in an alkaline unwinding solution that produces single-stranded DNA motifs beginning at the ends of internal DNA strand breaks. After neutralization, the microgel is dehydrated and the cells are incubated with fluorescently labeled DNA probes. The amount of hybridized probe at a target sequence correlates with the amount of single-stranded DNA generated during the unwinding step, which is in turn proportional to the degree of local DNA breakage. A general view of the technique is provided, emphasizing its versatility for evaluating the association between DNA damage and progressive stages of cervical neoplasia.

  8. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress.

    PubMed

    Fernández, Jesús; Toro, Miguel Á; Sonesson, Anna K; Villanueva, Beatriz

    2014-01-01

    The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.