Science.gov

Sample records for genome-scale metabolic reconstructions

  1. Applications of genome-scale metabolic reconstructions

    PubMed Central

    Oberhardt, Matthew A; Palsson, Bernhard Ø; Papin, Jason A

    2009-01-01

    The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology. PMID:19888215

  2. Reconstructing genome-scale metabolic models with merlin

    PubMed Central

    Dias, Oscar; Rocha, Miguel; Ferreira, Eugénio C.; Rocha, Isabel

    2015-01-01

    The Metabolic Models Reconstruction Using Genome-Scale Information (merlin) tool is a user-friendly Java application that aids the reconstruction of genome-scale metabolic models for any organism that has its genome sequenced. It performs the major steps of the reconstruction process, including the functional genomic annotation of the whole genome and subsequent construction of the portfolio of reactions. Moreover, merlin includes tools for the identification and annotation of genes encoding transport proteins, generating the transport reactions for those carriers. It also performs the compartmentalisation of the model, predicting the organelle localisation of the proteins encoded in the genome and thus the localisation of the metabolites involved in the reactions promoted by such enzymes. The gene-proteins-reactions (GPR) associations are automatically generated and included in the model. Finally, merlin expedites the transition from genomic data to draft metabolic models reconstructions exported in the SBML standard format, allowing the user to have a preliminary view of the biochemical network, which can be manually curated within the environment provided by merlin. PMID:25845595

  3. Reconstructing genome-scale metabolic models with merlin.

    PubMed

    Dias, Oscar; Rocha, Miguel; Ferreira, Eugénio C; Rocha, Isabel

    2015-04-30

    The Metabolic Models Reconstruction Using Genome-Scale Information (merlin) tool is a user-friendly Java application that aids the reconstruction of genome-scale metabolic models for any organism that has its genome sequenced. It performs the major steps of the reconstruction process, including the functional genomic annotation of the whole genome and subsequent construction of the portfolio of reactions. Moreover, merlin includes tools for the identification and annotation of genes encoding transport proteins, generating the transport reactions for those carriers. It also performs the compartmentalisation of the model, predicting the organelle localisation of the proteins encoded in the genome and thus the localisation of the metabolites involved in the reactions promoted by such enzymes. The gene-proteins-reactions (GPR) associations are automatically generated and included in the model. Finally, merlin expedites the transition from genomic data to draft metabolic models reconstructions exported in the SBML standard format, allowing the user to have a preliminary view of the biochemical network, which can be manually curated within the environment provided by merlin.

  4. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    PubMed Central

    Martín-Jiménez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states. PMID:28243200

  5. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network.

    PubMed

    Martín-Jiménez, Cynthia A; Salazar-Barreto, Diego; Barreto, George E; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states.

  6. Genome-scale models of bacterial metabolism: reconstruction and applications

    PubMed Central

    Durot, Maxime; Bourguignon, Pierre-Yves; Schachter, Vincent

    2009-01-01

    Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities. PMID:19067749

  7. Genome-scale metabolic models: reconstruction and analysis.

    PubMed

    Baart, Gino J E; Martens, Dirk E

    2012-01-01

    Metabolism can be defined as the complete set of chemical reactions that occur in living organisms in order to maintain life. Enzymes are the main players in this process as they are responsible for catalyzing the chemical reactions. The enzyme-reaction relationships can be used for the reconstruction of a network of reactions, which leads to a metabolic model of metabolism. A genome-scale metabolic network of chemical reactions that take place inside a living organism is primarily reconstructed from the information that is present in its genome and the literature and involves steps such as functional annotation of the genome, identification of the associated reactions and determination of their stoichiometry, assignment of localization, determination of the biomass composition, estimation of energy requirements, and definition of model constraints. This information can be integrated into a stoichiometric model of metabolism that can be used for detailed analysis of the metabolic potential of the organism using constraint-based modeling approaches and hence is valuable in understanding its metabolic capabilities.

  8. Design and application of genome-scale reconstructed metabolic models.

    PubMed

    Rocha, Isabel; Förster, Jochen; Nielsen, Jens

    2008-01-01

    In this chapter, the process for the reconstruction of genome-scale metabolic networks is described, and some of the main applications of such models are illustrated. The reconstruction process can be viewed as an iterative process where information obtained from several sources is combined to construct a preliminary set of reactions and constraints. This involves steps such as genome annotation; identification of the reactions from the annotated genome sequence and available literature; determination of the reaction stoichiometry; definition of compartmentation and assignment of localization; determination of the biomass composition; measurement, calculation, or fitting of energy requirements; and definition of additional constraints. The reaction and constraint sets, after debugging, may be integrated into a stoichiometric model that can be used for simulation using tools such as Flux Balance Analysis (Section 3.8). From the flux distributions obtained, physiologic parameters such as growth yields or minimal medium components can be calculated, and their distance from similar experimental data provides a basis from where the model may need to be improved.

  9. Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels.

    PubMed

    Juneja, Ankita; Chaplen, Frank W R; Murthy, Ganti S

    2016-08-01

    A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering.

  10. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  11. Pantograph: A template-based method for genome-scale metabolic model reconstruction.

    PubMed

    Loira, Nicolas; Zhukova, Anna; Sherman, David James

    2015-04-01

    Genome-scale metabolic models are a powerful tool to study the inner workings of biological systems and to guide applications. The advent of cheap sequencing has brought the opportunity to create metabolic maps of biotechnologically interesting organisms. While this drives the development of new methods and automatic tools, network reconstruction remains a time-consuming process where extensive manual curation is required. This curation introduces specific knowledge about the modeled organism, either explicitly in the form of molecular processes, or indirectly in the form of annotations of the model elements. Paradoxically, this knowledge is usually lost when reconstruction of a different organism is started. We introduce the Pantograph method for metabolic model reconstruction. This method combines a template reaction knowledge base, orthology mappings between two organisms, and experimental phenotypic evidence, to build a genome-scale metabolic model for a target organism. Our method infers implicit knowledge from annotations in the template, and rewrites these inferences to include them in the resulting model of the target organism. The generated model is well suited for manual curation. Scripts for evaluating the model with respect to experimental data are automatically generated, to aid curators in iterative improvement. We present an implementation of the Pantograph method, as a toolbox for genome-scale model reconstruction, curation and validation. This open source package can be obtained from: http://pathtastic.gforge.inria.fr.

  12. Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism.

    PubMed

    Saha, Rajib; Suthers, Patrick F; Maranas, Costas D

    2011-01-01

    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species.

  13. An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks.

    PubMed

    Stelzer, Michael; Sun, Jibin; Kamphans, Tom; Fekete, Sándor P; Zeng, An-Ping

    2011-11-01

    The bioreaction database established by Ma and Zeng (Bioinformatics, 2003, 19, 270-277) for in silico reconstruction of genome-scale metabolic networks has been widely used. Based on more recent information in the reference databases KEGG LIGAND and Brenda, we upgrade the bioreaction database in this work by almost doubling the number of reactions from 3565 to 6851. Over 70% of the reactions have been manually updated/revised in terms of reversibility, reactant pairs, currency metabolites and error correction. For the first time, 41 spontaneous sugar mutarotation reactions are introduced into the biochemical database. The upgrade significantly improves the reconstruction of genome scale metabolic networks. Many gaps or missing biochemical links can be recovered, as exemplified with three model organisms Homo sapiens, Aspergillus niger, and Escherichia coli. The topological parameters of the constructed networks were also largely affected, however, the overall network structure remains scale-free. Furthermore, we consider the problem of computing biologically feasible shortest paths in reconstructed metabolic networks. We show that these paths are hard to compute and present solutions to find such paths in networks of small and medium size.

  14. An Experimentally-Supported Genome-Scale Metabolic Network Reconstruction for Yersinia pestis CO92

    SciTech Connect

    Charusanti, Pep; Chauhan, Sadhana; Mcateer, Kathleen; Lerman, Joshua A.; Hyduke, Daniel R.; Motin, Vladimir L.; Ansong, Charles; Adkins, Joshua N.; Palsson, Bernhard O.

    2011-10-13

    Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbon sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, thus provides an in silico platform with which to investigate the metabolism of this important human pathogen.

  15. Towards improved genome-scale metabolic network reconstructions: unification, transcript specificity and beyond

    PubMed Central

    Pfau, Thomas; Pacheco, Maria Pires; Sauter, Thomas

    2016-01-01

    Genome-scale metabolic network reconstructions provide a basis for the investigation of the metabolic properties of an organism. There are reconstructions available for multiple organisms, from prokaryotes to higher organisms and methods for the analysis of a reconstruction. One example is the use of flux balance analysis to improve the yields of a target chemical, which has been applied successfully. However, comparison of results between existing reconstructions and models presents a challenge because of the heterogeneity of the available reconstructions, for example, of standards for presenting gene-protein-reaction associations, nomenclature of metabolites and reactions or selection of protonation states. The lack of comparability for gene identifiers or model-specific reactions without annotated evidence often leads to the creation of a new model from scratch, as data cannot be properly matched otherwise. In this contribution, we propose to improve the predictive power of metabolic models by switching from gene-protein-reaction associations to transcript-isoform-reaction associations, thus taking advantage of the improvement of precision in gene expression measurements. To achieve this precision, we discuss available databases that can be used to retrieve this type of information and point at issues that can arise from their neglect. Further, we stress issues that arise from non-standardized building pipelines, like inconsistencies in protonation states. In addition, problems arising from the use of non-specific cofactors, e.g. artificial futile cycles, are discussed, and finally efforts of the metabolic modelling community to unify model reconstructions are highlighted. PMID:26615025

  16. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis

    PubMed Central

    2012-01-01

    Background Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. Results We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. Conclusion The genome-scale metabolic model developed for

  17. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri

    SciTech Connect

    Feist, Adam; Scholten, Johannes C.; Palsson, Bernard O.; Brockman, Fred J.; Ideker, Trey

    2006-01-31

    We present a genome-scale metabolic reconstruction for the archaeal methanogen Methanosarcina barkeri. This reconstruction represents the first large-scale, predictive model of a methanogen and an archael species. We characterize this reconstruction and compare it to those from the prokaryotic, eukaryotic, and archael domains. We further apply constraint-based methods to stimulate the metabolic fluxes and resulting phenotypes under different environmental and genetic conditions. These results are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for mutants of the methanogenic pathway were found to have a high level of agreement with experimental findings. The active reactions and pathways under selected growth conditions are presented and characterized. We also examined the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech hydrogenase reaction. This work demonstrates that a reconstructed metabolic network can serve as an in silico analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation, and further uncover the metabolic characteristics of methanogenesis.

  18. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis

    PubMed Central

    Richards, Matthew A.; Lie, Thomas J.; Zhang, Juan; Ragsdale, Stephen W.

    2016-01-01

    ABSTRACT Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis, a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies

  19. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    SciTech Connect

    Nagarajan, H; Sahin, M; Nogales, J; Latif, H; Lovley, DR; Ebrahim, A; Zengler, K

    2013-11-25

    Background: The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H-2/CO2, and more importantly on synthesis gas (H-2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results: Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions: iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.

  20. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    PubMed Central

    2013-01-01

    Background The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H2/CO2, and more importantly on synthesis gas (H2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels. PMID:24274140

  1. Genome-scale metabolic reconstruction for the insidious bacterium in aquaculture Piscirickettsia salmonis.

    PubMed

    Fuentealba, Pablo; Aros, Camila; Latorre, Yesenia; Martínez, Irene; Marshall, Sergio; Ferrer, Pau; Albiol, Joan; Altamirano, Claudia

    2017-01-01

    Piscirickettsia salmonis is a fish bacterium that causes the disease piscirickettsiosis in salmonids. This pathology is partially controlled by vaccines. The lack of knowledge has hindered its culture on laboratory and industrial scale. The study describes the metabolic phenotype of P. salmonis in culture. This study presents the first genome-scale model (iPF215) of the LF-89 strain of P. salmonis, describing the central metabolic pathway, biosynthesis and molecule degradation and transport mechanisms. The model was adjusted with experiment data, allowing the identification of the capacities that were not predicted by the automatic annotation of the genome sequences. The iPF215 model is comprised of 417 metabolites, 445 reactions and 215 genes, was used to reproduce the growth of P. salmonis (μmax 0.052±0.005h(-1)). The metabolic reconstruction of the P. salmonis LF-89 strain obtained in this research provides a baseline that describes the metabolic capacities of the bacterium and is the basis for developing improvements to its cultivation for vaccine formulation.

  2. Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus

    PubMed Central

    Ulas, Thomas; Riemer, S. Alexander; Zaparty, Melanie; Siebers, Bettina; Schomburg, Dietmar

    2012-01-01

    We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2–4 (optimum 3.5) and a temperature of 75–80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism. PMID:22952675

  3. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    PubMed

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses.

  4. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  5. MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis

    PubMed Central

    2012-01-01

    Reconstructed models of metabolic networks are widely used for studying metabolism in various organisms. Many different reconstructions of the same organism often exist concurrently, forcing researchers to choose one of them at the exclusion of the others. We describe MetaMerge, an algorithm for semi-automatically reconciling a pair of existing metabolic network reconstructions into a single metabolic network model. We use MetaMerge to combine two published metabolic networks for Mycobacterium tuberculosis into a single network, which allows many reactions that could not be active in the individual models to become active, and predicts essential genes with a higher positive predictive value. PMID:22292986

  6. A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism.

    PubMed

    Gebauer, Juliane; Gentsch, Christoph; Mansfeld, Johannes; Schmeißer, Kathrin; Waschina, Silvio; Brandes, Susanne; Klimmasch, Lukas; Zamboni, Nicola; Zarse, Kim; Schuster, Stefan; Ristow, Michael; Schäuble, Sascha; Kaleta, Christoph

    2016-05-25

    We present a genome-scale model of Caenorhabditis elegans metabolism along with the public database ElegCyc (http://elegcyc.bioinf.uni-jena.de:1100), which represents a reference for metabolic pathways in the worm and allows for the visualization as well as analysis of omics datasets. Our model reflects the metabolic peculiarities of C. elegans that make it distinct from other higher eukaryotes and mammals, including mice and humans. We experimentally verify one of these peculiarities by showing that the lifespan-extending effect of L-tryptophan supplementation is dose dependent (hormetic). Finally, we show the utility of our model for analyzing omics datasets through predicting changes in amino acid concentrations after genetic perturbations and analyzing metabolic changes during normal aging as well as during two distinct, reactive oxygen species (ROS)-related lifespan-extending treatments. Our analyses reveal a notable similarity in metabolic adaptation between distinct lifespan-extending interventions and point to key pathways affecting lifespan in nematodes.

  7. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001

    SciTech Connect

    Navid, A; Almaas, E

    2009-01-13

    The gram-negative bacterium Yersinia pestis, the aetiological agent of bubonic plague, is one the deadliest pathogens known to man. Despite its historical reputation, plague is a modern disease which annually afflicts thousands of people. Public safety considerations greatly limit clinical experimentation on this organism and thus development of theoretical tools to analyze the capabilities of this pathogen is of utmost importance. Here, we report the first genome-scale metabolic model of Yersinia pestis biovar Mediaevalis based both on its recently annotated genome, and physiological and biochemical data from literature. Our model demonstrates excellent agreement with Y. pestis known metabolic needs and capabilities. Since Y. pestis is a meiotrophic organism, we have developed CryptFind, a systematic approach to identify all candidate cryptic genes responsible for known and theoretical meiotrophic phenomena. In addition to uncovering every known cryptic gene for Y. pestis, our analysis of the rhamnose fermentation pathway suggests that betB is the responsible cryptic gene. Despite all of our medical advances, we still do not have a vaccine for bubonic plague. Recent discoveries of antibiotic resistant strains of Yersinia pestis coupled with the threat of plague being used as a bioterrorism weapon compel us to develop new tools for studying the physiology of this deadly pathogen. Using our theoretical model, we can study the cell's phenotypic behavior under different circumstances and identify metabolic weaknesses which may be harnessed for the development of therapeutics. Additionally, the automatic identification of cryptic genes expands the usage of genomic data for pharmaceutical purposes.

  8. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses

    PubMed Central

    Imam, Saheed; Schäuble, Sascha; Valenzuela, Jacob; de Lomana, Adrián López García; Carter, Warren; Price, Nathan D.; Baliga, Nitin S.

    2015-01-01

    Summary Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under 3 conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally-validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae. PMID:26485611

  9. Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model.

    PubMed

    Zou, Wei; Zhou, Maoda; Liu, Liming; Chen, Jian

    2013-04-15

    A genome-scale metabolic model of Bacillus megaterium WSH002, an industrial bacterium widely used in the vitamin C industry, was reconstructed on the basis of the genome annotation and data from the literature and biochemical databases. It comprises 1112 reactions, 993 metabolites, and 1055 genes, including 43 new annotated genes. This model was able to predict qualitatively and quantitatively the growth of B. megaterium on a range of carbon and nitrogen sources, and the results agreed well with experimental data. A gene essentiality analysis predicted a core metabolic essential gene set of 57 genes on three different media. Furthermore, constraint-based analysis revealed that B. megaterium WSH002 is capable of producing and exporting several key metabolites, which could promote the growth of Ketogulonicigenium vulgare and 2-keto-l-gulonic acid (2-KLG) production. Here, the model represents a helpful tool for understanding and exploring this important industrial organism.

  10. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    PubMed

    Puchałka, Jacek; Oberhardt, Matthew A; Godinho, Miguel; Bielecka, Agata; Regenhardt, Daniela; Timmis, Kenneth N; Papin, Jason A; Martins dos Santos, Vítor A P

    2008-10-01

    A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13)C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile bacterium and to

  11. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement

    PubMed Central

    2010-01-01

    Background Pichia pastoris has been recognized as an effective host for recombinant protein production. A number of studies have been reported for improving this expression system. However, its physiology and cellular metabolism still remained largely uncharacterized. Thus, it is highly desirable to establish a systems biotechnological framework, in which a comprehensive in silico model of P. pastoris can be employed together with high throughput experimental data analysis, for better understanding of the methylotrophic yeast's metabolism. Results A fully compartmentalized metabolic model of P. pastoris (iPP668), composed of 1,361 reactions and 1,177 metabolites, was reconstructed based on its genome annotation and biochemical information. The constraints-based flux analysis was then used to predict achievable growth rate which is consistent with the cellular phenotype of P. pastoris observed during chemostat experiments. Subsequent in silico analysis further explored the effect of various carbon sources on cell growth, revealing sorbitol as a promising candidate for culturing recombinant P. pastoris strains producing heterologous proteins. Interestingly, methanol consumption yields a high regeneration rate of reducing equivalents which is substantial for the synthesis of valuable pharmaceutical precursors. Hence, as a case study, we examined the applicability of P. pastoris system to whole-cell biotransformation and also identified relevant metabolic engineering targets that have been experimentally verified. Conclusion The genome-scale metabolic model characterizes the cellular physiology of P. pastoris, thus allowing us to gain valuable insights into the metabolism of methylotrophic yeast and devise possible strategies for strain improvement through in silico simulations. This computational approach, combined with synthetic biology techniques, potentially forms a basis for rational analysis and design of P. pastoris metabolic network to enhance humanized

  12. Genome-scale reconstruction of the metabolic network in Yersinia pestis CO92

    NASA Astrophysics Data System (ADS)

    Navid, Ali; Almaas, Eivind

    2007-03-01

    The gram-negative bacterium Yersinia pestis is the causative agent of bubonic plague. Using publicly available genomic, biochemical and physiological data, we have developed a constraint-based flux balance model of metabolism in the CO92 strain (biovar Orientalis) of this organism. The metabolic reactions were appropriately compartmentalized, and the model accounts for the exchange of metabolites, as well as the import of nutrients and export of waste products. We have characterized the metabolic capabilities and phenotypes of this organism, after comparing the model predictions with available experimental observations to evaluate accuracy and completeness. We have also begun preliminary studies into how cellular metabolism affects virulence.

  13. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.

    PubMed

    Chaudhary, Neha; Tøndel, Kristin; Bhatnagar, Rakesh; dos Santos, Vítor A P Martins; Puchałka, Jacek

    2016-03-01

    Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.

  14. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens

    PubMed Central

    Risso, Carla; Sun, Jun; Zhuang, Kai; Mahadevan, Radhakrishnan; DeBoy, Robert; Ismail, Wael; Shrivastava, Susmita; Huot, Heather; Kothari, Sagar; Daugherty, Sean; Bui, Olivia; Schilling, Christophe H; Lovley, Derek R; Methé, Barbara A

    2009-01-01

    Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms. PMID:19772637

  15. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.

  16. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052

    PubMed Central

    2011-01-01

    Background Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. Results We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the

  17. Automation on the generation of genome-scale metabolic models.

    PubMed

    Reyes, R; Gamermann, D; Montagud, A; Fuente, D; Triana, J; Urchueguía, J F; de Córdoba, P Fernández

    2012-12-01

    Nowadays, the reconstruction of genome-scale metabolic models is a nonautomatized and interactive process based on decision making. This lengthy process usually requires a full year of one person's work in order to satisfactory collect, analyze, and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic, and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. This work presents the automation of a methodology for the reconstruction of genome-scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome-scale metabolic model of a photosynthetic organism, Synechocystis sp. PCC6803. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models, like connectivity and average shortest mean path of the different models, have been compared and analyzed.

  18. Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production

    PubMed Central

    Wang, Yali; Xu, Nan; Ye, Chao; Liu, Liming; Shi, Zhongping; Wu, Jing

    2015-01-01

    Actinoplanes sp. SE50/110 produces the α-glucosidase inhibitor acarbose, which is used to treat type 2 diabetes mellitus. To obtain a comprehensive understanding of its cellular metabolism, a genome-scale metabolic model of strain SE50/110, iYLW1028, was reconstructed on the bases of the genome annotation, biochemical databases, and extensive literature mining. Model iYLW1028 comprises 1028 genes, 1128 metabolites, and 1219 reactions. One hundred and twenty-two and eighty one genes were essential for cell growth on acarbose synthesis and sucrose media, respectively, and the acarbose biosynthetic pathway in SE50/110 was expounded completely. Based on model predictions, the addition of arginine and histidine to the media increased acarbose production by 78 and 59%, respectively. Additionally, dissolved oxygen has a great effect on acarbose production based on model predictions. Furthermore, genes to be overexpressed for the overproduction of acarbose were identified, and the deletion of treY eliminated the formation of by-product component C. Model iYLW1028 is a useful platform for optimizing and systems metabolic engineering for acarbose production in Actinoplanes sp. SE50/110. PMID:26161077

  19. Genome-scale metabolic representation of Amycolatopsis balhimycina.

    PubMed

    Vongsangnak, Wanwipa; Figueiredo, Luís Filipe; Förster, Jochen; Weber, Tilmann; Thykaer, Jette; Stegmann, Evi; Wohlleben, Wolfgang; Nielsen, Jens

    2012-07-01

    Infection caused by methicillin-resistant Staphylococcus aureus (MRSA) is an increasing societal problem. Typically, glycopeptide antibiotics are used in the treatment of these infections. The most comprehensively studied glycopeptide antibiotic biosynthetic pathway is that of balhimycin biosynthesis in Amycolatopsis balhimycina. The balhimycin yield obtained by A. balhimycina is, however, low and there is therefore a need to improve balhimycin production. In this study, we performed genome sequencing, assembly and annotation analysis of A. balhimycina and further used these annotated data to reconstruct a genome-scale metabolic model for the organism. Here we generated an almost complete A. balhimycina genome sequence comprising 10,562,587 base pairs assembled into 2,153 contigs. The high GC-genome (∼ 69%) includes 8,585 open reading frames (ORFs). We used our integrative toolbox called SEQTOR for functional annotation and then integrated annotated data with biochemical and physiological information available for this organism to reconstruct a genome-scale metabolic model of A. balhimycina. The resulting metabolic model contains 583 ORFs as protein encoding genes (7% of the predicted 8,585 ORFs), 407 EC numbers, 647 metabolites and 1,363 metabolic reactions. During the analysis of the metabolic model, linear, quadratic and evolutionary programming algorithms using flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and OptGene, respectively were applied as well as phenotypic behavior and improved balhimycin production were simulated. The A. balhimycina model shows a good agreement between in silico data and experimental data and also identifies key reactions associated with increased balhimycin production. The reconstruction of the genome-scale metabolic model of A. balhimycina serves as a basis for physiological characterization. The model allows a rational design of engineering strategies for increasing balhimycin production in A

  20. Modeling cancer metabolism on a genome scale

    PubMed Central

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-01-01

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389

  1. Modeling cancer metabolism on a genome scale.

    PubMed

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-06-30

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field.

  2. Genome-Scale Metabolic Reconstructions and Theoretical Investigation of Methane Conversion in Methylomicrobium buryatense Strain 5G(B1)

    SciTech Connect

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; Laurens, Lieve M. L.; Beck, David A. C.; Pienkos, Philip T.; Lidstrom, Mary E.; Kalyuzhnaya, Marina G.

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration.

  3. Genome-scale modeling for metabolic engineering

    SciTech Connect

    Simeonidis, E; Price, ND

    2015-01-13

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  4. Genome-scale modeling for metabolic engineering

    PubMed Central

    Simeonidis, Evangelos

    2015-01-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information—an area which we expect will become increasingly important for metabolic engineering—and present recent developments in the field of metabolic and regulatory integration. PMID:25578304

  5. Genome-scale modeling for metabolic engineering.

    PubMed

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  6. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering.

  7. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    PubMed Central

    2011-01-01

    Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR) relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data. PMID:21943338

  8. High-throughput generation, optimization and analysis of genome-scale metabolic models.

    SciTech Connect

    Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L.

    2010-09-01

    Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking {approx}48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.

  9. Randomizing Genome-Scale Metabolic Networks

    PubMed Central

    Samal, Areejit; Martin, Olivier C.

    2011-01-01

    Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have “unusual” properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the properties of biological metabolic networks. The implication of the present work is that the observed global structural properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints. PMID:21779409

  10. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942.

    PubMed

    Triana, Julián; Montagud, Arnau; Siurana, Maria; Fuente, David; Urchueguía, Arantxa; Gamermann, Daniel; Torres, Javier; Tena, Jose; de Córdoba, Pedro Fernández; Urchueguía, Javier F

    2014-08-20

    The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942.

  11. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

    PubMed Central

    Triana, Julián; Montagud†, Arnau; Siurana, Maria; Fuente, David; Urchueguía, Arantxa; Gamermann, Daniel; Torres, Javier; Tena, Jose; de Córdoba, Pedro Fernández; Urchueguía, Javier F.

    2014-01-01

    The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942. PMID:25141288

  12. Genome-scale modeling of human metabolism - a systems biology approach.

    PubMed

    Mardinoglu, Adil; Gatto, Francesco; Nielsen, Jens

    2013-09-01

    Altered metabolism is linked to the appearance of various human diseases and a better understanding of disease-associated metabolic changes may lead to the identification of novel prognostic biomarkers and the development of new therapies. Genome-scale metabolic models (GEMs) have been employed for studying human metabolism in a systematic manner, as well as for understanding complex human diseases. In the past decade, such metabolic models - one of the fundamental aspects of systems biology - have started contributing to the understanding of the mechanistic relationship between genotype and phenotype. In this review, we focus on the construction of the Human Metabolic Reaction database, the generation of healthy cell type- and cancer-specific GEMs using different procedures, and the potential applications of these developments in the study of human metabolism and in the identification of metabolic changes associated with various disorders. We further examine how in silico genome-scale reconstructions can be employed to simulate metabolic flux distributions and how high-throughput omics data can be analyzed in a context-dependent fashion. Insights yielded from this mechanistic modeling approach can be used for identifying new therapeutic agents and drug targets as well as for the discovery of novel biomarkers. Finally, recent advancements in genome-scale modeling and the future challenge of developing a model of whole-body metabolism are presented. The emergent contribution of GEMs to personalized and translational medicine is also discussed.

  13. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  14. MEMOSys: Bioinformatics platform for genome-scale metabolic models

    PubMed Central

    2011-01-01

    Background Recent advances in genomic sequencing have enabled the use of genome sequencing in standard biological and biotechnological research projects. The challenge is how to integrate the large amount of data in order to gain novel biological insights. One way to leverage sequence data is to use genome-scale metabolic models. We have therefore designed and implemented a bioinformatics platform which supports the development of such metabolic models. Results MEMOSys (MEtabolic MOdel research and development System) is a versatile platform for the management, storage, and development of genome-scale metabolic models. It supports the development of new models by providing a built-in version control system which offers access to the complete developmental history. Moreover, the integrated web board, the authorization system, and the definition of user roles allow collaborations across departments and institutions. Research on existing models is facilitated by a search system, references to external databases, and a feature-rich comparison mechanism. MEMOSys provides customizable data exchange mechanisms using the SBML format to enable analysis in external tools. The web application is based on the Java EE framework and offers an intuitive user interface. It currently contains six annotated microbial metabolic models. Conclusions We have developed a web-based system designed to provide researchers a novel application facilitating the management and development of metabolic models. The system is freely available at http://www.icbi.at/MEMOSys. PMID:21276275

  15. Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function

    PubMed Central

    2017-01-01

    Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria. PMID:28133437

  16. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease

    PubMed Central

    Sahoo, Swagatika; Aurich, Maike K.; Jonsson, Jon J.; Thiele, Ines

    2014-01-01

    Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions. PMID:24653705

  17. From DNA to FBA: How to Build Your Own Genome-Scale Metabolic Model

    PubMed Central

    Cuevas, Daniel A.; Edirisinghe, Janaka; Henry, Chris S.; Overbeek, Ross; O’Connell, Taylor G.; Edwards, Robert A.

    2016-01-01

    Microbiological studies are increasingly relying on in silico methods to perform exploration and rapid analysis of genomic data, and functional genomics studies are supplemented by the new perspectives that genome-scale metabolic models offer. A mathematical model consisting of a microbe’s entire metabolic map can be rapidly determined from whole-genome sequencing and annotating the genomic material encoded in its DNA. Flux-balance analysis (FBA), a linear programming technique that uses metabolic models to predict the phenotypic responses imposed by environmental elements and factors, is the leading method to simulate and manipulate cellular growth in silico. However, the process of creating an accurate model to use in FBA consists of a series of steps involving a multitude of connections between bioinformatics databases, enzyme resources, and metabolic pathways. We present the methodology and procedure to obtain a metabolic model using PyFBA, an extensible Python-based open-source software package aimed to provide a platform where functional annotations are used to build metabolic models (http://linsalrob.github.io/PyFBA). Backed by the Model SEED biochemistry database, PyFBA contains methods to reconstruct a microbe’s metabolic map, run FBA upon different media conditions, and gap-fill its metabolism. The extensibility of PyFBA facilitates novel techniques in creating accurate genome-scale metabolic models. PMID:27379044

  18. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement.

    PubMed

    Xu, Chuan; Liu, Lili; Zhang, Zhao; Jin, Danfeng; Qiu, Juanping; Chen, Ming

    2013-01-01

    In the past few decades, despite all the significant achievements in industrial microbial improvement, the approaches of traditional random mutation and selection as well as the rational metabolic engineering based on the local knowledge cannot meet today's needs. With rapid reconstructions and accurate in silico simulations, genome-scale metabolic model (GSMM) has become an indispensable tool to study the microbial metabolism and design strain improvements. In this review, we highlight the application of GSMM in guiding microbial improvements focusing on a systematic strategy and its achievements in different industrial fields. This strategy includes a repetitive process with four steps: essential data acquisition, GSMM reconstruction, constraints-based optimizing simulation, and experimental validation, in which the second and third steps are the centerpiece. The achievements presented here belong to different industrial application fields, including food and nutrients, biopharmaceuticals, biopolymers, microbial biofuel, and bioremediation. This strategy and its achievements demonstrate a momentous guidance of GSMM for metabolic engineering breeding of industrial microbes. More efforts are required to extend this kind of study in the meantime.

  19. Predicting novel pathways in genome-scale metabolic networks.

    PubMed

    Schuster, Stefan; de Figueiredo, Luís F; Kaleta, Christoph

    2010-10-01

    Elementary-modes analysis has become a well-established theoretical tool in metabolic pathway analysis. It allows one to decompose complex metabolic networks into the smallest functional entities, which can be interpreted as biochemical pathways. This analysis has, in medium-size metabolic networks, led to the successful theoretical prediction of hitherto unknown pathways. For illustration, we discuss the example of the phosphoenolpyruvate-glyoxylate cycle in Escherichia coli. Elementary-modes analysis meets with the problem of combinatorial explosion in the number of pathways with increasing system size, which has hampered scaling it up to genome-wide models. We present a novel approach to overcoming this obstacle. That approach is based on elementary flux patterns, which are defined as sets of reactions representing the basic routes through a particular subsystem that are compatible with admissible fluxes in a (possibly) much larger metabolic network. The subsystem can be made up by reactions in which we are interested in, for example, reactions producing a certain metabolite. This allows one to predict novel metabolic pathways in genome-scale networks.

  20. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts. PMID:22558935

  1. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    SciTech Connect

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  2. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm.

    PubMed

    Seaver, Samuel M D; Bradbury, Louis M T; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D; Henry, Christopher S

    2015-01-01

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  3. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    PubMed Central

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-01-01

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes. PMID:25806041

  4. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    DOE PAGES

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; ...

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore » possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less

  5. Genome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom

    PubMed Central

    Broddrick, Jared; Dupont, Christopher L.; Peers, Graham; Beeri, Karen; Mayers, Joshua; Gallina, Alessandra A.; Allen, Andrew E.; Palsson, Bernhard O.; Zengler, Karsten

    2016-01-01

    Diatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast structure which complicates the prediction of subcellular protein localization. Based on previous work we implemented a pipeline that exploits a series of bioinformatics tools to predict protein localization. The manually curated reconstructed metabolic network iLB1027_lipid accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed across six compartments. To constrain the genome-scale model, we determined the organism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fourier transform infrared spectrometry. Our simulations indicate the presence of a yet unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents generated by photosynthesis to the mitochondria. The model reflects the known biochemical composition of P. tricornutum in defined culture conditions and enables metabolic engineering strategies to improve the use of P. tricornutum for biotechnological applications. PMID:27152931

  6. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.

    PubMed

    Vivek-Ananth, R P; Samal, Areejit

    2016-09-01

    A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with metabolic reactions, the constraint-based modelling approach, flux balance analysis (FBA), has proved to be a vital alternative to investigate the capabilities of reconstructed metabolic networks. In parallel, advent of high-throughput technologies has led to the generation of massive amounts of omics data on transcriptional regulation comprising mRNA transcript levels and genome-wide binding profile of transcriptional regulators. A frontier area in metabolic systems biology has been the development of methods to integrate the available transcriptional regulatory information into constraint-based models of reconstructed metabolic networks in order to increase the predictive capabilities of computational models and understand the regulation of cellular metabolism. Here, we review the existing methods to integrate transcriptional regulatory information into constraint-based models of metabolic networks.

  7. A metabolite-centric view on flux distributions in genome-scale metabolic models

    PubMed Central

    2013-01-01

    Background Genome-scale metabolic models are important tools in systems biology. They permit the in-silico prediction of cellular phenotypes via mathematical optimisation procedures, most importantly flux balance analysis. Current studies on metabolic models mostly consider reaction fluxes in isolation. Based on a recently proposed metabolite-centric approach, we here describe a set of methods that enable the analysis and interpretation of flux distributions in an integrated metabolite-centric view. We demonstrate how this framework can be used for the refinement of genome-scale metabolic models. Results We applied the metabolite-centric view developed here to the most recent metabolic reconstruction of Escherichia coli. By compiling the balance sheets of a small number of currency metabolites, we were able to fully characterise the energy metabolism as predicted by the model and to identify a possibility for model refinement in NADPH metabolism. Selected branch points were examined in detail in order to demonstrate how a metabolite-centric view allows identifying functional roles of metabolites. Fructose 6-phosphate aldolase and the sedoheptulose bisphosphate bypass were identified as enzymatic reactions that can carry high fluxes in the model but are unlikely to exhibit significant activity in vivo. Performing a metabolite essentiality analysis, unconstrained import and export of iron ions could be identified as potentially problematic for the quality of model predictions. Conclusions The system-wide analysis of split ratios and branch points allows a much deeper insight into the metabolic network than reaction-centric analyses. Extending an earlier metabolite-centric approach, the methods introduced here establish an integrated metabolite-centric framework for the interpretation of flux distributions in genome-scale metabolic networks that can complement the classical reaction-centric framework. Analysing fluxes and their metabolic context simultaneously opens

  8. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    PubMed

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties.

  9. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    PubMed

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  10. iAK692: A genome-scale metabolic model of Spirulina platensis C1

    PubMed Central

    2012-01-01

    Background Spirulina (Arthrospira) platensis is a well-known filamentous cyanobacterium used in the production of many industrial products, including high value compounds, healthy food supplements, animal feeds, pharmaceuticals and cosmetics, for example. It has been increasingly studied around the world for scientific purposes, especially for its genome, biology, physiology, and also for the analysis of its small-scale metabolic network. However, the overall description of the metabolic and biotechnological capabilities of S. platensis requires the development of a whole cellular metabolism model. Recently, the S. platensis C1 (Arthrospira sp. PCC9438) genome sequence has become available, allowing systems-level studies of this commercial cyanobacterium. Results In this work, we present the genome-scale metabolic network analysis of S. platensis C1, iAK692, its topological properties, and its metabolic capabilities and functions. The network was reconstructed from the S. platensis C1 annotated genomic sequence using Pathway Tools software to generate a preliminary network. Then, manual curation was performed based on a collective knowledge base and a combination of genomic, biochemical, and physiological information. The genome-scale metabolic model consists of 692 genes, 837 metabolites, and 875 reactions. We validated iAK692 by conducting fermentation experiments and simulating the model under autotrophic, heterotrophic, and mixotrophic growth conditions using COBRA toolbox. The model predictions under these growth conditions were consistent with the experimental results. The iAK692 model was further used to predict the unique active reactions and essential genes for each growth condition. Additionally, the metabolic states of iAK692 during autotrophic and mixotrophic growths were described by phenotypic phase plane (PhPP) analysis. Conclusions This study proposes the first genome-scale model of S. platensis C1, iAK692, which is a predictive metabolic platform

  11. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    PubMed Central

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping

    2017-01-01

    ABSTRACT Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy

  12. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation.

    PubMed

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping; Zhang, Ying

    2017-01-01

    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation

  13. Identifying all moiety conservation laws in genome-scale metabolic networks.

    PubMed

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  14. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    NASA Astrophysics Data System (ADS)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; Thiele, Ines; Palsson, Bernhard O.; Saunders, Michael A.

    2017-01-01

    Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.

  15. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.

    PubMed

    Hamilton, Joshua J; Dwivedi, Vivek; Reed, Jennifer L

    2013-07-16

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations.

  16. A Scalable Algorithm to Explore the Gibbs Energy Landscape of Genome-Scale Metabolic Networks

    PubMed Central

    De Martino, Daniele; Figliuzzi, Matteo

    2012-01-01

    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample () of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility. PMID:22737065

  17. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    PubMed Central

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna; Shoaie, Saeed; Kampf, Caroline; Uhlen, Mathias; Nielsen, Jens

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies. PMID:25640694

  18. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models.

    PubMed

    Tervo, Christopher J; Reed, Jennifer L

    2016-05-01

    Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to interpret given the large numbers of reactions in genome-scale models. While paths in metabolic networks can be found, existing methods are not easily combined with constraint-based approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to find paths (including cycles) between metabolites, where each step transfers carbon from reactant to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only information on molecular formulae and reaction stoichiometry, effectively determining which reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate the importance of using CTMs and COBRA constraints when enumerating paths, to find active and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate how MapMaker and PathTracer can be used in combination with constraint-based models to identify feasible, active, and high flux paths between metabolites.

  19. Comparative genome-scale metabolic modeling of actinomycetes: the topology of essential core metabolism.

    PubMed

    Alam, Mohammad Tauqeer; Medema, Marnix H; Takano, Eriko; Breitling, Rainer

    2011-07-21

    Actinomycetes are highly important bacteria. On one hand, some of them cause severe human and plant diseases, on the other hand, many species are known for their ability to produce antibiotics. Here we report the results of a comparative analysis of genome-scale metabolic models of 37 species of actinomycetes. Based on in silico knockouts we generated topological and genomic maps for each organism. Combining the collection of genome-wide models, we constructed a global enzyme association network to identify both a conserved "core network" and an "essential core network" of the entire group. As has been reported for low-degree metabolites in several organisms, low-degree enzymes (in linear pathways) turn out to be generally more essential than high-degree enzymes (in metabolic hubs).

  20. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DOE PAGES

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; ...

    2017-01-18

    Currently, Constraint-Based Reconstruction and Analysis (COBRA) is the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Furthermore, standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We also developed a quadrupleprecision version of ourmore » linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.« less

  1. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    PubMed Central

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; Thiele, Ines; Palsson, Bernhard O.; Saunders, Michael A.

    2017-01-01

    Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data. PMID:28098205

  2. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model.

    PubMed

    Hädicke, Oliver; Klamt, Steffen

    2017-01-03

    Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derived EColiCore2, a model of the central metabolism of E. coli. EColiCore2 is a subnetwork of iJO1366 and preserves predefined phenotypes including optimal growth on different substrates. The network comprises 486 metabolites and 499 reactions, is accessible for elementary-modes analysis and can, if required, be further compressed to a network with 82 reactions and 54 metabolites having an identical solution space as EColiCore2. A systematic comparison of EColiCore2 with its genome-scale parent model iJO1366 reveals that several key properties (flux ranges, reaction essentialities, production envelopes) of the central metabolism are preserved in EColiCore2 while it neglects redundancies along biosynthetic routes. We also compare calculated metabolic engineering strategies in both models and demonstrate, as a general result, how intervention strategies found in a core model allow the identification of valid strategies in a genome-scale model. Overall, EColiCore2 holds promise to become a reference model of E. coli's central metabolism.

  3. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model

    PubMed Central

    Hädicke, Oliver; Klamt, Steffen

    2017-01-01

    Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derived EColiCore2, a model of the central metabolism of E. coli. EColiCore2 is a subnetwork of iJO1366 and preserves predefined phenotypes including optimal growth on different substrates. The network comprises 486 metabolites and 499 reactions, is accessible for elementary-modes analysis and can, if required, be further compressed to a network with 82 reactions and 54 metabolites having an identical solution space as EColiCore2. A systematic comparison of EColiCore2 with its genome-scale parent model iJO1366 reveals that several key properties (flux ranges, reaction essentialities, production envelopes) of the central metabolism are preserved in EColiCore2 while it neglects redundancies along biosynthetic routes. We also compare calculated metabolic engineering strategies in both models and demonstrate, as a general result, how intervention strategies found in a core model allow the identification of valid strategies in a genome-scale model. Overall, EColiCore2 holds promise to become a reference model of E. coli’s central metabolism. PMID:28045126

  4. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy.

    PubMed

    Papin, Jason A; Price, Nathan D; Edwards, Jeremy S; Palsson B, Bernhard Ø

    2002-03-07

    Genome-scale metabolic networks can be characterized by a set of systemically independent and unique extreme pathways. These extreme pathways span a convex, high-dimensional space that circumscribes all potential steady-state flux distributions achievable by the defined metabolic network. Genome-scale extreme pathways associated with the production of non-essential amino acids in Haemophilus influenzae were computed. They offer valuable insight into the functioning of its metabolic network. Three key results were obtained. First, there were multiple internal flux maps corresponding to externally indistinguishable states. It was shown that there was an average of 37 internal states per unique exchange flux vector in H. influenzae when the network was used to produce a single amino acid while allowing carbon dioxide and acetate as carbon sinks. With the inclusion of succinate as an additional output, this ratio increased to 52, a 40% increase. Second, an analysis of the carbon fates illustrated that the extreme pathways were non-uniformly distributed across the carbon fate spectrum. In the detailed case study, 45% of the distinct carbon fate values associated with lysine production represented 85% of the extreme pathways. Third, this distribution fell between distinct systemic constraints. For lysine production, the carbon fate values that represented 85% of the pathways described above corresponded to only 2 distinct ratios of 1:1 and 4:1 between carbon dioxide and acetate. The present study analysed single outputs from one organism, and provides a start to genome-scale extreme pathways studies. These emergent system-level characterizations show the significance of metabolic extreme pathway analysis at the genome-scale.

  5. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    PubMed

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  6. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    PubMed

    von Kamp, Axel; Klamt, Steffen

    2014-01-01

    One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly

  7. Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi.

    PubMed

    Vongsangnak, Wanwipa; Ruenwai, Rawisara; Tang, Xin; Hu, Xinjie; Zhang, Hao; Shen, Bairong; Song, Yuanda; Laoteng, Kobkul

    2013-05-25

    Microbial lipids are becoming an attractive option for the industrial production of foods and oleochemicals. To investigate the lipid physiology of the oleaginous microorganisms, at the system level, genome-scale metabolic networks of Mortierella alpina and Mucor circinelloides were constructed using bioinformatics and systems biology. As scaffolds for integrated data analysis focusing on lipid production, consensus metabolic routes governing fatty acid synthesis, and lipid storage and mobilisation were identified by comparative analysis of developed metabolic networks. Unique metabolic features were identified in individual fungi, particularly in NADPH metabolism and sterol biosynthesis, which might be related to differences in fungal lipid phenotypes. The frameworks detailing the metabolic relationship between M. alpina and M. circinelloides generated in this study is useful for further elucidation of the microbial oleaginicity, which might lead to the production improvement of microbial oils as alternative feedstocks for oleochemical industry.

  8. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism

    PubMed Central

    Beste, Dany JV; Hooper, Tracy; Stewart, Graham; Bonde, Bhushan; Avignone-Rossa, Claudio; Bushell, Michael E; Wheeler, Paul; Klamt, Steffen; Kierzek, Andrzej M; McFadden, Johnjoe

    2007-01-01

    Background An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis. Results GSMN-TB, a genome-scale metabolic model of M. tuberculosis, was constructed, consisting of 849 unique reactions and 739 metabolites, and involving 726 genes. The model was calibrated by growing Mycobacterium bovis bacille Calmette Guérin in continuous culture and steady-state growth parameters were measured. Flux balance analysis was used to calculate substrate consumption rates, which were shown to correspond closely to experimentally determined values. Predictions of gene essentiality were also made by flux balance analysis simulation and were compared with global mutagenesis data for M. tuberculosis grown in vitro. A prediction accuracy of 78% was achieved. Known drug targets were predicted to be essential by the model. The model demonstrated a potential role for the enzyme isocitrate lyase during the slow growth of mycobacteria, and this hypothesis was experimentally verified. An interactive web-based version of the model is available. Conclusion The GSMN-TB model successfully simulated many of the growth properties of M. tuberculosis. The model provides a means to examine the metabolic flexibility of bacteria and predict the phenotype of mutants, and it highlights previously unexplored features of M. tuberculosis metabolism. PMID:17521419

  9. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.

    PubMed

    Salimi, Fahimeh; Zhuang, Kai; Mahadevan, Radhakrishnan

    2010-07-01

    An alternative consolidated bioprocessing approach is the use of a co-culture containing cellulolytic and solventogenic clostridia. It has been demonstrated that the rate of cellulose utilization in the co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum is improved compared to the mono-culture of C. cellulolyticum, suggesting the presence of syntrophy between these two species. However, the metabolic interactions in the co-culture are not well understood. To understand the metabolic interactions in the co-culture, we developed a genome-scale metabolic model of C. cellulolyticum comprising of 431 genes, 621 reactions, and 603 metabolites. The C. cellulolyticum model can successfully predict the chemostat growth and byproduct secretion with cellulose as the substrate. However, a growth arrest phenomenon, which occurs in batch cultures of C. cellulolyticum at cellulose concentrations higher than 6.7 g/L, cannot be predicted by dynamic flux balance analysis due to the lack of understanding of the underlying mechanism. These genome-scale metabolic models of the pure cultures have also been integrated using a community modeling framework to develop a dynamic model of metabolic interactions in the co-culture. Co-culture simulations suggest that cellobiose inhibition cannot be the main factor that is responsible for improved cellulose utilization relative to mono-culture of C. cellulolyticum.

  10. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism

    PubMed Central

    Nookaew, Intawat; Jewett, Michael C; Meechai, Asawin; Thammarongtham, Chinae; Laoteng, Kobkul; Cheevadhanarak, Supapon; Nielsen, Jens; Bhumiratana, Sakarindr

    2008-01-01

    Background Up to now, there have been three published versions of a yeast genome-scale metabolic model: iFF708, iND750 and iLL672. All three models, however, lack a detailed description of lipid metabolism and thus are unable to be used as integrated scaffolds for gaining insights into lipid metabolism from multilevel omic measurement technologies (e.g. genome-wide mRNA levels). To overcome this limitation, we reconstructed a new version of the Saccharomyces cerevisiae genome-scale model, iIN800 that includes a more rigorous and detailed description of lipid metabolism. Results The reconstructed metabolic model comprises 1446 reactions and 1013 metabolites. Beyond incorporating new reactions involved in lipid metabolism, we also present new biomass equations that improve the predictive power of flux balance analysis simulations. Predictions of both growth capability and large scale in silico single gene deletions by iIN800 were consistent with experimental data. In addition, 13C-labeling experiments validated the new biomass equations and calculated intracellular fluxes. To demonstrate the applicability of iIN800, we show that the model can be used as a scaffold to reveal the regulatory importance of lipid metabolism precursors and intermediates that would have been missed in previous models from transcriptome datasets. Conclusion Performing integrated analyses using iIN800 as a network scaffold is shown to be a valuable tool for elucidating the behavior of complex metabolic networks, particularly for identifying regulatory targets in lipid metabolism that can be used for industrial applications or for understanding lipid disease states. PMID:18687109

  11. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.

    PubMed

    D'Huys, Pieter-Jan; Lule, Ivan; Vercammen, Dominique; Anné, Jozef; Van Impe, Jan F; Bernaerts, Kristel

    2012-09-15

    Constraint-based metabolic modeling comprises various excellent tools to assess experimentally observed phenotypic behavior of micro-organisms in terms of intracellular metabolic fluxes. In combination with genome-scale metabolic networks, micro-organisms can be investigated in much more detail and under more complex environmental conditions. Although complex media are ubiquitously applied in industrial fermentations and are often a prerequisite for high protein secretion yields, such multi-component conditions are seldom investigated using genome-scale flux analysis. In this paper, a systematic and integrative approach is presented to determine metabolic fluxes in Streptomyces lividans TK24 grown on a nutritious and complex medium. Genome-scale flux balance analysis and randomized sampling of the solution space are combined to extract maximum information from exometabolome profiles. It is shown that biomass maximization cannot predict the observed metabolite production pattern as such. Although this cellular objective commonly applies to batch fermentation data, both input and output constraints are required to reproduce the measured biomass production rate. Rich media hence not necessarily lead to maximum biomass growth. To eventually identify a unique intracellular flux vector, a hierarchical optimization of cellular objectives is adopted. Out of various tested secondary objectives, maximization of the ATP yield per flux unit returns the closest agreement with the maximum frequency in flux histograms. This unique flux estimation is hence considered as a reasonable approximation for the biological fluxes. Flux maps for different growth phases show no active oxidative part of the pentose phosphate pathway, but NADPH generation in the TCA cycle and NADPH transdehydrogenase activity are most important in fulfilling the NADPH balance. Amino acids contribute to biomass growth by augmenting the pool of available amino acids and by boosting the TCA cycle, particularly

  12. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    PubMed

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes.

  13. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis

    NASA Astrophysics Data System (ADS)

    De Martino, D.

    2016-02-01

    In this article the notion of metabolic turnover is revisited in the light of recent results of out-of-equilibrium thermodynamics. By means of Monte Carlo methods we perform an exact sampling of the enzymatic fluxes in a genome scale metabolic network of E. Coli in stationary growth conditions from which we infer the metabolites turnover times. However the latter are inferred from net fluxes, and we argue that this approximation is not valid for enzymes working nearby thermodynamic equilibrium. We recalculate turnover times from total fluxes by performing an energy balance analysis of the network and recurring to the fluctuation theorem. We find in many cases values one of order of magnitude lower, implying a faster picture of intermediate metabolism.

  14. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    SciTech Connect

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to

  15. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE PAGES

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; ...

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore » and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary

  16. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models.

    PubMed

    Benedict, Matthew N; Mundy, Michael B; Henry, Christopher S; Chia, Nicholas; Price, Nathan D

    2014-10-01

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to

  17. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    PubMed

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02.

  18. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.

    PubMed

    Yoshikawa, Katsunori; Aikawa, Shimpei; Kojima, Yuta; Toya, Yoshihiro; Furusawa, Chikara; Kondo, Akihiko; Shimizu, Hiroshi

    2015-01-01

    Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.

  19. Use of genome-scale metabolic models in evolutionary systems biology.

    PubMed

    Papp, Balázs; Szappanos, Balázs; Notebaart, Richard A

    2011-01-01

    One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypotheses that are not only realistic from a population genetic point of view but also detailed in terms of molecular biology mechanisms. By providing a mapping between genotype and phenotype for hundreds of genes, genome-scale systems biology models of metabolic networks have already provided valuable insights into the evolution of metabolic gene contents and phenotypes of yeast and other microbial species. Here we review the recent use of these computational models to predict the fitness effect of mutations, genetic interactions, evolutionary outcomes, and to decipher the mechanisms of mutational robustness. While these studies have demonstrated that even simplified models of biochemical reaction networks can be highly informative for evolutionary analyses, they have also revealed the weakness of this modeling framework to quantitatively predict mutational effects, a challenge that needs to be addressed for future progress in evolutionary systems biology.

  20. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism

    PubMed Central

    Vital-Lopez, Francisco G.; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  1. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    PubMed

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  2. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    PubMed

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  3. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks

    PubMed Central

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities. PMID:26909353

  4. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    PubMed

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools.

  5. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement

    PubMed Central

    2013-01-01

    Background FK506 is an important immunosuppressant, which can be produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. Hereby, a computational guided engineering approach was proposed in order to improve the intracellular precursor and cofactor availability of FK506 in S. tsukubaensis. Results First, a genome-scale metabolic model of S. tsukubaensis was constructed based on its annotated genome and biochemical information. Subsequently, several potential genetic targets (knockout or overexpression) that guaranteed an improved yield of FK506 were identified by the recently developed methodology. To validate the model predictions, each target gene was manipulated in the parent strain D852, respectively. All the engineered strains showed a higher FK506 production, compared with D852. Furthermore, the combined effect of the genetic modifications was evaluated. Results showed that the strain HT-ΔGDH-DAZ with gdhA-deletion and dahp-, accA2-, zwf2-overexpression enhanced FK506 concentration up to 398.9 mg/L, compared with 143.5 mg/L of the parent strain D852. Finally, fed-batch fermentations of HT-ΔGDH-DAZ were carried out, which led to the FK506 production of 435.9 mg/L, 1.47-fold higher than the parent strain D852 (158.7 mg/L). Conclusions Results confirmed that the promising targets led to an increase in FK506 titer. The present work is the first attempt to engineer the primary precursor pathways to improve FK506 production in S. tsukubaensis with genome-scale metabolic network guided metabolic engineering. The relationship between model prediction and experimental results demonstrates the rationality and validity of this approach for target identification. This strategy can also be applied to the improvement of other important secondary metabolites. PMID:23705993

  6. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2016-06-08

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named LTM (logical transformation of model) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  7. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  8. Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

    PubMed Central

    Motamedian, Ehsan; Ghavami, Ghazaleh; Sardari, Soroush

    2015-01-01

    Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods: Metabolism of cisplatin resistant and sensitive A2780 epithelial ovarian cancer cells and normal ovarian epithelium has been studied using a generic human genome-scale metabolic model and transcription data. Result: The results demonstrate that the most different metabolisms belong to resistant and normal models, and the different reactions are involved in various metabolic pathways. However, large portion of distinct reactions are related to extracellular transport for three cell lines. Capability of metabolic models to secrete lactate was investigated to find the origin of Warburg effect. Computational results introduced SLC25A10 gene, which encodes mitochondrial dicarboxylate transporter involved in exchanging of small metabolites across the mitochondrial membrane that may play key role in high growing capacity of sensitive and resistant cancer cells. The metabolic models were also used to find single and combinatorial targets that reduce the cancer cells growth. Effect of proposed target genes on growth and oxidative phosphorylation of normal cells were determined to estimate drug side-effects. Conclusion: The deletion results showed that although the cisplatin did not cause resistant cancer cells death, but it shifts the cancer cells to a more vulnerable metabolism. PMID:25945240

  9. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  10. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism

    PubMed Central

    Tomàs-Gamisans, Màrius; Ferrer, Pau; Albiol, Joan

    2016-01-01

    Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In

  11. Revisiting the chlorophyll biosynthesis pathway using genome scale metabolic model of Oryza sativa japonica

    PubMed Central

    Chatterjee, Ankita; Kundu, Sudip

    2015-01-01

    Chlorophyll is one of the most important pigments present in green plants and rice is one of the major food crops consumed worldwide. We curated the existing genome scale metabolic model (GSM) of rice leaf by incorporating new compartment, reactions and transporters. We used this modified GSM to elucidate how the chlorophyll is synthesized in a leaf through a series of bio-chemical reactions spanned over different organelles using inorganic macronutrients and light energy. We predicted the essential reactions and the associated genes of chlorophyll synthesis and validated against the existing experimental evidences. Further, ammonia is known to be the preferred source of nitrogen in rice paddy fields. The ammonia entering into the plant is assimilated in the root and leaf. The focus of the present work is centered on rice leaf metabolism. We studied the relative importance of ammonia transporters through the chloroplast and the cytosol and their interlink with other intracellular transporters. Ammonia assimilation in the leaves takes place by the enzyme glutamine synthetase (GS) which is present in the cytosol (GS1) and chloroplast (GS2). Our results provided possible explanation why GS2 mutants show normal growth under minimum photorespiration and appear chlorotic when exposed to air. PMID:26443104

  12. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.

    PubMed

    Agren, Rasmus; Otero, José Manuel; Nielsen, Jens

    2013-07-01

    In this work, we describe the application of a genome-scale metabolic model and flux balance analysis for the prediction of succinic acid overproduction strategies in Saccharomyces cerevisiae. The top three single gene deletion strategies, Δmdh1, Δoac1, and Δdic1, were tested using knock-out strains cultivated anaerobically on glucose, coupled with physiological and DNA microarray characterization. While Δmdh1 and Δoac1 strains failed to produce succinate, Δdic1 produced 0.02 C-mol/C-mol glucose, in close agreement with model predictions (0.03 C-mol/C-mol glucose). Transcriptional profiling suggests that succinate formation is coupled to mitochondrial redox balancing, and more specifically, reductive TCA cycle activity. While far from industrial titers, this proof-of-concept suggests that in silico predictions coupled with experimental validation can be used to identify novel and non-intuitive metabolic engineering strategies.

  13. Systematic Analysis of Conservation Relations in Escherichia coli Genome-Scale Metabolic Network Reveals Novel Growth Media

    PubMed Central

    Imieliński, Marcin; Belta, Calin; Rubin, Harvey; Halász, Ádam

    2006-01-01

    A biochemical species is called producible in a constraints-based metabolic model if a feasible steady-state flux configuration exists that sustains its nonzero concentration during growth. Extreme semipositive conservation relations (ESCRs) are the simplest semipositive linear combinations of species concentrations that are invariant to all metabolic flux configurations. In this article, we outline a fundamental relationship between the ESCRs of a metabolic network and the producibility of a biochemical species under a nutrient media. We exploit this relationship in an algorithm that systematically enumerates all minimal nutrient sets that render an objective species weakly producible (i.e., producible in the absence of thermodynamic constraints) through a simple traversal of ESCRs. We apply our results to a recent genome scale model of Escherichia coli metabolism, in which we traverse the 51 anhydrous ESCRs of the metabolic network to determine all 928 minimal aqueous nutrient media that render biomass weakly producible. Applying irreversibility constraints, we find 287 of these 928 nutrient sets to be thermodynamically feasible. We also find that an additional 365 of these nutrient sets are thermodynamically feasible in the presence of oxygen. Since biomass producibility is commonly used as a surrogate for growth in genome scale metabolic models, our results represent testable hypotheses of alternate growth media derived from in silico analysis of the E. coli genome scale metabolic network. PMID:16461408

  14. Genome-Scale Metabolic Modeling in the Simulation of Field-Scale Uranium Bioremediation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Wilkins, M.; Fang, Y.; Williams, K. H.; Waichler, S.; Long, P. E.

    2015-12-01

    Coupled variably saturated flow and biogeochemical reactive transport modeling is used to improve understanding of the processes, properties, and conditions controlling uranium bio-immobilization in a field experiment where uranium-contaminated groundwater was amended with acetate and bicarbonate. The acetate stimulates indigenous microorganisms that catalyze metal reduction, including the conversion of aqueous U(VI) to solid-phase U(IV), which effectively removes uranium from solution. The initiation of the bicarbonate amendment prior to biostimulation was designed to promote U(VI) desorption that would increase the aqueous U(VI) available for bioreduction. The three-dimensional simulations were able to largely reproduce the timing and magnitude of the physical, chemical and biological responses to the acetate and bicarbonate amendment in the context of changing water table elevation and gradient. A time series of groundwater proteomic samples exhibited correlations between the most abundant Geobacter metallireducens proteins and the genome-scale metabolic model-predicted fluxes of intra-cellular reactions associated with each of those proteins. The desorption of U(VI) induced by the bicarbonate amendment led to initially higher rates of bioreduction compared to locations with minimal bicarbonate exposure. After bicarbonate amendment ceased, bioreduction continued at these locations whereas U(VI) sorption was the dominant removal mechanism at the bicarbonate-impacted sites.

  15. Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis.

    PubMed

    Yang, Hong; Krumholz, Elias W; Brutinel, Evan D; Palani, Nagendra P; Sadowsky, Michael J; Odlyzko, Andrew M; Gralnick, Jeffrey A; Libourel, Igor G L

    2014-09-01

    Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.

  16. Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis

    PubMed Central

    Yang, Hong; Krumholz, Elias W.; Brutinel, Evan D.; Palani, Nagendra P.; Sadowsky, Michael J.; Odlyzko, Andrew M.; Gralnick, Jeffrey A.; Libourel, Igor G. L.

    2014-01-01

    Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. PMID:25233219

  17. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    PubMed Central

    2011-01-01

    Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL) grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users) increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a web server allowing

  18. Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves

    PubMed Central

    Bogart, Eli; Myers, Christopher R.

    2016-01-01

    C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment surrounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation. Nonlinear relationships between carbon dioxide and oxygen levels and reaction rates are key to their physiology but cannot be handled with standard techniques of constraint-based metabolic modeling. We demonstrate that incorporating these relationships as constraints on reaction rates and solving the resulting nonlinear optimization problem yields realistic predictions of the response of C4 systems to environmental and biochemical perturbations. Using a new genome-scale reconstruction of maize metabolism, we build an 18000-reaction, nonlinearly constrained model describing mesophyll and bundle sheath cells in 15 segments of the developing maize leaf, interacting via metabolite exchange, and use RNA-seq and enzyme activity measurements to predict spatial variation in metabolic state by a novel method that optimizes correlation between fluxes and expression data. Though such correlations are known to be weak in general, we suggest that developmental gradients may be particularly suited to the inference of metabolic fluxes from expression data, and we demonstrate that our method predicts fluxes that achieve high correlation with the data, successfully capture the experimentally observed base-to-tip transition between carbon-importing tissue and carbon-exporting tissue, and include a nonzero growth rate, in contrast to prior results from similar methods in other systems. PMID:26990967

  19. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease.

    PubMed

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-02-03

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD.

  20. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease

    PubMed Central

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M.; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD. PMID:26839171

  1. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  2. Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling

    PubMed Central

    Wodke, Judith A H; Puchałka, Jacek; Lluch-Senar, Maria; Marcos, Josep; Yus, Eva; Godinho, Miguel; Gutiérrez-Gallego, Ricardo; dos Santos, Vitor A P Martins; Serrano, Luis; Klipp, Edda; Maier, Tobias

    2013-01-01

    Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms. PMID:23549481

  3. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    DOE PAGES

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; ...

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  4. Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data

    PubMed Central

    Shen, Xing-Xing; Zhou, Xiaofan; Kominek, Jacek; Kurtzman, Cletus P.; Hittinger, Chris Todd; Rokas, Antonis

    2016-01-01

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast. PMID:27672114

  5. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  6. Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma

    PubMed Central

    Özcan, Emrah; Çakır, Tunahan

    2016-01-01

    Developments in genome scale metabolic modeling techniques and omics technologies have enabled the reconstruction of context-specific metabolic models. In this study, glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is investigated by mapping GBM gene expression data on the growth-implemented brain specific genome-scale metabolic network, and GBM-specific models are generated. The models are used to calculate metabolic flux distributions in the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models reconstructed in this work reflect the general metabolic reprogramming of GBM, reported both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis, respectively. Also, our results, in accordance with recent studies, predict a contribution of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition to the major contributor aerobic glycolysis. We verified our results by using different computational methods that incorporate transcriptome data with genome-scale models and by using different transcriptome datasets. Correct predictions of flux distributions in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the reconstructed models for further use in future to simulate more specific metabolic patterns for GBM. PMID:27147948

  7. Counting and correcting thermodynamically infeasible flux cycles in genome-scale metabolic networks.

    PubMed

    De Martino, Daniele; Capuani, Fabrizio; Mori, Matteo; De Martino, Andrea; Marinari, Enzo

    2013-10-14

    Thermodynamics constrains the flow of matter in a reaction network to occur through routes along which the Gibbs energy decreases, implying that viable steady-state flux patterns should be void of closed reaction cycles. Identifying and removing cycles in large reaction networks can unfortunately be a highly challenging task from a computational viewpoint. We propose here a method that accomplishes it by combining a relaxation algorithm and a Monte Carlo procedure to detect loops, with ad hoc rules (discussed in detail) to eliminate them. As test cases, we tackle (a) the problem of identifying infeasible cycles in the E. coli metabolic network and (b) the problem of correcting thermodynamic infeasibilities in the Flux-Balance-Analysis solutions for 15 human cell-type-specific metabolic networks. Results for (a) are compared with previous analyses of the same issue, while results for (b) are weighed against alternative methods to retrieve thermodynamically viable flux patterns based on minimizing specific global quantities. Our method, on the one hand, outperforms previous techniques and, on the other, corrects loopy solutions to Flux Balance Analysis. As a byproduct, it also turns out to be able to reveal possible inconsistencies in model reconstructions.

  8. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    PubMed Central

    Khodayari, Ali; Maranas, Costas D.

    2016-01-01

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com). PMID:27996047

  9. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multi-locus data sets has greatly advanced our understanding ...

  10. A Genome-Scale Modeling Approach to Study Inborn Errors of Liver Metabolism: Toward an In Silico Patient

    PubMed Central

    Pagliarini, Roberto

    2013-01-01

    Abstract Inborn errors of metabolism (IEM) are genetic diseases caused by mutations in enzymes or transporters affecting specific metabolic reactions that cause a block in the physiological metabolic fluxes. Therapeutic treatment can be achieved either by decreasing the metabolic flux upstream of the block or by increasing the flux downstream of the block. The identification of upstream and downstream fluxes however is not trivial, since metabolic reactions are intertwined in a complex network. To overcome this problem, we propose an innovative computational workflow to model the alteration of metabolism caused by IEM and predict the metabolites and reactions that are affected by the mutation. Our workflow exploits a recent genome-scale metabolic network model of hepatocyte metabolism to identify metabolites accumulating in hepatocytes due to single gene mutations in IEM via an innovative “differential flux analysis.” We simulated 38 IEMs in the liver, and in about half of the cases, our workflow correctly identified the metabolites known to accumulate in the blood and urine of IEM patients. PMID:23464878

  11. Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network.

    PubMed

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S; Rhee, Seung Y

    2015-04-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.

  12. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity

    PubMed Central

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.

    2016-01-01

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  13. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    DOE PAGES

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; ...

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making themmore » highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of

  14. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    SciTech Connect

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; Leslie, Christina

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making them highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating

  15. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns

    PubMed Central

    Kaleta, Christoph; de Figueiredo, Luís Filipe; Schuster, Stefan

    2009-01-01

    Elementary modes represent a valuable concept in the analysis of metabolic reaction networks. However, they can only be computed in medium-size systems, preventing application to genome-scale metabolic models. In consequence, the analysis is usually constrained to a specific part of the known metabolism, and the remaining system is modeled using abstractions like exchange fluxes and external species. As we show by the analysis of a model of the central metabolism of Escherichia coli that has been previously analyzed using elementary modes, the choice of these abstractions heavily impacts the pathways that are detected, and the results are biased by the knowledge of the metabolic capabilities of the network by the user. In order to circumvent these problems, we introduce the concept of elementary flux patterns, which explicitly takes into account possible steady-state fluxes through a genome-scale metabolic network when analyzing pathways through a subsystem. By being similar to elementary mode analysis, our concept now allows for the application of many elementary-mode-based tools to genome-scale metabolic networks. We present an algorithm to compute elementary flux patterns and analyze a model of the tricarboxylic acid cycle and adjacent reactions in E. coli. Thus, we detect several pathways that can be used as alternative routes to some central metabolic pathways. Finally, we give an outlook on further applications like the computation of minimal media, the development of knockout strategies, and the analysis of combined genome-scale networks. PMID:19541909

  16. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  17. Analysis of Genetic Variation and Potential Applications in Genome-Scale Metabolic Modeling

    PubMed Central

    Cardoso, João G. R.; Andersen, Mikael Rørdam; Herrgård, Markus J.; Sonnenschein, Nikolaus

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes. PMID:25763369

  18. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.

    PubMed

    Chakrabarti, Anirikh; Miskovic, Ljubisa; Soh, Keng Cher; Hatzimanikatis, Vassily

    2013-09-01

    Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.

  19. In silico method for modelling metabolism and gene product expression at genome scale

    SciTech Connect

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Zengler, Karsten; Palsson, Bernard O.

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.

  20. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  1. Candidate States of Helicobacter pylori's Genome-Scale Metabolic Network upon Application of “Loop Law” Thermodynamic Constraints

    PubMed Central

    Price, Nathan D.; Thiele, Ines; Palsson, Bernhard Ø.

    2006-01-01

    Constraint-based modeling has proven to be a useful tool in the analysis of biochemical networks. To date, most studies in this field have focused on the use of linear constraints, resulting from mass balance and capacity constraints, which lead to the definition of convex solution spaces. One additional constraint arising out of thermodynamics is known as the “loop law” for reaction fluxes, which states that the net flux around a closed biochemical loop must be zero because no net thermodynamic driving force exists. The imposition of the loop-law can lead to nonconvex solution spaces making the analysis of the consequences of its imposition challenging. A four-step approach is developed here to apply the loop-law to study metabolic network properties: 1), determine linear equality constraints that are necessary (but not necessarily sufficient) for thermodynamic feasibility; 2), tighten Vmax and Vmin constraints to enclose the remaining nonconvex space; 3), uniformly sample the convex space that encloses the nonconvex space using standard Monte Carlo techniques; and 4), eliminate from the resulting set all solutions that violate the loop-law, leaving a subset of steady-state solutions. This subset of solutions represents a uniform random sample of the space that is defined by the additional imposition of the loop-law. This approach is used to evaluate the effect of imposing the loop-law on predicted candidate states of the genome-scale metabolic network of Helicobacter pylori. PMID:16533855

  2. Candidate states of Helicobacter pylori's genome-scale metabolic network upon application of "loop law" thermodynamic constraints.

    PubMed

    Price, Nathan D; Thiele, Ines; Palsson, Bernhard Ø

    2006-06-01

    Constraint-based modeling has proven to be a useful tool in the analysis of biochemical networks. To date, most studies in this field have focused on the use of linear constraints, resulting from mass balance and capacity constraints, which lead to the definition of convex solution spaces. One additional constraint arising out of thermodynamics is known as the "loop law" for reaction fluxes, which states that the net flux around a closed biochemical loop must be zero because no net thermodynamic driving force exists. The imposition of the loop-law can lead to nonconvex solution spaces making the analysis of the consequences of its imposition challenging. A four-step approach is developed here to apply the loop-law to study metabolic network properties: 1), determine linear equality constraints that are necessary (but not necessarily sufficient) for thermodynamic feasibility; 2), tighten V(max) and V(min) constraints to enclose the remaining nonconvex space; 3), uniformly sample the convex space that encloses the nonconvex space using standard Monte Carlo techniques; and 4), eliminate from the resulting set all solutions that violate the loop-law, leaving a subset of steady-state solutions. This subset of solutions represents a uniform random sample of the space that is defined by the additional imposition of the loop-law. This approach is used to evaluate the effect of imposing the loop-law on predicted candidate states of the genome-scale metabolic network of Helicobacter pylori.

  3. Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism1[C][W][OA

    PubMed Central

    Poolman, Mark G.; Kundu, Sudip; Shaw, Rahul; Fell, David A.

    2013-01-01

    We describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa) primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values to examine responses in the solutions. The resulting flux distributions show that (1) redox shuttles between the chloroplast, cytosol, and mitochondrion may play a significant role at low light levels, (2) photorespiration can act to dissipate excess energy at high light levels, and (3) the role of mitochondrial metabolism is likely to vary considerably according to the balance between energy demand and availability. It is notable that these organelle interactions, consistent with many experimental observations, arise solely as a result of the need for mass and energy balancing without any explicit assumptions concerning kinetic or other regulatory mechanisms. PMID:23640755

  4. Data-driven integration of genome-scale regulatory and metabolic network models.

    PubMed

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N; Baliga, Nitin S; Price, Nathan D

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert-a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  5. Data-driven integration of genome-scale regulatory and metabolic network models

    DOE PAGES

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less

  6. Data-driven integration of genome-scale regulatory and metabolic network models

    SciTech Connect

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  7. MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

    SciTech Connect

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-08-03

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.

  8. MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

    DOE PAGES

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-08-03

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less

  9. MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models

    PubMed Central

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-01-01

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. This computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community. PMID:27536246

  10. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans

    PubMed Central

    2011-01-01

    Background Methanogens are ancient organisms that are key players in the carbon cycle accounting for about one billion tones of biological methane produced annually. Methanosarcina acetivorans, with a genome size of ~5.7 mb, is the largest sequenced archaeon methanogen and unique amongst the methanogens in its biochemical characteristics. By following a systematic workflow we reconstruct a genome-scale metabolic model for M. acetivorans. This process relies on previously developed computational tools developed in our group to correct growth prediction inconsistencies with in vivo data sets and rectify topological inconsistencies in the model. Results The generated model iVS941 accounts for 941 genes, 705 reactions and 708 metabolites. The model achieves 93.3% prediction agreement with in vivo growth data across different substrates and multiple gene deletions. The model also correctly recapitulates metabolic pathway usage patterns of M. acetivorans such as the indispensability of flux through methanogenesis for growth on acetate and methanol and the unique biochemical characteristics under growth on carbon monoxide. Conclusions Based on the size of the genome-scale metabolic reconstruction and extent of validated predictions this model represents the most comprehensive up-to-date effort to catalogue methanogenic metabolism. The reconstructed model is available in spreadsheet and SBML formats to enable dissemination. PMID:21324125

  11. Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport

    SciTech Connect

    Tartakovsky, Guzel D.; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Fang, Yilin; Mahadevan, Radhakrishnan; Lovley, Derek R.

    2013-09-07

    Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparisonto prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under

  12. Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Tartakovsky, G.; Tartakovsky, A. M.; Fang, Y.; Mahadevan, R.; Lovley, D. R.

    2012-12-01

    Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparison to prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model

  13. Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G. D.; Tartakovsky, A. M.; Scheibe, T. D.; Fang, Y.; Mahadevan, R.; Lovley, D. R.

    2013-09-01

    Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparison to prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model

  14. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    PubMed Central

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  15. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    PubMed

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  16. Physiologically Shrinking the Solution Space of a Saccharomyces cerevisiae Genome-Scale Model Suggests the Role of the Metabolic Network in Shaping Gene Expression Noise.

    PubMed

    Chi, Baofang; Tao, Shiheng; Liu, Yanlin

    2015-01-01

    Sampling the solution space of genome-scale models is generally conducted to determine the feasible region for metabolic flux distribution. Because the region for actual metabolic states resides only in a small fraction of the entire space, it is necessary to shrink the solution space to improve the predictive power of a model. A common strategy is to constrain models by integrating extra datasets such as high-throughput datasets and C13-labeled flux datasets. However, studies refining these approaches by performing a meta-analysis of massive experimental metabolic flux measurements, which are closely linked to cellular phenotypes, are limited. In the present study, experimentally identified metabolic flux data from 96 published reports were systematically reviewed. Several strong associations among metabolic flux phenotypes were observed. These phenotype-phenotype associations at the flux level were quantified and integrated into a Saccharomyces cerevisiae genome-scale model as extra physiological constraints. By sampling the shrunken solution space of the model, the metabolic flux fluctuation level, which is an intrinsic trait of metabolic reactions determined by the network, was estimated and utilized to explore its relationship to gene expression noise. Although no correlation was observed in all enzyme-coding genes, a relationship between metabolic flux fluctuation and expression noise of genes associated with enzyme-dosage sensitive reactions was detected, suggesting that the metabolic network plays a role in shaping gene expression noise. Such correlation was mainly attributed to the genes corresponding to non-essential reactions, rather than essential ones. This was at least partially, due to regulations underlying the flux phenotype-phenotype associations. Altogether, this study proposes a new approach in shrinking the solution space of a genome-scale model, of which sampling provides new insights into gene expression noise.

  17. Genome-Scale NAD(H/+) Availability Patterns as a Differentiating Feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in Relation to Fermentative Metabolism

    PubMed Central

    Acevedo, Alejandro; Aroca, German; Conejeros, Raul

    2014-01-01

    Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/+) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior. PMID:24489927

  18. Integration of Genome-Scale Metabolic Nodels of Iron-Reducing Bacteria With Subsurface Flow and Geochemical Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Mahadevan, R.; Fang, Y.; Garg, S.; Long, P. E.; Lovley, D. M.

    2008-12-01

    Several field and laboratory experiments have demonstrated that the growth and activity of iron-reducing bacteria can be stimulated in many subsurface environments by amendment of groundwater with a soluble electron donor. Under strong iron-reducing conditions, these organisms mediate reactions that can impact a wide range of subsurface contaminants including chlorinated hydrocarbons, metals, and radionuclides. Therefore there is strong interest in in-situ bioremediation as a potential technology for cleanup of contaminated aquifers. To evaluate and design bioremediation systems, as well as to evaluate the viability of monitored natural attenuation as an alternative, quantitative models of biogeochemically reactive transport are needed. To date, most such models represent microbial activity in terms of kinetic rate (e.g., Monod- type) formulations. Such models do not account for fundamental changes in microbial functionality (such as utilization of alternative respiratory pathways) that occur as the result of spatial and temporal variations in the geochemical environment experienced by microorganisms. Constraint-based genome-scale in silico models of microbial metabolism present an alternative to simplified rate formulations that provide flexibility to account for changes in microbial function in response to local geochemical conditions. We have developed and applied a methodology for coupling a constraint-based in silico model of Geobacter sulfurreducens with a conventional model of groundwater flow, transport, and geochemical reaction. Two uses of the in silico model are tested: 1) incorporation of modified microbial growth yield coefficients based on the in silico model, and 2) variation of reaction rates in a reactive transport model based on in silico modeling of a range of local geochemical conditions. Preliminary results from this integrated model will be presented.

  19. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    SciTech Connect

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  20. Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network.

    PubMed

    Mohanty, Bijayalaxmi; Kitazumi, Ai; Cheung, C Y Maurice; Lakshmanan, Meiyappan; de los Reyes, Benildo G; Jang, In-Cheol; Lee, Dong-Yup

    2016-01-01

    In this study, we have integrated a rice genome-scale metabolic network and the transcriptome of a drought-tolerant rice line, DK151, to identify the major transcriptional regulators involved in metabolic adjustments necessary for adaptation to drought. This was achieved by examining the differential expressions of transcription factors and metabolic genes in leaf, root and young panicle of rice plants subjected to drought stress during tillering, booting and panicle elongation stages. Critical transcription factors such as AP2/ERF, bZIP, MYB and NAC that control the important nodes in the gene regulatory pathway were identified through correlative analysis of the patterns of spatio-temporal expression and cis-element enrichment. We showed that many of the candidate transcription factors involved in metabolic adjustments were previously linked to phenotypic variation for drought tolerance. This approach represents the first attempt to integrate models of transcriptional regulation and metabolic pathways for the identification of candidate regulatory genes for targeted selection in rice breeding.

  1. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism

    PubMed Central

    Jerby, Livnat; Shlomi, Tomer; Ruppin, Eytan

    2010-01-01

    The computational study of human metabolism has been advanced with the advent of the first generic (non-tissue specific) stoichiometric model of human metabolism. In this study, we present a new algorithm for rapid reconstruction of tissue-specific genome-scale models of human metabolism. The algorithm generates a tissue-specific model from the generic human model by integrating a variety of tissue-specific molecular data sources, including literature-based knowledge, transcriptomic, proteomic, metabolomic and phenotypic data. Applying the algorithm, we constructed the first genome-scale stoichiometric model of hepatic metabolism. The model is verified using standard cross-validation procedures, and through its ability to carry out hepatic metabolic functions. The model's flux predictions correlate with flux measurements across a variety of hormonal and dietary conditions, and improve upon the predictive performance obtained using the original, generic human model (prediction accuracy of 0.67 versus 0.46). Finally, the model better predicts biomarker changes in genetic metabolic disorders than the generic human model (accuracy of 0.67 versus 0.59). The approach presented can be used to construct other human tissue-specific models, and be applied to other organisms. PMID:20823844

  2. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

    PubMed Central

    Fang, Yilin; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-01-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. PMID:23042184

  3. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment.

    PubMed

    Fang, Yilin; Wilkins, Michael J; Yabusaki, Steven B; Lipton, Mary S; Long, Philip E

    2012-12-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens-specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  4. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction

    PubMed Central

    Heavner, Benjamin D.; Price, Nathan D.

    2015-01-01

    We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype. PMID:26566239

  5. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1

    PubMed Central

    2010-01-01

    Background Well-curated and validated network reconstructions are extremely valuable tools in systems biology. Detailed metabolic reconstructions of mammals have recently emerged, including human reconstructions. They raise the question if the various successful applications of microbial reconstructions can be replicated in complex organisms. Results We mapped the published, detailed reconstruction of human metabolism (Recon 1) to other mammals. By searching for genes homologous to Recon 1 genes within mammalian genomes, we were able to create draft metabolic reconstructions of five mammals, including the mouse. Each draft reconstruction was created in compartmentalized and non-compartmentalized version via two different approaches. Using gap-filling algorithms, we were able to produce all cellular components with three out of four versions of the mouse metabolic reconstruction. We finalized a functional model by iterative testing until it passed a predefined set of 260 validation tests. The reconstruction is the largest, most comprehensive mouse reconstruction to-date, accounting for 1,415 genes coding for 2,212 gene-associated reactions and 1,514 non-gene-associated reactions. We tested the mouse model for phenotype prediction capabilities. The majority of predicted essential genes were also essential in vivo. However, our non-tissue specific model was unable to predict gene essentiality for many of the metabolic genes shown to be essential in vivo. Our knockout simulation of the lipoprotein lipase gene correlated well with experimental results, suggesting that softer phenotypes can also be simulated. Conclusions We have created a high-quality mouse genome-scale metabolic reconstruction, iMM1415 (Mus Musculus, 1415 genes). We demonstrate that the mouse model can be used to perform phenotype simulations, similar to models of microbe metabolism. Since the mouse is an important experimental organism, this model should become an essential tool for studying metabolic

  6. A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations a...

  7. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    PubMed

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  8. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    PubMed

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless

  9. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model1[C][W][OPEN

    PubMed Central

    Simons, Margaret; Saha, Rajib; Amiour, Nardjis; Kumar, Akhil; Guillard, Lenaïg; Clément, Gilles; Miquel, Martine; Li, Zhenni; Mouille, Gregory; Lea, Peter J.; Hirel, Bertrand; Maranas, Costas D.

    2014-01-01

    Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition. PMID:25248718

  10. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    PubMed Central

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-01-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets. PMID:28266498

  11. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    NASA Astrophysics Data System (ADS)

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-03-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.

  12. Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling

    PubMed Central

    2013-01-01

    Background Alginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations. Results Alginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate

  13. Development of an Extensible Computational Framework for Centralized Storage and Distributed Curation and Analysis of Genomic Data Genome-scale Metabolic Models

    SciTech Connect

    Stevens, Rick

    2010-08-01

    The DOE funded KBase project of the Stevens group at the University of Chicago was focused on four high-level goals: (i) improve extensibility, accessibility, and scalability of the SEED framework for genome annotation, curation, and analysis; (ii) extend the SEED infrastructure to support transcription regulatory network reconstructions (2.1), metabolic model reconstruction and analysis (2.2), assertions linked to data (2.3), eukaryotic annotation (2.4), and growth phenotype prediction (2.5); (iii) develop a web-API for programmatic remote access to SEED data and services; and (iv) application of all tools to bioenergy-related genomes and organisms. In response to these goals, we enhanced and improved the ModelSEED resource within the SEED to enable new modeling analyses, including improved model reconstruction and phenotype simulation. We also constructed a new website and web-API for the ModelSEED. Further, we constructed a comprehensive web-API for the SEED as a whole. We also made significant strides in building infrastructure in the SEED to support the reconstruction of transcriptional regulatory networks by developing a pipeline to identify sets of consistently expressed genes based on gene expression data. We applied this pipeline to 29 organisms, computing regulons which were subsequently stored in the SEED database and made available on the SEED website (http://pubseed.theseed.org). We developed a new pipeline and database for the use of kmers, or short 8-residue oligomer sequences, to annotate genomes at high speed. Finally, we developed the PlantSEED, or a new pipeline for annotating primary metabolism in plant genomes. All of the work performed within this project formed the early building blocks for the current DOE Knowledgebase system, and the kmer annotation pipeline, plant annotation pipeline, and modeling tools are all still in use in KBase today.

  14. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis

    PubMed Central

    Goelzer, Anne; Bekkal Brikci, Fadia; Martin-Verstraete, Isabelle; Noirot, Philippe; Bessières, Philippe; Aymerich, Stéphane; Fromion, Vincent

    2008-01-01

    Background Few genome-scale models of organisms focus on the regulatory networks and none of them integrates all known levels of regulation. In particular, the regulations involving metabolite pools are often neglected. However, metabolite pools link the metabolic to the genetic network through genetic regulations, including those involving effectors of transcription factors or riboswitches. Consequently, they play pivotal roles in the global organization of the genetic and metabolic regulatory networks. Results We report the manually curated reconstruction of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis (transcriptional, translational and post-translational regulations and modulation of enzymatic activities). We provide a systematic graphic representation of regulations of each metabolic pathway based on the central role of metabolites in regulation. We show that the complex regulatory network of B. subtilis can be decomposed as sets of locally regulated modules, which are coordinated by global regulators. Conclusion This work reveals the strong involvement of metabolite pools in the general regulation of the metabolic network. Breaking the metabolic network down into modules based on the control of metabolite pools reveals the functional organization of the genetic and metabolic regulatory networks of B. subtilis. PMID:18302748

  15. Construction of an E. Coli genome-scale atom mapping model for MFA calculations.

    PubMed

    Ravikirthi, Prabhasa; Suthers, Patrick F; Maranas, Costas D

    2011-06-01

    Metabolic flux analysis (MFA) has so far been restricted to lumped networks lacking many important pathways, partly due to the difficulty in automatically generating isotope mapping matrices for genome-scale metabolic networks. Here we introduce a procedure that uses a compound matching algorithm based on the graph theoretical concept of pattern recognition along with relevant reaction information to automatically generate genome-scale atom mappings which trace the path of atoms from reactants to products for every reaction. The procedure is applied to the iAF1260 metabolic reconstruction of Escherichia coli yielding the genome-scale isotope mapping model imPR90068. This model maps 90,068 non-hydrogen atoms that span all 2,077 reactions present in iAF1260 (previous largest mapping model included 238 reactions). The expanded scope of the isotope mapping model allows the complete tracking of labeled atoms through pathways such as cofactor and prosthetic group biosynthesis and histidine metabolism. An EMU representation of imPR90068 is also constructed and made available.

  16. Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica

    PubMed Central

    Pan, Pengcheng; Hua, Qiang

    2012-01-01

    With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts. PMID:23236514

  17. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  18. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    PubMed

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.

  19. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    PubMed Central

    2011-01-01

    Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp). Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S. oneidensis MR-1. Analysis of

  20. Efficient Reconstruction of Predictive Consensus Metabolic Network Models

    PubMed Central

    Martins dos Santos, Vitor A. P.; Stelling, Joerg

    2016-01-01

    Understanding cellular function requires accurate, comprehensive representations of metabolism. Genome-scale, constraint-based metabolic models (GSMs) provide such representations, but their usability is often hampered by inconsistencies at various levels, in particular for concurrent models. COMMGEN, our tool for COnsensus Metabolic Model GENeration, automatically identifies inconsistencies between concurrent models and semi-automatically resolves them, thereby contributing to consolidate knowledge of metabolic function. Tests of COMMGEN for four organisms showed that automatically generated consensus models were predictive and that they substantially increased coherence of knowledge representation. COMMGEN ought to be particularly useful for complex scenarios in which manual curation does not scale, such as for eukaryotic organisms, microbial communities, and host-pathogen interactions. PMID:27563720

  1. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data

    PubMed Central

    Spring, Stefan; Scheuner, Carmen; Göker, Markus; Klenk, Hans-Peter

    2015-01-01

    In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov. PMID:25914684

  2. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2003-10-07

    The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell

  3. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    PubMed

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  4. New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes.

    PubMed

    Islam, M Ahsanul; Waller, Alison S; Hug, Laura A; Provart, Nicholas J; Edwards, Elizabeth A; Mahadevan, Radhakrishnan

    2014-01-01

    Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism's metabolic reconstruction in analyzing various "omics" data to obtain improved understanding of the

  5. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network.

    PubMed

    Salazar, Diego A; Rodríguez-López, Alexander; Herreño, Angélica; Barbosa, Hector; Herrera, Juliana; Ardila, Andrea; Barreto, George E; González, Janneth; Alméciga-Díaz, Carlos J

    2016-02-01

    Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (β-hexosaminidase and β-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS.

  6. The OME Framework for genome-scale systems biology

    SciTech Connect

    Palsson, Bernhard O.; Ebrahim, Ali; Federowicz, Steve

    2014-12-19

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity of genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome-scale

  7. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models

    PubMed Central

    Yuan, Qianqian; Li, Peishun; Hao, Tong; Li, Feiran; Ma, Hongwu; Wang, Zhiwen; Zhao, Xueming; Chen, Tao; Goryanin, Igor

    2017-01-01

    Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design. PMID:28085902

  8. Reconstruction of Danio rerio metabolic model accounting for subcellular compartmentalisation.

    PubMed

    Bekaert, Michaël

    2012-01-01

    Plant and microbial metabolic engineering is commonly used in the production of functional foods and quality trait improvement. Computational model-based approaches have been used in this important endeavour. However, to date, fish metabolic models have only been scarcely and partially developed, in marked contrast to their prominent success in metabolic engineering. In this study we present the reconstruction of fully compartmentalised models of the Danio rerio (zebrafish) on a global scale. This reconstruction involves extraction of known biochemical reactions in D. rerio for both primary and secondary metabolism and the implementation of methods for determining subcellular localisation and assignment of enzymes. The reconstructed model (ZebraGEM) is amenable for constraint-based modelling analysis, and accounts for 4,988 genes coding for 2,406 gene-associated reactions and only 418 non-gene-associated reactions. A set of computational validations (i.e., simulations of known metabolic functionalities and experimental data) strongly testifies to the predictive ability of the model. Overall, the reconstructed model is expected to lay down the foundations for computational-based rational design of fish metabolic engineering in aquaculture.

  9. The reconstruction and analysis of tissue specific human metabolic networks.

    PubMed

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  10. An integrated text mining framework for metabolic interaction network reconstruction.

    PubMed

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  11. Genome-scale constraint-based modeling of Geobacter metallireducens

    PubMed Central

    Sun, Jun; Sayyar, Bahareh; Butler, Jessica E; Pharkya, Priti; Fahland, Tom R; Famili, Iman; Schilling, Christophe H; Lovley, Derek R; Mahadevan, Radhakrishnan

    2009-01-01

    Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which

  12. SHARP: genome-scale identification of gene-protein-reaction associations in cyanobacteria.

    PubMed

    Krishnakumar, S; Durai, Dilip A; Wangikar, Pramod P; Viswanathan, Ganesh A

    2013-11-01

    Genome scale metabolic model provides an overview of an organism's metabolic capability. These genome-specific metabolic reconstructions are based on identification of gene to protein to reaction (GPR) associations and, in turn, on homology with annotated genes from other organisms. Cyanobacteria are photosynthetic prokaryotes which have diverged appreciably from their nonphotosynthetic counterparts. They also show significant evolutionary divergence from plants, which are well studied for their photosynthetic apparatus. We argue that context-specific sequence and domain similarity can add to the repertoire of the GPR associations and significantly expand our view of the metabolic capability of cyanobacteria. We took an approach that combines the results of context-specific sequence-to-sequence similarity search with those of sequence-to-profile searches. We employ PSI-BLAST for the former, and CDD, Pfam, and COG for the latter. An optimization algorithm was devised to arrive at a weighting scheme to combine the different evidences with KEGG-annotated GPRs as training data. We present the algorithm in the form of software "Systematic, Homology-based Automated Re-annotation for Prokaryotes (SHARP)." We predicted 3,781 new GPR associations for the 10 prokaryotes considered of which eight are cyanobacteria species. These new GPR associations fall in several metabolic pathways and were used to annotate 7,718 gaps in the metabolic network. These new annotations led to discovery of several pathways that may be active and thereby providing new directions for metabolic engineering of these species for production of useful products. Metabolic model developed on such a reconstructed network is likely to give better phenotypic predictions.

  13. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis.

    PubMed

    Kotera, Masaaki; Goto, Susumu

    2016-01-01

    Metabolic pathway reconstruction presents a challenge for understanding metabolic pathways in organisms of interest. Different strategies, i.e., reference-based vs. de novo, must be used for pathway reconstruction depending on the availability of well-characterized enzymatic reactions. If at least one enzyme is already known to catalyze a reaction, its amino acid sequence can be used as a reference for identifying homologous enzymes in the genome of an organism of interest. Where there is no known enzyme able to catalyze a corresponding reaction, however, the reaction and the corresponding enzyme must be predicted de novo from chemical transformations of the putative substrate-product pair. This review summarizes studies involving reference-based and de novo metabolic pathway reconstruction and discusses the importance of the classification and structure-function relationships of enzymes.

  14. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis

    PubMed Central

    Kotera, Masaaki; Goto, Susumu

    2016-01-01

    Metabolic pathway reconstruction presents a challenge for understanding metabolic pathways in organisms of interest. Different strategies, i.e., reference-based vs. de novo, must be used for pathway reconstruction depending on the availability of well-characterized enzymatic reactions. If at least one enzyme is already known to catalyze a reaction, its amino acid sequence can be used as a reference for identifying homologous enzymes in the genome of an organism of interest. Where there is no known enzyme able to catalyze a corresponding reaction, however, the reaction and the corresponding enzyme must be predicted de novo from chemical transformations of the putative substrate-product pair. This review summarizes studies involving reference-based and de novo metabolic pathway reconstruction and discusses the importance of the classification and structure-function relationships of enzymes. PMID:27924274

  15. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  16. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  17. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    PubMed Central

    Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei; Fredrickson, Jim K.; Konopka, Allan E.; Beliaev, Alexander S.; Reed, Jennifer L.

    2012-01-01

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. PMID:22529767

  18. Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2008-03-01

    The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.

  19. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  20. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  1. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    PubMed Central

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  2. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  3. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium.

    PubMed

    Ribaudo, Nicholas; Li, Xianhua; Davis, Brett; Wood, Thomas K; Huang, Zuyi Jacky

    2017-01-01

    Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h(-1) respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.

  4. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  5. Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway

    PubMed Central

    de Crécy-Lagard, Valérie

    2014-01-01

    The availability of thousands of sequenced genomes has revealed the diversity of biochemical solutions to similar chemical problems. Even for molecules at the heart of metabolism, such as cofactors, the pathway enzymes first discovered in model organisms like Escherichia coli or Saccharomyces cerevisiae are often not universally conserved. Tetrahydrofolate (THF) (or its close relative tetrahydromethanopterin) is a universal and essential C1-carrier that most microbes and plants synthesize de novo. The THF biosynthesis pathway and enzymes are, however, not universal and alternate solutions are found for most steps, making this pathway a challenge to annotate automatically in many genomes. Comparing THF pathway reconstructions and functional annotations of a chosen set of folate synthesis genes in specific prokaryotes revealed the strengths and weaknesses of different microbial annotation platforms. This analysis revealed that most current platforms fail in metabolic reconstruction of variant pathways. However, all the pieces are in place to quickly correct these deficiencies if the different databases were built on each other's strengths. PMID:25210598

  6. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    PubMed Central

    King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456

  7. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    SciTech Connect

    King, Zachary A.; Lu, Justin; Drager, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2015-10-17

    In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.

  8. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    PubMed Central

    2012-01-01

    Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking. PMID:22548736

  9. Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome

    PubMed Central

    Loughran, Thomas P.; Papin, Jason A.; Albert, Reka

    2015-01-01

    We present a novel methodology to construct a Boolean dynamic model from time series metagenomic information and integrate this modeling with genome-scale metabolic network reconstructions to identify metabolic underpinnings for microbial interactions. We apply this in the context of a critical health issue: clindamycin antibiotic treatment and opportunistic Clostridium difficile infection. Our model recapitulates known dynamics of clindamycin antibiotic treatment and C. difficile infection and predicts therapeutic probiotic interventions to suppress C. difficile infection. Genome-scale metabolic network reconstructions reveal metabolic differences between community members and are used to explore the role of metabolism in the observed microbial interactions. In vitro experimental data validate a key result of our computational model, that B. intestinihominis can in fact slow C. difficile growth. PMID:26102287

  10. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production.

    PubMed

    Ye, Chao; Zou, Wei; Xu, Nan; Liu, Liming

    2014-07-20

    An artificial microbial ecosystem (AME) consisting of Ketogulonicigenium vulgare and Bacillus megaterium is currently used in a two-step fermentation process for vitamin C production. In order to obtain a comprehensive understanding of the metabolic interactions between the two bacteria, a two-species stoichiometric metabolic model (iWZ-KV-663-BM-1055) consisting of 1718 genes, 1573 metabolites, and 1891 reactions (excluding exchange reactions) was constructed based on separate genome-scale metabolic models (GSMMs) of K. vulgare and B. megaterium. These two compartments (k and b) of iWZ-KV-663-BM-1055 shared 453 reactions and 548 metabolites. Compartment b was richer in subsystems than compartment k. In minimal media with glucose (MG), metabolite exchange between compartments was assessed by constraint-based analysis. Compartment b secreted essential amino acids, nucleic acids, vitamins and cofactors important for K. vulgare growth and biosynthesis of 2-keto-l-gulonic acid (2-KLG). Further research showed that when co-cultured with B. megaterium in l-sorbose-CSLP medium, the growth rate of K. vulgare and 2-KLG production were increased by 111.9% and 29.42%, respectively, under the constraints employed. Our study demonstrated that GSMMs and constraint-based methods can be used to decode the physiological features and inter-species interactions of AMEs used in industrial biotechnology, which will be of benefit for improving regulation and refinement in future industrial processes.

  11. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    SciTech Connect

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela; Taylor, Ronald C.; Lee, Joon-Yong; Zucker, Jeremy; Song, Hyun-Seob

    2016-06-02

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.

  12. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models.

    PubMed

    Maarleveld, Timo R; Wortel, Meike T; Olivier, Brett G; Teusink, Bas; Bruggeman, Frank J

    2015-04-01

    High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the interplay between flux constraints, optimality objectives, and the entire metabolic network of a cell is, however, only partially understood. We show how optimal metabolic routes, resulting from flux balance analysis computations, arise out of elementary flux modes, constraints, and optimization objectives. We illustrate our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the case of one flux constraint, all feasible optimal flux routes can be derived from elementary flux modes alone. We found up to 120 million of such optimal elementary flux modes. We introduce a new computational method to compute the corner points of the optimal solution space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary flux modes when we impose additional constraints; new optimal metabolic routes arise out of combinations of elementary flux modes. The solution space of feasible metabolic routes shrinks enormously when additional objectives---e.g. those related to pathway expression costs or pathway length---are introduced. In many cases, only a single metabolic route remains that is both feasible and optimal. This paper contributes to reaching a complete topological understanding of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most natural to biochemists and biotechnologists studying and engineering metabolism.

  13. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    PubMed Central

    Choudhary, Kumari Sonal; Rohatgi, Neha; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend. PMID:27253373

  14. Semi-automated Curation of Metabolic Models via Flux Balance Analysis: A Case Study with Mycoplasma gallisepticum

    PubMed Central

    Szczepanek, Steven M.; Johnson, Erik L.; Tulman, Edan R.; Ching, Wei-Mei; Geary, Steven J.; Srivastava, Ranjan

    2013-01-01

    Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12, closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum. PMID:24039564

  15. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli.

  16. Diagnostics for stochastic genome-scale modeling via model slicing and debugging.

    PubMed

    Tsai, Kevin J; Chang, Chuan-Hsiung

    2014-01-01

    Modeling of biological behavior has evolved from simple gene expression plots represented by mathematical equations to genome-scale systems biology networks. However, due to obstacles in complexity and scalability of creating genome-scale models, several biological modelers have turned to programming or scripting languages and away from modeling fundamentals. In doing so, they have traded the ability to have exchangeable, standardized model representation formats, while those that remain true to standardized model representation are faced with challenges in model complexity and analysis. We have developed a model diagnostic methodology inspired by program slicing and debugging and demonstrate the effectiveness of the methodology on a genome-scale metabolic network model published in the BioModels database. The computer-aided identification revealed specific points of interest such as reversibility of reactions, initialization of species amounts, and parameter estimation that improved a candidate cell's adenosine triphosphate production. We then compared the advantages of our methodology over other modeling techniques such as model checking and model reduction. A software application that implements the methodology is available at http://gel.ym.edu.tw/gcs/.

  17. Microbial Community Metabolic Modeling: A Community Data‐Driven Network Reconstruction

    PubMed Central

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela; Taylor, Ronald C.; Lee, Joon‐Yong; Zucker, Jeremy

    2016-01-01

    Metabolic network modeling of microbial communities provides an in‐depth understanding of community‐wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high‐quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community‐level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph–heterotroph consortium that was used to provide data needed for a community‐level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339–2345, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27186840

  18. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  19. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    DOE PAGES

    King, Zachary A.; Lu, Justin; Drager, Andreas; ...

    2015-10-17

    In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scalemore » metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.« less

  20. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    PubMed

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come.

  1. Database Constraints Applied to Metabolic Pathway Reconstruction Tools

    PubMed Central

    Vilaplana, Jordi; Solsona, Francesc; Teixido, Ivan; Usié, Anabel; Karathia, Hiren; Alves, Rui; Mateo, Jordi

    2014-01-01

    Our group developed two biological applications, Biblio-MetReS and Homol-MetReS, accessing the same database of organisms with annotated genes. Biblio-MetReS is a data-mining application that facilitates the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the process(es) of interest and their function. It also enables the sets of proteins involved in the process(es) in different organisms to be compared directly. The efficiency of these biological applications is directly related to the design of the shared database. We classified and analyzed the different kinds of access to the database. Based on this study, we tried to adjust and tune the configurable parameters of the database server to reach the best performance of the communication data link to/from the database system. Different database technologies were analyzed. We started the study with a public relational SQL database, MySQL. Then, the same database was implemented by a MapReduce-based database named HBase. The results indicated that the standard configuration of MySQL gives an acceptable performance for low or medium size databases. Nevertheless, tuning database parameters can greatly improve the performance and lead to very competitive runtimes. PMID:25202745

  2. Reconstruction Of Ancient Microbial Biodiversity And Metabolism From Fossil Travertine

    NASA Astrophysics Data System (ADS)

    Asangba, A. E.; Dong, Y.; Lindo, J.; Malhi, R. S.; Foubert, A.; Swennen, R.; Ozkul, M.; Fouke, B. W.

    2013-12-01

    Abstract: A virtually unexplored frontier in the study of life in extreme environments is the extraction of genetic and environmental information directly from microbes entombed in calcium carbonate (CaCO3) crystals in the geological record. An environmental metagenomic study has been initiated to systematically track the fate of microbial gene sequences, lipids and other 'biomarkers' during the fossilization and diagenesis of Pleistocene terrestrial hot-spring travertine in Yellowstone National Park and the Pamukkale region of Turkey. The Mammoth Hot Springs corridor of Yellowstone contains thermal springs (73oC) that are actively and rapidly (mm's/day) precipitating travertine, as well as a complete time-series of travertine deposits that extend back to the Pleistocene (~33 ka). Comparative samples have been collected from quarries in the Denizli Basin (700-900 ka). The goal is to quantitatively track the preservation of these biomolecules through geological time, across specific sequences of down-flow travertine depositional facies and use this information to accurately reconstruct the identity, activity and ecology of the ancient microbes and their hot-spring environments. Analyses are being conducted of biomarkers extracted from bulk rock (cm's in diameter) as well as micro-drilled samples (μm in diameter). Each travertine sample is first being quantitatively screened (optically and geochemically) to determine the extent and fabric of water-rock alteration. Biomass has been successfully extracted from 10 μm-diameter fluid inclusions in primary crystals, as well as inter-crystalline deposits, and is undergoing metagenomic sequencing.

  3. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.

    PubMed

    Bolten, Christoph J; Heinzle, Elmar; Müller, Rolf; Wittmann, Christoph

    2009-01-01

    In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of 0.23 d-(1), equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, 13C metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting C3 and C4 metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

  4. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803.

    PubMed

    Saha, Rajib; Verseput, Alex T; Berla, Bertram M; Mueller, Thomas J; Pakrasi, Himadri B; Maranas, Costas D

    2012-01-01

    Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models.

  5. Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803

    PubMed Central

    Saha, Rajib; Verseput, Alex T.; Berla, Bertram M.; Mueller, Thomas J.; Pakrasi, Himadri B.; Maranas, Costas D.

    2012-01-01

    Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models. PMID:23133581

  6. FMM: a web server for metabolic pathway reconstruction and comparative analysis.

    PubMed

    Chou, Chih-Hung; Chang, Wen-Chi; Chiu, Chih-Min; Huang, Chih-Chang; Huang, Hsien-Da

    2009-07-01

    Synthetic Biology, a multidisciplinary field, is growing rapidly. Improving the understanding of biological systems through mimicry and producing bio-orthogonal systems with new functions are two complementary pursuits in this field. A web server called FMM (From Metabolite to Metabolite) was developed for this purpose. FMM can reconstruct metabolic pathways form one metabolite to another metabolite among different species, based mainly on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and other integrated biological databases. Novel presentation for connecting different KEGG maps is newly provided. Both local and global graphical views of the metabolic pathways are designed. FMM has many applications in Synthetic Biology and Metabolic Engineering. For example, the reconstruction of metabolic pathways to produce valuable metabolites or secondary metabolites in bacteria or yeast is a promising strategy for drug production. FMM provides a highly effective way to elucidate the genes from which species should be cloned into those microorganisms based on FMM pathway comparative analysis. Consequently, FMM is an effective tool for applications in synthetic biology to produce both drugs and biofuels. This novel and innovative resource is now freely available at http://FMM.mbc.nctu.edu.tw/.

  7. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction

    PubMed Central

    Tabei, Yasuo; Yamanishi, Yoshihiro; Kotera, Masaaki

    2016-01-01

    Motivation: Metabolic pathways are an important class of molecular networks consisting of compounds, enzymes and their interactions. The understanding of global metabolic pathways is extremely important for various applications in ecology and pharmacology. However, large parts of metabolic pathways remain unknown, and most organism-specific pathways contain many missing enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reactions of the substrate–product pairs in the joint learning framework. The originality of the method lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We demonstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic compounds, and analyze the extracted chemical transformation patterns that provide insights into the characteristics and specificities of enzymes. The proposed method will open the door to both primary (central) and secondary metabolism in genomics research, increasing research productivity to tackle a wide variety of environmental and public health matters. Availability and Implementation: Contact: maskot@bio.titech.ac.jp PMID:27307627

  8. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments.

    PubMed

    Zhuang, Kai; Izallalen, Mounir; Mouser, Paula; Richter, Hanno; Risso, Carla; Mahadevan, Radhakrishnan; Lovley, Derek R

    2011-02-01

    The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.

  9. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  10. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.

    PubMed

    Aurich, Maike K; Thiele, Ines

    2016-01-01

    Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

  11. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    PubMed

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  12. A genome-scale map of expression for a mouse brain section obtained using voxelation

    PubMed Central

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Wei-Jun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2011-01-01

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed two-dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation, and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified, and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community. PMID:17504947

  13. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  14. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.

    PubMed

    Zhang, Peifen; Dreher, Kate; Karthikeyan, A; Chi, Anjo; Pujar, Anuradha; Caspi, Ron; Karp, Peter; Kirkup, Vanessa; Latendresse, Mario; Lee, Cynthia; Mueller, Lukas A; Muller, Robert; Rhee, Seung Yon

    2010-08-01

    Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org).

  15. Genome-scale evidence of the nematode-arthropod clade

    PubMed Central

    Dopazo, Hernán; Dopazo, Joaquín

    2005-01-01

    Background The issue of whether coelomates form a single clade, the Coelomata, or whether all animals that moult an exoskeleton (such as the coelomate arthropods and the pseudocoelomate nematodes) form a distinct clade, the Ecdysozoa, is the most puzzling issue in animal systematics and a major open-ended subject in evolutionary biology. Previous single-gene and genome-scale analyses designed to resolve the issue have produced contradictory results. Here we present the first genome-scale phylogenetic evidence that strongly supports the Ecdysozoa hypothesis. Results Through the most extensive phylogenetic analysis carried out to date, the complete genomes of 11 eukaryotic species have been analyzed in order to find homologous sequences derived from 18 human chromosomes. Phylogenetic analysis of datasets showing an increased adjustment to equal evolutionary rates between nematode and arthropod sequences produced a gradual change from support for Coelomata to support for Ecdysozoa. Transition between topologies occurred when fast-evolving sequences of Caenorhabditis elegans were removed. When chordate, nematode and arthropod sequences were constrained to fit equal evolutionary rates, the Ecdysozoa topology was statistically accepted whereas Coelomata was rejected. Conclusions The reliability of a monophyletic group clustering arthropods and nematodes was unequivocally accepted in datasets where traces of the long-branch attraction effect were removed. This is the first phylogenomic evidence to strongly support the 'moulting clade' hypothesis. PMID:15892869

  16. Genome-scale engineering for systems and synthetic biology

    PubMed Central

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847

  17. Genome-scale engineering for systems and synthetic biology.

    PubMed

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.

  18. Tools for metabolic engineering in Streptomyces

    PubMed Central

    Bekker, Valerie; Dodd, Amanda; Brady, Dean; Rumbold, Karl

    2014-01-01

    During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria. PMID:25482230

  19. Tools for metabolic engineering in Streptomyces.

    PubMed

    Bekker, Valerie; Dodd, Amanda; Brady, Dean; Rumbold, Karl

    2014-01-01

    During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria.

  20. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    PubMed Central

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-01-01

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205

  1. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

    PubMed

    Ghosh, Amit; Zhao, Huimin; Price, Nathan D

    2011-01-01

    Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment.

  2. Genome-scale modeling of the evolutionary path to C4 photosynthesis

    NASA Astrophysics Data System (ADS)

    Myers, Christopher R.; Bogart, Eli

    In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.

  3. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems

    PubMed Central

    Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale. PMID:28187207

  4. Graph methods for the investigation of metabolic networks in parasitology.

    PubMed

    Cottret, Ludovic; Jourdan, Fabien

    2010-08-01

    Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.

  5. Matching metabolites and reactions in different metabolic networks.

    PubMed

    Qi, Xinjian; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2014-10-01

    Comparing and identifying matching metabolites, reactions, and compartments in genome-scale reconstructed metabolic networks can be difficult due to inconsistent naming in different networks. In this paper, we propose metabolite and reaction matching techniques for matching metabolites and reactions in a given metabolic network to metabolites and reactions in another metabolic network. We employ a variety of techniques that include approximate string matching, similarity score functions and multi-step filtering techniques, all enhanced by a set of rules based on the underlying metabolic biochemistry. The proposed techniques are evaluated by an empirical study on four pairs of metabolic networks, and significant accuracy gains are achieved using the proposed metabolite and reaction identification techniques.

  6. Mechanism for DNA transposons to generate introns on genomic scales.

    PubMed

    Huff, Jason T; Zilberman, Daniel; Roy, Scott W

    2016-10-27

    The discovery of introns four decades ago was one of the most unexpected findings in molecular biology. Introns are sequences interrupting genes that must be removed as part of messenger RNA production. Genome sequencing projects have shown that most eukaryotic genes contain at least one intron, and frequently many. Comparison of these genomes reveals a history of long evolutionary periods during which few introns were gained, punctuated by episodes of rapid, extensive gain. However, although several detailed mechanisms for such episodic intron generation have been proposed, none has been empirically supported on a genomic scale. Here we show how short, non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from the gene sequence that is duplicated upon transposon insertion, allowing perfect splicing out of the RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between pre-existing nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases and prevalence of nucleosome-sized exons observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism that can plausibly account for episodes of rapid, extensive intron gain during eukaryotic evolution.

  7. Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry

    PubMed Central

    Zhou, Feng; Lu, Yu; Ficarro, Scott B.; Adelmant, Guillaume; Jiang, Wenyu; Luckey, C. John; Marto, Jarrod A.

    2013-01-01

    Advances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation. PMID:23863870

  8. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    PubMed

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.

  9. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology

    PubMed Central

    Milne, Caroline B.; Kim, Pan-Jun; Eddy, James A.; Price, Nathan D.

    2011-01-01

    Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens or in disease. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a transformative tool in biotechnology. As such, genome-scale models can provide a basis for rational genome-scale engineering and synthetic biology. PMID:19946878

  10. Tapping into Salmonella typhimurium LT2 genome in a quest to explore its therapeutic arsenal: A metabolic network modeling approach.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2017-02-01

    S. typhimurium, the classical broad-host-range serovar is a widely distributed cause of food-borne illness. Escalating antibiotic resistance and potential of conjugal transmission to other pathogens attributable to its broad spectrum host specificities have aided S. typhimurium to emerge as a global health threat. To keep pace with ever evolving bacterial defenses, there is dire need to restock the antibiotic pipeline. Genome scale metabolic reconstructions present immense possibilities to decipher physiological properties of an organism using constraint-based methods The systems-level approaches of genome scale metabolic networks interrogation open up new avenues of drug target identification against deadly infectious diseases. We performed flux balance analysis and minimization of metabolic adjustment studies of genome scale reconstruction model of S. typhimurium targeted at identifying large number of metabolites with a potential to be utilized as therapeutic drug targets. These constraint based approaches initially predict a set of genes indispensable to bacterial survival by performing gene knockout studies which are then prioritized through a multistep process. Metabolites involved in l-rhamnose biosynthesis, peptidoglycan biosynthesis, fatty acid biosynthesis, and folate biosynthesis pathways were prioritized as candidate drug targets. This study provides a general therapeutic approach which can be effectively applied to other pathogens as well.

  11. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill.

    PubMed

    Dombrowski, Nina; Donaho, John A; Gutierrez, Tony; Seitz, Kiley W; Teske, Andreas P; Baker, Brett J

    2016-05-09

    The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills(1), changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures(2-4). Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons(2,5,6), but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community.

  12. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network

    PubMed Central

    Fan, Pengxiang; Miller, Abigail M.; Schilmiller, Anthony L.; Liu, Xiaoxiao; Ofner, Itai; Jones, A. Daniel; Zamir, Dani; Last, Robert L.

    2016-01-01

    Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330─or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)─and Solyc04g012020 (Sl-ASAT2). These enzymes were used—in concert with two previously identified BAHD acyltransferases—to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated and wild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes. PMID:26715757

  13. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia

    PubMed Central

    Çakιr, Tunahan; Alsan, Selma; Saybaşιlι, Hale; Akιn, Ata; Ülgen, Kutlu Ö

    2007-01-01

    Background It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. Model The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. Results The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate

  14. Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the "Fleming" strain, and actinobacteria.

    PubMed

    Rokem, J Stefan; Vongsangnak, Wanwipa; Nielsen, Jens

    2011-11-01

    Putative gene predictions of the Gram positive actinobacteria Micrococcus luteus (NCTC 2665, "Fleming strain") was used to construct a genome scale reconstruction of the metabolic network for this organism. The metabolic network comprises 586 reactions and 551 metabolites, and accounts for 21% of the genes in the genome. The reconstruction was based on the annotated genome and available biochemical information. M. luteus has one of the smallest genomes of actinobacteria with a circular chromosome of 2,501,097 base pairs and a GC content of 73%. The metabolic pathways required for biomass production in silico were determined based on earlier models of actinobacteria. The in silico network is used for metabolic comparison of M. luteus with other actinomycetes, and hence provides useful information for possible future biotechnological exploitation of this organism, e.g., for production of biofuels.

  15. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions.

    PubMed

    Blais, Edik M; Rawls, Kristopher D; Dougherty, Bonnie V; Li, Zhuo I; Kolling, Glynis L; Ye, Ping; Wallqvist, Anders; Papin, Jason A

    2017-02-08

    The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications.

  16. Hands-on metabolism analysis of complex biochemical networks using elementary flux modes.

    PubMed

    Schäuble, Sascha; Schuster, Stefan; Kaleta, Christoph

    2011-01-01

    The aim of this chapter is to discuss the basic principles and reasoning behind elementary flux mode analysis (EFM analysis)--an important tool for the analysis of metabolic networks. We begin with a short introduction into metabolic pathway analysis and subsequently outline in detail fundamentals of EFM analysis by way of a small example network. We discuss issues arising in the reconstruction of metabolic networks required for EFM analysis and how they can be circumvented. Subsequently, we analyze a more elaborate example network representing photosynthate metabolism. Finally, we give an overview of applications of EFM analysis in biotechnology and other fields and discuss issues arising when applying methods from metabolic pathway analysis to genome-scale metabolic networks.

  17. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos

    SciTech Connect

    Hay, J.; Schwender, J.

    2011-08-01

    Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.

  18. Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale.

    PubMed

    Wang, Guang-Zhong; Hickey, Stephanie L; Shi, Lei; Huang, Hung-Chung; Nakashe, Prachi; Koike, Nobuya; Tu, Benjamin P; Takahashi, Joseph S; Konopka, Genevieve

    2015-12-01

    Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.

  19. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    PubMed

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.

  20. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133

    PubMed Central

    Hur, Wonhee; Ryu, Jae Yong; Kim, Hyun Uk; Hong, Sung Woo; Lee, Eun Byul; Lee, Sang Yup; Yoon, Seung Kew

    2017-01-01

    Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were identified using integrative systems analysis, and these characteristics could be potential cures for the resistance of liver cancer cells to anticancer treatments. PMID:28367990

  1. Recon2Neo4j: applying graph database technologies for managing comprehensive genome-scale networks.

    PubMed

    Balaur, Irina; Mazein, Alexander; Saqi, Mansoor; Lysenko, Artem; Rawlings, Christopher J; Auffray, Charles

    2016-12-19

    The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing.

  2. Deep Genomic-Scale Analyses of the Metazoa Reject Coelomata: Evidence from Single- and Multigene Families Analyzed Under a Supertree and Supermatrix Paradigm

    PubMed Central

    Holton, Thérèse A.; Pisani, Davide

    2010-01-01

    Solving the phylogeny of the animals with bilateral symmetry has proven difficult. Morphological studies have suggested a variety of alternative hypotheses, of which, Hyman’s Coelomata hypothesis has become the most established. Studies based on 18S rRNA have failed to endorse Coelomata, supporting instead the rearrangement of the protostomes into two new clades: the Lophotrochozoa (including, e.g., the molluscs and the annelids) and the Ecdysozoa (including the Panarthropoda and most pseudocoelomates, such as the nematodes and priapulids). Support for this new animal phylogeny has been attained from expressed sequence tag studies, although these generally have a limited gene sampling. In contrast, deep genomic-scale analyses have often supported Coelomata. However, these studies are problematic due to their limited taxonomic sampling, which could exacerbate tree reconstruction artifacts. Here, we address both of these sampling limitations; we study the effect of long-branch attraction (LBA) in deep genomic-scale analyses and provide convincing evidence, using both single- and multigene families, that Coelomata is an artifact. We show that optimal outgroup selection is key in avoiding LBA and identify the use of inadequate outgroups as the reason previous deep genomic-scale analyses found strong support for Coelomata. PMID:20624736

  3. Metabolic pathways in the post-genome era.

    PubMed

    Papin, Jason A; Price, Nathan D; Wiback, Sharon J; Fell, David A; Palsson, Bernhard O

    2003-05-01

    Metabolic pathways are a central paradigm in biology. Historically, they have been defined on the basis of their step-by-step discovery. However, the genome-scale metabolic networks now being reconstructed from annotation of genome sequences demand new network-based definitions of pathways to facilitate analysis of their capabilities and functions, such as metabolic versatility and robustness, and optimal growth rates. This demand has led to the development of a new mathematically based analysis of complex, metabolic networks that enumerates all their unique pathways that take into account all requirements for cofactors and byproducts. Applications include the design of engineered biological systems, the generation of testable hypotheses regarding network structure and function, and the elucidation of properties that can not be described by simple descriptions of individual components (such as product yield, network robustness, correlated reactions and predictions of minimal media). Recently, these properties have also been studied in genome-scale networks. Thus, network-based pathways are emerging as an important paradigm for analysis of biological systems.

  4. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos.

    PubMed

    Hay, Jordan; Schwender, Jörg

    2011-08-01

    Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.

  5. Development of Computational Tools for Metabolic Model Curation, Flux Elucidation and Strain Design

    SciTech Connect

    Maranas, Costas D

    2012-05-21

    An overarching goal of the Department of Energy mission is the efficient deployment and engineering of microbial and plant systems to enable biomass conversion in pursuit of high energy density liquid biofuels. This has spurred the pace at which new organisms are sequenced and annotated. This torrent of genomic information has opened the door to understanding metabolism in not just skeletal pathways and a handful of microorganisms but for truly genome-scale reconstructions derived for hundreds of microbes and plants. Understanding and redirecting metabolism is crucial because metabolic fluxes are unique descriptors of cellular physiology that directly assess the current cellular state and quantify the effect of genetic engineering interventions. At the same time, however, trying to keep pace with the rate of genomic data generation has ushered in a number of modeling and computational challenges related to (i) the automated assembly, testing and correction of genome-scale metabolic models, (ii) metabolic flux elucidation using labeled isotopes, and (iii) comprehensive identification of engineering interventions leading to the desired metabolism redirection.

  6. Lung and metabolic development in mammals: contribution to the reconstruction of the marsupial and eutherian morphotype.

    PubMed

    Szdzuy, Kirsten; Zeller, Ulrich

    2009-09-15

    Marsupials represent only 6% of all living mammals. Marsupialia and Placentalia are distinguished mainly by their modes of reproduction. In particular, the differences in the stage of development of the neonates may be one explanation for the divergent evolutionary success. In this respect one important question is whether the survivability of the neonate depends on the degree of maturation of the respiratory system relative to the metabolic capacity at the time of birth. Therefore, this review highlights the differences in lung morphology and metabolic development of extant Marsupialia and Placentalia. The Marsupial neonate is born with a low birth weight and is highly immature. The neonatal lung is characterized by large terminal sacs, a poorly developed bronchial system and late formation of alveoli. Marsupialia have a low metabolic rate at birth and attain adult metabolic rate and thermoregulatory capacity late in postnatal development. In contrast, the eutherian neonate is born with a relative high birth weight and is always more mature than marsupial neonates. The neonatal lung has small terminal sacs, the bronchial system is well developed and the formation of alveoli begins few days after birth. Placentalia have a high metabolic rate at birth and attain adult metabolic rate and thermoregulatory capacity early in postnatal development. The differences in the developmental degree of the newborn lung between Marsupialia and Placentalia have consequences for their metabolic and thermoregulatory capacity. These differences could be advantageous for Placentalia in the changing environments in which they evolved.

  7. Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic Costs of Enzyme Production[W

    PubMed Central

    Arnold, Anne; Nikoloski, Zoran

    2014-01-01

    Large-scale modeling of plant metabolism provides the possibility to compare and contrast different cellular and environmental scenarios with the ultimate aim of identifying the components underlying the respective plant behavior. The existing models of Arabidopsis (Arabidopsis thaliana) are top-down assembled, whereby the starting point is the annotated genome, in particular, the metabolic genes. Hence, dead-end metabolites and blocked reactions can arise that are subsequently addressed by using gap-filling algorithms in combination with species-unspecific genes. Here, we present a bottom-up-assembled, large-scale model that relies solely on Arabidopsis-specific annotations and results in the inclusion of only manually curated reactions. While the existing models are largely condition unspecific by employing a single biomass reaction, we provide three biomass compositions that pertain to realistic and frequently examined scenarios: carbon-limiting, nitrogen-limiting, and optimal growth conditions. The comparative analysis indicates that the proposed Arabidopsis core model exhibits comparable efficiency in carbon utilization and flexibility to the existing network alternatives. Moreover, the model is utilized to quantify the energy demand of amino acid and enzyme de novo synthesis in photoautotrophic growth conditions. Illustrated by the case of the most abundant protein in the world, Rubisco, we determine its synthesis cost in terms of ATP requirements. This, in turn, allows us to explore the tradeoff between protein synthesis and growth in Arabidopsis. Altogether, the model provides a solid basis for completely species-specific integration of high-throughput data, such as gene expression levels, and for condition-specific investigations of in silico metabolic engineering strategies. PMID:24808102

  8. The role of integrated databases in microbial genome sequence analysis and metabolic reconstruction

    SciTech Connect

    Gaasterland, T., Maltsev, N., Overbeek, R.

    1997-02-01

    This paper provides an overview of the PUMA system which provides access to data about metabolic pathways, enzymes, compounds, organisms, encoded activity, and assay condition information for enzymes in particular organisms and multiple sequence alignments.

  9. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology.

    PubMed

    Milne, Caroline B; Kim, Pan-Jun; Eddy, James A; Price, Nathan D

    2009-12-01

    Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a trans-formative tool in biotechnology.

  10. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production

    PubMed Central

    2013-01-01

    Background Microalgae are gaining importance as sustainable production hosts in the fields of biotechnology and bioenergy. A robust biomass accumulating strain of the genus Monoraphidium (SAG 48.87) was investigated in this work as a potential feedstock for biofuel production. The genome was sequenced, annotated, and key enzymes for triacylglycerol formation were elucidated. Results Monoraphidium neglectum was identified as an oleaginous species with favourable growth characteristics as well as a high potential for crude oil production, based on neutral lipid contents of approximately 21% (dry weight) under nitrogen starvation, composed of predominantly C18:1 and C16:0 fatty acids. Further characterization revealed growth in a relatively wide pH range and salt concentrations of up to 1.0% NaCl, in which the cells exhibited larger structures. This first full genome sequencing of a member of the Selenastraceae revealed a diploid, approximately 68 Mbp genome with a G + C content of 64.7%. The circular chloroplast genome was assembled to a 135,362 bp single contig, containing 67 protein-coding genes. The assembly of the mitochondrial genome resulted in two contigs with an approximate total size of 94 kb, the largest known mitochondrial genome within algae. 16,761 protein-coding genes were assigned to the nuclear genome. Comparison of gene sets with respect to functional categories revealed a higher gene number assigned to the category “carbohydrate metabolic process” and in “fatty acid biosynthetic process” in M. neglectum when compared to Chlamydomonas reinhardtii and Nannochloropsis gaditana, indicating a higher metabolic diversity for applications in carbohydrate conversions of biotechnological relevance. Conclusions The genome of M. neglectum, as well as the metabolic reconstruction of crucial lipid pathways, provides new insights into the diversity of the lipid metabolism in microalgae. The results of this work provide a platform to encourage the

  11. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer

    PubMed Central

    Keller, Andreas H.; Schleinitz, Kathleen M.; Starke, Robert; Bertilsson, Stefan; Vogt, Carsten; Kleinsteuber, Sabine

    2015-01-01

    The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently

  12. Linkage of organic anion transporter-1 to metabolic pathways through integrated "omics"-driven network and functional analysis.

    PubMed

    Ahn, Sun-Young; Jamshidi, Neema; Mo, Monica L; Wu, Wei; Eraly, Satish A; Dnyanmote, Ankur; Bush, Kevin T; Gallegos, Tom F; Sweet, Douglas H; Palsson, Bernhard Ø; Nigam, Sanjay K

    2011-09-09

    The main kidney transporter of many commonly prescribed drugs (e.g. penicillins, diuretics, antivirals, methotrexate, and non-steroidal anti-inflammatory drugs) is organic anion transporter-1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478). Targeted metabolomics in knockouts have shown that OAT1 mediates the secretion or reabsorption of many important metabolites, including intermediates in carbohydrate, fatty acid, and amino acid metabolism. This observation raises the possibility that OAT1 helps regulate broader metabolic activities. We therefore examined the potential roles of OAT1 in metabolic pathways using Recon 1, a functionally tested genome-scale reconstruction of human metabolism. A computational approach was used to analyze in vivo metabolomic as well as transcriptomic data from wild-type and OAT1 knock-out animals, resulting in the implication of several metabolic pathways, including the citric acid cycle, polyamine, and fatty acid metabolism. Validation by in vitro and ex vivo analysis using Xenopus oocyte, cell culture, and kidney tissue assays demonstrated interactions between OAT1 and key intermediates in these metabolic pathways, including previously unknown substrates, such as polyamines (e.g. spermine and spermidine). A genome-scale metabolic network reconstruction generated some experimentally supported predictions for metabolic pathways linked to OAT1-related transport. The data support the possibility that the SLC22 and other families of transporters, known to be expressed in many tissues and primarily known for drug and toxin clearance, are integral to a number of endogenous pathways and may be involved in a larger remote sensing and signaling system (Ahn, S. Y., and Nigam, S. K. (2009) Mol. Pharmacol. 76, 481-490, and Wu, W., Dnyanmote, A. V., and Nigam, S. K. (2011) Mol. Pharmacol. 79, 795-805). Drugs may alter metabolism by

  13. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    PubMed Central

    Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M.; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne

    2017-01-01

    Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to

  14. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    PubMed Central

    2012-01-01

    Background Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models), stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity). Description MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones. Conclusions The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries). MetRxn is hosted on a web-based platform that uses relational database models (MySQL). PMID:22233419

  15. Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1

    PubMed Central

    Lee, Ji-Yoon

    2015-01-01

    Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions. PMID:26761899

  16. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance.

  17. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria

    PubMed Central

    2013-01-01

    Background Genome scale annotation of regulatory interactions and reconstruction of regulatory networks are the crucial problems in bacterial genomics. The Lactobacillales order of bacteria collates various microorganisms having a large economic impact, including both human and animal pathogens and strains used in the food industry. Nonetheless, no systematic genome-wide analysis of transcriptional regulation has been previously made for this taxonomic group. Results A comparative genomics approach was used for reconstruction of transcriptional regulatory networks in 30 selected genomes of lactic acid bacteria. The inferred networks comprise regulons for 102 orthologous transcription factors (TFs), including 47 novel regulons for previously uncharacterized TFs. Numerous differences between regulatory networks of the Streptococcaceae and Lactobacillaceae groups were described on several levels. The two groups are characterized by substantially different sets of TFs encoded in their genomes. Content of the inferred regulons and structure of their cognate TF binding motifs differ for many orthologous TFs between the two groups. Multiple cases of non-orthologous displacements of TFs that control specific metabolic pathways were reported. Conclusions The reconstructed regulatory networks substantially expand the existing knowledge of transcriptional regulation in lactic acid bacteria. In each of 30 studied genomes the obtained regulatory network contains on average 36 TFs and 250 target genes that are mostly involved in carbohydrate metabolism, stress response, metal homeostasis and amino acids biosynthesis. The inferred networks can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. All reconstructed regulons are captured within the Streptococcaceae and Lactobacillaceae collections in the RegPrecise database (http://regprecise.lbl.gov). PMID:23398941

  18. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

    PubMed Central

    Zhang, Limin; Xie, Cen; Nichols, Robert G.; Chan, Siu H. J.; Jiang, Changtao; Hao, Ruixin; Smith, Philip B.; Cai, Jingwei; Simons, Margaret N.; Hatzakis, Emmanuel; Maranas, Costas D.; Gonzalez, Frank J.

    2016-01-01

    ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host

  19. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    NASA Astrophysics Data System (ADS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  20. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    SciTech Connect

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-02-28

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  1. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  2. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    NASA Astrophysics Data System (ADS)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  3. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  4. Evolution of Mitochondria Reconstructed from the Energy Metabolism of Living Bacteria

    PubMed Central

    Degli Esposti, Mauro; Chouaia, Bessem; Comandatore, Francesco; Crotti, Elena; Sassera, Davide; Lievens, Patricia Marie-Jeanne; Daffonchio, Daniele; Bandi, Claudio

    2014-01-01

    The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria. PMID:24804722

  5. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization

    PubMed Central

    Pinchuk, Grigory E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, James H.; Fredrickson, Jim K.; Beliaev, Alexander S.

    2009-01-01

    The ability to use lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal-reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial d- or l-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. By using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO_1522–SO_1518) containing lactate permease and candidate genes for both d- and l-lactate dehydrogenase enzymes. The predicted d-LDH gene (dld-II, SO_1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted l-LDH is encoded by 3 genes with previously unknown functions (lldEGF, SO_1520–SO_1518). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dld-II and lldEFG encode fully functional d-and l-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is a previously uncharacterized example of a multisubunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld-II in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism. PMID:19196979

  6. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals previously uncharacterized machinery for lactate utilization

    SciTech Connect

    Pinchuk, Grigoriy E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, J.; Fredrickson, Jim K.; Beliaev, Alex S.

    2009-02-24

    The ability to utilize lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. Using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO1522-SO1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dldD, SO1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by three genes with previously unknown functions (lldEGF, SO1520-19-18). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dldD and lldEFG encode fully functional D-and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is the first described example of a multi-subunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism.

  7. Genome-scale approaches to the epigenetics of common human disease.

    PubMed

    Feinberg, Andrew P

    2010-01-01

    Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology.

  8. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    SciTech Connect

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  9. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  10. Metabolic pathways reconstruction by frequency and amplitude response to forced glycolytic oscillations in yeast.

    PubMed

    Zimmerman, William B

    2005-10-05

    The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima. Application of linear systems theory, however, identified two natural resonant frequencies that, when excited by external forced oscillations of the same frequency, result in the expression of many harmonics in the Fourier spectra, that is, information-rich experiments. A single such information-rich experiment at one of the resonant frequencies was sufficient to break away from the local minima to find the optimum kinetics parameter estimates. The resonant frequencies themselves represent oscillation modes in glycolysis akin to those previously observed. Furthermore, operation of the bioreactor with large amplitude oscillations of glucose feed (25%) leads to enhanced ethanol average yield by 1.6% at the resonant frequency.

  11. Personalized Prediction of Proliferation Rates and Metabolic Liabilities in Cancer Biopsies.

    PubMed

    Diener, Christian; Resendis-Antonio, Osbaldo

    2016-01-01

    Cancer is a heterogeneous disease and its genetic and metabolic mechanism may manifest differently in each patient. This creates a demand for studies that can characterize phenotypic traits of cancer on a per-sample basis. Combining two large data sets, the NCI60 cancer cell line panel, and The Cancer Genome Atlas, we used a linear interaction model to predict proliferation rates for more than 12,000 cancer samples across 33 different cancers from The Cancer Genome Atlas. The predicted proliferation rates are associated with patient survival and cancer stage and show a strong heterogeneity in proliferative capacity within and across different cancer panels. We also show how the obtained proliferation rates can be incorporated into genome-scale metabolic reconstructions to obtain the metabolic fluxes for more than 3000 cancer samples that identified specific metabolic liabilities for nine cancer panels. Here we found that affected pathways coincided with the literature, with pentose phosphate pathway, retinol, and branched-chain amino acid metabolism being the most panel-specific alterations and fatty acid metabolism and ROS detoxification showing homogeneous metabolic activities across all cancer panels. The presented strategy has potential applications in personalized medicine since it can leverage gene expression signatures for cell line based prediction of additional metabolic properties which might help in constraining personalized metabolic models and improve the identification of metabolic alterations in cancer for individual patients.

  12. Personalized Prediction of Proliferation Rates and Metabolic Liabilities in Cancer Biopsies

    PubMed Central

    Diener, Christian; Resendis-Antonio, Osbaldo

    2016-01-01

    Cancer is a heterogeneous disease and its genetic and metabolic mechanism may manifest differently in each patient. This creates a demand for studies that can characterize phenotypic traits of cancer on a per-sample basis. Combining two large data sets, the NCI60 cancer cell line panel, and The Cancer Genome Atlas, we used a linear interaction model to predict proliferation rates for more than 12,000 cancer samples across 33 different cancers from The Cancer Genome Atlas. The predicted proliferation rates are associated with patient survival and cancer stage and show a strong heterogeneity in proliferative capacity within and across different cancer panels. We also show how the obtained proliferation rates can be incorporated into genome-scale metabolic reconstructions to obtain the metabolic fluxes for more than 3000 cancer samples that identified specific metabolic liabilities for nine cancer panels. Here we found that affected pathways coincided with the literature, with pentose phosphate pathway, retinol, and branched-chain amino acid metabolism being the most panel-specific alterations and fatty acid metabolism and ROS detoxification showing homogeneous metabolic activities across all cancer panels. The presented strategy has potential applications in personalized medicine since it can leverage gene expression signatures for cell line based prediction of additional metabolic properties which might help in constraining personalized metabolic models and improve the identification of metabolic alterations in cancer for individual patients. PMID:28082911

  13. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov.

    PubMed

    Breider, Sven; Scheuner, Carmen; Schumann, Peter; Fiebig, Anne; Petersen, Jörn; Pradella, Silke; Klenk, Hans-Peter; Brinkhoff, Thorsten; Göker, Markus

    2014-01-01

    Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus, and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov., and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.

  14. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2016-06-01

    The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity.

  15. Improved Metabolic Models for E. coli and Mycoplasma genitalium from GlobalFit, an Algorithm That Simultaneously Matches Growth and Non-Growth Data Sets

    PubMed Central

    Hartleb, Daniel

    2016-01-01

    Constraint-based metabolic modeling methods such as Flux Balance Analysis (FBA) are routinely used to predict the effects of genetic changes and to design strains with desired metabolic properties. The major bottleneck in modeling genome-scale metabolic systems is the establishment and manual curation of reliable stoichiometric models. Initial reconstructions are typically refined through comparisons to experimental growth data from gene knockouts or nutrient environments. Existing methods iteratively correct one erroneous model prediction at a time, resulting in accumulating network changes that are often not globally optimal. We present GlobalFit, a bi-level optimization method that finds a globally optimal network, by identifying the minimal set of network changes needed to correctly predict all experimentally observed growth and non-growth cases simultaneously. When applied to the genome-scale metabolic model of Mycoplasma genitalium, GlobalFit decreases unexplained gene knockout phenotypes by 79%, increasing accuracy from 87.3% (according to the current state-of-the-art) to 97.3%. While currently available computers do not allow a global optimization of the much larger metabolic network of E. coli, the main strengths of GlobalFit are already played out when considering only one growth and one non-growth case simultaneously. Application of a corresponding strategy halves the number of unexplained cases for the already highly curated E. coli model, increasing accuracy from 90.8% to 95.4%. PMID:27482704

  16. Ligament reconstruction.

    PubMed

    Glickel, Steven Z; Gupta, Salil

    2006-05-01

    Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.

  17. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  18. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  19. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium

    PubMed Central

    2013-01-01

    Background Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. Results De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions. The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. Conclusion Network analysis revealed the presence of hubs in both

  20. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    PubMed Central

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  1. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments

    PubMed Central

    Al-Shahrour, Fátima; Minguez, Pablo; Tárraga, Joaquín; Montaner, David; Alloza, Eva; Vaquerizas, Juan M.; Conde, Lucía; Blaschke, Christian; Vera, Javier; Dopazo, Joaquín

    2006-01-01

    We present a new version of Babelomics, a complete suite of web tools for functional analysis of genome-scale experiments, with new and improved tools. New functionally relevant terms have been included such as CisRed motifs or bioentities obtained by text-mining procedures. An improved indexing has considerably speeded up several of the modules. An improved version of the FatiScan method for studying the coordinate behaviour of groups of functionally related genes is presented, along with a similar tool, the Gene Set Enrichment Analysis. Babelomics is now more oriented to test systems biology inspired hypotheses. Babelomics can be found at . PMID:16845052

  2. Rapid prototyping of microbial cell factories via genome-scale engineering.

    PubMed

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories.

  3. Genome-scale CRISPR-Cas9 knockout screening in human cells.

    PubMed

    Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelsen, Tarjei S; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng

    2014-01-03

    The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

  4. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray.

    PubMed

    Ang, S; Lee, C Z; Peck, K; Sindici, M; Matrubutham, U; Gleeson, M A; Wang, J T

    2001-03-01

    To understand the RNA expression in response to acid stress of Helicobacter pylori in genomic scale, a microarray membrane containing 1,534 open reading frames (ORFs) from strain 26695 was used. Total RNAs of H. pylori under growth conditions of pH 7.2 and 5.5 were extracted, reverse transcribed into cDNA, and labeled with biotin. Each microarray membrane was hybridized with cDNA probe from the same strain under two different pH conditions and developed by a catalyzed reporter deposition method. Gene expression of all ORFs was measured by densitometry. Among the 1,534 ORFs, 53 ORFs were highly expressed (> or = 30% of rRNA control in densitometry ratios). There were 445 ORFs which were stably expressed (<30% of rRNA in densitometry) under both pH conditions without significant variation. A total of 80 ORFs had significantly increased expression levels at low pH, while expressions of 4 ORFs were suppressed under acidic condition. The remaining 952 ORFs were not detectable under either pH condition. These data were highly reproducible and comparable to those obtained by the RNA slot blot method. Our results suggest that microarray can be used in monitoring prokaryotic gene expression in genomic scale.

  5. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data.

    PubMed

    Spatafora, Joseph W; Chang, Ying; Benny, Gerald L; Lazarus, Katy; Smith, Matthew E; Berbee, Mary L; Bonito, Gregory; Corradi, Nicolas; Grigoriev, Igor; Gryganskyi, Andrii; James, Timothy Y; O'Donnell, Kerry; Roberson, Robert W; Taylor, Thomas N; Uehling, Jessie; Vilgalys, Rytas; White, Merlin M; Stajich, Jason E

    2016-09-01

    Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.

  6. DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis.

    PubMed

    Li, Jun; Wei, Hairong; Zhao, Patrick Xuechun

    2013-01-01

    Analysis of genome-scale gene networks (GNs) using large-scale gene expression data provides unprecedented opportunities to uncover gene interactions and regulatory networks involved in various biological processes and developmental programs, leading to accelerated discovery of novel knowledge of various biological processes, pathways and systems. The widely used context likelihood of relatedness (CLR) method based on the mutual information (MI) for scoring the similarity of gene pairs is one of the accurate methods currently available for inferring GNs. However, the MI-based reverse engineering method can achieve satisfactory performance only when sample size exceeds one hundred. This in turn limits their applications for GN construction from expression data set with small sample size. We developed a high performance web server, DeGNServer, to reverse engineering and decipher genome-scale networks. It extended the CLR method by integration of different correlation methods that are suitable for analyzing data sets ranging from moderate to large scale such as expression profiles with tens to hundreds of microarray hybridizations, and implemented all analysis algorithms using parallel computing techniques to infer gene-gene association at extraordinary speed. In addition, we integrated the SNBuilder and GeNa algorithms for subnetwork extraction and functional module discovery. DeGNServer is publicly and freely available online.

  7. Informed Consent in Genome-Scale Research: What Do Prospective Participants Think?

    PubMed Central

    Trinidad, Susan Brown; Fullerton, Stephanie M.; Bares, Julie M.; Jarvik, Gail P.; Larson, Eric B.; Burke, Wylie

    2012-01-01

    Background To promote effective genome-scale research, genomic and clinical data for large population samples must be collected, stored, and shared. Methods We conducted focus groups with 45 members of a Seattle-based integrated healthcare delivery system to learn about their views and expectations for informed consent in genome-scale studies. Results Participants viewed information about study purpose, aims, and how and by whom study data could be used to be at least as important as information about risks and possible harms. They generally supported a tiered consent approach for specific issues, including research purpose, data sharing, and access to individual research results. Participants expressed a continuum of opinions with respect to the acceptability of broad consent, ranging from completely acceptable to completely unacceptable. Older participants were more likely to view the consent process in relational – rather than contractual – terms, compared with younger participants. The majority of participants endorsed seeking study subjects’ permission regarding material changes in study purpose and data sharing. Conclusions Although this study sample was limited in terms of racial and socioeconomic diversity, our results suggest a strong positive interest in genomic research on the part of at least some prospective participants and indicate a need for increased public engagement, as well as strategies for ongoing communication with study participants. PMID:23493836

  8. The feasibility of genome-scale biological network inference using Graphics Processing Units.

    PubMed

    Thiagarajan, Raghuram; Alavi, Amir; Podichetty, Jagdeep T; Bazil, Jason N; Beard, Daniel A

    2017-01-01

    Systems research spanning fields from biology to finance involves the identification of models to represent the underpinnings of complex systems. Formal approaches for data-driven identification of network interactions include statistical inference-based approaches and methods to identify dynamical systems models that are capable of fitting multivariate data. Availability of large data sets and so-called 'big data' applications in biology present great opportunities as well as major challenges for systems identification/reverse engineering applications. For example, both inverse identification and forward simulations of genome-scale gene regulatory network models pose compute-intensive problems. This issue is addressed here by combining the processing power of Graphics Processing Units (GPUs) and a parallel reverse engineering algorithm for inference of regulatory networks. It is shown that, given an appropriate data set, information on genome-scale networks (systems of 1000 or more state variables) can be inferred using a reverse-engineering algorithm in a matter of days on a small-scale modern GPU cluster.

  9. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress

    PubMed Central

    Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190

  10. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis).

    PubMed

    Reuscher, Stefan; Fukao, Yoichiro; Morimoto, Reina; Otagaki, Shungo; Oikawa, Akira; Isuzugawa, Kanji; Shiratake, Katsuhiro

    2016-03-01

    During their 6 month development, pear (Pyrus communis) fruits undergo drastic changes in their morphology and their chemical composition. To gain a better understanding of the metabolic pathways and transport processes active during fruit development, we performed a time-course analysis using mass spectrometry (MS)-based protein identification and quantification of fruit flesh tissues. After pre-fractionation of the samples, 2,841 proteins were identified. A principal component analysis (PCA) separated the samples from seven developmental stages into three distinct clusters representing the early, mid and late developmental phase. Over-representation analysis of proteins characteristic of each developmental phase revealed both expected and novel biological processes relevant at each phase. A high abundance of aquaporins was detected in samples from fruits in the cell expansion stage. We were able quantitatively to reconstruct basic metabolic pathways such as the tricarboxylic acid (TCA) cycle, which indicates sufficient coverage to reconstruct other metabolic pathways. Most of the enzymes that presumably contribute to sugar accumulation in pear fruits could be identified. Our data indicate that invertases do not play a major role in the sugar conversions in developing pear fruits. Rather, sucrose might be broken down by sucrose synthases. Further focusing on sugar transporters, we identified several putative sugar transporters from diverse families which showed developmental regulation. In conclusion, our data set comprehensively describes the proteome of developing pear fruits and provides novel insights about sugar accumulation as well as candidate genes for key reactions and transport steps.

  11. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2).

    PubMed

    Kim, Minsuk; Sang Yi, Jeong; Kim, Joonwon; Kim, Ji-Nu; Kim, Min Woo; Kim, Byung-Gee

    2014-09-01

    Streptomycetes are industrially and pharmaceutically important bacteria that produce a variety of secondary metabolites including antibiotics. Streptomycetes have a complex metabolic network responsible for the production of secondary metabolites and the utilization of organic residues present in soil. In this study, we reconstructed a high-quality metabolic model for Streptomyces coelicolor A3(2), designated iMK1208, in order to understand and engineer the metabolism of this model species. In comparison to iIB711, the previous metabolic model for S. coelicolor, the predictive power of iMK1208 was enhanced by the recent insights that enabled the incorporation of an updated biomass equation, stoichiometric matrix, and energetic parameters. iMK1208 was validated by comparing predictions with the experimental data for growth capability in various growth media. Furthermore, we applied a strain-design algorithm, flux scanning based on enforced objective flux (FSEOF), to iMK1208 for actinorhodin overproduction. FSEOF results identified not only previously known gene overexpression targets such as actII-ORF4 and acetyl-CoA carboxylase, but also novel targets such as branched-chain α-keto acid dehydrogenase (BCDH). We constructed and evaluated the BCDH overexpression mutant, which showed a 52-fold increase in actinorhodin production, validating the prediction power of iMK1208. Hence iMK1208 was shown to be a useful and valuable framework for studying the biotechnologically important Streptomyces species using the principles of systems biology and metabolic engineering.

  12. Modeling Rice Metabolism: From Elucidating Environmental Effects on Cellular Phenotype to Guiding Crop Improvement

    PubMed Central

    Lakshmanan, Meiyappan; Cheung, C. Y. Maurice; Mohanty, Bijayalaxmi; Lee, Dong-Yup

    2016-01-01

    Crop productivity is severely limited by various biotic and abiotic stresses. Thus, it is highly needed to understand the underlying mechanisms of environmental stress response and tolerance in plants, which could be addressed by systems biology approach. To this end, high-throughput omics profiling and in silico modeling can be considered to explore the environmental effects on phenotypic states and metabolic behaviors of rice crops at the systems level. Especially, the advent of constraint-based metabolic reconstruction and analysis paves a way to characterize the plant cellular physiology under various stresses by combining the mathematical network models with multi-omics data. Rice metabolic networks have been reconstructed since 2013 and currently six such networks are available, where five are at genome-scale. Since their publication, these models have been utilized to systematically elucidate the rice abiotic stress responses and identify agronomic traits for crop improvement. In this review, we summarize the current status of the existing rice metabolic networks and models with their applications. Furthermore, we also highlight future directions of rice modeling studies, particularly stressing how these models can be used to contextualize the affluent multi-omics data that are readily available in the public domain. Overall, we envisage a number of studies in the future, exploiting the available metabolic models to enhance the yield and quality of rice and other food crops. PMID:27965696

  13. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  14. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  15. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  16. MDI-GPU: accelerating integrative modelling for genomic-scale data using GP-GPU computing.

    PubMed

    Mason, Samuel A; Sayyid, Faiz; Kirk, Paul D W; Starr, Colin; Wild, David L

    2016-03-01

    The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct--but often complementary--information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.

  17. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    SciTech Connect

    Mader, Kevin; Stampanoni, Marco

    2016-01-28

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  18. Genome-scale functional profiling of the mammalian AP-1 signaling pathway

    PubMed Central

    Chanda, Sumit K.; White, Suhaila; Orth, Anthony P.; Reisdorph, Richard; Miraglia, Loren; Thomas, Russell S.; DeJesus, Paul; Mason, Daniel E.; Huang, Qihong; Vega, Raquel; Yu, De-Hua; Nelson, Christian G.; Smith, Brendan M.; Terry, Robert; Linford, Alicia S.; Yu, Yang; Chirn, Gung-wei; Song, Chuanzheng; Labow, Mark A.; Cohen, Dalia; King, Frederick J.; Peters, Eric C.; Schultz, Peter G.; Vogt, Peter K.; Hogenesch, John B.; Caldwell, Jeremy S.

    2003-01-01

    Large-scale functional genomics approaches are fundamental to the characterization of mammalian transcriptomes annotated by genome sequencing projects. Although current high-throughput strategies systematically survey either transcriptional or biochemical networks, analogous genome-scale investigations that analyze gene function in mammalian cells have yet to be fully realized. Through transient overexpression analysis, we describe the parallel interrogation of ≈20,000 sequence annotated genes in cancer-related signaling pathways. For experimental validation of these genome data, we apply an integrative strategy to characterize previously unreported effectors of activator protein-1 (AP-1) mediated growth and mitogenic response pathways. These studies identify the ADP-ribosylation factor GTPase-activating protein Centaurin α1 and a Tudor domain-containing hypothetical protein as putative AP-1 regulatory oncogenes. These results provide insight into the composition of the AP-1 signaling machinery and validate this approach as a tractable platform for genome-wide functional analysis. PMID:14514886

  19. Genome-scale phylogenetic function annotation of large and diverse protein families.

    PubMed

    Engelhardt, Barbara E; Jordan, Michael I; Srouji, John R; Brenner, Steven E

    2011-11-01

    The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein molecular function for large and functionally diverse protein families using an approximate statistical model, enabling phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are available at http://sifter.berkeley.edu.

  20. Genomic Reconstruction of the Transcriptional Regulatory Network in Bacillus subtilis

    PubMed Central

    Leyn, Semen A.; Kazanov, Marat D.; Sernova, Natalia V.; Ermakova, Ekaterina O.; Novichkov, Pavel S.

    2013-01-01

    The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPredict Web server to infer TRN in the model Gram-positive bacterium Bacillus subtilis and 10 related Bacillales species. For transcription factor (TF) regulons, we combined the available information from the DBTBS database and the literature with bioinformatics tools, allowing inference of TF binding sites (TFBSs), comparative analysis of the genomic context of predicted TFBSs, functional assignment of target genes, and effector prediction. For RNA regulons, we used known RNA regulatory motifs collected in the Rfam database to scan genomes and analyze the genomic context of new RNA sites. The inferred TRN in B. subtilis comprises regulons for 129 TFs and 24 regulatory RNA families. First, we analyzed 66 TF regulons with previously known TFBSs in B. subtilis and projected them to other Bacillales genomes, resulting in refinement of TFBS motifs and identification of novel regulon members. Second, we inferred motifs and described regulons for 28 experimentally studied TFs with previously unknown TFBSs. Third, we discovered novel motifs and reconstructed regulons for 36 previously uncharacterized TFs. The inferred collection of regulons is available in the RegPrecise database (http://regprecise.lbl.gov/) and can be used in genetic experiments, metabolic modeling, and evolutionary analysis. PMID:23504016

  1. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms

    PubMed Central

    Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas

    2016-01-01

    Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640

  2. Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.

    PubMed

    Hay, Jordan O; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for (13)C-Metabolic Flux Analysis ((13)C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from (13)C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content.

  3. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    PubMed Central

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content. PMID

  4. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    DOE PAGES

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; ...

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) modelmore » and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch

  5. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    NASA Astrophysics Data System (ADS)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.

  6. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  7. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions

    PubMed Central

    Blais, Edik M.; Rawls, Kristopher D.; Dougherty, Bonnie V.; Li, Zhuo I.; Kolling, Glynis L.; Ye, Ping; Wallqvist, Anders; Papin, Jason A.

    2017-01-01

    The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. PMID:28176778

  8. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis.

    PubMed

    Lakshmanan, Meiyappan; Lim, Sun-Hyung; Mohanty, Bijayalaxmi; Kim, Jae Kwang; Ha, Sun-Hwa; Lee, Dong-Yup

    2015-12-01

    Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes' promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems.

  9. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted

  10. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  11. On the road to synthetic life: the minimal cell and genome-scale engineering.

    PubMed

    Juhas, Mario

    2016-01-01

    Synthetic biology employs rational engineering principles to build biological systems from the libraries of standard, well characterized biological parts. Biological systems designed and built by synthetic biologists fulfill a plethora of useful purposes, ranging from better healthcare and energy production to biomanufacturing. Recent advancements in the synthesis, assembly and "booting-up" of synthetic genomes and in low and high-throughput genome engineering have paved the way for engineering on the genome-wide scale. One of the key goals of genome engineering is the construction of minimal genomes consisting solely of essential genes (genes indispensable for survival of living organisms). Besides serving as a toolbox to understand the universal principles of life, the cell encoded by minimal genome could be used to build a stringently controlled "cell factory" with a desired phenotype. This review provides an update on recent advances in the genome-scale engineering with particular emphasis on the engineering of minimal genomes. Furthermore, it presents an ongoing discussion to the scientific community for better suitability of minimal or robust cells for industrial applications.

  12. GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing.

    PubMed

    Wang, Xuewen; Wang, Le

    2016-01-01

    Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar.

  13. Cancer Biomarkers from Genome-Scale DNA Methylation: Comparison of Evolutionary and Semantic Analysis Methods

    PubMed Central

    Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis

    2015-01-01

    DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245

  14. Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread

    PubMed Central

    Kerr, Peter J.; Rogers, Matthew B.; Fitch, Adam; DePasse, Jay V.; Cattadori, Isabella M.; Twaddle, Alan C.; Hudson, Peter J.; Tscharke, David C.; Read, Andrew F.; Holmes, Edward C.

    2013-01-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified. PMID:24067966

  15. Genome scale evolution of myxoma virus reveals host-pathogen adaptation and rapid geographic spread.

    PubMed

    Kerr, Peter J; Rogers, Matthew B; Fitch, Adam; Depasse, Jay V; Cattadori, Isabella M; Twaddle, Alan C; Hudson, Peter J; Tscharke, David C; Read, Andrew F; Holmes, Edward C; Ghedin, Elodie

    2013-12-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified.

  16. Data partitioning enables the use of standard SOAP Web Services in genome-scale workflows.

    PubMed

    Sztromwasser, Pawel; Puntervoll, Pål; Petersen, Kjell

    2011-07-26

    Biological databases and computational biology tools are provided by research groups around the world, and made accessible on the Web. Combining these resources is a common practice in bioinformatics, but integration of heterogeneous and often distributed tools and datasets can be challenging. To date, this challenge has been commonly addressed in a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable technique has been identified and proposed as the platform that would tie together bioinformatics resources, namely Web Services. In the last decade the Web Services have spread wide in bioinformatics, and earned the title of recommended technology. However, in the era of high-throughput experimentation, a major concern regarding Web Services is their ability to handle large-scale data traffic. We propose a stream-like communication pattern for standard SOAP Web Services, that enables efficient flow of large data traffic between a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy by comparing it with typical communication patterns on an example pipeline for genomic sequence annotation. The results show that data-partitioning lowers resource demands of services and increases their throughput, which in consequence allows to execute in-silico experiments on genome-scale, using standard SOAP Web Services and workflows. As a proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.

  17. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells.

    PubMed

    Ball, Madeleine P; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily M; Park, In-Hyun; Xie, Bin; Daley, George Q; Church, George M

    2009-04-01

    Studies of epigenetic modifications would benefit from improved methods for high-throughput methylation profiling. We introduce two complementary approaches that use next-generation sequencing technology to detect cytosine methylation. In the first method, we designed approximately 10,000 bisulfite padlock probes to profile approximately 7,000 CpG locations distributed over the ENCODE pilot project regions and applied them to human B-lymphocytes, fibroblasts and induced pluripotent stem cells. This unbiased choice of targets takes advantage of existing expression and chromatin immunoprecipitation data and enabled us to observe a pattern of low promoter methylation and high gene-body methylation in highly expressed genes. The second method, methyl-sensitive cut counting, generated nontargeted genome-scale data for approximately 1.4 million HpaII sites in the DNA of B-lymphocytes and confirmed that gene-body methylation in highly expressed genes is a consistent phenomenon throughout the human genome. Our observations highlight the usefulness of techniques that are not inherently or intentionally biased towards particular subsets like CpG islands or promoter regions.

  18. AtPID: a genome-scale resource for genotype–phenotype associations in Arabidopsis

    PubMed Central

    Lv, Qi; Lan, Yiheng; Shi, Yan; Wang, Huan; Pan, Xia; Li, Peng; Shi, Tieliu

    2017-01-01

    AtPID (Arabidopsis thaliana Protein Interactome Database, available at http://www.megabionet.org/atpid) is an integrated database resource for protein interaction network and functional annotation. In the past few years, we collected 5564 mutants with significant morphological alterations and manually curated them to 167 plant ontology (PO) morphology categories. These single/multiple-gene mutants were indexed and linked to 3919 genes. After integrated these genotype–phenotype associations with the comprehensive protein interaction network in AtPID, we developed a Naïve Bayes method and predicted 4457 novel high confidence gene-PO pairs with 1369 genes as the complement. Along with the accumulated novel data for protein interaction and functional annotation, and the updated visualization toolkits, we present a genome-scale resource for genotype–phenotype associations for Arabidopsis in AtPID 5.0. In our updated website, all the new genotype–phenotype associations from mutants, protein network, and the protein annotation information can be vividly displayed in a comprehensive network view, which will greatly enhance plant protein function and genotype–phenotype association studies in a systematical way. PMID:27899679

  19. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    SciTech Connect

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus

  20. Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis.

    PubMed

    Shi, Kerong; He, Feng; Yuan, Xuefeng; Zhao, Yaofeng; Deng, Xuemei; Hu, Xiaoxiang; Li, Ning

    2013-08-01

    The ovarian follicle supplies a unique dynamic system for gametes that ensures the propagation of the species. During folliculogenesis, the vast majority of the germ cells are lost or inactivated because of ovarian follicle atresia, resulting in diminished reproductive potency and potential infertility. Understanding the underlying molecular mechanism of folliculogenesis rules is essential. Primordial (P), preantral (M), and large antral (L) porcine follicles were used to reveal their genome-wide gene expression profiles. Results indicate that primordial follicles (P) process a diverse gene expression pattern compared to growing follicles (M and L). The 5,548 differentially expressed genes display a similar expression mode in M and L, with a correlation coefficient of 0.892. The number of regulated (both up and down) genes in M is more than that in L. Also, their regulation folds in M (2-364-fold) are much more acute than in L (2-75-fold). Differentially expressed gene groups with different regulation patterns in certain follicular stages are identified and presumed to be closely related following follicular developmental rules. Interestingly, functional annotation analysis revealed that these gene groups feature distinct biological processes or molecular functions. Moreover, representative candidate genes from these gene groups have had their RNA or protein expressions within follicles confirmed. Our study emphasized genome-scale gene expression characteristics, which provide novel entry points for understanding the folliculogenesis rules on the molecular level, such as follicular initiation, atresia, and dominance. Transcriptional regulatory circuitries in certain follicular stages are expected to be found among the identified differentially expressed gene groups.

  1. Factors affecting reproducibility between genome-scale siRNA-based screens

    PubMed Central

    Barrows, Nicholas J.; Le Sommer, Caroline; Garcia-Blanco, Mariano A.; Pearson, James L.

    2011-01-01

    RNA interference-based screening is a powerful new genomic technology which addresses gene function en masse. To evaluate factors influencing hit list composition and reproducibility, we performed two identically designed small interfering RNA (siRNA)-based, whole genome screens for host factors supporting yellow fever virus infection. These screens represent two separate experiments completed five months apart and allow the direct assessment of the reproducibility of a given siRNA technology when performed in the same environment. Candidate hit lists generated by sum rank, median absolute deviation, z-score, and strictly standardized mean difference were compared within and between whole genome screens. Application of these analysis methodologies within a single screening dataset using a fixed threshold equivalent to a p-value ≤ 0.001 resulted in hit lists ranging from 82 to 1,140 members and highlighted the tremendous impact analysis methodology has on hit list composition. Intra- and inter-screen reproducibility was significantly influenced by the analysis methodology and ranged from 32% to 99%. This study also highlighted the power of testing at least two independent siRNAs for each gene product in primary screens. To facilitate validation we conclude by suggesting methods to reduce false discovery at the primary screening stage. In this study we present the first comprehensive comparison of multiple analysis strategies, and demonstrate the impact of the analysis methodology on the composition of the “hit list”. Therefore, we propose that the entire dataset derived from functional genome-scale screens, especially if publicly funded, should be made available as is done with data derived from gene expression and genome-wide association studies. PMID:20625183

  2. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    SciTech Connect

    Racle, Julien; Hatzimanikatis, Vassily; Stefaniuk, Adam Jan

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  3. GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing

    PubMed Central

    Wang, Xuewen; Wang, Le

    2016-01-01

    Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar. PMID:27679641

  4. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure

    PubMed Central

    Le Nouën, Cyril; McCarty, Thomas; Brown, Michael; Smith, Melissa Laird; Lleras, Roberto; Dolan, Michael A.; Mehedi, Masfique; Yang, Lijuan; Luongo, Cindy; Liang, Bo; Munir, Shirin; DiNapoli, Joshua M.; Mueller, Steffen; Wimmer, Eckard; Collins, Peter L.; Buchholz, Ursula J.

    2017-01-01

    Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates. PMID:28049853

  5. Genetic Analysis of Genome-Scale Recombination Rate Evolution in House Mice

    PubMed Central

    Dumont, Beth L.; Payseur, Bret A.

    2011-01-01

    The rate of meiotic recombination varies markedly between species and among individuals. Classical genetic experiments demonstrated a heritable component to population variation in recombination rate, and specific sequence variants that contribute to recombination rate differences between individuals have recently been identified. Despite these advances, the genetic basis of species divergence in recombination rate remains unexplored. Using a cytological assay that allows direct in situ imaging of recombination events in spermatocytes, we report a large (∼30%) difference in global recombination rate between males of two closely related house mouse subspecies (Mus musculus musculus and M. m. castaneus). To characterize the genetic basis of this recombination rate divergence, we generated an F2 panel of inter-subspecific hybrid males (n = 276) from an intercross between wild-derived inbred strains CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus). We uncover considerable heritable variation for recombination rate among males from this mapping population. Much of the F2 variance for recombination rate and a substantial portion of the difference in recombination rate between the parental strains is explained by eight moderate- to large-effect quantitative trait loci, including two transgressive loci on the X chromosome. In contrast to the rapid evolution observed in males, female CAST/EiJ and PWD/PhJ animals show minimal divergence in recombination rate (∼5%). The existence of loci on the X chromosome suggests a genetic mechanism to explain this male-biased evolution. Our results provide an initial map of the genetic changes underlying subspecies differences in genome-scale recombination rate and underscore the power of the house mouse system for understanding the evolution of this trait. PMID:21695226

  6. Genome-scale evolution and phylodynamics of equine H3N8 influenza A virus.

    PubMed

    Murcia, Pablo R; Wood, James L N; Holmes, Edward C

    2011-06-01

    Equine influenza viruses (EIVs) of the H3N8 and H7N7 subtypes are the causative agents of an important disease of horses. While EIV H7N7 apparently is extinct, H3N8 viruses have circulated for more than 50 years. Like human influenza viruses, EIV H3N8 caused a transcontinental pandemic followed by further outbreaks and epidemics, even in populations with high vaccination coverage. Recently, EIV H3N8 jumped the species barrier to infect dogs. Despite its importance as an agent of infectious disease, the mechanisms that underpin the evolutionary and epidemiological dynamics of EIV are poorly understood, particularly at a genomic scale. To determine the evolutionary history and phylodynamics of EIV H3N8, we conducted an extensive analysis of 82 complete viral genomes sampled during a 45-year span. We show that both intra- and intersubtype reassortment have played a major role in the evolution of EIV, and we suggest that intrasubtype reassortment resulted in enhanced virulence while heterosubtypic reassortment contributed to the extinction of EIV H7N7. We also show that EIV evolves at a slower rate than other influenza viruses, even though it seems to be subject to similar immune selection pressures. However, a relatively high rate of amino acid replacement is observed in the polymerase acidic (PA) segment, with some evidence for adaptive evolution. Most notably, an analysis of viral population dynamics provided evidence for a major population bottleneck of EIV H3N8 during the 1980s, which we suggest resulted from changes in herd immunity due to an increase in vaccination coverage.

  7. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    NASA Astrophysics Data System (ADS)

    Racle, Julien; Stefaniuk, Adam Jan; Hatzimanikatis, Vassily

    2015-07-01

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  8. Genome-Scale Assessment of Age-Related DNA Methylation Changes in Mouse Spermatozoa

    PubMed Central

    Kobayashi, Norio; Okae, Hiroaki; Hiura, Hitoshi; Chiba, Hatsune; Shirakata, Yoshiki; Hara, Kenshiro; Tanemura, Kentaro; Arima, Takahiro

    2016-01-01

    DNA methylation plays important roles in the production and functioning of spermatozoa. Recent studies have suggested that DNA methylation patterns in spermatozoa can change with age, but the regions susceptible to age-related methylation changes remain to be fully elucidated. In this study, we conducted genome-scale DNA methylation profiling of spermatozoa obtained from C57BL/6N mice at 8 weeks (8w), 18 weeks (18w) and 17 months of age (17m). There was no substantial difference in the global DNA methylation patterns between 18w and 17m samples except for a slight increase of methylation levels in long interspersed nuclear elements in the 17m samples. We found that maternally methylated imprinting control regions (mICRs) and spermatogenesis-related gene promoters had 5–10% higher methylation levels in 8w samples than in 18w or 17m samples. Analysis of individual sequence reads suggested that these regions were fully methylated (80–100%) in a subset of 8w spermatozoa. These regions are also known to be highly methylated in a subset of postnatal spermatogonia, which might be the source of the increased DNA methylation in 8w spermatozoa. Another possible source was contamination by somatic cells. Although we carefully purified the spermatozoa, it was difficult to completely exclude the possibility of somatic cell contamination. Further studies are needed to clarify the source of the small increase in DNA methylation in the 8w samples. Overall, our findings suggest that DNA methylation patterns in mouse spermatozoa are relatively stable throughout reproductive life. PMID:27880848

  9. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  10. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    PubMed

    Biggs, Matthew B; Papin, Jason A

    2017-03-06

    Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  11. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA

    PubMed Central

    2017-01-01

    Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository. PMID:28263984

  12. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis1[OPEN

    PubMed Central

    Lim, Sun-Hyung; Kim, Jae Kwang; Ha, Sun-Hwa

    2015-01-01

    Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes’ promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems. PMID:26453433

  13. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.

    PubMed

    Rienksma, Rienk A; Suarez-Diez, Maria; Spina, Lucie; Schaap, Peter J; Martins dos Santos, Vitor A P

    2014-12-01

    Systems-level metabolic network reconstructions and the derived constraint-based (CB) mathematical models are efficient tools to explore bacterial metabolism. Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome contains genes that encode proteins directly involved in its metabolism. These represent potential drug targets that can be systematically probed with CB models through the prediction of genes essential (or the combination thereof) for the pathogen to grow. However, gene essentiality depends on the growth conditions and, so far, no in vitro model precisely mimics the host at the different stages of mycobacterial infection, limiting model predictions. These limitations can be circumvented by combining expression data from in vivo samples with a validated CB model, creating an accurate description of pathogen metabolism in the host. To this end, we present here a thoroughly curated and extended genome-scale CB metabolic model of Mtb quantitatively validated using 13C measurements. We describe some of the efforts made in integrating CB models and high-throughput data to generate condition specific models, and we will discuss challenges ahead. This knowledge and the framework herein presented will enable to identify potential new drug targets, and will foster the development of optimal therapeutic strategies.

  14. Systems Biology of Metabolism.

    PubMed

    Nielsen, Jens

    2017-03-08

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed. Expected final online publication date for the Annual Review of Biochemistry Volume 86 is June 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Genome-scale RNA interference screen identifies antizyme 1(OAZ1) as a target for improvement of recombinant protein production in mammalian cells†

    PubMed Central

    Xiao, Su; Chen, Yu Chi; Buehler, Eugene; Mandal, Swati; Mandal, Ajeet; Betenbaugh, Michael; HeePark, Myung; Martin, Scott; Shiloach, Joseph

    2017-01-01

    For the purpose of improving recombinant protein production from mammalian cells, an unbiased, high-throughput whole-genome RNA interference screen was conducted using human embryonic kidney 293 (HEK 293) cells expressing firefly luciferase. 21,585 human genes were individually silenced with three different siRNAs for each gene. The screen identified 56 genes that led to the greatest improvement in luciferase expression. These genes were found to be included in several pathways involved in spliceosome formation and mRNA processing, transcription, metabolic processes, transport and protein folding. The 10 genes that most enhanced protein expression when down regulated, were further confirmed by measuring the effect of their silencing on the expression of three additional recombinant proteins. Among the confirmed genes, OAZ1- the gene encoding the ornithine decarboxylase antizyme1- was selected for detailed investigation, since its silencing improved the reporter protein production without affecting cell viability. Silencing OAZ1 caused an increase of the ornithine decarboxylase enzyme and the cellular levels of putrescine and spermidine; an indication that increased cellular polyamines enhances luciferase expression without affecting its transcription. The study shows that OAZ1 is a novel target for improving expression of recombinant proteins. The genome-scale screening performed in this work can establish the foundation for targeted design of an efficient mammalian cell platform for various biotechnological applications. PMID:27215166

  16. PSAMM: A Portable System for the Analysis of Metabolic Models

    PubMed Central

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2016-01-01

    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591

  17. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    PubMed Central

    Mardinoglu, Adil; Nielsen, Jens; Karl, David M.

    2016-01-01

    ABSTRACT Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794 reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. IMPORTANCE Microbes are known to employ three basic strategies to compete for limiting elemental resources: (i) cell quotas may be adjusted by alterations to cell physiology or by substitution of a more plentiful resource, (ii) stressed cells may synthesize high-affinity transporters, and (iii) cells may access more costly sources from internal stores, by degradation, or by petitioning other microbes. In the case of phosphorus, a limiting resource in vast oceanic regions, the cosmopolitan

  18. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models

    PubMed Central

    Chowdhury, Ratul; Chowdhury, Anupam; Maranas, Costas D.

    2015-01-01

    Essentiality (ES) and Synthetic Lethality (SL) information identify combination of genes whose deletion inhibits cell growth. This information is important for both identifying drug targets for tumor and pathogenic bacteria suppression and for flagging and avoiding gene deletions that are non-viable in biotechnology. In this study, we performed a comprehensive ES and SL analysis of two important eukaryotic models (S. cerevisiae and CHO cells) using a bilevel optimization approach introduced earlier. Information gleaned from this study is used to propose specific model changes to remedy inconsistent with data model predictions. Even for the highly curated Yeast 7.11 model we identified 50 changes (metabolic and GPR) leading to the correct prediction of an additional 28% of essential genes and 36% of synthetic lethals along with a 53% reduction in the erroneous identification of essential genes. Due to the paucity of mutant growth phenotype data only 12 changes were made for the CHO 1.2 model leading to an additional correctly predicted 11 essential and eight non-essential genes. Overall, we find that CHO 1.2 was 76% less accurate than the Yeast 7.11 metabolic model in predicting essential genes. Based on this analysis, 14 (single and double deletion) maximally informative experiments are suggested to improve the CHO cell model by using information from a mouse metabolic model. This analysis demonstrates the importance of single and multiple knockout phenotypes in assessing and improving model reconstructions. The advent of techniques such as CRISPR opens the door for the global assessment of eukaryotic models. PMID:26426067

  19. Proteomics-based metabolic modeling and characterization of the cellulolytic bacterium Thermobifida fusca

    PubMed Central

    2014-01-01

    Background Thermobifida fusca is a cellulolytic bacterium with potential to be used as a platform organism for sustainable industrial production of biofuels, pharmaceutical ingredients and other bioprocesses due to its capability of potential to convert plant biomass to value-added chemicals. To best develop T. fusca as a bioprocess organism, it is important to understand its native cellular processes. In the current study, we characterize the metabolic network of T. fusca through reconstruction of a genome-scale metabolic model and proteomics data. The overall goal of this study was to use multiple metabolic models generated by different methods and comparison to experimental data to gain a high-confidence understanding of the T. fusca metabolic network. Results We report the generation of three versions of a metabolic model of Thermobifida fusca sp. XY developed using three different approaches (automated, semi-automated, and proteomics-derived). The model closest to in vivo growth was the proteomics-derived model that consists of 975 reactions involving 1382 metabolites and account for 316 EC numbers (296 genes). The model was optimized for biomass production with the optimal flux of 0.48 doublings per hour when grown on cellobiose with a substrate uptake rate of 0.25 mmole/h. In vivo activity of the DXP pathway for terpenoid biosynthesis was also confirmed using real-time PCR. Conclusions iTfu296 provides a platform to understand and explore the metabolic capabilities of the actinomycete T. fusca for the potential use in bioprocess industries for the production of biofuel and pharmaceutical ingredients. By comparing different model reconstruction methods, the use of high-throughput proteomics data as a starting point proved to be the most accurate to in vivo growth. PMID:25115351

  20. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  1. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum

    PubMed Central

    Marmiesse, Lucas; Gouzy, Jérôme

    2016-01-01

    Bacterial pathogenicity relies on a proficient metabolism and there is increasing evidence that metabolic adaptation to exploit host resources is a key property of infectious organisms. In many cases, colonization by the pathogen also implies an intensive multiplication and the necessity to produce a large array of virulence factors, which may represent a significant cost for the pathogen. We describe here the existence of a resource allocation trade-off mechanism in the plant pathogen R. solanacearum. We generated a genome-scale reconstruction of the metabolic network of R. solanacearum, together with a macromolecule network module accounting for the production and secretion of hundreds of virulence determinants. By using a combination of constraint-based modeling and metabolic flux analyses, we quantified the metabolic cost for production of exopolysaccharides, which are critical for disease symptom production, and other virulence factors. We demonstrated that this trade-off between virulence factor production and bacterial proliferation is controlled by the quorum-sensing-dependent regulatory protein PhcA. A phcA mutant is avirulent but has a better growth rate than the wild-type strain. Moreover, a phcA mutant has an expanded metabolic versatility, being able to metabolize 17 substrates more than the wild-type. Model predictions indicate that metabolic pathways are optimally oriented towards proliferation in a phcA mutant and we show that this enhanced metabolic versatility in phcA mutants is to a large extent a consequence of not paying the cost for virulence. This analysis allowed identifying candidate metabolic substrates having a substantial impact on bacterial growth during infection. Interestingly, the substrates supporting well both production of virulence factors and growth are those found in higher amount within the plant host. These findings also provide an explanatory basis to the well-known emergence of avirulent variants in R. solanacearum

  2. Reverse engineering and analysis of large genome-scale gene networks.

    PubMed

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-07

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web.

  3. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks.

    PubMed

    Narendra, Varun; Lytkin, Nikita I; Aliferis, Constantin F; Statnikov, Alexander

    2011-01-01

    De-novo reverse-engineering of genome-scale regulatory networks is an increasingly important objective for biological and translational research. While many methods have been recently developed for this task, their absolute and relative performance remains poorly understood. The present study conducts a rigorous performance assessment of 32 computational methods/variants for de-novo reverse-engineering of genome-scale regulatory networks by benchmarking these methods in 15 high-quality datasets and gold-standards of experimentally verified mechanistic knowledge. The results of this study show that some methods need to be substantially improved upon, while others should be used routinely. Our results also demonstrate that several univariate methods provide a "gatekeeper" performance threshold that should be applied when method developers assess the performance of their novel multivariate algorithms. Finally, the results of this study can be used to show practical utility and to establish guidelines for everyday use of reverse-engineering algorithms, aiming towards creation of automated data-analysis protocols and software systems.

  4. From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development.

    PubMed

    Yin, Weiwei; Kissinger, Jessica C; Moreno, Alberto; Galinski, Mary R; Styczynski, Mark P

    2015-12-01

    High-throughput, genome-scale data present a unique opportunity to link host to pathogen on a molecular level. Forging such connections will help drive the development of mathematical models to better understand and predict both pathogen behavior and the epidemiology of infectious diseases, including malaria. However, the datasets that can aid in identifying these links and models are vast and not amenable to simple, reductionist, and univariate analyses. These datasets require data mining in order to identify the truly important measurements that best describe clinical and molecular observations. Moreover, these datasets typically have relatively few samples due to experimental limitations (particularly for human studies or in vivo animal experiments), making data mining extremely difficult. Here, after first providing a brief overview of common strategies for data reduction and identification of relationships between variables for inclusion in mathematical models, we present a new generalized strategy for performing these data reduction and relationship inference tasks. Our approach emphasizes the importance of robustness when using data to drive model development, particularly when using genome-scale, small-sample in vivo data. We identify the use of appropriate feature reduction combined with data permutations and subsampling strategies as being critical to enable increasingly robust results from network inference using high-dimensional, low-observation data.

  5. An effective method for controlling false discovery and false nondiscovery rates in genome-scale RNAi screens.

    PubMed

    Zhang, Xiaohua Douglas

    2010-10-01

    In most genome-scale RNA interference (RNAi) screens, the ultimate goal is to select siRNAs with a large inhibition or activation effect. The selection of hits typically requires statistical control of 2 errors: false positives and false negatives. Traditional methods of controlling false positives and false negatives do not take into account the important feature in RNAi screens: many small-interfering RNAs (siRNAs) may have very small but real nonzero average effects on the measured response and thus cannot allow us to effectively control false positives and false negatives. To address for deficiencies in the application of traditional approaches in RNAi screening, the author proposes a new method for controlling false positives and false negatives in RNAi high-throughput screens. The false negatives are statistically controlled through a false-negative rate (FNR) or false nondiscovery rate (FNDR). FNR is the proportion of false negatives among all siRNAs examined, whereas FNDR is the proportion of false negatives among declared nonhits. The author also proposes new concepts, q*-value and p*-value, to control FNR and FNDR, respectively. The proposed method should have broad utility for hit selection in which one needs to control both false discovery and false nondiscovery rates in genome-scale RNAi screens in a robust manner.

  6. Using flux balance analysis to guide microbial metabolic engineering.

    PubMed

    Curran, Kathleen A; Crook, Nathan C; Alper, Hal S

    2012-01-01

    Metabolic engineers modify biological systems through the use of modern molecular biology tools in order to obtain desired phenotypes. However, due to the extreme complexity and interconnectedness of metabolism in all organisms, it is often difficult to a priori predict which changes will yield the optimal results. Flux balance analysis (FBA) is a mathematical approach that uses a genomic-scale metabolic network models to afford in silico prediction and optimization of metabolic changes. In particular, a genome-scale approach can help select gene targets for knockout and overexpression. This approach can be used to help expedite the strain engineering process. Here, we give an introduction to the use of FBA and provide details for its implementation in a microbial metabolic engineering context.

  7. A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

    PubMed Central

    Słabicki, Mikołaj; Theis, Mirko; Krastev, Dragomir B.; Samsonov, Sergey; Mundwiller, Emeline; Junqueira, Magno; Paszkowski-Rogacz, Maciej; Teyra, Joan; Heninger, Anne-Kristin; Poser, Ina; Prieur, Fabienne; Truchetto, Jérémy; Confavreux, Christian; Marelli, Cécilia; Durr, Alexandra; Camdessanche, Jean Philippe; Brice, Alexis; Shevchenko, Andrej; Pisabarro, M. Teresa; Stevanin, Giovanni; Buchholz, Frank

    2010-01-01

    DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair. PMID:20613862

  8. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis

    PubMed Central

    Sarmiento, Felipe; Mrázek, Jan; Whitman, William B.

    2013-01-01

    A comprehensive whole-genome analysis of gene function by transposon mutagenesis and deep sequencing methodology has been implemented successfully in a representative of the Archaea domain. Libraries of transposon mutants were generated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative of the Tn5 transposon. About 89,000 unique insertions were mapped to the genome, which allowed for the classification of 526 genes or about 30% of the genome as possibly essential or strongly advantageous for growth in rich medium. Many of these genes were homologous to eukaryotic genes that encode fundamental processes in replication, transcription, and translation, providing direct evidence for their importance in Archaea. Some genes classified as possibly essential were unique to the archaeal or methanococcal lineages, such as that encoding DNA polymerase PolD. In contrast, the archaeal homolog to the gene encoding DNA polymerase B was not essential for growth, a conclusion confirmed by construction of an independent deletion mutation. Thus PolD, and not PolB, likely plays a fundamental role in DNA replication in methanococci. Similarly, 121 hypothetical ORFs were classified as possibly essential and likely play fundamental roles in methanococcal information processing or metabolism that are not established outside this group of prokaryotes. PMID:23487778

  9. Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways.

    PubMed

    Khurana, Vikram; Peng, Jian; Chung, Chee Yeun; Auluck, Pavan K; Fanning, Saranna; Tardiff, Daniel F; Bartels, Theresa; Koeva, Martina; Eichhorn, Stephen W; Benyamini, Hadar; Lou, Yali; Nutter-Upham, Andy; Baru, Valeriya; Freyzon, Yelena; Tuncbag, Nurcan; Costanzo, Michael; San Luis, Bryan-Joseph; Schöndorf, David C; Barrasa, M Inmaculada; Ehsani, Sepehr; Sanjana, Neville; Zhong, Quan; Gasser, Thomas; Bartel, David P; Vidal, Marc; Deleidi, Michela; Boone, Charles; Fraenkel, Ernest; Berger, Bonnie; Lindquist, Susan

    2017-02-22

    Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To "humanize" this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy.

  10. Genome-scale identification of nucleosome organization by using 1000 porcine oocytes at different developmental stages

    PubMed Central

    Tao, Chenyu; Li, Juan; Chen, Baobao; Chi, Daming; Zeng, Yaqiong

    2017-01-01

    The nucleosome is the basic structural unit of chromosomes, and its occupancy and distribution in promoters are crucial for the regulation of gene expression. During the growth process of porcine oocytes, the “growing” oocytes (SF) have a much higher transcriptional activity than the “fully grown” oocytes (BF). However, the chromosome status of the two kinds of oocytes remains poorly understood. In this study, we profiled the nucleosome distributions of SF and BF with as few as 1000 oocytes. By comparing the altered regions, we found that SF tended toward nucleosome loss and more open chromosome architecture than BF did. BF had decreased nucleosome occupancy in the coding region and increased nucleosome occupancy in the promoter compared to SF. The nucleosome occupancy of SF was higher than that of BF in the GC-poor regions, but lower than that of BF in the GC-rich regions. The nucleosome distribution around the transcriptional start site (TSS) of all the genes of the two samples was basically the same, but the nucleosome occupancy around the TSS of SF was lower than that of BF. GO functional annotation of genes with different nucleosome occupancy in promoter showed the genes were mainly involved in cell, cellular process, and metabolic process biological process. The results of this study revealed the dynamic reorganization of porcine oocytes in different developmental stages and the critical role of nucleosome arrangement during the oocyte growth process. PMID:28333987

  11. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica.

    PubMed

    Qiu, Qiang; Ma, Tao; Hu, Quanjun; Liu, Bingbing; Wu, Yuxia; Zhou, Haihong; Wang, Qian; Wang, Juan; Liu, Jianquan

    2011-04-01

    Populus euphratica is well-adapted to extreme desert environments and is an important model species for studying the effects of abiotic stresses on trees. Here we present the first deep transcriptomic analysis of this species. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of desert-grown trees and two types of callus (salt-stressed and unstressed). De novo assembly generated 86,777 Unigenes using Solexa sequence data. These sequences covered 92% of previously reported P. euphratica expressed sequence tags (ESTs) and 90% of the TIGR poplar ESTs, and a total of 58,499 high-quality unique sequences were annotated by BLAST similarity searches against public databases. We found that 27% of the total Unigenes were differentially expressed (up- or down-regulated) in response to salt stress in P. euphratica callus. These differentially expressed genes are mainly involved in transport, transcription, cellular communication and metabolism. In addition, we found that numerous putative genes involved in ABA regulation and biosynthesis were also differentially regulated. This study represents the deepest transcriptomic and gene-annotation analysis of P. euphratica to date. The genetic knowledge acquired should be very useful for future studies of the molecular adaptation of this tree species to abiotic stress and facilitate genetic manipulation of other poplar species.

  12. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis.

    PubMed

    Sarmiento, Felipe; Mrázek, Jan; Whitman, William B

    2013-03-19

    A comprehensive whole-genome analysis of gene function by transposon mutagenesis and deep sequencing methodology has been implemented successfully in a representative of the Archaea domain. Libraries of transposon mutants were generated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative of the Tn5 transposon. About 89,000 unique insertions were mapped to the genome, which allowed for the classification of 526 genes or about 30% of the genome as possibly essential or strongly advantageous for growth in rich medium. Many of these genes were homologous to eukaryotic genes that encode fundamental processes in replication, transcription, and translation, providing direct evidence for their importance in Archaea. Some genes classified as possibly essential were unique to the archaeal or methanococcal lineages, such as that encoding DNA polymerase PolD. In contrast, the archaeal homolog to the gene encoding DNA polymerase B was not essential for growth, a conclusion confirmed by construction of an independent deletion mutation. Thus PolD, and not PolB, likely plays a fundamental role in DNA replication in methanococci. Similarly, 121 hypothetical ORFs were classified as possibly essential and likely play fundamental roles in methanococcal information processing or metabolism that are not established outside this group of prokaryotes.

  13. EMILiO: a fast algorithm for genome-scale strain design.

    PubMed

    Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan

    2011-05-01

    Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design.

  14. Genome-scale investigation of phenotypically distinct but nearly clonal Trichoderma strains

    PubMed Central

    Weld, Richard J.; Cox, Murray P.; Bradshaw, Rosie E.; McLean, Kirstin L.; Stewart, Alison; Steyaert, Johanna M.

    2016-01-01

    Biological control agents (BCA) are beneficial organisms that are applied to protect plants from pests. Many fungi of the genus Trichoderma are successful BCAs but the underlying mechanisms are not yet fully understood. Trichoderma cf. atroviride strain LU132 is a remarkably effective BCA compared to T. cf. atroviride strain LU140 but these strains were found to be highly similar at the DNA sequence level. This unusual combination of phenotypic variability and high DNA sequence similarity between separately isolated strains prompted us to undertake a genome comparison study in order to identify DNA polymorphisms. We further investigated if the polymorphisms had functional effects on the phenotypes. The two strains were clearly identified as individuals, exhibiting different growth rates, conidiation and metabolism. Superior pathogen control demonstrated by LU132 depended on its faster growth, which is a prerequisite for successful distribution and competition. Genome sequencing identified only one non-synonymous single nucleotide polymorphism (SNP) between the strains. Based on this SNP, we successfully designed and validated an RFLP protocol that can be used to differentiate LU132 from LU140 and other Trichoderma strains. This SNP changed the amino acid sequence of SERF, encoded by the previously undescribed single copy gene “small EDRK-rich factor” (serf). A deletion of serf in the two strains did not lead to identical phenotypes, suggesting that, in addition to the single functional SNP between the nearly clonal Trichoderma cf. atroviride strains, other non-genomic factors contribute to their phenotypic variation. This finding is significant as it shows that genomics is an extremely useful but not exhaustive tool for the study of biocontrol complexity and for strain typing. PMID:27190719

  15. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens

    PubMed Central

    Marceau, Caleb D.; Puschnik, Andreas S.; Majzoub, Karim; Ooi, Yaw Shin; Brewer, Susan M.; Fuchs, Gabriele; Swaminathan, Kavya; Mata, Miguel A.; Elias, Joshua E.; Sarnow, Peter; Carette, Jan E.

    2016-01-01

    Summary The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide1. No approved antivirals are available to date and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates2. Also hepatitis C virus (HCV) remains a major medical problem with 160 million chronically infected patients and only expensive treatment on the market3. Despite distinct differences in pathogenesis and mode of transmission, the two viruses share common replication strategies4. A detailed understanding of the host functions that determine viral infection is lacking. Here, we utilized a pooled CRISPR genetic screening strategy5,6 to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified ER-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER associated degradation. Dengue virus replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as critical step requiring the OST complex. Moreover, we showed that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects7. In contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA binding proteins and enzymes involved in metabolism. We discovered an unexpected link between intracellular FAD levels and HCV replication. This study shows remarkable divergence in host dependency factors between DENV and HCV and illuminates novel host targets for antiviral therapy. PMID:27383987

  16. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data

    PubMed Central

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J.; Lun, Desmond S.

    2016-01-01

    Background Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. Results We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open

  17. Salmonella typhimurium and Escherichia coli dissimilarity: Closely related bacteria with distinct metabolic profiles.

    PubMed

    Sargo, Cintia R; Campani, Gilson; Silva, Gabriel G; Giordano, Roberto C; Da Silva, Adilson J; Zangirolami, Teresa C; Correia, Daniela M; Ferreira, Eugénio C; Rocha, Isabel

    2015-01-01

    Live attenuated strains of Salmonella typhimurium have been extensively investigated as vaccines for a number of infectious diseases. However, there is still little information available concerning aspects of their metabolism. S. typhimurium and Escherichia coli show a high degree of similarity in terms of their genome contents and metabolic networks. However, this work presents experimental evidence showing that significant differences exist in their abilities to direct carbon fluxes to biomass and energy production. It is important to study the metabolism of Salmonella to elucidate the formation of acetate and other metabolites involved in optimizing the production of biomass, essential for the development of recombinant vaccines. The metabolism of Salmonella under aerobic conditions was assessed using continuous cultures performed at dilution rates ranging from 0.1 to 0.67 h(-1), with glucose as main substrate. Acetate assimilation and glucose metabolism under anaerobic conditions were also investigated using batch cultures. Chemostat cultivations showed deviation of carbon towards acetate formation, starting at dilution rates above 0.1 h(-1). This differed from previous findings for E. coli, where acetate accumulation was only detected at dilution rates exceeding 0.4 h(-1), and was due to the lower rate of acetate assimilation by S. typhimurium under aerobic conditions. Under anaerobic conditions, both microorganisms mainly produced ethanol, acetate, and formate. A genome-scale metabolic model, reconstructed for Salmonella based on an E. coli model, provided a poor description of the mixed fermentation pattern observed during Salmonella cultures, reinforcing the different patterns of carbon utilization exhibited by these closely related bacteria.

  18. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    PubMed Central

    2012-01-01

    Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of

  19. Deep epistasis in human metabolism

    NASA Astrophysics Data System (ADS)

    Imielinski, Marcin; Belta, Calin

    2010-06-01

    We extend and apply a method that we have developed for deriving high-order epistatic relationships in large biochemical networks to a published genome-scale model of human metabolism. In our analysis we compute 33 328 reaction sets whose knockout synergistically disables one or more of 43 important metabolic functions. We also design minimal knockouts that remove flux through fumarase, an enzyme that has previously been shown to play an important role in human cancer. Most of these knockout sets employ more than eight mutually buffering reactions, spanning multiple cellular compartments and metabolic subsystems. These reaction sets suggest that human metabolic pathways possess a striking degree of parallelism, inducing "deep" epistasis between diversely annotated genes. Our results prompt specific chemical and genetic perturbation follow-up experiments that could be used to query in vivo pathway redundancy. They also suggest directions for future statistical studies of epistasis in genetic variation data sets.

  20. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem

    PubMed Central

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-01-01

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design. PMID:27958331

  1. A Pilot Genome-Scale Profiling of DNA Methylation in Sporadic Pituitary Macroadenomas: Association with Tumor Invasion and Histopathological Subtype

    PubMed Central

    Ling, Chao; Pease, Matthew; Shi, Lingling; Punj, Vasu; Shiroishi, Mark S.; Commins, Deborah; Weisenberger, Daniel J.; Wang, Kai; Zada, Gabriel

    2014-01-01

    Pituitary adenomas (PAs) are neoplasms that may cause a variety of neurological and endocrine effects. Although known causal contributors include heredity, hormonal influence and somatic mutations, the pathophysiologic mechanisms driving tumorigenesis and invasion of sporadic PAs remain unknown. We hypothesized that alterations in DNA methylation are associated with PA invasion and histopathology subtype, and that genome-scale methylation analysis may complement current classification methods for sporadic PAs. Twenty-four surgically-resected sporadic PAs with varying histopathological subtypes were assigned dichotomized Knosp invasion scores and examined using genome-wide DNA methylation profiling and RNA sequencing. PA samples clustered into subgroups according to functional status. Compared with hormonally-active PAs, nonfunctional PAs exhibited global DNA hypermethylation (mean beta-value 0.47 versus 0.42, P = 0.005); the most significant site of differential DNA methylation was within the promoter region of the potassium voltage-gated channel KCNAB2 (FDR = 5.11×10−10). Pathway analysis of promoter-associated CpGs showed that nonfunctional PAs are potentially associated with the ion-channel activity signal pathway. DNA hypermethylation tended to be negatively correlated with gene expression. DNA methylation analysis may be used to identify candidate genes involved in PA function and may potentially complement current standard immunostaining classification in sporadic PAs. DNA hypermethylation of KCNAB2 and downstream ion-channel activity signal pathways may contribute to the endocrine-inactive status of nonfunctional PAs. PMID:24781529

  2. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.

    PubMed

    Stadhouders, Ralph; Kolovos, Petros; Brouwer, Rutger; Zuin, Jessica; van den Heuvel, Anita; Kockx, Christel; Palstra, Robert-Jan; Wendt, Kerstin S; Grosveld, Frank; van Ijcken, Wilfred; Soler, Eric

    2013-03-01

    Chromosome conformation capture (3C) technology is a powerful and increasingly popular tool for analyzing the spatial organization of genomes. Several 3C variants have been developed (e.g., 4C, 5C, ChIA-PET, Hi-C), allowing large-scale mapping of long-range genomic interactions. Here we describe multiplexed 3C sequencing (3C-seq), a 4C variant coupled to next-generation sequencing, allowing genome-scale detection of long-range interactions with candidate regions. Compared with several other available techniques, 3C-seq offers a superior resolution (typically single restriction fragment resolution; approximately 1-8 kb on average) and can be applied in a semi-high-throughput fashion. It allows the assessment of long-range interactions of up to 192 genes or regions of interest in parallel by multiplexing library sequencing. This renders multiplexed 3C-seq an inexpensive, quick (total hands-on time of 2 weeks) and efficient method that is ideal for the in-depth analysis of complex genetic loci. The preparation of multiplexed 3C-seq libraries can be performed by any investigator with basic skills in molecular biology techniques. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments. The protocol describes all materials, critical steps and bioinformatics tools required for successful application of 3C-seq technology.

  3. Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry

    PubMed Central

    Hawkins, Charles; Caruana, Julie; Schiksnis, Erin; Liu, Zhongchi

    2016-01-01

    Fragaria vesca is a species of diploid strawberry being developed as a model for the octoploid garden strawberry. This work sequenced and compared the genomes of three F. vesca accessions: ‘Hawaii 4′, ‘Rügen’, and ‘Yellow Wonder’. Genome-scale analyses of shared and distinct SNPs among these three accessions have revealed that ‘Rügen’ and ‘Yellow Wonder’ are more similar to each other than they are to ‘Hawaii 4’. Though all three accessions are inbred seven generations, each accession still possesses extensive heterozygosity, highlighting the inherent differences between individual plants even of the same accession. The identification of the impact of each SNP as well as the large number of Indel markers provides a foundation for locating candidate mutations underlying phenotypic variations among these F. vesca accessions and for mapping new mutations generated through forward genetics screens. Through systematic analysis of SNP variants affecting genes in anthocyanin biosynthesis and regulation, a candidate SNP in FveMYB10 was identified and then functionally confirmed to be responsible for the yellow color fruits made by many F. vesca accessions. As a whole, this study provides further resources for F. vesca and establishes a foundation for linking traits of economic importance to specific genes and variants. PMID:27377763

  4. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays.

    PubMed

    Uplekar, Swapna; Rao, Pavitra Nagesh; Ramanathapuram, Lalitha; Awasthi, Vikky; Verma, Kalpana; Sutton, Patrick; Ali, Syed Zeeshan; Patel, Ankita; G, Sri Lakshmi Priya; Ravishankaran, Sangamithra; Desai, Nisha; Tandel, Nikunj; Choubey, Sandhya; Barla, Punam; Kanagaraj, Deena; Eapen, Alex; Pradhan, Khageswar; Singh, Ranvir; Jain, Aarti; Felgner, Philip L; Davies, D Huw; Carlton, Jane M; Das, Jyoti

    2017-01-01

    Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world.

  5. A genome-scale screen reveals context-dependent ovarian cancer sensitivity to miRNA overexpression.

    PubMed

    Shields, Benjamin B; Pecot, Chad V; Gao, Hua; McMillan, Elizabeth; Potts, Malia; Nagel, Christa; Purinton, Scott; Wang, Ying; Ivan, Cristina; Kim, Hyun Seok; Borkowski, Robert J; Khan, Shaheen; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Lea, Jayanthi; Gazdar, Adi; Baggerly, Keith A; Sood, Anil K; White, Michael A

    2015-12-11

    Large-scale molecular annotation of epithelial ovarian cancer (EOC) indicates remarkable heterogeneity in the etiology of that disease. This diversity presents a significant obstacle against intervention target discovery. However, inactivation of miRNA biogenesis is commonly associated with advanced disease. Thus, restoration of miRNA activity may represent a common vulnerability among diverse EOC oncogenotypes. To test this, we employed genome-scale, gain-of-function, miRNA mimic toxicity screens in a large, diverse spectrum of EOC cell lines. We found that all cell lines responded to at least some miRNA mimics, but that the nature of the miRNA mimics provoking a response was highly selective within the panel. These selective toxicity profiles were leveraged to define modes of action and molecular response indicators for miRNA mimics with tumor-suppressive characteristics in vivo. A mechanistic principle emerging from this analysis was sensitivity of EOC to miRNA-mediated release of cell fate specification programs, loss of which may be a prerequisite for development of this disease.

  6. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem

    NASA Astrophysics Data System (ADS)

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-12-01

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.

  7. A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing

    PubMed Central

    Berg, Jonathan S.; Foreman, Ann Katherine M.; O'Daniel, Julianne M.; Booker, Jessica K.; Boshe, Lacey; Carey, Timothy; Crooks, Kristy R.; Jensen, Brian C.; Juengst, Eric T.; Lee, Kristy; Nelson, Daniel K.; Powell, Bradford C.; Powell, Cynthia M.; Roche, Myra I.; Skrzynia, Cecile; Strande, Natasha T.; Weck, Karen E.; Wilhelmsen, Kirk C.; Evans, James P.

    2016-01-01

    Purpose: As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis. Genet Med 18 5, 467–475. Methods: We established a semiquantitative metric to assess five elements of actionability: severity and likelihood of the disease outcome, efficacy and burden of intervention, and knowledge base, with a total score from 0 to 15. Genet Med 18 5, 467–475. Results: The semiquantitative metric was applied to a list of putative actionable conditions, the list of genes recommended by the American College of Medical Genetics and Genomics (ACMG) for return when deleterious variants are discovered as secondary/incidental findings, and a random sample of 1,000 genes. Scores from the list of putative actionable conditions (median = 12) and the ACMG list (median = 11) were both statistically different than the randomly selected genes (median = 7) (P < 0.0001, two-tailed Mann-Whitney test). Genet Med 18 5, 467–475. Conclusion: Gene–disease pairs having a score of 11 or higher represent the top quintile of actionability. The semiquantitative metric effectively assesses clinical actionability, promotes transparency, and may facilitate assessments of clinical actionability by various groups and in diverse contexts. Genet Med 18 5, 467–475. PMID:26270767

  8. Intra-Monozygotic Twin Pair Discordance and Longitudinal Variation of Whole-Genome Scale DNA Methylation in Adults

    PubMed Central

    Zhang, Su-Hua; Chen, Jinzhong; Lu, Daru; Shen, Min; Li, Chengtao

    2015-01-01

    Monozygotic twins share identical genomic DNA and are indistinguishable using conventional genetic markers. Increasing evidence indicates that monozygotic twins are epigenetically distinct, suggesting that a comparison between DNA methylation patterns might be useful to approach this forensic problem. However, the extent of epigenetic discordance between healthy adult monozygotic twins and the stability of CpG loci within the same individual over a short time span at the whole-genome scale are not well understood. Here, we used Infinium HumanMethylation450 Beadchips to compare DNA methylation profiles using blood collected from 10 pairs of monozygotic twins and 8 individuals sampled at 0, 3, 6, and 9 months. Using an effective and unbiased method for calling differentially methylated (DM) CpG sites, we showed that 0.087%–1.530% of the CpG sites exhibit differential methylation in monozygotic twin pairs. We further demonstrated that, on whole-genome level, there has been no significant epigenetic drift within the same individuals for up to 9 months, including one monozygotic twin pair. However, we did identify a subset of CpG sites that vary in DNA methylation over the 9-month period. The magnitude of the intra-pair or longitudinal methylation discordance of the CpG sites inside the CpG islands is greater than those outside the CpG islands. The CpG sites located on shores appear to be more suitable for distinguishing between MZ twins. PMID:26248206

  9. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays

    PubMed Central

    Awasthi, Vikky; Verma, Kalpana; Sutton, Patrick; Ali, Syed Zeeshan; Patel, Ankita; G., Sri Lakshmi Priya; Ravishankaran, Sangamithra; Desai, Nisha; Tandel, Nikunj; Choubey, Sandhya; Barla, Punam; Kanagaraj, Deena; Eapen, Alex; Pradhan, Khageswar; Singh, Ranvir; Jain, Aarti; Felgner, Philip L.; Davies, D. Huw; Das, Jyoti

    2017-01-01

    Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world. PMID:28118367

  10. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    SciTech Connect

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  11. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation.

    PubMed

    Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas

    2012-06-15

    Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor.

  12. Positron emission reconstruction tomography for the assessment of regional myocardial metabolism by the administration of substrates labeled with cyclotron produced radionuclides

    NASA Technical Reports Server (NTRS)

    Ter-Pogossian, M. M.; Hoffman, E. J.; Weiss, E. S.; Coleman, R. E.; Phelps, M. E.; Welch, M. J.; Sobel, B. E.

    1975-01-01

    A positron emission transverse tomograph device was developed which provides transaxial sectional images of the distribution of positron-emitting radionuclides in the heart. The images provide a quantitative three-dimensional map of the distribution of activity unencumbered by the superimposition of activity originating from regions overlying and underlying the plane of interest. PETT is used primarily with the cyclotron-produced radionuclides oxygen-15, nitrogen-13 and carbon-11. Because of the participation of these atoms in metabolism, they can be used to label metabolic substrates and intermediary molecules incorporated in myocardial metabolism.

  13. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  14. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction

    PubMed Central

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5′ cap of 5′ and 3′ cap of 3′ untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA–protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. PMID:27807179

  15. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  16. Penile Reconstruction

    PubMed Central

    Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir

    2011-01-01

    A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914

  17. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    SciTech Connect

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  18. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    DOE PAGES

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; ...

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga thatmore » compete for photosynthetic carbon and energy.« less

  19. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

    PubMed Central

    Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.; Thiele, Ines; Orth, Jeffrey D.; Feist, Adam M.; Zielinski, Daniel C.; Bordbar, Aarash; Lewis, Nathan E.; Rahmanian, Sorena; Kang, Joseph; Hyduke, Daniel R.; Palsson, Bernhard Ø.

    2012-01-01

    Over the past decade, a growing community of researchers has emerged around the use of COnstraint-Based Reconstruction and Analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a significant update of this in silico ToolBox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include: (1) network gap filling, (2) 13C analysis, (3) metabolic engineering, (4) omics-guided analysis, and (5) visualization. As with the first version, the COBRA Toolbox reads and writes Systems Biology Markup Language formatted models. In version 2.0, we improved performance, usability, and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the Toolbox and validate results. This Toolbox lowers the barrier of entry to use powerful COBRA methods. PMID:21886097

  20. Mathematical optimization applications in metabolic networks.

    PubMed

    Zomorrodi, Ali R; Suthers, Patrick F; Ranganathan, Sridhar; Maranas, Costas D

    2012-11-01

    Genome-scale metabolic models are increasingly becoming available for a variety of microorganisms. This has spurred the development of a wide array of computational tools, and in particular, mathematical optimization approaches, to assist in fundamental metabolic network analyses and redesign efforts. This review highlights a number of optimization-based frameworks developed towards addressing challenges in the analysis and engineering of metabolic networks. In particular, three major types of studies are covered here including exploring model predictions, correction and improvement of models of metabolism, and redesign of metabolic networks for the targeted overproduction of a desired compound. Overall, the methods reviewed in this paper highlight the diversity of queries, breadth of questions and complexity of redesigns that are amenable to mathematical optimization strategies.

  1. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  2. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Malatinszky, David; Steuer, Ralf; Jones, Patrik R

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.

  3. Penile reconstruction

    PubMed Central

    Garaffa, Giulio; Sansalone, Salvatore; Ralph, David J

    2013-01-01

    During the most recent years, a variety of new techniques of penile reconstruction have been described in the literature. This paper focuses on the most recent advances in male genital reconstruction after trauma, excision of benign and malignant disease, in gender reassignment surgery and aphallia with emphasis on surgical technique, cosmetic and functional outcome. PMID:22426595

  4. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  5. Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models

    PubMed Central

    Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.

    2011-01-01

    The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results. PMID:21281568

  6. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-10-01

    Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.

  7. KENeV: A web-application for the automated reconstruction and visualization of the enriched metabolic and signaling super-pathways deriving from genomic experiments

    PubMed Central

    Pilalis, Eleftherios; Koutsandreas, Theodoros; Valavanis, Ioannis; Athanasiadis, Emmanouil; Spyrou, George; Chatziioannou, Aristotelis

    2015-01-01

    Gene expression analysis, using high throughput genomic technologies,has become an indispensable step for the meaningful interpretation of the underlying molecular complexity, which shapes the phenotypic manifestation of the investigated biological mechanism. The modularity of the cellular response to different experimental conditions can be comprehended through the exploitation of molecular pathway databases, which offer a controlled, curated background for statistical enrichment analysis. Existing tools enable pathway analysis, visualization, or pathway merging but none integrates a fully automated workflow, combining all above-mentioned modules and destined to non-programmer users. We introduce an online web application, named KEGG Enriched Network Visualizer (KENeV), which enables a fully automated workflow starting from a list of differentially expressed genes and deriving the enriched KEGG metabolic and signaling pathways, merged into two respective, non-redundant super-networks. The final networks can be downloaded as SBML files, for further analysis, or instantly visualized through an interactive visualization module. In conclusion, KENeV (available online at http://www.grissom.gr/kenev) provides an integrative tool, suitable for users with no programming experience, for the functional interpretation, at both the metabolic and signaling level, of differentially expressed gene subsets deriving from genomic experiments. PMID:26925206

  8. ACL reconstruction

    MedlinePlus

    ... This increases the chance you may have a meniscus tear. ACL reconstruction may be used for these ... When other ligaments are also injured When your meniscus is torn Before surgery, talk to your health ...

  9. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    PubMed

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells.

  10. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis.

    PubMed

    Jouhten, Paula; Wiebe, Marilyn; Penttilä, Merja

    2012-09-01

    Dynamic flux balance analysis was utilized to simulate the metabolic behaviour of initially fully respirative and respirofermentative steady-state cultures of Saccharomyces cerevisiae during sudden oxygen depletion. The hybrid model for the dynamic flux balance analysis included a stoichiometric genome-scale metabolic model as a static part and dynamic equations for the uptake of glucose and the cessation of respirative metabolism. The yeast consensus genome-scale metabolic model [Herrgård MJ et al. (2008) Nat Biotechnol 26, 1155-1160; Dobson PD et al. (2010) BMC Syst Biol 4, 145] was refined with respect to oxygen-dependent energy metabolism and further modified to reflect S. cerevisiae anabolism in the absence of oxygen. Dynamic flux balance analysis captured well the essential features of the dynamic metabolic behaviour of S. cerevisiae during adaptation to anaerobiosis. Modelling and simulation enabled the identification of short time-scale flux distribution dynamics under the transition to anaerobic metabolism, during which the specific growth rate was reduced, as well as longer time-scale process dynamics when the specific growth rate recovered. Expression of the metabolic genes was set into the context of the identified dynamics. Metabolic gene expression responses associated with the specific growth rate and with the cessation of respirative metabolism were distinguished.

  11. Transcriptional Reprogramming at Genome-Scale of Lactobacillus plantarum WCFS1 in Response to Olive Oil Challenge

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Plaza-Vinuesa, Laura; de las Rivas, Blanca; Muñoz, Rosario; López de Felipe, Félix

    2017-01-01

    Dietary fats may exert selective pressures on Lactobacillus species, however, knowledge on the mechanisms of adaptation to fat stress in these organisms is still fragmentary. This study was undertaken to gain insight into the mechanisms of adaptation of Lactobacillus plantarum WCFS1 to olive oil challenge by whole genome transcriptional profiling using DNA microarrays. A set of 230 genes were differentially expressed by L. plantarum WCFS1 to respond to this vegetable oil. This response involved elements typical of the stringent response, as indicated by the induction of genes involved in stress-related pathways and downregulation of genes related to processes associated with rapid growth. A set of genes involved in the transport and metabolism of compatible solutes were downregulated, indicating that this organism does not require osmoprotective mechanisms in presence of olive oil. The fatty acid biosynthetic pathway was thoroughly downregulated at the transcriptional level, which coincided with a diminished expression of genes controlled by this pathway in other organisms and that are required for the respiratory function, pyruvate dehydrogenase activity, RNA processing and cell size setting. Finally, a set of genes involved in host-cell signaling by L. plantarum were differentially regulated indicating that olive oil can influence the expression of metabolic traits involved in the crosstalk between this bacterium and the host. PMID:28261192

  12. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  13. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    PubMed

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  14. ACL reconstruction - discharge

    MedlinePlus

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  15. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

    PubMed

    Ding, Li; Paszkowski-Rogacz, Maciej; Nitzsche, Anja; Slabicki, Mikolaj Michal; Heninger, Anne-Kristin; de Vries, Ingrid; Kittler, Ralf; Junqueira, Magno; Shevchenko, Andrej; Schulz, Herbert; Hubner, Norbert; Doss, Michael Xavier; Sachinidis, Agapios; Hescheler, Juergen; Iacone, Roberto; Anastassiadis, Konstantinos; Stewart, A Francis; Pisabarro, M Teresa; Caldarelli, Antonio; Poser, Ina; Theis, Mirko; Buchholz, Frank

    2009-05-08

    Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.

  16. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  17. Human metabolic atlas: an online resource for human metabolism.

    PubMed

    Pornputtapong, Natapol; Nookaew, Intawat; Nielsen, Jens

    2015-01-01

    Human tissue-specific genome-scale metabolic models (GEMs) provide comprehensive understanding of human metabolism, which is of great value to the biomedical research community. To make this kind of data easily accessible to the public, we have designed and deployed the human metabolic atlas (HMA) website (http://www.metabolicatlas.org). This online resource provides comprehensive information about human metabolism, including the results of metabolic network analyses. We hope that it can also serve as an information exchange interface for human metabolism knowledge within the research community. The HMA consists of three major components: Repository, Hreed (Human REaction Entities Database) and Atlas. Repository is a collection of GEMs for specific human cell types and human-related microorganisms in SBML (System Biology Markup Language) format. The current release consists of several types of GEMs: a generic human GEM, 82 GEMs for normal cell types, 16 GEMs for different cancer cell types, 2 curated GEMs and 5 GEMs for human gut bacteria. Hreed contains detailed information about biochemical reactions. A web interface for Hreed facilitates an access to the Hreed reaction data, which can be easily retrieved by using specific keywords or names of related genes, proteins, compounds and cross-references. Atlas web interface can be used for visualization of the GEMs collection overlaid on KEGG metabolic pathway maps with a zoom/pan user interface. The HMA is a unique tool for studying human metabolism, ranging in scope from an individual cell, to a specific organ, to the overall human body. This resource is freely available under a Creative Commons Attribution-NonCommercial 4.0 International License.

  18. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  19. Genotype networks in metabolic reaction spaces

    PubMed Central

    2010-01-01

    Background A metabolic genotype comprises all chemical reactions an organism can catalyze via enzymes encoded in its genome. A genotype is viable in a given environment if it is capable of producing all biomass components the organism needs to survive and reproduce. Previous work has focused on the properties of individual genotypes while little is known about how genome-scale metabolic networks with a given function can vary in their reaction content. Results We here characterize spaces of such genotypes. Specifically, we study metabolic genotypes whose phenotype is viability in minimal chemical environments that differ in their sole carbon sources. We show that regardless of the number of reactions in a metabolic genotype, the genotypes of a given phenotype typically form vast, connected, and unstructured sets -- genotype networks -- that nearly span the whole of genotype space. The robustness of metabolic phenotypes to random reaction removal in such spaces has a narrow distribution with a high mean. Different carbon sources differ in the number of metabolic genotypes in their genotype network; this number decreases as a genotype is required to be viable on increasing numbers of carbon sources, but much less than if metabolic reactions were used independently across different chemical environments. Conclusions Our work shows that phenotype-preserving genotype networks have generic organizational properties and that these properties are insensitive to the number of reactions in metabolic genotypes. PMID:20302636

  20. Biogeochemical metabolic modeling of methanogenesis by Methanosarcina barkeri

    NASA Astrophysics Data System (ADS)

    Jensvold, Z. D.; Jin, Q.

    2015-12-01

    Methanogenesis, the biological process of methane production, is the final step of natural organic matter degradation. In studying natural methanogenesis, important questions include how fast methanogenesis proceeds and how methanogens adapt to the environment. To address these questions, we propose a new approach - biogeochemical reaction modeling - by simulating the metabolic networks of methanogens. Biogeochemical reaction modeling combines geochemical reaction modeling and genome-scale metabolic modeling. Geochemical reaction modeling focuses on the speciation of electron donors and acceptors in the environment, and therefore the energy available to methanogens. Genome-scale metabolic modeling predicts microbial rates and metabolic strategies. Specifically, this approach describes methanogenesis using an enzyme network model, and computes enzyme rates by accounting for both the kinetics and thermodynamics. The network model is simulated numerically to predict enzyme abundances and rates of methanogen metabolism. We applied this new approach to Methanosarcina barkeri strain fusaro, a model methanogen that makes methane by reducing carbon dioxide and oxidizing dihydrogen. The simulation results match well with the results of previous laboratory experiments, including the magnitude of proton motive force and the kinetic parameters of Methanosarcina barkeri. The results also predict that in natural environments, the configuration of methanogenesis network, including the concentrations of enzymes and metabolites, differs significantly from that under laboratory settings.

  1. Reconstruction of the Metabolic Potential of Acidophilic Sideroxydans Strains from the Metagenome of an Microaerophilic Enrichment Culture of Acidophilic Iron-Oxidizing Bacteria from a Pilot Plant for the Treatment of Acid Mine Drainage Reveals Metabolic Versatility and Adaptation to Life at Low pH

    PubMed Central

    Mühling, Martin; Poehlein, Anja; Stuhr, Anna; Voitel, Matthias; Daniel, Rolf; Schlömann, Michael

    2016-01-01

    Bacterial community analyses of samples from a pilot plant for the treatment of acid mine drainage (AMD) from the lignite-mining district in Lusatia (East Germany) had previously demonstrated the dominance of two groups of acidophilic iron oxidizers: the novel candidate genus “Ferrovum” and a group comprising Gallionella-like strains. Since pure culture had proven difficult, previous studies have used genome analyses of co-cultures consisting of “Ferrovum” and a strain of the heterotrophic acidophile Acidiphilium in order to obtain insight into the life style of these novel bacteria. Here we report on attempts to undertake a similar study on Gallionella-like acidophiles from AMD. Isolates belonging to the family Gallionellaceae are still restricted to the microaerophilic and neutrophilic iron oxidizers Sideroxydans and Gallionella. Availability of genomic or metagenomic sequence data of acidophilic strains of these genera should, therefore, be relevant for defining adaptive strategies in pH homeostasis. This is particularly the case since complete genome sequences of the neutrophilic strains G. capsiferriformans ES-2 and S. lithotrophicus ES-1 permit the direct comparison of the metabolic capacity of neutrophilic and acidophilic members of the same genus and, thus, the detection of biochemical features that are specific to acidophilic strains to support life under acidic conditions. Isolation attempts undertaken in this study resulted in the microaerophilic enrichment culture ADE-12-1 which, based on 16S rRNA gene sequence analysis, consisted of at least three to four distinct Gallionellaceae strains that appear to be closely related to the neutrophilic iron oxidizer S. lithotrophicus ES-1. Key hypotheses inferred from the metabolic reconstruction of the metagenomic sequence data of these acidophilic Sideroxydans strains include the putative role of urea hydrolysis, formate oxidation and cyanophycin decarboxylation in pH homeostasis. PMID:28066396

  2. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories

    PubMed Central

    Fisher, Amanda K.; Freedman, Benjamin G.; Bevan, David R.; Senger, Ryan S.

    2014-01-01

    Microbial cell factories (MCFs) are of considerable interest to convert low value renewable substrates to biofuels and high value chemicals. This review highlights the progress of computational models for the rational design of an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i) product selection, (ii) de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial), (iii) MCF chassis selection, (iv) enzyme engineering of promiscuity to enable the formation of new products, and (v) metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as (i) de novo biosynthetic pathway builders, (ii) docking, (iii) molecular dynamics (MD) and steered MD (SMD), and (iv) genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-scale metabolic flux models are of considerable use to the design process since they can reveal metabolic capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled the derivation of metabolic engineering strategies, which can be implemented using the genomic tools reviewed here as well. PMID:25379147

  3. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    PubMed

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.

  4. An algorithm for efficient identification of branched metabolic pathways.

    PubMed

    Heath, Allison P; Bennett, George N; Kavraki, Lydia E

    2011-11-01

    This article presents a new graph-based algorithm for identifying branched metabolic pathways in multi-genome scale metabolic data. The term branched is used to refer to metabolic pathways between compounds that consist of multiple pathways that interact biochemically. A branched pathway may produce a target compound through a combination of linear pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While branched metabolic pathways predominate in metabolic networks, most previous work has focused on identifying linear metabolic pathways. The ability to automatically identify branched pathways is important in applications that require a deeper understanding of metabolism, such as metabolic engineering and drug target identification. The algorithm presented in this article utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on several well-characterized metabolic pathways that demonstrate that the new merging approach can efficiently find biologically relevant branched metabolic pathways.

  5. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.

  6. Metabolism of halophilic archaea

    PubMed Central

    Falb, Michaela; Müller, Kerstin; Königsmaier, Lisa; Oberwinkler, Tanja; Horn, Patrick; von Gronau, Susanne; Gonzalez, Orland; Pfeiffer, Friedhelm; Bornberg-Bauer, Erich

    2008-01-01

    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The ca