Science.gov

Sample records for genome-wide cytosine methylation

  1. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    PubMed Central

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on IR and on LCR, respectively. A statistical-physical relationship between IR and LCR was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  2. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.

    PubMed

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas; Parker, Brian J; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J; Kelly, Theresa K; Vang, Søren; Andersson, Robin; Jones, Peter A; Hoover, Cindi A; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M; Sandelin, Albin; Gilbert, M Thomas P; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-03-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.

  3. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  4. Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti.

    PubMed

    Ye, Yixin H; Woolfit, Megan; Huttley, Gavin A; Rancès, Edwige; Caragata, Eric P; Popovici, Jean; O'Neill, Scott L; McGraw, Elizabeth A

    2013-01-01

    Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants.

  5. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation.

    PubMed

    Zhang, Meishan; Li, Ning; He, Wenan; Zhang, Huakun; Yang, Wei; Liu, Bao

    2016-02-01

    Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation.

  6. Profiling genome-wide DNA methylation.

    PubMed

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  7. Genome-wide DNA methylation profile in mungbean

    PubMed Central

    Kang, Yang Jae; Bae, Ahra; Shim, Sangrea; Lee, Taeyoung; Lee, Jayern; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2017-01-01

    DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding. PMID:28084412

  8. Genome-Wide Mapping of DNA Methylation in Chicken

    PubMed Central

    Hu, Xiaoxiang; Li, Jinxiu; Du, Zhuo; Chen, Li; Yin, Guangliang; Duan, Jinjie; Zhang, Haichao; Zhao, Yaofeng; Wang, Jun; Li, Ning

    2011-01-01

    Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS) and the transcription termination site (TTS). Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds. PMID:21573164

  9. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles

    PubMed Central

    2012-01-01

    DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation, cellular specification and cancer development. Here, we describe an R package, methylKit, that rapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation and hydroxymethylation sequencing experiments. methylKit includes functions for clustering, sample quality visualization, differential methylation analysis and annotation features, thus automating and simplifying many of the steps for discerning statistically significant bases or regions of DNA methylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statistically significant regions of differential methylation and stratify tumor subtypes. methylKit is available at http://code.google.com/p/methylkit. PMID:23034086

  10. Information Thermodynamics of Cytosine DNA Methylation.

    PubMed

    Sanchez, Robersy; Mackenzie, Sally A

    2016-01-01

    Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise") induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current

  11. Information Thermodynamics of Cytosine DNA Methylation

    PubMed Central

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background (“noise”) induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer’s principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do

  12. Phenotype prediction based on genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes. Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA. Results We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data. We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case–control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case–control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii

  13. Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection

    PubMed Central

    Sharma, Garima; Sowpati, Divya Tej; Singh, Prakruti; Khan, Mehak Zahoor; Ganji, Rakesh; Upadhyay, Sandeep; Banerjee, Sharmistha; Nandicoori, Vinay Kumar; Khosla, Sanjeev

    2016-01-01

    A mammalian cell utilizes DNA methylation to modulate gene expression in response to environmental changes during development and differentiation. Aberrant DNA methylation changes as a correlate to diseased states like cancer, neurodegenerative conditions and cardiovascular diseases have been documented. Here we show genome-wide DNA methylation changes in macrophages infected with the pathogen M. tuberculosis. Majority of the affected genomic loci were hypermethylated in M. tuberculosis infected THP1 macrophages. Hotspots of differential DNA methylation were enriched in genes involved in immune response and chromatin reorganization. Importantly, DNA methylation changes were observed predominantly for cytosines present in non-CpG dinucleotide context. This observation was consistent with our previous finding that the mycobacterial DNA methyltransferase, Rv2966c, targets non-CpG dinucleotides in the host DNA during M. tuberculosis infection and reiterates the hypothesis that pathogenic bacteria use non-canonical epigenetic strategies during infection. PMID:27112593

  14. Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis

    PubMed Central

    Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji

    2015-01-01

    Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. PMID:25902052

  15. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis.

    PubMed

    Ito, Tasuku; Tarutani, Yoshiaki; To, Taiko Kim; Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji

    2015-04-01

    Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3' regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome.

  16. A genome-wide methylation study on obesity

    PubMed Central

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances. PMID:23644594

  17. Genome-Wide Methylation Analyses in Glioblastoma Multiforme

    PubMed Central

    Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730

  18. Genome-wide methylation analyses in glioblastoma multiforme.

    PubMed

    Lai, Rose K; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  19. Genome-Wide Analysis of DNA Methylation in Human Amnion

    PubMed Central

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  20. Genome-wide methylation profiles in coronary artery ectasia.

    PubMed

    Lu, Tzu-Pin; Chuang, Nai-Chen; Cheng, Chin-Yu; Hsu, Cheng-An; Wang, Yi-Chih; Lin, Yen-Hong; Lee, Jen-Kuang; Wu, Cho-Kai; Hwang, Juey-Jen; Lin, Lian-Yu; Yeh, Shih-Fan Sherri; Chien, Kuo-Liang; Juang, Jyh-Ming Jimmy

    2017-04-01

    Coronary artery ectasia (CAE) is a disease characterized by abnormally dilated coronary arteries. The mechanism of CAE remains unclear, and its treatment is limited. Previous studies have shown that risk factors for CAE were related to changes in DNA methylation. However, no systematic investigation of methylation profiles has been performed. Therefore, we compared methylation profiles between 12 CAE patients and 12 propensity-matched individuals with normal coronary arteries using microarrays. Wilcoxon's rank sum tests revealed 89 genes with significantly different methylation levels (P<0.05 and Δβ > |0.1|). Functional characterization using the DAVID database and gene set enrichment analysis indicated that these genes were involved in immune and inflammatory responses. Of these genes 6 were validated in 29 CAE patients and 87 matched individuals with CAE, using pyro-sequencing. TLR6 and NOTCH4 showed significant differences in methylation between the two groups, and lower protein levels of toll-like receptor 6 (TLR6) were detected in CAE patients. In conclusion, this genome-wide analysis of methylation profiles in CAE patients showed that significant changes in both methylation and expression of TLR6 deserve further study to elucidate their roles in CAE. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. A genome-wide DNA methylation study in azoospermia.

    PubMed

    Ferfouri, F; Boitrelle, F; Ghout, I; Albert, M; Molina Gomes, D; Wainer, R; Bailly, M; Selva, J; Vialard, F

    2013-11-01

    The objective of this study was to assess genome-wide DNA methylation in testicular tissue from azoospermic patients. A total of 94 azoospermic patients were recruited and classified into three groups: 29 patients presented obstructive azoospermia (OA), 26 displayed non-obstructive azoospermia (NOA) and successful retrieval of spermatozoa by testicular sperm extraction (TESE+) and 39 displayed NOA and failure to retrieve spermatozoa by TESE (TESE-). An Illumina Infinium Human Methylation27 BeadChip DNA methylation array was used to establish a testicular DNA methylation pattern for each type of azoospermic patient. The OA and NOA groups were compared in terms of the relative M-value (the log2 ratio between methylated and non-methylated probe intensities) for each CpG site. We observed significantly different DNA methylation profiles for the NOA and OA groups, with differences at over 9000 of the 27 578 CpG sites; 212 CpG sites had a relative M-value >3. The results highlighted 14 testis-specific genes. Patient clustering with respect to these 212 CpG sites corresponded closely to the clinical classification. The DNA methylation patterns showed that in the NOA group, 78 of the 212 CpG sites were hypomethylated and 134 were hypermethylated (relative to the OA group). On the basis of these DNA methylation profiles, azoospermic patients could be classified as OA or NOA by considering the 212 CpG sites with the greatest methylation differences. Furthermore, we identified genes that may provide insight into the mechanism of idiopathic NOA.

  2. Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    PubMed Central

    Irizarry, Rafael A.; Rongione, Michael; Webster, Maree J.; Kaufman, Walter E.; Murakami, Peter; Lessard, Andree; Yolken, Robert H.; Feinberg, Andrew P.; Potash, James B.; Consortium, GenRED

    2012-01-01

    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08. While we cannot draw firm conclusions about PRIMA1 DNAm in MDD, the involvement of neuronal development genes across the set showing differential methylation suggests a role for epigenetics in the illness. Further studies using limbic system brain regions might shed additional light on this role. PMID:22511943

  3. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum.

    PubMed

    Veluchamy, Alaguraj; Lin, Xin; Maumus, Florian; Rivarola, Maximo; Bhavsar, Jaysheel; Creasy, Todd; O'Brien, Kimberly; Sengamalay, Naomi A; Tallon, Luke J; Smith, Andrew D; Rayko, Edda; Ahmed, Ikhlak; Le Crom, Stéphane; Farrant, Gregory K; Sgro, Jean-Yves; Olson, Sue A; Bondurant, Sandra Splinter; Allen, Andrew E; Allen, Andrew; Rabinowicz, Pablo D; Sussman, Michael R; Bowler, Chris; Tirichine, Leïla

    2013-01-01

    DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.

  4. Nightshift work and genome-wide DNA methylation.

    PubMed

    Bhatti, Parveen; Zhang, Yuzheng; Song, Xiaoling; Makar, Karen W; Sather, Cassandra L; Kelsey, Karl T; Houseman, E Andres; Wang, Pei

    2015-02-01

    The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be

  5. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins

    PubMed Central

    Córdova-Palomera, A; Fatjó-Vilas, M; Gastó, C; Navarro, V; Krebs, M-O; Fañanás, L

    2015-01-01

    Depressive disorders have been shown to be highly influenced by environmental pathogenic factors, some of which are believed to exert stress on human brain functioning via epigenetic modifications. Previous genome-wide methylomic studies on depression have suggested that, along with differential DNA methylation, affected co-twins of monozygotic (MZ) pairs have increased DNA methylation variability, probably in line with theories of epigenetic stochasticity. Nevertheless, the potential biological roots of this variability remain largely unexplored. The current study aimed to evaluate whether DNA methylation differences within MZ twin pairs were related to differences in their psychopathological status. Data from the Illumina Infinium HumanMethylation450 Beadchip was used to evaluate peripheral blood DNA methylation of 34 twins (17 MZ pairs). Two analytical strategies were used to identify (a) differentially methylated probes (DMPs) and (b) variably methylated probes (VMPs). Most DMPs were located in genes previously related to neuropsychiatric phenotypes. Remarkably, one of these DMPs (cg01122889) was located in the WDR26 gene, the DNA sequence of which has been implicated in major depressive disorder from genome-wide association studies. Expression of WDR26 has also been proposed as a biomarker of depression in human blood. Complementarily, VMPs were located in genes such as CACNA1C, IGF2 and the p38 MAP kinase MAPK11, showing enrichment for biological processes such as glucocorticoid signaling. These results expand on previous research to indicate that both differential methylation and differential variability have a role in the etiology and clinical manifestation of depression, and provide clues on specific genomic loci of potential interest in the epigenetics of depression. PMID:25918994

  6. Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis.

    PubMed

    Guo, Shicheng; Zhu, Qi; Jiang, Ting; Wang, Rongsheng; Shen, Yi; Zhu, Xiao; Wang, Yan; Bai, Fengmin; Ding, Qin; Zhou, Xiaodong; Chen, Guangjie; He, Dong Yi

    2017-05-01

    Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation of the joints. Recent evidence indicated the epigenetic changes may contribute to the pathogenesis of RA. To understand the extent and nature of dysregulated DNA methylation in RA CD4T cells, we performed a genome-wide DNA methylation study in CD4 + T cells in 12 RA patients compared to 12 matched normal healthy controls. Cytosine methylation status was quantified with Illumina methylation 450K microarray. The DNA methylation profiling showed 383 hyper- and 785 hypo-methylated genes in the CD4 + T cells of the RA patients (p < 3.4 × 10(-7)). Gene ontology analysis indicated transcript alternative splicing and protein modification mediated by DNA methylation might play an important role in the pathogenesis of RA. In addition, the result showed that human leukocyte antigen (HLA) region including HLA-DRB6, HLA-DQA1 and HLA-E was frequently hypomethylated, but HLA-DQB1 hypermethylated in CpG island region and hypomethylated in CpG shelf region in RA patients. Outside the MHC region, HDAC4, NXN, TBCD and TMEM61 were the most hypermethylated genes, while ITIH3, TCN2, PRDM16, SLC1A5 and GALNT9 are the most hypomethylated genes. Genome-wide DNA methylation profile revealed significant DNA methylation change in CD4 + T cells from patients with RA.

  7. Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits.

    PubMed

    Moen, Erika L; Zhang, Xu; Mu, Wenbo; Delaney, Shannon M; Wing, Claudia; McQuade, Jennifer; Myers, Jamie; Godley, Lucy A; Dolan, M Eileen; Zhang, Wei

    2013-08-01

    Elucidating cytosine modification differences between human populations can enhance our understanding of ethnic specificity in complex traits. In this study, cytosine modification levels in 133 HapMap lymphoblastoid cell lines derived from individuals of European or African ancestry were profiled using the Illumina HumanMethylation450 BeadChip. Approximately 13% of the analyzed CpG sites showed differential modification between the two populations at a false discovery rate of 1%. The CpG sites with greater modification levels in European descent were enriched in the proximal regulatory regions, while those greater in African descent were biased toward gene bodies. More than half of the detected population-specific cytosine modifications could be explained primarily by local genetic variation. In addition, a substantial proportion of local modification quantitative trait loci exhibited population-specific effects, suggesting that genetic epistasis and/or genotype × environment interactions could be common. Distinct correlations were observed between gene expression levels and cytosine modifications in proximal regions and gene bodies, suggesting epigenetic regulation of interindividual expression variation. Furthermore, quantitative trait loci associated with population-specific modifications can be colocalized with expression quantitative trait loci and single nucleotide polymorphisms previously identified for complex traits with known racial disparities. Our findings revealed abundant population-specific cytosine modifications and the underlying genetic basis, as well as the relatively independent contribution of genetic and epigenetic variations to population differences in gene expression.

  8. Genome-Wide Variation of Cytosine Modifications Between European and African Populations and the Implications for Complex Traits

    PubMed Central

    Moen, Erika L.; Zhang, Xu; Mu, Wenbo; Delaney, Shannon M.; Wing, Claudia; McQuade, Jennifer; Myers, Jamie; Godley, Lucy A.

    2013-01-01

    Elucidating cytosine modification differences between human populations can enhance our understanding of ethnic specificity in complex traits. In this study, cytosine modification levels in 133 HapMap lymphoblastoid cell lines derived from individuals of European or African ancestry were profiled using the Illumina HumanMethylation450 BeadChip. Approximately 13% of the analyzed CpG sites showed differential modification between the two populations at a false discovery rate of 1%. The CpG sites with greater modification levels in European descent were enriched in the proximal regulatory regions, while those greater in African descent were biased toward gene bodies. More than half of the detected population-specific cytosine modifications could be explained primarily by local genetic variation. In addition, a substantial proportion of local modification quantitative trait loci exhibited population-specific effects, suggesting that genetic epistasis and/or genotype × environment interactions could be common. Distinct correlations were observed between gene expression levels and cytosine modifications in proximal regions and gene bodies, suggesting epigenetic regulation of interindividual expression variation. Furthermore, quantitative trait loci associated with population-specific modifications can be colocalized with expression quantitative trait loci and single nucleotide polymorphisms previously identified for complex traits with known racial disparities. Our findings revealed abundant population-specific cytosine modifications and the underlying genetic basis, as well as the relatively independent contribution of genetic and epigenetic variations to population differences in gene expression. PMID:23792949

  9. CGGBP1 mitigates cytosine methylation at repetitive DNA sequences.

    PubMed

    Agarwal, Prasoon; Collier, Paul; Fritz, Markus Hsi-Yang; Benes, Vladimir; Wiklund, Helena Jernberg; Westermark, Bengt; Singh, Umashankar

    2015-05-16

    CGGBP1 is a repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and Alu-SINEs and L1-LINEs. The role of CGGBP1 as a possible mediator of CpG methylation however remains unknown. At CpG-rich sequences cytosine methylation is a major mechanism of transcriptional repression. Concordantly, gene-rich regions typically carry lower levels of CpG methylation than the repetitive elements. It is well known that at interspersed repeats Alu-SINEs and L1-LINEs high levels of CpG methylation constitute a transcriptional silencing and retrotransposon inactivating mechanism. Here, we have studied genome-wide CpG methylation with or without CGGBP1-depletion. By high throughput sequencing of bisulfite-treated genomic DNA we have identified CGGBP1 to be a negative regulator of CpG methylation at repetitive DNA sequences. In addition, we have studied CpG methylation alterations on Alu and L1 retrotransposons in CGGBP1-depleted cells using a novel bisulfite-treatment and high throughput sequencing approach. The results clearly show that CGGBP1 is a possible bidirectional regulator of CpG methylation at Alus, and acts as a repressor of methylation at L1 retrotransposons.

  10. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    PubMed Central

    Boon, Kathy; Tomfohr, John K; Bailey, Nathaniel W; Garantziotis, Stavros; Li, Zhuowei; Brass, David M; Maruoka, Shuichiro; Hollingsworth, John W; Schwartz, David A

    2008-01-01

    Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK), a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05) after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models of complex human diseases in

  11. Controlling for conservation in genome-wide DNA methylation studies.

    PubMed

    Singer, Meromit; Pachter, Lior

    2015-05-30

    A commonplace analysis in high-throughput DNA methylation studies is the comparison of methylation extent between different functional regions, computed by averaging methylation states within region types and then comparing averages between regions. For example, it has been reported that methylation is more prevalent in coding regions as compared to their neighboring introns or UTRs, leading to hypotheses about novel forms of epigenetic regulation. We have identified and characterized a bias present in these seemingly straightforward comparisons that results in the false detection of differences in methylation intensities across region types. This bias arises due to differences in conservation rates, rather than methylation rates, and is broadly present in the published literature. When controlling for conservation at coding start sites the differences in DNA methylation rates disappear. Moreover, a re-evaluation of methylation rates at intronexon junctions reveals that the magnitude of previously reported differences is greatly exaggerated. We introduce two correction methods to address this bias, an inferencebased matrix completion algorithm and an averaging approach, tailored to address different underlying biological questions. We evaluate how analysis using these corrections affects the detection of differences in DNA methylation across functional boundaries. We report here on a bias in DNA methylation comparative studies that originates in conservation rate differences and manifests itself in the false discovery of differences in DNA methylation intensities and their extents. We have characterized this bias and its broad implications, and show how to control for it so as to enable the study of a variety of biological questions.

  12. Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut

    PubMed Central

    Wang, Pengfei; Gao, Chao; Bian, Xiaotong; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Song, Hui; Hou, Lei; Wan, Shubo; Wang, Xingjun

    2016-01-01

    DNA methylation plays important roles in genome protection, regulation of gene expression and is associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferase and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequenced, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in MET, CMT, and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 members didn't contain UBA domain which was different from other plants such as Arabidopsis, maize and soybean. Five DNA demethylase encoding genes were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTase genes mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferase and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or PEG stress could influence the expression level of C5-MTase and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut in the future. PMID:26870046

  13. A genome-wide methylation study on obesity: differential variability and differential methylation.

    PubMed

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Hidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-05-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14-20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.

  14. Genome-wide DNA methylation analysis in permanent atrial fibrillation.

    PubMed

    Zhao, Guochang; Zhou, Jian; Gao, Jie; Liu, Yan; Gu, Song; Zhang, Xitao; Su, Pixiong

    2017-10-01

    Atrial fibrillation (AF) is a highly heterogeneous genetic disease; however, the pathogenesis of AF cannot be explained by genetic variants alone. DNA methylation is a heritable method of gene expression regulation, and may be a potential regulatory mechanism in AF. Therefore, in the present study, the genome‑wide DNA methylation pattern in cells derived from the left atrium of patients with permanent AF (n=7) was compared with that of healthy heart donors (n=4) with a normal sinus rhythm (SR). Enriched biological functions of the differentially methylated genes were assessed. Integrated analysis of genome‑wide methylation and mRNA expression profiles was performed, and reverse transcription quantitative‑polymerase chain reaction (RT‑qPCR) was used to determine the expression levels of four selected genes. A total of 417 differentially methylated CpG sites were identified in the fibrillating atrium (P<0.05; |β|>0.17); the majority of which were located in gene‑body and intergenic regions outside of CpG islands. Aberrantly methylated genes participated in the activation of inflammation, sodium and potassium ion transport, fibrosis and the reduction of lipid metabolism. Hypermethylation in the AF susceptible loci, paired‑like homeodomain transcription factor 2 (chromosome 4q25) and coiled‑coil domain containing 141 (chromosome 2q31), as well as hypomethylation in the calcium voltage‑gated channel subunit α1C (chromosome 12p13) locus, were identified in all patients with AF. Of the 420 upregulated and 567 downregulated genes previously identified in patients with AF relative to those with normal SR (fold‑change >2.0; P≤0.05), 12 genes were hypomethylated and eight genes were hypermethylated in each group, respectively (|β|>0.2: P<0.05). RT‑qPCR analysis of four of these genes supported the modulatory effect of DNA methylation on gene expression. These results suggest that DNA methylation‑mediated regulation of gene expression may serve

  15. Genome-wide DNA methylation analysis using massively parallel sequencing technologies.

    PubMed

    Suzuki, Masako; Greally, John M

    2013-01-01

    "Epigenetics" refers to a heritable change in transcriptional status without alteration in the primary nucleotide sequence. Epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal development, as well as in pathological conditions. DNA methylation is one of the best known and well-studied epigenetic modifications. Genome-wide DNA methylation profiling has become recognized as a biologically and clinically important epigenomic assay. In this review, we discuss the strengths and weaknesses of the protocols for genome-wide DNA methylation profiling using massively parallel sequencing (MPS) techniques. We will also describe recently discovered DNA modifications, and the protocols to detect these modifications.

  16. Genome-wide DNA methylation patterns in coronary heart disease.

    PubMed

    Wang, X; Liu, A-H; Jia, Z-W; Pu, K; Chen, K-Y; Guo, H

    2017-09-07

    To better understand the molecular mechanisms of atherosclerosis, we conducted a comparative analysis of DNA methylation patterns in right coronary arteries in the area of advanced atherosclerotic plaques (CAP), great saphenous vein (GSV), and internal mammary artery (IMA) of patients affected by coronary heart disease. DNA methylation data (accession number E‑GEOD-62867) were divided into three paired groups: CAP vs. IMA, CAP vs. GSV, and IMA vs. GSV. Differentially methylated genes (DMGs) were extracted to analyze the changes in the DMGs in the three different tissues. The gplots package was used for the clustering and heatmap analysis of DMGs. Subsequently, DMG-related pathways were identified using DAVID (Database for Annotation, Visualization and Integrated Discovery) and transcription factors (TFs) were predicted. Based on the filtering criterion of p < 0.05, and a mean beta value difference of ≥0.2, there were 252, 373, and 259 DMGs, respectively, in the CAP vs. IMA, CAP vs. GSV, and IMA vs. GSV groups. Interestingly, the S100A10 gene was hypomethylated in CAP compared with IMA and GSV. Clustering and heatmap analyses suggested that DMGs were segregated into two distinct clusters. Hypermethylated genes in CAP as compared with GSV were only involved in the pathway of fat digestion and absorption, while hypomethylated genes in CAP compared with GSV mainly participated in immune response-associated pathways (cytokine-cytokine receptor interaction, MAPK signaling pathway). The DNA methylation differences in vascular tissues of patients with coronary artery disease may provide new insights into the mechanisms underlying the development of atherosclerosis. The functions identified here-cytokine-cytokine receptor interaction, MAPK signaling pathway, DMG (S100A10), and TF (NF-kB)-may serve as potential targets in the treatment of atherosclerosis.

  17. Epigenetic genome-wide association methylation in aging and longevity.

    PubMed

    Ben-Avraham, Danny; Muzumdar, Radhika H; Atzmon, Gil

    2012-10-01

    The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors. Evidence suggests that epigenetic changes (i.e., a set of reversible, heritable changes in gene function or other cell phenotype that occurs without a change in DNA sequence) may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as marker for chronological age. This article systematically highlights the advances made in the field of epigenomics and their contribution to the understanding of the complex physiology of aging, lifespan and age-associated diseases.

  18. Epigenetic genome-wide association methylation in aging and longevity

    PubMed Central

    Ben-Avraham, Danny; Muzumdar, Radhika H; Atzmon, Gil

    2014-01-01

    The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors. Evidence suggests that epigenetic changes (i.e., a set of reversible, heritable changes in gene function or other cell phenotype that occurs without a change in DNA sequence), may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as marker for chronological age. This article systematically highlights the advances made in the field of epigenomics and their contribution to the understanding of the complex physiology of aging, lifespan and age-associated diseases. PMID:23130832

  19. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors

    PubMed Central

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    ABSTRACT Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development. PMID:26786290

  20. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors.

    PubMed

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform ( http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.

  1. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    PubMed Central

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  2. Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes

    PubMed Central

    Olson, Claire E.; Roberts, Steven B.

    2014-01-01

    DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing. RNA-Seq analysis was performed to examine the relationship between DNA methylation and transcript expression. Methylation status of over 7.6 million CpG dinucleotides was described with a majority of methylated regions occurring among intragenic regions. Overall, 15% of the CpG dinucleotides were determined to be methylated and the mitochondrial genome lacked DNA methylation. Integrative analysis of DNA methylation and RNA-Seq data revealed a positive association between methylation status, both in gene bodies and putative promoter regions, and expression. This study provides a comprehensive characterization of the distribution of DNA methylation in the oyster male gamete tissue and suggests that DNA methylation is involved in gene regulatory activity. PMID:24987376

  3. Cytosine Methylation Dysregulation in Neonates Following Intrauterine Growth Restriction

    PubMed Central

    Bhagat, Tushar D.; Fazzari, Melissa J.; Verma, Amit; Barzilai, Nir; Greally, John M.

    2010-01-01

    Background Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects. Methods and Findings Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4α (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins. Conclusions Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease. PMID:20126273

  4. The impact of recent alcohol use on genome wide DNA methylation signatures.

    PubMed

    Philibert, Robert A; Plume, Jeffrey M; Gibbons, Frederick X; Brody, Gene H; Beach, Steven R H

    2012-01-01

    Chronic alcohol intake is associated with a wide variety of adverse health outcomes including depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in this process, we examined the relationship of recent alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months immediately prior to phlebotomy was associated with, severity-dependent changes in the degree of genome wide methylation that preferentially hypermethylate the central portion of CpG islands with methylation at cg05600126, a probe in ABR, and the 5' untranslated region of BLCAP attaining genome wide significance in two point and sliding window analyses of probe methylation data, respectively. We conclude that recent alcohol use is associated with widespread changes in DNA methylation in women and that further study to confirm these findings and determine their relationship to somatic function are in order.

  5. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq.

    PubMed

    Li, Jinxiu; Li, Rujiao; Wang, Ying; Hu, Xiaoxiang; Zhao, Yiqiang; Li, Li; Feng, Chungang; Gu, Xiaorong; Liang, Fang; Lamont, Susan J; Hu, Songnian; Zhou, Huaijun; Li, Ning

    2015-10-23

    DNA cytosine methylation is an important epigenetic modification that has significant effects on a variety of biological processes in animals. Avian species hold a crucial position in evolutionary history. In this study, we used whole-genome bisulfite sequencing (MethylC-seq) to generate single base methylation profiles of lungs in two genetically distinct and highly inbred chicken lines (Fayoumi and Leghorn) that differ in genetic resistance to multiple pathogens, and we explored the potential regulatory role of DNA methylation associated with immune response differences between the two chicken lines. The MethylC-seq was used to generate single base DNA methylation profiles of Fayoumi and Leghorn birds. In addition, transcriptome profiling using RNA-seq from the same chickens and tissues were obtained to interrogate how DNA methylation regulates gene transcription on a genome-wide scale. The general DNA methylation pattern across different regions of genes was conserved compared to other species except for hyper-methylation of repeat elements, which was not observed in chicken. The methylation level of miRNA and pseudogene promoters was high, which indicates that silencing of these genes may be partially due to promoter hyper-methylation. Interestingly, the promoter regions of more recently evolved genes tended to be more highly methylated, whereas the gene body regions of evolutionarily conserved genes were more highly methylated than those of more recently evolved genes. Immune-related GO (Gene Ontology) terms were significantly enriched from genes within the differentially methylated regions (DMR) between Fayoumi and Leghorn, which implicates DNA methylation as one of the regulatory mechanisms modulating immune response differences between these lines. This study establishes a single-base resolution DNA methylation profile of chicken lung and suggests a regulatory role of DNA methylation in controlling gene expression and maintaining genome transcription

  6. Genome-wide association between DNA methylation and alternative splicing in an invertebrate.

    PubMed

    Flores, Kevin; Wolschin, Florian; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Amdam, Gro V

    2012-09-15

    Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher's exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during

  7. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    PubMed

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  8. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  9. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell

    PubMed Central

    Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-01-01

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS’ and controls’ granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS’ and controls’ granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls’. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology. PMID:27056885

  10. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies.

    PubMed

    Teruel, Maria; Sawalha, Amr H

    2017-06-01

    DNA methylation has emerged as an important contributing factor in the pathogenesis of systemic lupus erythematosus (SLE). Here, we describe the DNA methylation patterns identified in SLE and how these epigenetic changes can influence disease susceptibility, clinical heterogeneity, and disease flares. Several genome-wide DNA methylation studies have been recently completed in SLE. Important observations include robust demethylation of interferon-regulated genes, which is consistent across all cell types studied to date, and is independent of disease activity. This interferon epigenetic signature was shown to precede interferon transcription signature in SLE, suggesting it might be an early event in the disease process. Recent studies also revealed DNA methylation changes specific for renal and skin involvement in SLE, providing a proof of principle for a value of DNA methylation studies in exploring mechanisms of specific disease manifestations, and potentially as prognostic biomarkers. Inherited ethnicity-specific DNA methylation patterns have also been shown to possibly contribute to differences in SLE susceptibility between populations. Finally, a recent study revealed that DNA methylation levels at IFI44L can accurately distinguish SLE patients from healthy controls, and from patients with other autoimmune diseases, promising to be the first epigenetic diagnostic marker for SLE. Genome-wide DNA methylation studies in SLE have provided novel insights into disease pathogenesis, clinical heterogeneity, and disease flares. Further studies promise to reveal novel diagnostic, prognostic, and therapeutic targets for SLE.

  11. Epigenetic Variation in Monozygotic Twins: A Genome-Wide Analysis of DNA Methylation in Buccal Cells

    PubMed Central

    van Dongen, Jenny; Ehli, Erik A.; Slieker, Roderick C.; Bartels, Meike; Weber, Zachary M.; Davies, Gareth E.; Slagboom, P. Eline; Heijmans, Bastiaan T.; Boomsma, Dorret I.

    2014-01-01

    DNA methylation is one of the most extensively studied epigenetic marks in humans. Yet, it is largely unknown what causes variation in DNA methylation between individuals. The comparison of DNA methylation profiles of monozygotic (MZ) twins offers a unique experimental design to examine the extent to which such variation is related to individual-specific environmental influences and stochastic events or to familial factors (DNA sequence and shared environment). We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8–19) using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs after QC. After selecting CpGs showing the most variation in the methylation level between subjects, the mean genome-wide correlation (rho) was 0.54. The correlation was higher, on average, for CpGs within CpG islands (CGIs), compared to CGI shores, shelves and non-CGI regions, particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental and stochastic influences account for more variation in DNA methylation in CpG-poor regions. Our findings also indicate that it is worthwhile to examine heritable and shared environmental influences on buccal DNA methylation in larger studies that also include dizygotic twins. PMID:24802513

  12. Genome-Wide Analysis of DNA Methylation and Cigarette Smoking in a Chinese Population.

    PubMed

    Zhu, Xiaoyan; Li, Jun; Deng, Siyun; Yu, Kuai; Liu, Xuezhen; Deng, Qifei; Sun, Huizhen; Zhang, Xiaomin; He, Meian; Guo, Huan; Chen, Weihong; Yuan, Jing; Zhang, Bing; Kuang, Dan; He, Xiaosheng; Bai, Yansen; Han, Xu; Liu, Bing; Li, Xiaoliang; Yang, Liangle; Jiang, Haijing; Zhang, Yizhi; Hu, Jie; Cheng, Longxian; Luo, Xiaoting; Mei, Wenhua; Zhou, Zhiming; Sun, Shunchang; Zhang, Liyun; Liu, Chuanyao; Guo, Yanjun; Zhang, Zhihong; Hu, Frank B; Liang, Liming; Wu, Tangchun

    2016-07-01

    Smoking is a risk factor for many human diseases. DNA methylation has been related to smoking, but genome-wide methylation data for smoking in Chinese populations is limited. We aimed to investigate epigenome-wide methylation in relation to smoking in a Chinese population. We measured the methylation levels at > 485,000 CpG sites (CpGs) in DNA from leukocytes using a methylation array and conducted a genome-wide meta-analysis of DNA methylation and smoking in a total of 596 Chinese participants. We further evaluated the associations of smoking-related CpGs with internal polycyclic aromatic hydrocarbon (PAH) biomarkers and their correlations with the expression of corresponding genes. We identified 318 CpGs whose methylation levels were associated with smoking at a genome-wide significance level (false discovery rate < 0.05), among which 161 CpGs annotated to 123 genes were not associated with smoking in recent studies of Europeans and African Americans. Of these smoking-related CpGs, methylation levels at 80 CpGs showed significant correlations with the expression of corresponding genes (including RUNX3, IL6R, PTAFR, ANKRD11, CEP135 and CDH23), and methylation at 15 CpGs was significantly associated with urinary 2-hydroxynaphthalene, the most representative internal monohydroxy-PAH biomarker for smoking. We identified DNA methylation markers associated with smoking in a Chinese population, including some markers that were also correlated with gene expression. Exposure to naphthalene, a byproduct of tobacco smoke, may contribute to smoking-related methylation. Zhu X, Li J, Deng S, Yu K, Liu X, Deng Q, Sun H, Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. 2016. Genome-wide analysis of DNA methylation and cigarette smoking in Chinese. Environ Health Perspect 124:966-973; http://dx.doi.org/10.1289/ehp

  13. Genome-wide quantitative assessment of variation in DNA methylation patterns

    PubMed Central

    Xie, Hehuang; Wang, Min; de Andrade, Alexandre; de F. Bonaldo, Maria; Galat, Vasil; Arndt, Kelly; Rajaram, Veena; Goldman, Stewart; Tomita, Tadanori; Soares, Marcelo B.

    2011-01-01

    Genomic DNA methylation contributes substantively to transcriptional regulations that underlie mammalian development and cellular differentiation. Much effort has been made to decipher the molecular mechanisms governing the establishment and maintenance of DNA methylation patterns. However, little is known about genome-wide variation of DNA methylation patterns. In this study, we introduced the concept of methylation entropy, a measure of the randomness of DNA methylation patterns in a cell population, and exploited it to assess the variability in DNA methylation patterns of Alu repeats and promoters. A few interesting observations were made: (i) within a cell population, methylation entropy varies among genomic loci; (ii) among cell populations, the methylation entropies of most genomic loci remain constant; (iii) compared to normal tissue controls, some tumors exhibit greater methylation entropies; (iv) Alu elements with high methylation entropy are associated with high GC content but depletion of CpG dinucleotides and (v) Alu elements in the intronic regions or far from CpG islands are associated with low methylation entropy. We further identified 12 putative allelic-specific methylated genomic loci, including four Alu elements and eight promoters. Lastly, using subcloned normal fibroblast cells, we demonstrated the highly variable methylation patterns are resulted from low fidelity of DNA methylation inheritance. PMID:21278160

  14. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing.

    PubMed

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-02-25

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome.

  15. Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation

    PubMed Central

    Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970

  16. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip.

    PubMed

    Cortijo, Sandra; Wardenaar, René; Colomé-Tatché, Maria; Johannes, Frank; Colot, Vincent

    2014-01-01

    DNA methylation is an epigenetic mark that is essential for preserving genome integrity and normal development in plants and mammals. Although this modification may serve a variety of purposes, it is best known for its role in stable transcriptional silencing of transposable elements and epigenetic regulation of some genes. In addition, it is increasingly recognized that alterations in DNA methylation patterns can sometimes be inherited across multiple generations and thus are a source of heritable phenotypic variation that is independent of any DNA sequence changes. With the advent of genomics, it is now possible to analyze DNA methylation genome-wide with high precision, which is a prerequisite for understanding fully the various functions and phenotypic impact of this modification. Indeed, several so-called epigenomic mapping methods have been developed for the analysis of DNA methylation. Among these, immunoprecipitation of methylated DNA followed by hybridization to genome tiling arrays (MeDIP-chip) arguably offers a reasonable compromise between cost, ease of implementation, and sensitivity to date. Here we describe the application of this method, from DNA extraction to data analysis, to the study of DNA methylation genome-wide in Arabidopsis.

  17. Genome-wide mapping reveals conservation of promoter DNA methylation following chicken domestication.

    PubMed

    Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning

    2015-03-04

    It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues.

  18. [Research of aluminum to the cognitive ability and genome-wide methylation in rats].

    PubMed

    Yuan, Yuzhou; Yang, Xiaojuan; Ren, Pei; Kang, Pan; Li, Zhaoyang; Niu, Qiao

    2015-05-01

    To investigate the effects of aluminum exposure on cognition ability and genome-wide methylation in rats. Seventy-two healthy SD male rats were randomly assigned by weight into two parts and nine groups (eight rats/group). Exposure part included control group and low, medium and high dose aluminum maltolate group (0.27, 0.54 and 1.08 mg/kg alumium maltolate). Intervention part included control group, 1.08 mg/kg aluminum maltolate group, 1.08 mg/kg aluminum maltolate and low,medium and high dose folic acid group (0.7, 1.5 and. 3.4 mg/kg folic acid). Aluminum maltolate were subjected to peritoneal injection (0.2 ml/d) and folic acid were subjected to intragastric administration in 1 ml/100 g for 60 days. The learning and memory abilities were examined by using Morris water maze test and genome-wide methylation was determined via ELISA assay. It was revealed by Morris water maze test that target quadrant residence time and through the original position were markedly shortened as a result of medium and high dose aluminum exposure when compared with control group (both P < 0.05). The target quadrant residence time and through the original position were extended as a result of folic acid intervention when compared with 1.08 mg/kg aluminum maltolate exposure group. Both of them had statistical difference between 1.08 mg/kg aluminum maltolate and (1.5 mg/kg and 3.4 mg/kg) folic acid intervention group and 1.08 mg/kg aluminum maltolate exposure group (both P < 0.05). Considerable decrease in genome-wide methylation rate was associated with elevated dosage of aluminum maltolate (0.54 mg/kg and 1.08 mg/kg) as compared with control group (both P < 0.05). The genome-wide methylation rate was gradually increase as a result of high-dose folic acid intervention when compared with high-dose aluminum maltolate exposure group (both P < 0.05). Both of them had no statistical difference when compared with control group (both P > 0.05). Aluminum may induce learning and memory abilities

  19. Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa

    PubMed Central

    Pheiffer, Carmen; Humphries, Stephen E.; Gamieldien, Junaid; Erasmus, Rajiv T.

    2016-01-01

    Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of residency-matched. Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA). Results. Hypermethylated DMRs were 1160 (81.97%) and 124 (43.20%), respectively, in individuals with diabetes and prediabetes when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample size is required to confirm these findings. PMID:27555869

  20. Early onset schizophrenia: Gender analysis of genome-wide potential methylation.

    PubMed

    Bani-Fatemi, Ali; Zai, Clement; De Luca, Vincenzo

    2015-09-20

    Methylation studies show that there are substantial gender differences in DNA methylation. On the other hand, in schizophrenia male gender is strongly associated with early onset. The primary aims of the current study are: 1) to identify CpG SNPs across the genome in schizophrenia patients; and 2) to investigate gender differences in potential methylation considering the CpG SNPs at locus, gene and chromosome levels. In this pilot analysis, we have collected detailed clinical information and DNA samples from 16 schizophrenia patients, allowing us to calculate genome-wide potential methylation at genome level in ten males and six females. This cross-sectional DNA sample included subjects with a diagnosis of schizophrenia that were genotyped using the Illumina Omni 2.5 Quad. We applied a novel genetic association strategy, selecting only the CpG SNPs across the genome and analyzed under additive model, to detect gender differences. The mapping analysis was conducted using a specific bioinformatic tool that we have developed, which analyzes only the polymorphic CpG sites genome wide. The bioinformatic tool can detect the SNPs that are affecting the polymorphic CpG sites across the genome. In the SNP-wise analysis, the top autosomal SNP was rs12619000 with 50% potential methylation in males and 95% in females (p=0.000008). In the gene-wise analysis, the KCNG3 was significantly associated with higher potential methylation in males (p=0.0004). The overall results show no robust association between CpG SNPs and gender however the information of the SNP CpG potential methylation can be used for future methylation analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer.

    PubMed

    Li, Lian; Lee, Kyoung-Mu; Han, Wonshik; Choi, Ji-Yeob; Lee, Ji-Young; Kang, Gyeong Hoon; Park, Sue Kyung; Noh, Dong-Young; Yoo, Keun-Young; Kang, Daehee

    2010-11-01

    DNA methylation is the main epigenetic modification that occurs at the early stages of carcinogenesis. We performed a genome-wide DNA methylation profiling to evaluate whether the DNA methylation state is different in the estrogen receptor (ER) and progesterone receptor (PR) status of breast cancer. Twelve ER+/PR+ and 12 ER-/PR- breast cancer tissues were selected from the biorepository of the Seoul Breast Cancer Study for Infinium Methylation Assay. The difference of the DNA methylation state of 27 578 methylation sites in 14 000 genes between two groups was evaluated by Student's t-test. False discovery rate (FDR) was estimated to evaluate the probability of false positive associations. Of the 27 578 sites, 148 sites (0.54%) were significantly different between ER+/PR+ and ER-/PR- breast cancers (P < 0.001); 93 hypermethylated and 55 hypomethylated. Five genes, FAM124B (P = 7.26 × 10(-7)), MANEAL (P = 3.38 × 10(-7)), ST6GALNAC1 (P = 2.85 × 10(-6)), NAV1 (P = 5.94 × 10(-6)) and PER1 (P = 6.45 × 10(-6)) remained significant after correction for multiple tests (FDR < 0.05). In a subsequent replication study for five genes, four of the five genes were validated; FAM124B and ST6GALNAC1 were significantly hypermethylated, and NAV1 and PER1 were significantly hypomethylated in ER+/PR+ breast cancers (P < 0.05). In the first genome-wide DNA methylation profiling according to the receptor status of breast cancer, we found that ER/PR status affects the DNA methylation state of FAM124B, ST6GALNAC1, NAV1 and PER1 in breast cancer.

  2. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.).

    PubMed

    Covelo-Soto, L; Leunda, P M; Pérez-Figueroa, A; Morán, P

    2015-06-01

    The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes. © 2015 Stichting International Foundation for Animal Genetics.

  3. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies

    PubMed Central

    Altorok, Nezam; Tsou, Pei-Suen; Coit, Patrick; Khanna, Dinesh; Sawalha, Amr H

    2014-01-01

    Background The aetiology of systemic sclerosis (SSc) is not clear, but there is an emerging evidence of gene-specific epigenetic dysregulation in the pathogenesis of SSc. Methods We performed a genome-wide DNA methylation study in dermal fibroblasts in six diffuse cutaneous SSc (dSSc) patients, six limited cutaneous SSc (lSSc) patients compared with 12 age-matched, sex-matched and ethnicity-matched healthy controls. Cytosine methylation was quantified in more than 485 000 methylation sites across the genome. Differentially methylated CpG sites between patients and controls with a fold difference ≥1.2 were identified. Quantitative real-time RT-PCR was performed to assess correlation between DNA methylation changes and gene expression levels. Results We identified 2710 and 1021 differentially methylated CpG sites in dSSc and lSSc, respectively. Of the differentially methylated sites, 61% in dSSc and 90% in lSSc were hypomethylated. There were only 203 CpG sites differentially methylated in both dSSc and lSSc, representing 118 hypomethylated and 6 hypermethylated genes. Common hypomethylated genes include ITGA9, encoding an α integrin. Other relevant genes such as ADAM12, COL23A1, COL4A2 and MYO1E, and transcription factors genes RUNX1, RUNX2 and RUNX3 were also hypomethylated in both dSSc and lSSc. Pathway analysis of differentially methylated genes in both dSSc and lSSc revealed enrichment of genes involved in extracellular matrix–receptor interaction and focal adhesion. We demonstrate significant correlation between DNA methylation status and gene expression in the majority of genes evaluated. Conclusions Our data highlight common and subset-specific aberrancies in dSSc and lSSc fibroblasts at the epigenomic levels and identify novel candidate genes in SSc. PMID:24812288

  4. Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer

    PubMed Central

    Kitchen, Mark O.; Bryan, Richard T.; Emes, Richard D.; Glossop, John R.; Luscombe, Christopher; Cheng, K. K.; Zeegers, Maurice P.; James, Nicholas D.; Devall, Adam J.; Mein, Charles A.; Gommersall, Lyndon; Fryer, Anthony A.; Farrell, William E.

    2016-01-01

    ABSTRACT High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterize this disease entity in the context of tumor development, recurrence, and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip arrays in 21 primary HG-NMIBC tumors relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. We validated the array data by bisulphite pyrosequencing and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumors relative to low-intermediate-grade tumors for the ATP5G2, IRX1 and VAX2 genes (P<0.05), and similarly significant increases in mean levels of methylation in high-grade tumors for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (P<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (P<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumors. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease. PMID:26929985

  5. Genome-Wide Methylation Analysis Identifies Specific Epigenetic Marks In Severely Obese Children

    PubMed Central

    Fradin, Delphine; Boëlle, Pierre-Yves; Belot, Marie-Pierre; Lachaux, Fanny; Tost, Jorg; Besse, Céline; Deleuze, Jean-François; De Filippo, Gianpaolo; Bougnères, Pierre

    2017-01-01

    Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the “IRS1 target genes” and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications. PMID:28387357

  6. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds

    PubMed Central

    Yang, Yalan; Zhou, Rong; Mu, Yulian; Hou, Xinhua; Tang, Zhonglin; Li, Kui

    2016-01-01

    DNA methylation is a crucial epigenetic modification involved in diverse biological processes. There is significant phenotypic variance between Chinese indigenous and western pig breeds. Here, we surveyed the genome-wide DNA methylation profiles of blood leukocytes from three pig breeds (Tongcheng, Landrace, and Wuzhishan) by methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in gene body regions and repetitive sequences. LINE/L1 and SINE/tRNA-Glu were the predominant methylated repeats in pigs. The methylation level in the gene body regions was higher than in the 5′ and 3′ flanking regions of genes. About 15% of CpG islands were methylated in the pig genomes. Additionally, 2,807, 2,969, and 5,547 differentially methylated genes (DMGs) were identified in the Tongcheng vs. Landrace, Tongcheng vs. Wuzhishan, and Landrace vs. Wuzhishan comparisons, respectively. A total of 868 DMGs were shared by the three contrasts. The DMGs were significantly enriched in development- and metabolism-related biological processes and pathways. Finally, we identified 32 candidate DMGs associated with phenotype variance in pigs. Our research provides a DNA methylome resource for pigs and furthers understanding of epigenetically regulated phenotype variance in mammals. PMID:27444743

  7. NSD1 mutations generate a genome-wide DNA methylation signature.

    PubMed

    Choufani, S; Cytrynbaum, C; Chung, B H Y; Turinsky, A L; Grafodatskaya, D; Chen, Y A; Cohen, A S A; Dupuis, L; Butcher, D T; Siu, M T; Luk, H M; Lo, I F M; Lam, S T S; Caluseriu, O; Stavropoulos, D J; Reardon, W; Mendoza-Londono, R; Brudno, M; Gibson, W T; Chitayat, D; Weksberg, R

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  8. Genome-Wide Binding of MBD2 Reveals Strong Preference for Highly Methylated Loci

    PubMed Central

    Menafra, Roberta; Brinkman, Arie B.; Matarese, Filomena; Franci, Gianluigi; Bartels, Stefanie J. J.; Nguyen, Luan; Shimbo, Takashi; Wade, Paul A.; Hubner, Nina C.; Stunnenberg, Hendrik G.

    2014-01-01

    MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer. PMID:24927503

  9. Genome-wide screening for methylation-silenced genes in colorectal cancer.

    PubMed

    Khamas, Ahmed; Ishikawa, Toshiaki; Mogushi, Kaoru; Iida, Satoru; Ishiguro, Megumi; Tanaka, Hiroshi; Uetake, Hiroyuki; Sugihara, Kenichi

    2012-08-01

    Identification of methylation-silenced genes in colorectal cancer (CRC) is of great importance. We employed oligonucleotide microarrays to identify differences in global gene expression of five CRC cell lines (HCT116, RKO, Colo320, SW480 and HT29) that were analyzed before and after treatment with 5-aza-2'-deoxycitidine. Selected candidates were subjected to methylation-specific PCR and real-time quantitative reverse transcription-PCR using 15 CRC cell lines and 23 paired tumor and normal samples from CRC patients. After 5-aza-2'-deoxycitidine treatment, 139 genes were re-expressed in all 5 CRC cell lines collectively with a fold change of more than 1.5 in at least one cell line. These genes include known methylated and silenced genes in CRC. After applying study selection criteria we identified 20 candidates. The GADD45B and THSD1 genes were selected for further analysis. Among 15 colon cancer cell lines, methylation was only identified in THSD1 (27%). THSD1 methylation was subsequently investigated in 23 colorectal tumors and methylation was detected in 9% of the analyzed samples; the observed promoter hypermethylation was cancer-specific. THSD1 mRNA down-regulation was observed in tumor tissues. This genome-wide screening led to the identification of genes putatively affected by methylation in CRC. The THSD1 gene may play a role in the tumorigenesis of CRC.

  10. DNA methylation profiling: comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip.

    PubMed

    Walker, Denise L; Bhagwate, Aditya Vijay; Baheti, Saurabh; Smalley, Regenia L; Hilker, Christopher A; Sun, Zhifu; Cunningham, Julie M

    2015-01-01

    To compare the performance of four sequence-based and one microarray methods for DNA methylation profiling. DNA from two cell lines were profiled by reduced representation bisulfite sequencing, methyl capture sequencing (SS-Meth Seq), NimbleGen SeqCapEpi CpGiant(Nimblegen MethSeq), methylated DNA immunoprecipitation (MeDIP) and the Human Methylation 450 Bead Chip (Meth450K). Despite differences in genome-wide coverage, high correlation and concordance were observed between different methods. Significant overlap of differentially methylated regions was identified between sequenced-based platforms. MeDIP provided the best coverage for the whole genome and gene body regions, while RRBS and Nimblegen MethSeq were superior for CpGs in CpG islands and promoters. Methylation analyses can be achieved by any of the five methods but understanding their differences may better address the research question being posed.

  11. Body mass index associated with genome-wide methylation in breast tissue.

    PubMed

    Hair, Brionna Y; Xu, Zongli; Kirk, Erin L; Harlid, Sophia; Sandhu, Rupninder; Robinson, Whitney R; Wu, Michael C; Olshan, Andrew F; Conway, Kathleen; Taylor, Jack A; Troester, Melissa A

    2015-06-01

    Gene expression studies indicate that body mass index (BMI) is associated with molecular pathways involved in inflammation, insulin-like growth factor activation, and other carcinogenic processes in breast tissue. The goal of this study was to determine whether BMI is associated with gene methylation in breast tissue and to identify pathways that are commonly methylated in association with high BMI. Epigenome-wide methylation profiles were determined using the Illumina HumanMethylation450 BeadChip array in the non-diseased breast tissue of 81 women undergoing breast surgery between 2009 and 2013 at the University of North Carolina Hospitals. Multivariable, robust linear regression was performed to identify methylation sites associated with BMI at a false discovery rate q value <0.05. Gene expression microarray data was used to identify which of the BMI-associated methylation sites also showed correlation with gene expression. Gene set enrichment analysis was conducted to assess which pathways were enriched among the BMI-associated methylation sites. Of the 431,568 methylation sites analyzed, 2573 were associated with BMI (q value <0.05), 57 % of which showed an inverse correlation with BMI. Pathways enriched among the 2573 probe sites included those involved in inflammation, insulin receptor signaling, and leptin signaling. We were able to map 1251 of the BMI-associated methylation sites to gene expression data, and, of these, 226 (18 %) showed substantial correlations with gene expression. Our results suggest that BMI is associated with genome-wide methylation in non-diseased breast tissue and may influence epigenetic pathways involved in inflammatory and other carcinogenic processes.

  12. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle.

    PubMed

    Zykovich, Artem; Hubbard, Alan; Flynn, James M; Tarnopolsky, Mark; Fraga, Mario F; Kerksick, Chad; Ogborn, Dan; MacNeil, Lauren; Mooney, Sean D; Melov, Simon

    2014-04-01

    A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.

  13. Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice

    PubMed Central

    Yoon, AhRam; Tammen, Stephanie A.; Park, Soyoung; Choi, Sang-Woon

    2017-01-01

    BACKGROUND/OBJECTIVES A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the

  14. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    PubMed Central

    2013-01-01

    Background Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. Results We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. Conclusions Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment. PMID:24063430

  15. Genome-wide site-specific differential methylation in the blood of individuals with Klinefelter Syndrome

    PubMed Central

    Wan, Emily S.; Qiu, Weiliang; Morrow, Jarrett; Beaty, Terri H.; Hetmanski, Jacqueline; Make, Barry J.; Lomas, David A.; Silverman, Edwin K.; DeMeo, Dawn L.

    2015-01-01

    Klinefelter syndrome (KS) (47 XXY) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 in every 660 male births. Investigations into the associations between DNA methylation and the highly variable clinical manifestations of KS have largely focused on the supernumerary X chromosome; systematic investigations of the epigenome have been limited. We obtained genome-wide DNA methylation data from peripheral blood using the Illumina HumanMethylation450K platform in 5 KS (47 XXY), 102 male (46 XY), and 113 female (46 XX) control subjects participating in the chronic obstructive pulmonary disease (COPD) Gene Study. Empirical Bayes-mediated models were used to test for differential methylation by KS status. CpG sites with a false-discovery rate <0.05 from the first-generation HumanMethylation27K platform were further examined in an independent replication cohort of 2 KS subjects, 590 male, and 495 female controls drawn from the International COPD Genetics Network (ICGN). Differential methylation at sites throughout the genome were identified, including 86 CpG sites that were differentially methylated in KS subjects relative to both male and female controls. CpG sites annotated to the HEN1 methyltransferase homolog 1 (HENMT1), calcyclin-binding protein (CACYBP), and GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) genes were among the “KS-specific” loci that were replicated in ICGN. We therefore conclude that site-specific differential methylation exists throughout the genome in KS. The functional impact and clinical relevance of these differentially methylated loci should be explored in future studies. PMID:25988574

  16. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    PubMed

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-03-21

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability.

  17. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    PubMed Central

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  18. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS)

    PubMed Central

    Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O.

    2016-01-01

    Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS. PMID:27152866

  19. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    PubMed Central

    Houtepen, Lotte C.; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A.; Meeus, Wim; Branje, Susan; Heim, Christine M.; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; Kahn, René S.; Joëls, Marian; Binder, Elisabeth B.; Boks, Marco P. M.

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10−6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. PMID:26997371

  20. Natural CMT2 Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality

    PubMed Central

    Shen, Xia; De Jonge, Jennifer; Forsberg, Simon K. G.; Pettersson, Mats E.; Sheng, Zheya; Hennig, Lars; Carlborg, Örjan

    2014-01-01

    As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach reduces confounding with population structure and increases power compared to standard genome-wide association methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2) and temperature seasonality where the genome-wide CHH methylation was different for the group of accessions carrying the plastic allele. Cmt2 mutants were shown to be more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity to temperature-stress. PMID:25503602

  1. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus).

    PubMed

    Lea, Amanda J; Altmann, Jeanne; Alberts, Susan C; Tung, Jenny

    2016-04-01

    Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole-blood DNA methylation levels in two sets of wild baboons: (i) 'wild-feeding' baboons that foraged naturally in a savanna environment and (ii) 'Lodge' baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course.

  2. Genome-Wide Screening of Genes Regulated by DNA Methylation in Colon Cancer Development

    PubMed Central

    Galamb, Orsolya; Wichmann, Barna; Sipos, Ferenc; Péterfia, Bálint; Csabai, István; Kovalszky, Ilona; Semsey, Szabolcs; Tulassay, Zsolt; Molnár, Béla

    2012-01-01

    Tumorigenesis is accompanied by changes in the DNA methylation pattern. Our aim was to test a novel approach for identification of transcripts at whole transcript level which are regulated by DNA methylation. Our approach is based on comparison of data obtained from transcriptome profiling of primary human samples and in vitro cell culture models. Epithelial cells were collected by LCM from normal, adenoma, and tumorous colonic samples. Using gene expression analysis, we identified downregulated genes in the tumors compared to normal tissues. In parallel 3000 upregulated genes were determined in HT-29 colon adenocarcinoma cell culture model after DNA demethylation treatment. Of the 2533 transcripts showing reduced expression in the tumorous samples, 154 had increased expression as a result of DNA demethylation treatment. Approximately 2/3 of these genes had decreased expression already in the adenoma samples. Expression of five genes (GCG, NMES-1, LRMP, FAM161B and PTGDR), was validated using RT-PCR. PTGDR showed ambiguous results, therefore it was further studied to verify the extent of DNA methylation and its effect on the protein level. Results confirmed that our approach is suitable for genome-wide screening of genes which are regulated or inactivated by DNA methylation. Activity of these genes possibly interferes with tumor progression, therefore genes identified can be key factors in the formation and in the progression of the disease. PMID:23049694

  3. Reduced DNA methylation and psychopathology following endogenous hypercortisolism – a genome-wide study

    PubMed Central

    Glad, Camilla A. M.; Andersson-Assarsson, Johanna C.; Berglund, Peter; Bergthorsdottir, Ragnhildur; Ragnarsson, Oskar; Johannsson, Gudmundur

    2017-01-01

    Patients with Cushing’s Syndrome (CS) in remission were used as a model to test the hypothesis that long-standing excessive cortisol exposure induces changes in DNA methylation that are associated with persisting neuropsychological consequences. Genome-wide DNA methylation was assessed in 48 women with CS in long-term remission (cases) and 16 controls matched for age, gender and education. The Fatigue impact scale and the comprehensive psychopathological rating scale were used to evaluate fatigue, depression and anxiety. Cases had lower average global DNA methylation than controls (81.2% vs 82.7%; p = 0.002). Four hundred and sixty-one differentially methylated regions, containing 3,246 probes mapping to 337 genes were identified. After adjustment for age and smoking, 731 probes in 236 genes were associated with psychopathology (fatigue, depression and/or anxiety). Twenty-four gene ontology terms were associated with psychopathology; terms related to retinoic acid receptor signalling were the most common (adjusted p = 0.0007). One gene in particular, COL11A2, was associated with fatigue following a false discovery rate correction. Our findings indicate that hypomethylation of FKBP5 and retinoic acid receptor related genes serve a potential mechanistic explanation for long-lasting GC-induced psychopathology. PMID:28300138

  4. High-Resolution Analysis of Cytosine Methylation in Ancient DNA

    PubMed Central

    Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.

    2012-01-01

    Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161

  5. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis

    PubMed Central

    Joubert, Bonnie R.; Felix, Janine F.; Yousefi, Paul; Bakulski, Kelly M.; Just, Allan C.; Breton, Carrie; Reese, Sarah E.; Markunas, Christina A.; Richmond, Rebecca C.; Xu, Cheng-Jian; Küpers, Leanne K.; Oh, Sam S.; Hoyo, Cathrine; Gruzieva, Olena; Söderhäll, Cilla; Salas, Lucas A.; Baïz, Nour; Zhang, Hongmei; Lepeule, Johanna; Ruiz, Carlos; Ligthart, Symen; Wang, Tianyuan; Taylor, Jack A.; Duijts, Liesbeth; Sharp, Gemma C.; Jankipersadsing, Soesma A.; Nilsen, Roy M.; Vaez, Ahmad; Fallin, M. Daniele; Hu, Donglei; Litonjua, Augusto A.; Fuemmeler, Bernard F.; Huen, Karen; Kere, Juha; Kull, Inger; Munthe-Kaas, Monica Cheng; Gehring, Ulrike; Bustamante, Mariona; Saurel-Coubizolles, Marie José; Quraishi, Bilal M.; Ren, Jie; Tost, Jörg; Gonzalez, Juan R.; Peters, Marjolein J.; Håberg, Siri E.; Xu, Zongli; van Meurs, Joyce B.; Gaunt, Tom R.; Kerkhof, Marjan; Corpeleijn, Eva; Feinberg, Andrew P.; Eng, Celeste; Baccarelli, Andrea A.; Benjamin Neelon, Sara E.; Bradman, Asa; Merid, Simon Kebede; Bergström, Anna; Herceg, Zdenko; Hernandez-Vargas, Hector; Brunekreef, Bert; Pinart, Mariona; Heude, Barbara; Ewart, Susan; Yao, Jin; Lemonnier, Nathanaël; Franco, Oscar H.; Wu, Michael C.; Hofman, Albert; McArdle, Wendy; Van der Vlies, Pieter; Falahi, Fahimeh; Gillman, Matthew W.; Barcellos, Lisa F.; Kumar, Ashish; Wickman, Magnus; Guerra, Stefano; Charles, Marie-Aline; Holloway, John; Auffray, Charles; Tiemeier, Henning W.; Smith, George Davey; Postma, Dirkje; Hivert, Marie-France; Eskenazi, Brenda; Vrijheid, Martine; Arshad, Hasan; Antó, Josep M.; Dehghan, Abbas; Karmaus, Wilfried; Annesi-Maesano, Isabella; Sunyer, Jordi; Ghantous, Akram; Pershagen, Göran; Holland, Nina; Murphy, Susan K.; DeMeo, Dawn L.; Burchard, Esteban G.; Ladd-Acosta, Christine; Snieder, Harold; Nystad, Wenche; Koppelman, Gerard H.; Relton, Caroline L.; Jaddoe, Vincent W.V.; Wilcox, Allen; Melén, Erik; London, Stephanie J.

    2016-01-01

    Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10−16). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure. PMID:27040690

  6. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients.

    PubMed

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-08-16

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD.

  7. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients

    PubMed Central

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-01-01

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD. PMID:27527274

  8. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis.

    PubMed

    Joubert, Bonnie R; Felix, Janine F; Yousefi, Paul; Bakulski, Kelly M; Just, Allan C; Breton, Carrie; Reese, Sarah E; Markunas, Christina A; Richmond, Rebecca C; Xu, Cheng-Jian; Küpers, Leanne K; Oh, Sam S; Hoyo, Cathrine; Gruzieva, Olena; Söderhäll, Cilla; Salas, Lucas A; Baïz, Nour; Zhang, Hongmei; Lepeule, Johanna; Ruiz, Carlos; Ligthart, Symen; Wang, Tianyuan; Taylor, Jack A; Duijts, Liesbeth; Sharp, Gemma C; Jankipersadsing, Soesma A; Nilsen, Roy M; Vaez, Ahmad; Fallin, M Daniele; Hu, Donglei; Litonjua, Augusto A; Fuemmeler, Bernard F; Huen, Karen; Kere, Juha; Kull, Inger; Munthe-Kaas, Monica Cheng; Gehring, Ulrike; Bustamante, Mariona; Saurel-Coubizolles, Marie José; Quraishi, Bilal M; Ren, Jie; Tost, Jörg; Gonzalez, Juan R; Peters, Marjolein J; Håberg, Siri E; Xu, Zongli; van Meurs, Joyce B; Gaunt, Tom R; Kerkhof, Marjan; Corpeleijn, Eva; Feinberg, Andrew P; Eng, Celeste; Baccarelli, Andrea A; Benjamin Neelon, Sara E; Bradman, Asa; Merid, Simon Kebede; Bergström, Anna; Herceg, Zdenko; Hernandez-Vargas, Hector; Brunekreef, Bert; Pinart, Mariona; Heude, Barbara; Ewart, Susan; Yao, Jin; Lemonnier, Nathanaël; Franco, Oscar H; Wu, Michael C; Hofman, Albert; McArdle, Wendy; Van der Vlies, Pieter; Falahi, Fahimeh; Gillman, Matthew W; Barcellos, Lisa F; Kumar, Ashish; Wickman, Magnus; Guerra, Stefano; Charles, Marie-Aline; Holloway, John; Auffray, Charles; Tiemeier, Henning W; Smith, George Davey; Postma, Dirkje; Hivert, Marie-France; Eskenazi, Brenda; Vrijheid, Martine; Arshad, Hasan; Antó, Josep M; Dehghan, Abbas; Karmaus, Wilfried; Annesi-Maesano, Isabella; Sunyer, Jordi; Ghantous, Akram; Pershagen, Göran; Holland, Nina; Murphy, Susan K; DeMeo, Dawn L; Burchard, Esteban G; Ladd-Acosta, Christine; Snieder, Harold; Nystad, Wenche; Koppelman, Gerard H; Relton, Caroline L; Jaddoe, Vincent W V; Wilcox, Allen; Melén, Erik; London, Stephanie J

    2016-04-07

    Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study

    PubMed Central

    Panni, Tommaso; Mehta, Amar J.; Schwartz, Joel D.; Baccarelli, Andrea A.; Just, Allan C.; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-01-01

    Background: Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. Objectives: We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. Methods: We collected whole blood samples from three independent studies—KORA F3 (2004–2005) and F4 (2006–2008) in Germany, and the Normative Aging Study (1999–2007) in the United States—and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Results: Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 < 0.5: the site from the 7-day average results and 3 for the 28-day average. Applying false discovery rate, p-value < 0.05 was observed in 8 and 1,819 additional CpGs at 7- and 28-day average PM2.5 exposure respectively. Conclusion: The PM-related CpG sites found in our study suggest novel plausible systemic pathways linking ambient PM exposure to adverse health effect through variations in DNA methylation. Citation: Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K

  10. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study.

    PubMed

    Panni, Tommaso; Mehta, Amar J; Schwartz, Joel D; Baccarelli, Andrea A; Just, Allan C; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-07-01

    Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. We collected whole blood samples from three independent studies-KORA F3 (2004-2005) and F4 (2006-2008) in Germany, and the Normative Aging Study (1999-2007) in the United States-and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 < 0.5: the site from the 7-day average results and 3 for the 28-day average. Applying false discovery rate, p-value < 0.05 was observed in 8 and 1,819 additional CpGs at 7- and 28-day average PM2.5 exposure respectively. The PM-related CpG sites found in our study suggest novel plausible systemic pathways linking ambient PM exposure to adverse health effect through variations in DNA methylation. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A. 2016. A genome-wide analysis of DNA methylation and

  11. Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation.

    PubMed

    Wang, Xiaotong; Li, Qiye; Lian, Jinmin; Li, Li; Jin, Lijun; Cai, Huimin; Xu, Fei; Qi, Haigang; Zhang, Linlin; Wu, Fucun; Meng, Jie; Que, Huayong; Fang, Xiaodong; Guo, Ximing; Zhang, Guofan

    2014-12-16

    Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc. Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster's mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5'-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms. Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these 'relatively young' genes was critical for the origin and radiation of eukaryotes.

  12. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers.

    PubMed

    Kuasne, Hellen; Cólus, Ilce Mara de Syllos; Busso, Ariane Fidelis; Hernandez-Vargas, Hector; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Scapulatempo-Neto, Cristovam; Faria, Eliney Ferreira; Lopes, Ademar; Guimarães, Gustavo Cardoso; Herceg, Zdenko; Rogatto, Silvia Regina

    2015-01-01

    Despite penile carcinoma (PeCa) being a relatively rare neoplasm, it remains an important public health issue for poor and developing countries. Contrary to most tumors, limited data are available for markers that are capable of assisting in diagnosis, prognosis, and treatment of PeCa. We aimed to identify molecular markers for PeCa by evaluating their epigenomic and transcriptome profiles and comparing them with surrounding non-malignant tissue (SNT) and normal glans (NG). Genome-wide methylation analysis revealed 171 hypermethylated probes in PeCa. Transcriptome profiling presented 2,883 underexpressed and 1,378 overexpressed genes. Integrative analysis revealed a panel of 54 genes with an inverse correlation between methylation and gene expression levels. Distinct methylome and transcriptome patterns were found for human papillomavirus (HPV)-positive (38.6%) and negative tumors. Interestingly, grade 3 tumors showed a distinct methylation profile when compared to grade 1. In addition, univariate analysis revealed that low BDNF methylation was associated with lymph node metastasis and shorter disease-free survival. CpG hypermethylation and gene underexpression were confirmed for a panel of genes, including TWIST1, RSOP2, SOX3, SOX17, PROM1, OTX2, HOXA3, and MEIS1. A unique methylome signature was found for PeCa compared to SNT, with aberrant DNA methylation appearing to modulate the expression of specific genes. This study describes new pathways with the potential to regulate penile carcinogenesis, including stem cell regulatory pathways and markers associated to a worse prognosis. These findings may be instrumental in the discovery and application of new genetic and epigenetic biomarkers in PeCa.

  13. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies.

    PubMed

    Altorok, Nezam; Tsou, Pei-Suen; Coit, Patrick; Khanna, Dinesh; Sawalha, Amr H

    2015-08-01

    The aetiology of systemic sclerosis (SSc) is not clear, but there is an emerging evidence of gene-specific epigenetic dysregulation in the pathogenesis of SSc. We performed a genome-wide DNA methylation study in dermal fibroblasts in six diffuse cutaneous SSc (dSSc) patients, six limited cutaneous SSc (lSSc) patients compared with 12 age-matched, sex-matched and ethnicity-matched healthy controls. Cytosine methylation was quantified in more than 485 000 methylation sites across the genome. Differentially methylated CpG sites between patients and controls with a fold difference ≥1.2 were identified. Quantitative real-time RT-PCR was performed to assess correlation between DNA methylation changes and gene expression levels. We identified 2710 and 1021 differentially methylated CpG sites in dSSc and lSSc, respectively. Of the differentially methylated sites, 61% in dSSc and 90% in lSSc were hypomethylated. There were only 203 CpG sites differentially methylated in both dSSc and lSSc, representing 118 hypomethylated and 6 hypermethylated genes. Common hypomethylated genes include ITGA9, encoding an α integrin. Other relevant genes such as ADAM12, COL23A1, COL4A2 and MYO1E, and transcription factors genes RUNX1, RUNX2 and RUNX3 were also hypomethylated in both dSSc and lSSc. Pathway analysis of differentially methylated genes in both dSSc and lSSc revealed enrichment of genes involved in extracellular matrix-receptor interaction and focal adhesion. We demonstrate significant correlation between DNA methylation status and gene expression in the majority of genes evaluated. Our data highlight common and subset-specific aberrancies in dSSc and lSSc fibroblasts at the epigenomic levels and identify novel candidate genes in SSc. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Effects of cytosine methylation on transcription factor binding sites

    PubMed Central

    2014-01-01

    Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864

  15. Genome-wide methylation analysis in Silver-Russell syndrome patients

    PubMed Central

    Böhm, S; Frost, JM; Puszyk, W; Abu-Amero, S; Stanier, P; Schulz, R; Moore, GE; Oakey, RJ

    2015-01-01

    Silver-Russell Syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 DMR hypermethylated in 13/18 (~70 %) patients. We also report 6/18 (~33 %) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent cooccurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes. PMID:25563730

  16. PTPRS and PER3 methylation levels are associated with childhood obesity: results from a genome-wide methylation analysis.

    PubMed

    Samblas, M; Milagro, F I; Mansego, M L; Marti, A; Martinez, J A

    2017-06-14

    The global prevalence of childhood overweight and obesity has increased in the last years. Epigenetic dysregulation affecting gene expression could be a determinant in early-life obesity onset and accompanying complications. The aim of the present investigation was to analyse the putative association between DNA methylation and childhood obesity. DNA was isolated from white blood cells of 24 children obtained from the GENOI study and was hybridized in a 450K methylation array. Two CpG sites associated with obesity were validated in 91 children by MassArray® EpiTyper™ technology. Genome-wide analysis identified 734 CpGs (783 genes) differentially methylated between cases (n = 12) and controls (n = 12). Ingenuity Pathway Analysis showed that these genes were involved in oxidative stress and circadian rhythm signalling pathways. Moreover, the DNA methylation levels of VIPR2, GRIN2D, ADCYAP1R1, PER3 and PTPRS regions correlated with the obesity trait. EpiTyper™ validation also identified significant correlations between methylation levels of CpG sites on PTPRS and PER3 with BMI z-score. This study identified several CpG sites and specifically several CpGs in the PTPRS and PER3 genes differentially methylated between obese and non-obese children, suggesting a role for DNA methylation concerning development of childhood obesity. © 2017 World Obesity Federation.

  17. Genome-Wide DNA Methylation and Gene Expression Analyses of Monozygotic Twins Discordant for Intelligence Levels

    PubMed Central

    Kobayashi, Kazuhiro; Shikishima, Chizuru; Cha, Pei-Chieng; Sese, Jun; Sugawara, Hiroko; Iwamoto, Kazuya; Kato, Tadafumi; Ando, Juko; Toda, Tatsushi

    2012-01-01

    Human intelligence, as measured by intelligence quotient (IQ) tests, demonstrates one of the highest heritabilities among human quantitative traits. Nevertheless, studies to identify quantitative trait loci responsible for intelligence face challenges because of the small effect sizes of individual genes. Phenotypically discordant monozygotic (MZ) twins provide a feasible way to minimize the effects of irrelevant genetic and environmental factors, and should yield more interpretable results by finding epigenetic or gene expression differences between twins. Here we conducted array-based genome-wide DNA methylation and gene expression analyses using 17 pairs of healthy MZ twins discordant intelligently. ARHGAP18, related to Rho GTPase, was identified in pair-wise methylation status analysis and validated via direct bisulfite sequencing and quantitative RT-PCR. To perform expression profile analysis, gene set enrichment analysis (GSEA) between the groups of twins with higher IQ and their co-twins revealed up-regulated expression of several ribosome-related genes and DNA replication-related genes in the group with higher IQ. To focus more on individual pairs, we conducted pair-wise GSEA and leading edge analysis, which indicated up-regulated expression of several ion channel-related genes in twins with lower IQ. Our findings implied that these groups of genes may be related to IQ and should shed light on the mechanism underlying human intelligence. PMID:23082141

  18. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression

    PubMed Central

    Boström, Adrian E.; Mwinyi, Jessica; Schiöth, Helgi B.

    2016-01-01

    Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data. PMID:27310475

  19. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  20. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns.

    PubMed

    Tost, Jörg

    2016-01-01

    DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.

  1. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  2. Maternal obesity influences hepatic gene expression and genome-wide DNA methylation in offspring liver at weaning

    USDA-ARS?s Scientific Manuscript database

    Offspring from obese rat dams gain greater body weight and fat mass when fed HFD. Here we examine hepatic gene expression related to systemic energy expenditure and alterations in genome-wide DNA methylation. Maternal obesity was produced in rats prior to conception via overfeeding of diets. At PND2...

  3. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    USDA-ARS?s Scientific Manuscript database

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  4. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring.

    PubMed

    Finer, Sarah; Mathews, Chris; Lowe, Rob; Smart, Melissa; Hillman, Sara; Foo, Lin; Sinha, Ajay; Williams, David; Rakyan, Vardhman K; Hitman, Graham A

    2015-06-01

    Exposure of a developing foetus to maternal gestational diabetes (GDM) has been shown to programme future risk of diabetes and obesity. Epigenetic variation in foetal tissue may have a mechanistic role in metabolic disease programming through interaction of the pregnancy environment with gene function. We aimed to identify genome-wide DNA methylation variation in cord blood and placenta from offspring born to mothers with and without GDM. Pregnant women of South Asian origin were studied and foetal tissues sampled at term delivery. The Illumina HumanMethylation450 BeadChip was used to assay genome-wide DNA methylation in placenta and cord blood from 27 GDM exposed and 21 unexposed offspring. We identified 1485 cord blood and 1708 placenta methylation variable positions (MVPs) achieving genome-wide significance (adjusted P-value <0.05) with methylation differences of >5%. MVPs were disproportionately located within first exons. A bioinformatic co-methylation algorithm was used to detect consistent directionality of methylation in 1000 bp window around each MVP was observed at 74% of placenta and 59% of cord blood MVPs. KEGG pathway analysis showed enrichment of pathways involved in endocytosis, MAPK signalling and extracellular triggers to intracellular metabolic processes. Replication studies should integrate genomics and transcriptomics with longitudinal sampling to elucidate stability, determine causality for translation into biomarker and prevention studies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies

    PubMed Central

    Melamed, Nir; Choufani, Sanaa; Wilkins-Haug, Louise E; Koren, Gideon; Weksberg, Rosanna

    2015-01-01

    Data linking assisted reproductive technologies (ART) with aberrant DNA methylation is limited and inconclusive. In addition, most studies to date have analyzed only a small number of CpG sites and focused on methylation changes in placentas, while data on cord blood are scarce. Our aim was to compare DNA methylation in cord blood samples from ART (N = 10) and control pregnancies (N = 8) using a genome-wide approach with the Illumina® Infinium Human Methylation27 array, which interrogates 27,578 CpG sites. A total of 733 (2.7%) of the CpG sites were significantly differentially methylated between the 2 groups (P < 0.05), with an overall relative hypomethylation in the ART group (P < 0.001). Differences in DNA methylation were more pronounced for CpG sites in certain types of genomic locations and were related to baseline methylation levels and distance from CpG islands and transcription start sites. ART was associated with significantly higher variation in DNA methylation, suggesting that differences in DNA methylation between cases and controls may result from stochastic (or random) genome-wide changes in DNA methylation in ART pregnancies. We identified 24 candidate genes with 2 or more CpG sites that were significantly different between the IVF and control groups. The current study provides support for the hypothesis that ART or associated subfertility may be associated with genome-wide changes in DNA methylation, and these changes appear to be, at least in part, due to epigenetic instability in ART pregnancies. Further studies are required in order to determine the extent to which such ART-related epigenetic instability may have phenotypic consequences. PMID:25580569

  6. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies.

    PubMed

    Melamed, Nir; Choufani, Sanaa; Wilkins-Haug, Louise E; Koren, Gideon; Weksberg, Rosanna

    2015-01-01

    Data linking assisted reproductive technologies (ART) with aberrant DNA methylation is limited and inconclusive. In addition, most studies to date have analyzed only a small number of CpG sites and focused on methylation changes in placentas, while data on cord blood are scarce. Our aim was to compare DNA methylation in cord blood samples from ART (N = 10) and control pregnancies (N = 8) using a genome-wide approach with the Illumina® Infinium Human Methylation27 array, which interrogates 27,578 CpG sites. A total of 733 (2.7%) of the CpG sites were significantly differentially methylated between the 2 groups (P < 0.05), with an overall relative hypomethylation in the ART group (P < 0.001). Differences in DNA methylation were more pronounced for CpG sites in certain types of genomic locations and were related to baseline methylation levels and distance from CpG islands and transcription start sites. ART was associated with significantly higher variation in DNA methylation, suggesting that differences in DNA methylation between cases and controls may result from stochastic (or random) genome-wide changes in DNA methylation in ART pregnancies. We identified 24 candidate genes with 2 or more CpG sites that were significantly different between the IVF and control groups. The current study provides support for the hypothesis that ART or associated subfertility may be associated with genome-wide changes in DNA methylation, and these changes appear to be, at least in part, due to epigenetic instability in ART pregnancies. Further studies are required in order to determine the extent to which such ART-related epigenetic instability may have phenotypic consequences.

  7. Persistence of cytosine methylation of DNA following fertilisation in the mouse.

    PubMed

    Li, Yan; O'Neill, Chris

    2012-01-01

    Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote.

  8. Persistence of Cytosine Methylation of DNA following Fertilisation in the Mouse

    PubMed Central

    Li, Yan; O'Neill, Chris

    2012-01-01

    Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote. PMID:22292019

  9. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets.

    PubMed

    Zou, C; Fu, Y; Li, C; Liu, H; Li, G; Li, J; Zhang, H; Wu, Y; Li, C

    2016-08-01

    Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer.

  10. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    PubMed

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  11. Genome-wide DNA methylation patterns in naïve CD4+ T cells from patients with primary Sjögren’s syndrome

    PubMed Central

    Altorok, Nezam; Coit, Patrick; Hughes, Travis; Koelsch, Kristi A.; Stone, Donald U.; Rasmussen, Astrid; Radfar, Lida; Scofield, R. Hal; Sivils, Kathy L.; Farris, A. Darise; Sawalha, Amr H.

    2013-01-01

    Objective Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease with incompletely understood etiology. Very little is known about the role of epigenetic dysregulation in the pathogenesis of pSS. Methods We performed a genome-wide DNA methylation study in naïve CD4+ T cells in eleven pSS patients compared to age-, sex-, and ethnicity-matched healthy controls. Cytosine methylation was quantified using the Illumina Infinium HumanMethylation450 BeadChip array and validated using bisulfite sequencing. Results We identified 553 hypomethylated and 200 hypermethylated CpG sites in naïve CD4+ T cells from pSS patients compared to healthy matched controls, representing 311 hypomethylated and 115 hypermethylated gene regions. Hypomethylated genes in pSS include LTA, coding for Lymphotoxin α. Other relevant genes such as CD247, TNFRSF25, PTPRC, GSTM1 and PDCD1 were also hypomethylated. The interferon signature pathway was represented by hypomethylation of STAT1, IFI44L, USP18 and IFITM1. A group of genes encoding for members of the solute carrier proteins were differentially methylated. In addition, the transcription factor RUNX1 was hypermethylated in patients, suggesting a possible connection to lymphoma predisposition. Gene ontology (GO) analysis of hypomethylated genes demonstrated enrichment of genes involved in lymphocyte activation and immune response. GO terms for hypermethylated genes included antigen processing and presentation. Conclusion This is the first epigenome-wide DNA methylation study in pSS. Our data highlight a role for DNA methylation in pSS and identify disease-associated DNA methylation changes in several genes and pathways in naïve CD4+ T cells in pSS that may be involved in the pathogenesis of this disease. PMID:24574234

  12. Genome-wide DNA methylation level analysis by micellar electrokinetic chromatography and laser-induced fluorescence detection after treatment of cell lines with azacytidine and antifolates.

    PubMed

    Falck, Evamaria; Groenhagen, Anja; Mühlisch, Jörg; Hempel, Georg; Wünsch, Bernhard

    2012-02-15

    Methylation of DNA is a well-known epigenetic mechanism to control DNA transcription. The determination of the exact methylation level of DNA samples is of great interest due to its significant deregulation in tumor cells. Here the genome-wide DNA methylation is quantified precisely using micellar electrokinetic chromatography (MEKC) combined with laser-induced fluorescence (LIF) detection after enzymatic DNA hydrolysis and coupling of the resulting mononucleotides with BODIPY FL EDA: N-[3-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacen-3-yl)propionyl]ethylenediamine hydrochloride). For the validation of the method, two oligonucleotides containing 10 copies of each DNA base were designed and synthesized. In one oligonucleotides one cytosine residue was replaced with 5-methylcytosine, allowing the exact adjustment of different methylation levels between 0% and 10% by mixing appropriate amounts of these well-defined oligonucleotides. High precision, in particular of the detection factors of the single mononucleotides, was achieved because the complete analytical process, including hydrolysis, BODIPY coupling, and analysis, was considered during the calibration process. Application of this method on calf thymus DNA resulted in a methylation level of 6.94%, which is in good agreement with the values obtained with other methods. Whereas treatment of HEK293 cells with azacytidine led to considerably reduced global methylation from approximately 5.0% to 1.4%, treatment of the cells with the antifolates methotrexate and pemetrexed led to a slightly increased methylation level. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Genome-wide methylation profiling demonstrates hypermethylation in maternal leukocyte DNA in preeclamptic compared to normotensive pregnancies

    PubMed Central

    White, Wendy M.; Brost, Brian; Sun, Zhifu; Rose, Carl; Craici, Iasmina; Wagner, Steven J.; Turner, Stephen T.; Garovic, Vesna D.

    2013-01-01

    Objective To compare genome-wide methylation profiles in maternal leukocyte DNA between normotensive and preeclamptic pregnant women at delivery. Methods Age, body mass index matched case-control comparison of methylation at 27,578 cytosine—guanine sites in 14,495 genes in maternal leukocyte DNA in women with preeclampsia (PE; n = 14) and normotensive controls (n = 14). Results PE was associated with widespread differential methylation favoring hypermethylation. Pathway analysis identified the best matched process as a neuropeptide signaling pathway (p < 10−5); best matched disease as eclampsia (p < 9.97 × 10−20). Significantly differentially methylated genes (GRIN2b. GABRA1. PCDHB7, and BEX1) are associated with seizures. Conclusion Altered maternal leukocyte DNA methylation is associated with PE at delivery, and differential methylation of certain neuronal genes may explain the risk for eclampsia. PMID:23782156

  14. Effects of cytosine methylation on DNA charge transport

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  15. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat.

    PubMed

    Ollikainen, Miina; Ismail, Khadeeja; Gervin, Kristina; Kyllönen, Anjuska; Hakkarainen, Antti; Lundbom, Jesper; Järvinen, Elina A; Harris, Jennifer R; Lundbom, Nina; Rissanen, Aila; Lyle, Robert; Pietiläinen, Kirsi H; Kaprio, Jaakko

    2015-01-01

    The current epidemic of obesity and associated diseases calls for swift actions to better understand the mechanisms by which genetics and environmental factors affect metabolic health in humans. Monozygotic (MZ) twin pairs showing discordance for obesity suggest that epigenetic influences represent one such mechanism. We studied genome-wide leukocyte DNA methylation variation in 30 clinically healthy young adult MZ twin pairs discordant for body mass index (BMI; average within-pair BMI difference: 5.4 ± 2.0 kg/m(2)). There were no differentially methylated cytosine-guanine (CpG) sites between the co-twins discordant for BMI. However, stratification of the twin pairs based on the level of liver fat accumulation revealed two epigenetically highly different groups. Significant DNA methylation differences (n = 1,236 CpG sites (CpGs)) between the co-twins were only observed if the heavier co-twins had excessive liver fat (n = 13 twin pairs). This unhealthy pattern of obesity was coupled with insulin resistance and low-grade inflammation. The differentially methylated CpGs included 23 genes known to be associated with obesity, liver fat, type 2 diabetes mellitus (T2DM) and metabolic syndrome, and potential novel metabolic genes. Differentially methylated CpG sites were overrepresented at promoters, insulators, and heterochromatic and repressed regions. Based on predictions by overlapping histone marks, repressed and weakly transcribed sites were significantly more often hypomethylated, whereas sites with strong enhancers and active promoters were hypermethylated. Further, significant clustering of differentially methylated genes in vitamin, amino acid, fatty acid, sulfur, and renin-angiotensin metabolism pathways was observed. The methylome in leukocytes is altered in obesity associated with metabolic disturbances, and our findings indicate several novel candidate genes and pathways in obesity and obesity-related complications.

  16. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring.

    PubMed

    Gentilini, Davide; Mari, Daniela; Castaldi, Davide; Remondini, Daniel; Ogliari, Giulia; Ostan, Rita; Bucci, Laura; Sirchia, Silvia M; Tabano, Silvia; Cavagnini, Francesco; Monti, Daniela; Franceschi, Claudio; Di Blasio, Anna Maria; Vitale, Giovanni

    2013-10-01

    The role of epigenetics in the modulation of longevity has not been studied in humans. To this aim, (1) we evaluated the DNA methylation from peripheral leukocytes of 21 female centenarians, their 21 female offspring, 21 offspring of both non-long-lived parents, and 21 young women through ELISA assay, pyrosequencing analysis of Alu sequences, and quantification of methylation in CpG repeats outside CpG islands; (2) we compared the DNA methylation profiles of these populations through Infinium array for genome-wide CpG methylation analysis. We observed an age-related decrease in global DNA methylation and a delay of this process in centenarians' offspring. Interestingly, literature data suggest a link between the loss of DNA methylation observed during aging and the development of age-associated diseases. Genome-wide methylation analysis evidenced DNA methylation profiles specific for aging and longevity: (1) aging-associated DNA hypermethylation occurs predominantly in genes involved in the development of anatomical structures, organs, and multicellular organisms and in the regulation of transcription; (2) genes involved in nucleotide biosynthesis, metabolism, and control of signal transmission are differently methylated between centenarians' offspring and offspring of both non-long-lived parents, hypothesizing a role for these genes in human longevity. Our results suggest that a better preservation of DNA methylation status, a slower cell growing/metabolism, and a better control in signal transmission through epigenetic mechanisms may be involved in the process of human longevity. These data fit well with the observations related to the beneficial effects of mild hypothyroidism and insulin-like growth factor I system impairment on the modulation of human lifespan.

  17. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women

    PubMed Central

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer. PMID:26680018

  18. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.

  19. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.

    PubMed

    Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M

    2017-04-17

    Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.

  20. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.

    PubMed

    Keller, Maria; Hopp, Lydia; Liu, Xuanshi; Wohland, Tobias; Rohde, Kerstin; Cancello, Raffaella; Klös, Matthias; Bacos, Karl; Kern, Matthias; Eichelmann, Fabian; Dietrich, Arne; Schön, Michael R; Gärtner, Daniel; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Kovacs, Peter; DiBlasio, Anna-Maria; Ling, Charlotte; Binder, Hans; Blüher, Matthias; Böttcher, Yvonne

    2017-01-01

    DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity.

  1. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    PubMed

    Pai, Athma A; Bell, Jordana T; Marioni, John C; Pritchard, Jonathan K; Gilad, Yoav

    2011-02-01

    The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  2. Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles

    PubMed Central

    2013-01-01

    Background Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. Results Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. Conclusions Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies. PMID:23706164

  3. Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models.

    PubMed

    Yang, Anne Yuqing; Lee, Jong Hun; Shu, Limin; Zhang, Chengyue; Su, Zheng-Yuan; Lu, Yaoping; Huang, Mou-Tuan; Ramirez, Christina; Pung, Douglas; Huang, Ying; Verzi, Michael; Hart, Ronald P; Kong, Ah-Ng Tony

    2014-09-15

    Ultraviolet irradiation and carcinogens have been reported to induce epigenetic alterations, which potentially contribute to the development of skin cancer. We aimed to study the genome-wide DNA methylation profiles of skin cancers induced by ultraviolet B (UVB) irradiation and 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-1,3-acetate (TPA). Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was utilized to ascertain the DNA methylation profiles in the following common mouse skin cancer models: SKH-1 mice treated with UVB irradiation and CD-1 mice treated with DMBA/TPA. Ingenuity® Pathway Analysis (IPA) software was utilized to analyze the data and to identify gene interactions among the different pathways. 6003 genes in the UVB group and 5424 genes in the DMBA/TPA group exhibited a greater than 2-fold change in CpG methylation as mapped by the IPA software. The top canonical pathways identified by IPA after the two treatments were ranked were pathways related to cancer development, cAMP-mediated signaling, G protein-coupled receptor signaling and PTEN signaling associated with UVB treatment, whereas protein kinase A signaling and xenobiotic metabolism signaling were associated with DMBA/TPA treatment. In addition, the mapped IL-6-related inflammatory pathways displayed alterations in the methylation profiles of inflammation-related genes linked to UVB treatment. Genes with altered methylation were ranked in the UVB and DMBA/TPA models, and the molecular interaction networks of those genes were identified by the IPA software. The genome-wide DNA methylation profiles of skin cancers induced by UV irradiation or by DMBA/TPA will be useful for future studies on epigenetic gene regulation in skin carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach.

    PubMed

    Binder, Alexandra M; Michels, Karin B

    2013-12-04

    Investigation of the biological mechanism by which folate acts to affect fetal development can inform appraisal of expected benefits and risk management. This research is ethically imperative given the ubiquity of folic acid fortified products in the US. Considering that folate is an essential component in the one-carbon metabolism pathway that provides methyl groups for DNA methylation, epigenetic modifications provide a putative molecular mechanism mediating the effect of folic acid supplementation on neonatal and pediatric outcomes. In this study we use a Mendelian Randomization Unnecessary approach to assess the effect of red blood cell (RBC) folate on genome-wide DNA methylation in cord blood. Site-specific CpG methylation within the proximal promoter regions of approximately 14,500 genes was analyzed using the Illumina Infinium Human Methylation27 Bead Chip for 50 infants from the Epigenetic Birth Cohort at Brigham and Women's Hospital in Boston. Using methylenetetrahydrofolate reductase genotype as the instrument, the Mendelian Randomization approach identified 7 CpG loci with a significant (mostly positive) association between RBC folate and methylation level. Among the genes in closest proximity to this significant subset of CpG loci, several enriched biologic processes were involved in nucleic acid transport and metabolic processing. Compared to the standard ordinary least squares regression method, our estimates were demonstrated to be more robust to unmeasured confounding. To the authors' knowledge, this is the largest genome-wide analysis of the effects of folate on methylation pattern, and the first to employ Mendelian Randomization to assess the effects of an exposure on epigenetic modifications. These results can help guide future analyses of the causal effects of periconceptional folate levels on candidate pathways.

  5. 7A.03: TRANSGENERATIONAL INHERITANCE OF GENOME-WIDE DNA METHYLATION PROFILES IN PULMONARY VASCULAR ENDOTHELIAL DYSFUNCTION FOLLOWING EXTRAUTERINE GROWTH RESTRICTION.

    PubMed

    Zhang, L; Du, L; Tang, L; Lao, L; Hu, Q

    2015-06-01

    Early postnatal life is considered as a critical time window for determination of long-term metabolic states and organ functions. Extrauterine growth restriction (EUGR) causes the development of adult onset chronic diseases, including pulmonary hypertension (PH). However, the mechanisms involved and the possibilities of transgenerational transmission on pulmonary vascular consequences in later life are still unclear. Epigenetic information can be inherited and represents a plausible transgenerational carrier of environmental information. Our study was designed to test whether epigenetics dysregulation mediates the cellular memory of this early postnatal event.(Figure is included in full-text article.) : To test this hypothesis, the EUGR pups were established by undernutritional until weaning. We isolated pulmonary vascular endothelial cells (PVEC) by magnetic-activated cell sorting (MACS) from EUGR and control rats. MeDIP-chip (Methyl-DNA immune precipitation chip), genome-scale mapping studies to search for differentially methylated loci. A postnatal insult, nutritional restriction-induced EUGR caused development of an increased PH at 9-week of age in male rats (First-generation of EUGR, F1-EUGR male). We intercrossed female adult control and F1-EUGR-male rats to obtain the second-generation (F2) offspring in two groups: C male-C female, EUGR-male -C-female. We found that significantly decreased pulmonary artery pressure in F2 female offspring in EUGR-male-C-female group (F2-EUGR-female), compared with controls to some degrees. we carried out genome-wide DNA methylation profiles screen for genes in rats between F1-EUGR-male and F2-EUGR-female. The EUGR and control group comparisons revealed consistently and distinctively methylated loci, with 74.8% F1-EUGR-male group and 84.5% F2-EUGR-female group changes in hyper-methylation loci enriched for highly significant group differences. Gene ontology (GO) analysis on no consistent differentially methylated genes

  6. DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles.

    PubMed

    Wedd, Laura; Maleszka, Ryszard

    2016-01-01

    In contrast to heavily methylated mammalian genomes, invertebrate genomes are only sparsely methylated in a 'mosaic' fashion with the majority of methylated CpG dinucleotides found across gene bodies. Importantly, this gene body methylation is frequently associated with active transcription, and studies in the honeybee have shown that there are strong links between gene body methylation and alternative splicing. Additional work also highlights that obligatory methylated epialleles influence transcriptional changes in a context-specific manner. Here we discuss the current knowledge in this emerging field and highlight both similarities and differences between DNA methylation systems in mammals and invertebrates. Finally, we argue that the relationship between genetic variation, differential DNA methylation, other epigenetic modifications and the transcriptome must be further explored to fully understand the role of DNA methylation in converting genomic sequences into phenotypes.

  7. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding.

    PubMed

    Jacobsen, Stine C; Gillberg, Linn; Bork-Jensen, Jette; Ribel-Madsen, Rasmus; Lara, Ester; Calvanese, Vincenzo; Ling, Charlotte; Fernandez, Agustin F; Fraga, Mario F; Poulsen, Pernille; Brøns, Charlotte; Vaag, Allan

    2014-06-01

    The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (χ(2), p < 0.001). Our results indicate lower DNA methylation plasticity in skeletal muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.

  8. Genome-wide DNA methylation in 1-year-old infants of mothers with major depressive disorder.

    PubMed

    Cicchetti, Dante; Hetzel, Susan; Rogosch, Fred A; Handley, Elizabeth D; Toth, Sheree L

    2016-11-01

    A genome-wide methylation study was conducted among a sample of 114 infants (M age = 13.2 months, SD = 1.08) of low-income urban women with (n = 73) and without (n = 41) major depressive disorder. The Illumina HumanMethylation450 BeadChip array with a GenomeStudio Methylation Module and Illumina Custom model were used to conduct differential methylation analyses. Using the 5.0 × 10-7 p value, 2,119 loci were found to be significantly different between infants of depressed and nondepressed mothers. Infants of depressed mothers had greater methylation at low methylation sites (0%-29%) compared to infants of nondepressed mothers. At high levels of methylation (70%-100%), the infants of depressed mothers were predominantly hypomethylated. The mean difference in methylation between the infants of depressed and infants of nondepressed mothers was 5.23%. Disease by biomarker analyses were also conducted using GeneGo MetaCore Software. The results indicated significant cancer-related differences in biomarker networks such as prostatic neoplasms, ovarian and breast neoplasms, and colonic neoplasms. The results of a process networks analysis indicated significant differences in process networks associated with neuronal development and central nervous system functioning, as well as cardiac development between infants of depressed and nondepressed mothers. These findings indicate that early in development, infants of mothers with major depressive disorder evince epigenetic differences relative to infants of well mothers that suggest risk for later adverse health outcomes.

  9. Dioxidine-induced changes in genome-wide DNA methylation in a culture of peripheral blood lymphocytes.

    PubMed

    Smirnikhina, S A; Voronina, E S; Lavrov, A V; Bochkov, N P

    2013-06-01

    We studied the effect of dioxidine on genome-wide methylation in short-term cultures of peripheral blood lymphocytes derived from healthy donors. Methylation was evaluated in lymphocytes before culturing, after 25 h in culture, and 1 h after addition of dioxidine in two concentrations (0.1 and 0.01 mg/ml). The total time in culture was 25 h. The level of methylation was assessed using methyl-sensitive single-cell gel electrophoresis ("comet assay") with additional restriction with HpaII amd MspI. Significant individual differences were found in the levels of methylation in both native cells and in cells treated with dioxidine in both concentrations. Mean group indicators of methylation did not differ before culturing and after 25 h in culture (45.28 and 44.80%, respectively). The mean group rate of methylation increased to 46.14% (p<0.001) after dioxidine treatment in a concentration of 0.01 mg/ml. Dioxidine in 0.1 mg/ml reduced the level of methylation (mean group rate 42.31%; p<0.001).

  10. Comparison of Gene Expression and Genome-Wide DNA Methylation Profiling between Phenotypically Normal Cloned Pigs and Conventionally Bred Controls

    PubMed Central

    Li, Shengting; Li, Jian; Lin, Lin; Nielsen, Anders Lade; Sørensen, Charlotte Brandt; Vajta, Gábor; Wang, Jun; Zhang, Xiuqing; Du, Yutao; Yang, Huanming; Bolund, Lars

    2011-01-01

    Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions. PMID:22022462

  11. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers.

    PubMed

    Lee, Hwan Young; An, Ja Hyun; Jung, Sang-Eun; Oh, Yu Na; Lee, Eun Young; Choi, Ajin; Yang, Woo Ick; Shin, Kyoung-Jin

    2015-07-01

    The identification of body fluids found at crime scenes can contribute to solving crimes by providing important insights into crime scene reconstruction. In the present study, body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array. A total of 64 CpG sites were selected as body fluid-specific marker candidates by having more than 20% discrepancy in DNA methylation status between a certain type of body fluid and other types of body fluids and to have methylation or unmethylation pattern only in a particular type of body fluid. From further locus-specific methylation analysis in additional samples, 1 to 3 CpG sites were selected for each body fluid. Then, a multiplex methylation SNaPshot reaction was constructed to analyze methylation status of 8 body fluid-specific CpG sites. The developed multiplex reaction positively identifies blood, saliva, semen and the body fluid which originates from female reproductive organ in one reaction, and produces successful DNA methylation profiles in aged or mixed samples. Although it remains to be investigated whether this approach is more sensitive, more practical than RNA- or peptide-based assays and whether it can be successfully applied to forensic casework, the results of the present study will be useful for the forensic investigators dealing with body fluid samples.

  12. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites

    PubMed Central

    Lee, Seung-Tae; Wiemels, Joseph L.

    2016-01-01

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  13. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  14. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population.

    PubMed

    Singh, Virendra; Singh, Laishram Chandreshwor; Vasudevan, Madavan; Chattopadhyay, Indranil; Borthakar, Bibhuti Bhusan; Rai, Avdhesh Kumar; Phukan, Rup Kumar; Sharma, Jagannath; Mahanta, Jagadish; Kataki, Amal Chandra; Kapur, Sujala; Saxena, Sunita

    2015-11-01

    Esophageal cancer is a major global health burden with a strong host-environment interaction component and epigenomics underpinnings that remain to be elucidated further. Certain populations such as the Northeast Indians suffer at a disproportionately higher rate from this devastating disease. Promoter methylation is correlated with transcriptional silencing of various genes in esophageal cancer. Very few studies on genome-wide methylation for esophageal cancer exist and yet, no one has carried out an integromics analysis of methylation and gene expression. In the present study, genome-wide methylation was measured in samples collected from the Northeast Indian population by Infinium 450k array, and integration of the methylation data was performed. To prepare a network of genes displaying enriched pathways, together with the list of genes exhibiting promoter hypermethylation or hypomethylation with inversely correlated expression, we performed an integrome analysis. We identified 23 Integrome network enriched genes with relevance to tumor progression and associated with the processes involved in metastasis such as cell adhesion, integrin signaling, cytoskeleton, and extracellular matrix organizations. These included four genes (PTK2, RND1, RND3, and UBL3) with promoter hypermethylation and downregulation, and 19 genes (SEMG2, CD97, CTNND2, CADM3, OMD, NEFM, FBN2, CTNNB1, DLX6, UGT2B4, CCDC80, PZP, SERPINA4, TNFSF13B, NPC1, COL1A1, TAC3, BMP8A, and IL22RA2) with promoter hypomethylation and upregulation. A Methylation Efficiency Index was further calculated for these genes; the top five gene with the highest index were COL1A1, TAC3, SERPINA4, TNFSF13B, and IL22RA2. In conclusion, we recommend that the circulatory proteins IL22RA2, TNFSF13B, SERPINA4, and TAC3 in serum of patients and disease-free healthy controls can be examined in the future as putative noninvasive biomarkers.

  15. Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris.

    PubMed

    Wang, Yu-long; Wang, Zhang-xun; Liu, Chun; Wang, Si-bao; Huang, Bo

    2015-12-01

    DNA methylation is a basic epigenetic mechanism found in eukaryotes, but its patterns and roles vary significantly among diverse taxa. In fungi, DNA methylation has various effects on diverse biological processes. However, its function in the sexual development of fungi remains unclear. Cordyceps militaris, readily performs sexual reproduction and thus provides a remarkably rich model for understanding epigenetic processes in sexual development. Here, we surveyed the methylome of C. militaris at single-base resolution to assess DNA methylation patterns during sexual development using genomic bisulfite sequencing (BS-Seq). The results showed that approximately 0.4 % of cytosines are methylated, similar to the DNA methylation level (0.39 %) during asexual development. Importantly, we found that DNA methylation in the fungi undergoes global reprogramming during fungal development. Moreover, RNA-Seq analysis indicated that the differentially methylated regions (DMRs) have no correlation with the genes that have roles during fungal sexual development in C. militaris. These results provide a comprehensive characterization of DNA methylation in the sexual development of C. militaris, which will contribute to future investigations of epigenetics in fungi.

  16. Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing

    PubMed Central

    Hao, Yue; Cui, Yanjun; Gu, Xianhong

    2016-01-01

    Heat stress affects muscle development and meat quality in food animals; however, little is known regarding its regulatory mechanisms at the epigenetic level, such as via DNA methylation. In this study, we aimed to compare the DNA methylation profiles between control and heat-stressed pigs to identify candidate genes for skeletal muscle development and meat quality. Whole-genome bisulfite sequencing was used to investigate the genome-wide DNA methylation patterns in the longissimus dorsi muscles of the pigs. Both groups showed similar proportions of methylation at CpG sites but exhibited different proportions at non-CpG sites. A total of 57,147 differentially methylated regions were identified between the two groups, which corresponded to 1,422 differentially methylated genes. Gene ontogeny and KEGG pathway analyses indicated that these were mainly involved in energy and lipid metabolism, cellular defense and stress responses, and calcium signaling pathways. This study revealed the global DNA methylation pattern of pig muscle between normal and heat stress conditions. The result of this study might contribute to a better understanding of epigenetic regulation in pig muscle development and meat quality. PMID:27264107

  17. Detection of Cytosine Methylation in Ancient DNA from Five Native American Populations Using Bisulfite Sequencing

    PubMed Central

    Smith, Rick W. A.; Monroe, Cara; Bolnick, Deborah A.

    2015-01-01

    While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches. PMID:26016479

  18. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy.

    PubMed

    Morales, Eva; Vilahur, Nadia; Salas, Lucas A; Motta, Valeria; Fernandez, Mariana F; Murcia, Mario; Llop, Sabrina; Tardon, Adonina; Fernandez-Tardon, Guillermo; Santa-Marina, Loreto; Gallastegui, Mara; Bollati, Valentina; Estivill, Xavier; Olea, Nicolas; Sunyer, Jordi; Bustamante, Mariona

    2016-10-01

    We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International

  19. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors.

    PubMed

    Suzuki, Takehiro; Yamashita, Satoshi; Ushijima, Toshikazu; Takumi, Shota; Sano, Tomoharu; Michikawa, Takehiro; Nohara, Keiko

    2013-12-01

    Inorganic arsenic is known to be a human carcinogen. Previous studies have reported that DNA methylation changes are involved in arsenic-induced carcinogenesis, therefore, DNA methylation changes that are specific to arsenic-induced tumors would be useful to distinguish tumors induced by arsenic from tumors caused by other factors and to dissect arsenic carcinogenesis. Previous studies have shown that gestational arsenic exposure of C3H mice, which tend to spontaneously develop liver tumors, increases the incidence of tumors in male offspring. In this study we used the same experimental protocol as in those previous studies and searched for DNA regions where methylation status was specifically altered in the liver tumors of arsenic-exposed offspring by using methylated DNA immunoprecipitation-CpG island microarrays. The methylation levels of the DNA regions selected were measured by quantitative methylation-specific PCR and bisulfite sequencing. The results of this study clarified a number of regions where DNA methylation status was altered in the liver tumors in the C3H mice compared to normal liver tissues. Among such regions, we showed that a gene body region of the oncogene Fosb underwent alteration in DNA methylation by gestational arsenic exposure. We also showed that Fosb expression significantly increased corresponding to the DNA methylation level of the gene body in the arsenic-exposed group. These findings suggest that the DNA methylation status can be used to identify tumors increased by gestational arsenic exposure. © 2013 Japanese Cancer Association.

  20. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize.

    PubMed

    Zhang, Mei; Xie, Shaojun; Dong, Xiaomei; Zhao, Xin; Zeng, Biao; Chen, Jian; Li, Hui; Yang, Weilong; Zhao, Hainan; Wang, Gaokui; Chen, Zongliang; Sun, Silong; Hauck, Andrew; Jin, Weiwei; Lai, Jinsheng

    2014-01-01

    Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parent-of-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression in maize remains elusive. Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. For DNA methylation, thousands of parent-of-origin dependent differentially methylated regions (pDMRs) were identified. All pDMRs were uniformly paternally hypermethylated and maternally hypomethylated. We also identified 1131 allele-specific H3K27me3 peaks that are preferentially present in the maternal alleles. Maternally expressed imprinted genes (MEGs) and paternally expressed imprinted genes (PEGs) had different patterns of allele-specific DNA methylation and H3K27me3. Allele-specific expression of MEGs was not directly related to allele-specific H3K27me3, and only a subset of MEGs was associated with maternal-specific DNA demethylation, which was primarily located in the upstream and 5' portion of gene body regions. In contrast, allele-specific expression of a majority of PEGs was related to maternal-specific H3K27me3, with a subgroup of PEGs also associated with maternal-specific DNA demethylation. Both pDMRs and maternal H3K27me3 peaks associated with PEGs are enriched in gene body regions. Our results indicate highly complex patterns of regulation on genetic imprinting in maize endosperm.

  1. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.

    2015-01-01

    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583

  2. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.

    PubMed

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-10-21

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  3. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer.

    PubMed

    Rhee, Je-Keun; Kim, Kwangsoo; Chae, Heejoon; Evans, Jared; Yan, Pearlly; Zhang, Byoung-Tak; Gray, Joe; Spellman, Paul; Huang, Tim H-M; Nephew, Kenneth P; Kim, Sun

    2013-10-01

    Aberrant DNA methylation of CpG islands, CpG island shores and first exons is known to play a key role in the altered gene expression patterns in all human cancers. To date, a systematic study on the effect of DNA methylation on gene expression using high resolution data has not been reported. In this study, we conducted an integrated analysis of MethylCap-sequencing data and Affymetrix gene expression microarray data for 30 breast cancer cell lines representing different breast tumor phenotypes. As well-developed methods for the integrated analysis do not currently exist, we created a series of four different analysis methods. On the computational side, our goal is to develop methylome data analysis protocols for the integrated analysis of DNA methylation and gene expression data on the genome scale. On the cancer biology side, we present comprehensive genome-wide methylome analysis results for differentially methylated regions and their potential effect on gene expression in 30 breast cancer cell lines representing three molecular phenotypes, luminal, basal A and basal B. Our integrated analysis demonstrates that methylation status of different genomic regions may play a key role in establishing transcriptional patterns in molecular subtypes of human breast cancer.

  4. Genome-Wide Methylation and Gene Expression Changes in Newborn Rats following Maternal Protein Restriction and Reversal by Folic Acid

    PubMed Central

    Stupka, Elia; Clark, Adrian J. L.; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures. PMID:24391732

  5. Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation.

    PubMed

    Remnant, Emily J; Ashe, Alyson; Young, Paul E; Buchmann, Gabriele; Beekman, Madeleine; Allsopp, Michael H; Suter, Catherine M; Drewell, Robert A; Oldroyd, Benjamin P

    2016-03-12

    Intersexual genomic conflict sometimes leads to unequal expression of paternal and maternal alleles in offspring, resulting in parent-of-origin effects. In honey bees reciprocal crosses can show strong parent-of-origin effects, supporting theoretical predictions that genomic imprinting occurs in this species. Mechanisms behind imprinting in honey bees are unclear but differential DNA methylation in eggs and sperm suggests that DNA methylation could be involved. Nonetheless, because DNA methylation is multifunctional, it is difficult to separate imprinting from other roles of methylation. Here we use a novel approach to investigate parent-of-origin DNA methylation in honey bees. In the subspecies Apis mellifera capensis, reproduction of females occurs either sexually by fertilization of eggs with sperm, or via thelytokous parthenogenesis, producing female embryos derived from two maternal genomes. We compared genome-wide methylation patterns of sexually-produced, diploid embryos laid by a queen, with parthenogenetically-produced diploid embryos laid by her daughters. Thelytokous embryos inheriting two maternal genomes had fewer hypermethylated genes compared to fertilized embryos, supporting the prediction that fertilized embryos have increased methylation due to inheritance of a paternal genome. However, bisulfite PCR and sequencing of a differentially methylated gene, Stan (GB18207) showed strong allele-specific methylation that was maintained in both fertilized and thelytokous embryos. For this gene, methylation was associated with haplotype, not parent of origin. The results of our study are consistent with predictions from the kin theory of genomic imprinting. However, our demonstration of allele-specific methylation based on sequence shows that genome-wide differential methylation studies can potentially confound imprinting and allele-specific methylation. It further suggests that methylation patterns are heritable or that specific sequence motifs are targets

  6. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study.

    PubMed

    Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J

    2017-03-01

    DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Genome-Wide Differences in DNA Methylation Changes in Two Contrasting Rice Genotypes in Response to Drought Conditions

    PubMed Central

    Wang, Wensheng; Qin, Qiao; Sun, Fan; Wang, Yinxiao; Xu, Dandan; Li, Zhikang; Fu, Binying

    2016-01-01

    Differences in drought stress tolerance within diverse rice genotypes have been attributed to genetic diversity and epigenetic alterations. DNA methylation is an important epigenetic modification that influences diverse biological processes, but its effects on rice drought stress tolerance are poorly understood. In this study, methylated DNA immunoprecipitation sequencing and an Affymetrix GeneChip rice genome array were used to profile the DNA methylation patterns and transcriptomes of the drought-tolerant introgression line DK151 and its drought-sensitive recurrent parent IR64 under drought and control conditions. The introgression of donor genomic DNA induced genome-wide DNA methylation changes in DK151 plants. A total of 1190 differentially methylated regions (DMRs) were detected between the two genotypes under normal growth conditions, and the DMR-associated genes in DK151 plants were mainly related to stress response, programmed cell death, and nutrient reservoir activity, which are implicated to constitutive drought stress tolerance. A comparison of the DNA methylation changes in the two genotypes under drought conditions indicated that DK151 plants have a more stable methylome, with only 92 drought-induced DMRs, than IR64 plants with 506 DMRs. Gene ontology analyses of the DMR-associated genes in drought-stressed plants revealed that changes to the DNA methylation status of genotype-specific genes are associated with the epigenetic regulation of drought stress responses. Transcriptome analysis further helped to identify a set of 12 and 23 DMR-associated genes that were differentially expressed in DK151 and IR64, respectively, under drought stress compared with respective controls. Correlation analysis indicated that DNA methylation has various effects on gene expression, implying that it affects gene expression directly or indirectly through diverse regulatory pathways. Our results indicate that drought-induced alterations to DNA methylation may influence

  8. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation.

    PubMed

    Zakrzewski, Falk; Schubert, Veit; Viehoever, Prisca; Minoche, André E; Dohm, Juliane C; Himmelbauer, Heinz; Weisshaar, Bernd; Schmidt, Thomas

    2014-06-01

    Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next-generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome-wide fluorescent in situ hybridization complemented with immunostaining and super-resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44-52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.

  9. Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni

    PubMed Central

    Geyer, Kathrin K.; Rodríguez López, Carlos M.; Chalmers, Iain W.; Munshi, Sabrina E.; Truscott, Martha; Heald, James; Wilkinson, Mike J.; Hoffmann, Karl F.

    2011-01-01

    Similar to other metazoan pathogens, Schistosoma mansoni undergoes transcriptional and developmental regulation during its complex lifecycle and host interactions. DNA methylation as a mechanism to control these processes has, to date, been discounted in this parasite. Here we show the first evidence for cytosine methylation in the S. mansoni genome. Transcriptional coregulation of novel DNA methyltransferase (SmDnmt2) and methyl-CpG-binding domain proteins mirrors the detection of cytosine methylation abundance and implicates the presence of a functional DNA methylation machinery. Genome losses in cytosine methylation upon SmDnmt2 silencing and the identification of a hypermethylated, repetitive intron within a predicted forkhead gene confirm this assertion. Importantly, disruption of egg production and egg maturation by 5-azacytidine establishes an essential role for 5-methylcytosine in this parasite. These findings provide the first functional confirmation for this epigenetic modification in any worm species and link the cytosine methylation machinery to platyhelminth oviposition processes. PMID:21829186

  10. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts

    PubMed Central

    Park, Lara K; Maione, Anna G; Smith, Avi; Gerami-Naini, Behzad; Iyer, Lakshmanan K; Mooney, David J; Veves, Aristidis; Garlick, Jonathan A

    2014-01-01

    Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets. PMID:25437049

  11. Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility.

    PubMed

    Verma, Arpana; Rajput, Sandeep; De, Sachinandan; Kumar, Rakesh; Chakravarty, Atish Kumar; Datta, Tirtha Kumar

    2014-09-15

    The DNA methylation pattern in spermatozoa of buffalo bulls of different fertility status was investigated. Spermatozoa isolated DNA from two groups of buffalo bulls (n = 5), selected based on their artificial insemination-generated conception rate data followed by IVF efficiency, were studied for global methylation changes using a custom-designed 180 K buffalo (Bubalus bubalis) CpG island/promoter microarray. A total of 96 individual genes with another 55 genes covered under CpG islands were found differentially methylated in sperm of high-fertile and subfertile buffalo bulls. Important genes associated with biological processes, cellular components, and functions were identified to be differentially methylated in buffalo bulls with differential fertility status. The identified differentially methylated genes were found to be involved in germ cell development, spermatogenesis, capacitation, and embryonic development. The observations hint that methylation defects of sperm DNA may play a crucial role in determining the fertility of breeding bulls. This growing field of sperm epigenetics will be of great benefit in understanding the graded fertility conditions of breeding bulls in commercial livestock production system. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Genome-Wide Methylation Patterns in Salmonella enterica Subsp. enterica Serovars

    PubMed Central

    Pirone-Davies, Cary; Hoffmann, Maria; Roberts, Richard J.; Muruvanda, Tim; Timme, Ruth E.; Strain, Errol; Luo, Yan; Payne, Justin; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Clark, Tyson A.; Korlach, Jonas; Evans, Peter S.; Allard, Marc W.

    2015-01-01

    The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases) associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems), indicating the high diversity of methylation patterns present in Salmonella. PMID:25860355

  13. Comparison of the Genome-Wide DNA Methylation Profiles between Fast-Growing and Slow-Growing Broilers

    PubMed Central

    Li, Zhenhui; Zheng, Xuejuan; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2013-01-01

    Introduction Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRRh; WRRl) and that of Xinhua Chickens (XHh; XHl) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200–300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRRh Vs. WRRl, 5,599 of XHh Vs. XHl, 4,204 of WRRh Vs. XHh, as well as 7,301 of WRRl Vs. XHl. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRRh Vs. WRRl and XHh Vs. XHl), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRRh Vs. XHh and WRRl Vs. XHl). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. Conclusions This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level. PMID:23441189

  14. Genome-Wide Assessment of Differential DNA Methylation Associated with Autoantibody Production in Systemic Lupus Erythematosus

    PubMed Central

    Chung, Sharon A.; Nititham, Joanne; Elboudwarej, Emon; Quach, Hong L.; Taylor, Kimberly E.

    2015-01-01

    Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies associated with specific clinical manifestations. Previous studies have shown an association between differential DNA methylation and SLE susceptibility, but have not investigated SLE-related autoantibodies. Our goal was to determine whether DNA methylation is associated with production of clinically relevant SLE-related autoantibodies, with an emphasis on the anti-dsDNA autoantibody. In this study, we characterized the methylation status of 467,314 CpG sites in 326 women with SLE. Using a discovery and replication study design, we identified and replicated significant associations between anti-dsDNA autoantibody production and the methylation status of 16 CpG sites (pdiscovery<1.07E-07 and preplication<0.0029) in 11 genes. Associations were further investigated using multivariable regression to adjust for estimated leukocyte cell proportions and population substructure. The adjusted mean DNA methylation difference between anti-dsDNA positive and negative cases ranged from 1.2% to 19%, and the adjusted odds ratio for anti-dsDNA autoantibody production comparing the lowest and highest methylation tertiles ranged from 6.8 to 18.2. Differential methylation for these CpG sites was also associated with anti-SSA, anti-Sm, and anti-RNP autoantibody production. Overall, associated CpG sites were hypomethylated in autoantibody positive compared to autoantibody negative cases. Differential methylation of CpG sites within the major histocompatibility region was not strongly associated with autoantibody production. Genes with differentially methylated CpG sites represent multiple biologic pathways, and have not been associated with autoantibody production in genetic association studies. In conclusion, hypomethylation of CpG sites within genes from different pathways is associated with anti-dsDNA, anti-SSA, anti-Sm, and anti-RNP production in SLE, and these associations are not explained by

  15. On the potential of models for location and scale for genome-wide DNA methylation data.

    PubMed

    Wahl, Simone; Fenske, Nora; Zeilinger, Sonja; Suhre, Karsten; Gieger, Christian; Waldenberger, Melanie; Grallert, Harald; Schmid, Matthias

    2014-07-03

    With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific challenges arise from the characteristics of methylation data. First, methylation β-values represent proportions with skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed response might not be appropriate. Second, recent evidence suggests that not only mean differences but also variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to compare different modeling strategies for methylation data in terms of model performance and performance of downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape (GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square root transformed methylation data, with and without modeling a covariate effect on the scale parameter. Using simulated and real data from a large population-based study and an independent sample of cancer patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of model performance. In addition, Gaussian models for location and scale showed an improved performance as compared to models for location only. The best performance was observed for the Gaussian model on binary logit transformed β-values, referred to as M-values. Our results further suggest that models for location and scale are specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data. Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I error rate in

  16. Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation

    PubMed Central

    Zeilinger, Sonja; Kühnel, Brigitte; Klopp, Norman; Baurecht, Hansjörg; Kleinschmidt, Anja; Gieger, Christian; Weidinger, Stephan; Lattka, Eva; Adamski, Jerzy; Peters, Annette; Strauch, Konstantin

    2013-01-01

    Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.31E-08 to 2.54E-182) as a function of tobacco smoking in each of the 22 autosomes, with the percent of variance explained by smoking ranging from 1.31 to 41.02. Depending on cessation time and pack-years, methylation levels in former smokers were found to be close to the ones seen in never smokers. In addition, methylation-specific protein binding patterns were observed for cg05575921 within AHRR, which had the highest level of detectable changes in DNA methylation associated with tobacco smoking (–24.40% methylation; p = 2.54E-182), suggesting a regulatory role for gene expression. The results of our study confirm the broad effect of tobacco smoking on the human organism, but also show that quitting tobacco smoking presumably allows regaining the DNA methylation state of never smokers. PMID:23691101

  17. Cytosine methylation at CpCpG sites triggers accumulation of non-CpG methylation in gene bodies

    PubMed Central

    Prischi, Filippo

    2017-01-01

    Abstract Methylation of cytosine is an epigenetic mark involved in the regulation of transcription, usually associated with transcriptional repression. In mammals, methylated cytosines are found predominantly in CpGs but in plants non-CpG methylation (in the CpHpG or CpHpH contexts, where H is A, C or T) is also present and is associated with the transcriptional silencing of transposable elements. In addition, CpG methylation is found in coding regions of active genes. In the absence of the demethylase of lysine 9 of histone 3 (IBM1), a subset of body-methylated genes acquires non-CpG methylation. This was shown to alter their expression and affect plant development. It is not clear why only certain body-methylated genes gain non-CpG methylation in the absence of IBM1 and others do not. Here we describe a link between CpG methylation and the establishment of methylation in the CpHpG context that explains the two classes of body-methylated genes. We provide evidence that external cytosines of CpCpG sites can only be methylated when internal cytosines are methylated. CpCpG sites methylated in both cytosines promote spreading of methylation in the CpHpG context in genes protected by IBM1. In contrast, CpCpG sites remain unmethylated in IBM1-independent genes and do not promote spread of CpHpG methylation. PMID:28053115

  18. Neonatal Genome-Wide Methylation Patterns in Relation to Birth Weight in the Norwegian Mother and Child Cohort

    PubMed Central

    Engel, Stephanie M.; Joubert, Bonnie R.; Wu, Michael C.; Olshan, Andrew F.; Håberg, Siri E.; Ueland, Per Magne; Nystad, Wenche; Nilsen, Roy M.; Vollset, Stein Emil; Peddada, Shyamal D.; London, Stephanie J.

    2014-01-01

    Although epigenetic regulation plays a critical role in embryonic development, few studies have examined the relationship of epigenome-wide methylation with fetal growth. Using the Infinium HumanMethylation450 BeadChip (Illumina, Inc., San Diego, California) in a substudy of 1,046 infants from the Norwegian Mother and Child Cohort Study (MoBa) enrolled between 1999 and 2008, we examined epigenome-wide cord blood DNA methylation in relation to birth weight. In multivariable-adjusted robust linear regression models, we identified differential methylation at 19 cytosine-guanine dinucleotides (CpGs) associated with either decreased (AT-rich interactive domain 5B (MRF1-like) (ARID5B), 2 CpGs) or increased (x-ray repair complementing defective repair in Chinese hamster cells 3 (XRCC3), 4 CpGs) birth weight. ARID5B knockout mice have less adipose tissue and significantly lower weight in the postnatal period. XRCC3 plays a key role in the maintenance of chromosome stability and the repair of DNA damage. Although there are fewer data on the other implicated genes, many of these genes have been shown to have roles in developmental processes. This constitutes the largest and most robust study of birth weight using an epigenome-wide methylation platform and offers potential insights into epigenetic mechanisms of fetal growth. PMID:24561991

  19. Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort.

    PubMed

    Engel, Stephanie M; Joubert, Bonnie R; Wu, Michael C; Olshan, Andrew F; Håberg, Siri E; Ueland, Per Magne; Nystad, Wenche; Nilsen, Roy M; Vollset, Stein Emil; Peddada, Shyamal D; London, Stephanie J

    2014-04-01

    Although epigenetic regulation plays a critical role in embryonic development, few studies have examined the relationship of epigenome-wide methylation with fetal growth. Using the Infinium HumanMethylation450 BeadChip (Illumina, Inc., San Diego, California) in a substudy of 1,046 infants from the Norwegian Mother and Child Cohort Study (MoBa) enrolled between 1999 and 2008, we examined epigenome-wide cord blood DNA methylation in relation to birth weight. In multivariable-adjusted robust linear regression models, we identified differential methylation at 19 cytosine-guanine dinucleotides (CpGs) associated with either decreased (AT-rich interactive domain 5B (MRF1-like) (ARID5B), 2 CpGs) or increased (x-ray repair complementing defective repair in Chinese hamster cells 3 (XRCC3), 4 CpGs) birth weight. ARID5B knockout mice have less adipose tissue and significantly lower weight in the postnatal period. XRCC3 plays a key role in the maintenance of chromosome stability and the repair of DNA damage. Although there are fewer data on the other implicated genes, many of these genes have been shown to have roles in developmental processes. This constitutes the largest and most robust study of birth weight using an epigenome-wide methylation platform and offers potential insights into epigenetic mechanisms of fetal growth.

  20. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways

    PubMed Central

    Yu, Weishi; McIntosh, Carl; Lister, Ryan; Zhu, Iris; Han, Yixing; Ren, Jianke; Landsman, David; Lee, Eunice; Briones, Victorino; Terashima, Minoru; Leighty, Robert; Ecker, Joseph R.

    2014-01-01

    Cytosine methylation is critical in mammalian development and plays a role in diverse biologic processes such as genomic imprinting, X chromosome inactivation, and silencing of repeat elements. Several factors regulate DNA methylation in early embryogenesis, but their precise role in the establishment of DNA methylation at a given site remains unclear. We have generated a comprehensive methylation map in fibroblasts derived from the murine DNA methylation mutant Hells−/− (helicase, lymphoid specific, also known as LSH). It has been previously shown that HELLS can influence de novo methylation of retroviral sequences and endogenous genes. Here, we describe that HELLS controls cytosine methylation in a nuclear compartment that is in part defined by lamin B1 attachment regions. Despite widespread loss of cytosine methylation at regulatory sequences, including promoter regions of protein-coding genes and noncoding RNA genes, overall relative transcript abundance levels in the absence of HELLS are similar to those in wild-type cells. A subset of promoter regions shows increases of the histone modification H3K27me3, suggesting redundancy of epigenetic silencing mechanisms. Furthermore, HELLS modulates CG methylation at all classes of repeat elements and is critical for repression of a subset of repeat elements. Overall, we provide a detailed analysis of gene expression changes in relation to DNA methylation alterations, which contributes to our understanding of the biological role of cytosine methylation. PMID:25170028

  1. Association of aberrant DNA methylation in Apc(min/+) mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq.

    PubMed

    Guo, Yue; Lee, Jong Hun; Shu, Limin; Huang, Ying; Li, Wenji; Zhang, Chengyue; Yang, Anne Yuqing; Boyanapalli, Sarandeep Ss; Perekatt, Ansu; Hart, Ronald P; Verzi, Michael; Kong, Ah-Ng Tony

    2015-01-01

    Aberrant DNA methylation at the 5-carbon on cytosine residues (5mC) in CpG dinucleotides is probably the most extensively characterized epigenetic modification in colon cancer. It has been suggested that the loss of adenomatous polyposis coli (APC) function initiates tumorigenesis and that additional genetic and epigenetic events are involved in colon cancer progression. We aimed to study the genome-wide DNA methylation profiles of intestinal tumorigenesis in Apc(min/+) mice. Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was used to determine the global profile of DNA methylation changes in Apc(min/+) mice. DNA was extracted from adenomatous polyps from Apc(min/+) mice and from normal intestinal tissue from age-matched Apc(+/+) littermates, and the MeDIP-seq assay was performed. Ingenuity Pathway Analysis (IPA) software was used to analyze the data for gene interactions. A total of 17,265 differentially methylated regions (DMRs) displayed a ≥ 2-fold change (log2) in methylation in Apc(min/+) mice; among these DMRs, 9,078 (52.6 %) and 8,187 (47.4 %) exhibited increased and decreased methylation, respectively. Genes with altered methylation patterns were mainly mapped to networks and biological functions associated with cancer and gastrointestinal diseases. Among these networks, several canonical pathways, such as the epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathways, were significantly associated with genome-wide methylation changes in polyps from Apc(min/+) mice. The identification of certain differentially methylated molecules in the EMT and Wnt/β-catenin pathways, such as APC2 (adenomatosis polyposis coli 2), SFRP2 (secreted frizzled-related protein 2), and DKK3 (dickkopf-related protein 3), was consistent with previous publications. Our findings indicated that Apc(min/+) mice exhibited extensive aberrant DNA methylation that affected certain signaling pathways, such as the EMT and Wnt

  2. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  3. Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity.

    PubMed

    Almén, Markus Sällman; Nilsson, Emil K; Jacobsson, Josefin A; Kalnina, Ineta; Klovins, Janis; Fredriksson, Robert; Schiöth, Helgi B

    2014-09-10

    The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    PubMed

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Genome-wide profiling of DNA methylation reveals preferred sequences of DNMTs in hepatocellular carcinoma cells.

    PubMed

    Fan, Hong; Zhao, Zhujiang; Cheng, Yuchao; Cui, He; Qiao, Fengchang; Wang, Ling; Hu, Jiaojiao; Wu, Huzhang; Song, Wei

    2016-01-01

    Aberrant DNA methylation of CpG site is among the earliest and most frequent alterations in developmental process and diseases including cancer. To elucidate the functional preferred site of DNMTs, we analyzed the feature of distinct methylated sequences and established the defined relationship between DNMTs and preference genomic DNA sequences. Small interfering RNA (siRNA) construct of DNTM1, DNMT3A, and DNMT3B was transfected into the human hepatocellular carcinoma cell line SMMC-7721, respectively. Distinguishing methylated fragments pool was enriched by SHH method in cells which is knocked down DNMT1, DNMT3A, DNMT3B, separately. The defined binding transcription factors (TFs) containing of 5'CpG islands were obtained with bioinformatics software and website. In SMMC-7721 hepatocellular carcinoma (HCC) cell line, DNMT1, DNMT3A, and DNMT3B were specific suppressed by their corresponding siRNA construct, separately. A 46, 42, 67 distinctive methylated fragments from three different DNMTs were evaluated according to genomic DNA database. Those separated fragments were distributed among genomic DNA regions of all chromosome complements, including coding genes, repeat sequences, and genes with unknown function. The majority of coding genes contain CpG islands in their promoter region. Cluster analysis demonstrated all of preference sequences identified by three DNMTs shares their own conserved sequences. In depleting of different DNMTs cells, 80 % of 103 upregulation genes induced by DNMT1 knock-down contain CpG sites; 76 % of 25 upregulation genes induced by DNMT3A knock-down contain CpG sites; 63 % of 126 upregulation genes induced by DNMT3B knock-down contain CpG sites. Our findings suggested that distinctive DNMTs targeted DNA methylation site to their preference sequences, and this targeting might be associated with diverse roles of DNMTs in tumorigenesis. Meanwhile, the analysis of preference sequences provides an alternative way to find out the individual

  6. Genome-wide DNA methylation profiling reveals parity-associated hypermethylation of FOXA1.

    PubMed

    Ghosh, Sagar; Gu, Fei; Wang, Chou-Miin; Lin, Chun-Lin; Liu, Joseph; Wang, Howard; Ravdin, Peter; Hu, Yanfen; Huang, Tim H M; Li, Rong

    2014-10-01

    Early pregnancy in women by the age of 20 is known to have a profound effect on reduction of lifelong breast cancer risk as compared to their nulliparous counterparts. Additional pregnancies further enhance the protection against breast cancer development. Nationwide trend of delayed pregnancy may contribute to the recently reported increase in the incidence of advanced breast cancer among young women in this country. The underlying mechanism for the parity-associated reduction of breast cancer risk is not clearly understood. The purpose of the current study is to use whole-genome DNA methylation profiling to explore a potential association between parity and epigenetic changes in breast tissue from women with early parity and nulliparity. Breast tissue was collected from age-matched cancer-free women with early parity (age < 20; n = 15) or nulliparity (n = 13). The methyl-CpG binding domain-based capture-sequencing technology was used for whole-genome DNA methylation profiling. Potential parity-associated hypermethylated genes were further verified by locus-specific pyrosequencing, using an expanded cohort of parous (n = 19) and nulliparous (n = 16) women that included the initial samples used in the global analysis. Our study identified six genes that are hypermethylated in the parous group (P < 0.05). Pyrosequencing confirmed parity-associated hypermethylation at multiple CpG islands of the FOXA1 gene, which encodes a pioneer factor that facilitates chromatin binding of estrogen receptor α. Our work identifies several potential methylation biomarkers for parity-associated breast cancer risk assessment. In addition, the results are consistent with the notion that parity-associated epigenetic silencing of FOXA1 contributes to long-term attenuation of the estrogenic impact on breast cancer development.

  7. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas

    PubMed Central

    Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S

    2017-01-01

    High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma. PMID:28036297

  8. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation

    PubMed Central

    Kitimu, Shedrack R.; Taylor, Julian; March, Timothy J.; Tairo, Fred; Wilkinson, Mike J.; Rodríguez López, Carlos M.

    2015-01-01

    There is great interest in the phenotypic, genetic and epigenetic changes associated with plant in vitro culture known as somaclonal variation. In vitro propagation systems that are based on the use of microcuttings or meristem cultures are considered analogous to clonal cuttings and so widely viewed to be largely free from such somaclonal effects. In this study, we surveyed for epigenetic changes during propagation by meristem culture and by field cuttings in five cassava (Manihot esculenta) cultivars. Principal Co-ordinate Analysis of profiles generated by methylation-sensitive amplified polymorphism revealed clear divergence between samples taken from field-grown cuttings and those recovered from meristem culture. There was also good separation between the tissues of field samples but this effect was less distinct among the meristem culture materials. Application of methylation-sensitive Genotype by sequencing identified 105 candidate epimarks that distinguish between field cutting and meristem culture samples. Cross referencing the sequences of these epimarks to the draft cassava genome revealed 102 sites associated with genes whose homologs have been implicated in a range of fundamental biological processes including cell differentiation, development, sugar metabolism, DNA methylation, stress response, photosynthesis, and transposon activation. We explore the relevance of these findings for the selection of micropropagation systems for use on this and other crops. PMID:26322052

  9. Genome-wide analysis of DNA methylation dynamics during early human development.

    PubMed

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  10. Patterns of methylation heritability in a genome-wide analysis of four brain regions

    PubMed Central

    Quon, Gerald; Lippert, Christoph; Heckerman, David; Listgarten, Jennifer

    2013-01-01

    DNA methylation has been implicated in a number of diseases and other phenotypes. It is, therefore, of interest to identify and understand the genetic determinants of methylation and epigenomic variation. We investigated the extent to which genetic variation in cis-DNA sequence explains variation in CpG dinucleotide methylation in publicly available data for four brain regions from unrelated individuals, finding that 3–4% of CpG loci assayed were heritable, with a mean estimated narrow-sense heritability of 30% over the heritable loci. Over all loci, the mean estimated heritability was 3%, as compared with a recent twin-based study reporting 18%. Heritable loci were enriched for open chromatin regions and binding sites of CTCF, an influential regulator of transcription and chromatin architecture. Additionally, heritable loci were proximal to genes enriched in several known pathways, suggesting a possible functional role for these loci. Our estimates of heritability are conservative, and we suspect that the number of identified heritable loci will increase as the methylome is assayed across a broader range of cell types and the density of the tested loci is increased. Finally, we show that the number of heritable loci depends on the window size parameter commonly used to identify candidate cis-acting single-nucleotide polymorphism variants. PMID:23303775

  11. DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study.

    PubMed

    Booij, Linda; Casey, Kevin F; Antunes, Juliana M; Szyf, Moshe; Joober, Ridha; Israël, Mimi; Steiger, Howard

    2015-11-01

    Evidence associates anorexia nervosa (AN) with epigenetic alterations that could contribute to illness risk or entrenchment. We investigated the extent to which AN is associated with a distinct methylation profile compared to that seen in normal-eater women. Genome-wide methylation profiles, obtained using DNA from whole blood, were determined in 29 women currently ill with AN (10 with AN-restrictive type, 19 with AN-binge/purge type) and 15 normal-weight, normal-eater control women, using 450 K Illumina bead arrays. Regardless of type, AN patients showed higher and less-variable global methylation patterns than controls. False Discovery Rate corrected comparisons identified 14 probes that were hypermethylated in women with AN relative to levels obtained in normal-eater controls, representing genes thought to be associated with histone acetylation, RNA modification, cholesterol storage and lipid transport, and dopamine and glutamate signaling. Age of onset was significantly associated with differential methylation in gene pathways involved in development of the brain and spinal cord, while chronicity of illness was significantly linked to differential methylation in pathways involved with synaptogenesis, neurocognitive deficits, anxiety, altered social functioning, and bowel, kidney, liver and immune function. Although pre-existing differences cannot be ruled out, our findings are consistent with the idea of secondary alterations in methylation at genomic regions pertaining to social-emotional impairments and physical sequelae that are commonly seen in AN patients. Further investigation is needed to establish the clinical relevance of the affected genes in AN, and, importantly, reversibility of effects observed with nutritional rehabilitation and treatment. © 2015 Wiley Periodicals, Inc.

  12. Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy.

    PubMed

    Non, Amy L; Binder, Alexandra M; Kubzansky, Laura D; Michels, Karin B

    2014-07-01

    Despite the high prevalence of depression, anxiety, and use of antidepressant medications during pregnancy, there is much uncertainty around the impact of high levels of distress or antidepressant medications on the developing fetus. These intrauterine exposures may lead to epigenetic alterations to the DNA during this vulnerable time of fetal development, which may have important lifetime health consequences. In this study we investigated patterns of genome-wide DNA methylation using the Illumina Infinium Human Methylation450 BeadChip in the umbilical cord blood of neonates exposed to non-medicated maternal depression or anxiety (n = 13), or selective serotonin reuptake inhibitors (SSRIs) during pregnancy (n = 22), relative to unexposed neonates (n = 23). We identified 42 CpG sites with significantly different DNA methylation levels in neonates exposed to non-medicated depression or anxiety relative to controls. CpG site methylation was not significantly different in neonates exposed to SSRIs relative to the controls, after adjusting for multiple comparisons. In neonates exposed either to non-medicated maternal depression or SSRIs, the vast majority of CpG sites displayed lower DNA methylation relative to the controls, but differences were very small. A gene ontology analysis suggests significant clustering of the top genes associated with non-medicated maternal depression/anxiety, related to regulation of transcription, translation, and cell division processes (e.g., negative regulation of translation in response to oxidative stress, regulation of mRNA export from the nucleus, regulation of stem cell division). While the functional consequences of these findings are yet to be determined, these small DNA methylation differences may suggest a possible role for epigenetic processes in the development of neonates exposed to non-medicated maternal depression/anxiety.

  13. DNA methylation and substance-use risk: a prospective, genome-wide study spanning gestation to adolescence

    PubMed Central

    Cecil, C A M; Walton, E; Smith, R G; Viding, E; McCrory, E J; Relton, C L; Suderman, M; Pingault, J-B; McArdle, W; Gaunt, T R; Mill, J; Barker, E D

    2016-01-01

    Epigenetic processes have been implicated in addiction; yet, it remains unclear whether these represent a risk factor and/or a consequence of substance use. Here, we believe we conducted the first genome-wide, longitudinal study to investigate whether DNA methylation patterns in early life prospectively associate with substance use in adolescence. The sample comprised of 244 youth (51% female) from the Avon Longitudinal Study of Parents and Children (ALSPAC), with repeated assessments of DNA methylation (Illumina 450k array; cord blood at birth, whole blood at age 7) and substance use (tobacco, alcohol and cannabis use; age 14–18). We found that, at birth, epigenetic variation across a tightly interconnected genetic network (n=65 loci; q<0.05) associated with greater levels of substance use during adolescence, as well as an earlier age of onset amongst users. Associations were specific to the neonatal period and not observed at age 7. Key annotated genes included PACSIN1, NEUROD4 and NTRK2, implicated in neurodevelopmental processes. Several of the identified loci were associated with known methylation quantitative trait loci, and consequently likely to be under significant genetic control. Collectively, these 65 loci were also found to partially mediate the effect of prenatal maternal tobacco smoking on adolescent substance use. Together, findings lend novel insights into epigenetic correlates of substance use, highlight birth as a potentially sensitive window of biological vulnerability and provide preliminary evidence of an indirect epigenetic pathway linking prenatal tobacco exposure and adolescent substance use. PMID:27922636

  14. PRIMEGENS-v2: genome-wide primer design for analyzing DNA methylation patterns of CpG islands.

    PubMed

    Srivastava, Gyan P; Guo, Juyuan; Shi, Huidong; Xu, Dong

    2008-09-01

    DNA methylation plays important roles in biological processes and human diseases, especially cancers. High-throughput bisulfite genomic sequencing based on new generation of sequencers, such as the 454-sequencing system provides an efficient method for analyzing DNA methylation patterns. The successful implementation of this approach depends on the use of primer design software capable of performing genome-wide scan for optimal primers from in silico bisulfite-treated genome sequences. We have developed a method, which fulfills this requirement and conduct primer design for sequences including regions of given promoter CpG islands. The developed method has been implemented using the C and JAVA programming languages. The primer design results were tested in the PCR experiments of 96 selected human DNA sequences containing CpG islands in the promoter regions. The results indicate that this method is efficient and reliable for designing sequence-specific primers. The sequence-specific primer design for DNA meth-ylated sequences including CpG islands has been integrated into the second version of PRIMEGENS as one of the primer design features. The software is freely available for academic use at http://digbio.missouri.edu/primegens/.

  15. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas.

    PubMed

    Fukushima, Shintaro; Yamashita, Satoshi; Kobayashi, Hisato; Takami, Hirokazu; Fukuoka, Kohei; Nakamura, Taishi; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Hiromi; Totoki, Yasushi; Kato, Mamoru; Suzuki, Tomonari; Mishima, Kazuhiko; Yanagisawa, Takaaki; Mukasa, Akitake; Saito, Nobuhito; Kanamori, Masayuki; Kumabe, Toshihiro; Tominaga, Teiji; Nagane, Motoo; Iuchi, Toshihiko; Yoshimoto, Koji; Mizoguchi, Masahiro; Tamura, Kaoru; Sakai, Keiichi; Sugiyama, Kazuhiko; Nakada, Mitsutoshi; Yokogami, Kiyotaka; Takeshima, Hideo; Kanemura, Yonehiro; Matsuda, Masahide; Matsumura, Akira; Kurozumi, Kazuhiko; Ueki, Keisuke; Nonaka, Masahiro; Asai, Akio; Kawahara, Nobutaka; Hirose, Yuichi; Takayama, Tatusya; Nakazato, Yoichi; Narita, Yoshitaka; Shibata, Tatsuhiro; Matsutani, Masao; Ushijima, Toshikazu; Nishikawa, Ryo; Ichimura, Koichi

    2017-03-01

    Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 14 in Japan. The World Health Organization classification recognizes several subtypes of iGCTs, which are conventionally subclassified into pure germinoma or non-germinomatous GCTs. Recent exhaustive genomic studies showed that mutations of the genes involved in the MAPK and/or PI3K pathways are common in iGCTs; however, the mechanisms of how different subtypes develop, often as a mixed-GCT, are unknown. To elucidate the pathogenesis of iGCTs, we investigated 61 GCTs of various subtypes by genome-wide DNA methylation profiling. We showed that pure germinomas are characterized by global low DNA methylation, a unique epigenetic feature making them distinct from all other iGCTs subtypes. The patterns of methylation strongly resemble that of primordial germ cells (PGC) at the migration phase, possibly indicating the cell of origin for these tumors. Unlike PGC, however, hypomethylation extends to long interspersed nuclear element retrotransposons. Histologically and epigenetically distinct microdissected components of mixed-GCTs shared identical somatic mutations in the MAPK or PI3K pathways, indicating that they developed from a common ancestral cell.

  16. Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case-control study.

    PubMed

    Dugué, Pierre-Antoine; Brinkman, Maree T; Milne, Roger L; Wong, Ee Ming; FitzGerald, Liesel M; Bassett, Julie K; Joo, Jihoon E; Jung, Chol-Hee; Makalic, Enes; Schmidt, Daniel F; Park, Daniel J; Chung, Jessica; Ta, Anthony D; Bolton, Damien M; Lonie, Andrew; Longano, Anthony; Hopper, John L; Severi, Gianluca; Saffery, Richard; English, Dallas R; Southey, Melissa C; Giles, Graham G

    2016-09-06

    Global DNA methylation has been reported to be associated with urothelial cell carcinoma (UCC) by studies using blood samples collected at diagnosis. Using the Illumina HumanMethylation450 assay, we derived genome-wide measures of blood DNA methylation and assessed them for their prospective association with UCC risk. We used 439 case-control pairs from the Melbourne Collaborative Cohort Study matched on age, sex, country of birth, DNA sample type, and collection period. Conditional logistic regression was used to compute odds ratios (OR) of UCC risk per s.d. of each genome-wide measure of DNA methylation and 95% confidence intervals (CIs), adjusted for potential confounders. We also investigated associations by disease subtype, sex, smoking, and time since blood collection. The risk of superficial UCC was decreased for individuals with higher levels of our genome-wide DNA methylation measure (OR=0.71, 95% CI: 0.54-0.94; P=0.02). This association was particularly strong for current smokers at sample collection (OR=0.47, 95% CI: 0.27-0.83). Intermediate levels of our genome-wide measure were associated with decreased risk of invasive UCC. Some variation was observed between UCC subtypes and the location and regulatory function of the CpGs included in the genome-wide measures of methylation. Higher levels of our genome-wide DNA methylation measure were associated with decreased risk of superficial UCC and intermediate levels were associated with reduced risk of invasive disease. These findings require replication by other prospective studies.

  17. Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain

    PubMed Central

    Livshits, Gregory; Malkin, Ida; Freidin, Maxim B.; Xia, Yudong; Gao, Fei; Wang, Jun; Spector, Timothy D.; MacGregor, Alex; Bell, Jordana T.; Williams, Frances M.K.

    2017-01-01

    Abstract Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained. Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%. Longitudinally stable methylation bins (lsBINs), were established by testing repeated measurements conducted ≥3 years apart, n = 292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs discordant for CWP, and in an independent dataset (n = 1608 twins), and the results from the 2 samples were combined using Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of association in both discovery and replication datasets at nominal significance (P ≤ 0.05). In the combined analysis across 1708 individuals, whereas no lsBINs showed genome-wide significance (P < 10-8), 24 signals reached p≤9E-5, and these included association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associated methylation bins showed enrichment for neurological pathways in CWP. We estimate that the variance explained by epigenetic factors in CWP is 6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP. PMID:28221285

  18. Genome-Wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence

    PubMed Central

    Fackler, Mary Jo; Umbricht, Christopher; Williams, Danielle; Argani, Pedram; Cruz, Leigh-Ann; Merino, Vanessa F.; Teo, Wei Wen; Zhang, Zhe; Huang, Peng; Visvananthan, Kala; Marks, Jeffrey; Ethier, Stephen; Gray, Joe W; Wolff, Antonio C.; Cope, Leslie M.; Sukumar, Saraswati

    2011-01-01

    To better understand the biology of hormone receptor-positive and negative breast cancer and to identify methylated gene markers of disease progression, we performed a genome-wide methylation array analysis on 103 primary invasive breast cancers and 21 normal breast samples using the Illumina Infinium HumanMethylation27 array that queried 27,578 CpG loci. Estrogen and/or progesterone receptor-positive tumors displayed more hypermethylated loci than ER-negative tumors. However, the hypermethylated loci in ER-negative tumors were clustered closer to the transcriptional start site compared to ER-positive tumors. An ER-classifier set of CpG loci was identified, which independently partitioned primary tumors into ER-subtypes. Forty (32 novel, 8 previously known) CpG loci showed differential methylation specific to either ER-positive or ER-negative tumors. Each of the 40 ER-subtype-specific loci was validated in silico using an independent, publicly available methylome dataset from The Cancer Genome Atlas (TCGA). In addition, we identified 100 methylated CpG loci that were significantly associated with disease progression; the majority of these loci were informative particularly in ER-negative breast cancer. Overall, the set was highly enriched in homeobox containing genes. This pilot study demonstrates the robustness of the breast cancer methylome and illustrates its potential to stratify and reveal biological differences between ER-subtypes of breast cancer. Further, it defines candidate ER-specific markers and identifies potential markers predictive of outcome within ER subgroups. PMID:21825015

  19. Dynamics of Methylated Cytosine Flipping by UHRF1.

    PubMed

    Kilin, Vasyl; Gavvala, Krishna; Barthes, Nicolas P F; Michel, Benoît Y; Shin, Dongwon; Boudier, Christian; Mauffret, Olivier; Yashchuk, Valeriy; Mousli, Marc; Ruff, Marc; Granger, Florence; Eiler, Sylvia; Bronner, Christian; Tor, Yitzhak; Burger, Alain; Mély, Yves

    2017-02-15

    DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine ((th)G), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.

  20. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

    PubMed Central

    Court, Franck; Tayama, Chiharu; Romanelli, Valeria; Martin-Trujillo, Alex; Iglesias-Platas, Isabel; Okamura, Kohji; Sugahara, Naoko; Simón, Carlos; Moore, Harry; Harness, Julie V.; Keirstead, Hans; Sanchez-Mut, Jose Vicente; Kaneki, Eisuke; Lapunzina, Pablo; Soejima, Hidenobu; Wake, Norio; Esteller, Manel; Ogata, Tsutomu; Hata, Kenichiro; Nakabayashi, Kazuhiko; Monk, David

    2014-01-01

    Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci. PMID:24402520

  1. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects.

    PubMed

    Crujeiras, A B; Diaz-Lagares, A; Moreno-Navarrete, J M; Sandoval, J; Hervas, D; Gomez, A; Ricart, W; Casanueva, F F; Esteller, M; Fernandez-Real, J M

    2016-12-01

    Elucidating the potential mechanisms involved in the detrimental effect of excess body weight on insulin action is an important priority in counteracting obesity-associated diseases. The present study aimed to disentangle the epigenetic basis of insulin resistance by performing a genome-wide epigenetic analysis in visceral adipose tissue (VAT) from morbidly obese patients depending on the insulin sensitivity evaluated by the clamp technique. The global human methylome screening performed in VAT from 7 insulin-resistant (IR) and 5 insulin-sensitive (IS) morbidly obese patients (discovery cohort) analyzed using the Infinium HumanMethylation450 BeadChip array identified 982 CpG sites able to perfectly separate the IR and IS samples. The identified sites represented 538 unique genes, 10% of which were diabetes-associated genes. The current work identified novel IR-related genes epigenetically regulated in VAT, such as COL9A1, COL11A2, CD44, MUC4, ADAM2, IGF2BP1, GATA4, TET1, ZNF714, ADCY9, TBX5, and HDACM. The gene with the largest methylation fold-change and mapped by 5 differentially methylated CpG sites located in island/shore and promoter region was ZNF714. This gene presented lower methylation levels in IR than in IS patients in association with increased transcription levels, as further reflected in a validation cohort (n = 24; 11 IR and 13 IS). This study reveals, for the first time, a potential epigenetic regulation involved in the dysregulation of VAT that could predispose patients to insulin resistance and future type 2 diabetes in morbid obesity, providing a potential therapeutic target and biomarkers for counteracting this process. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis.

    PubMed

    Del Real, Alvaro; Pérez-Campo, Flor M; Fernández, Agustín F; Sañudo, Carolina; Ibarbia, Carmen G; Pérez-Núñez, María I; Criekinge, Wim Van; Braspenning, Maarten; Alonso, María A; Fraga, Mario F; Riancho, Jose A

    2017-02-01

    Insufficient activity of the bone-forming osteoblasts leads to low bone mass and predisposes to fragility fractures. The functional capacity of human mesenchymal stem cells (hMSCs), the precursors of osteoblasts, may be compromised in elderly individuals, in relation with the epigenetic changes associated with aging. However, the role of hMSCs in the pathogenesis of osteoporosis is still unclear. Therefore, we aimed to characterize the genome-wide methylation and gene expression signatures and the differentiation capacity of hMSCs from patients with hip fractures. We obtained hMSCs from the femoral heads of women undergoing hip replacement due to hip fractures and controls with hip osteoarthritis. DNA methylation was explored with the Infinium 450K bead array. Transcriptome analysis was done by RNA sequencing. The genomic analyses revealed that most differentially methylated loci were situated in genomic regions with enhancer activity, distant from gene bodies and promoters. These regions were associated with differentially expressed genes enriched in pathways related to hMSC growth and osteoblast differentiation. hMSCs from patients with fractures showed enhanced proliferation and upregulation of the osteogenic drivers RUNX2/OSX. Also, they showed some signs of accelerated methylation aging. When cultured in osteogenic medium, hMSCs from patients with fractures showed an impaired differentiation capacity, with reduced alkaline phosphatase activity and poor accumulation of a mineralized matrix. Our results point to 2 areas of potential interest for discovering new therapeutic targets for low bone mass disorders and bone regeneration: the mechanisms stimulating MSCs proliferation after fracture and those impairing their terminal differentiation.

  3. DNA duplex stability of the thio-iso-guanine•methyl-iso-Cytosine base pair.

    PubMed

    Lee, Dongkye; Switzer, Christopher

    2015-01-01

    We report the synthesis, incorporation into oligonucleotides, and base-pairing properties of the 2-thio-variant of iso-guanine. Iso-guanine is the purine component of a nonstandard base pair with 5-methyl-iso-cytosine. The 2-thio-iso-guanine • 5-methyl-iso-cytosine base pair is found to have similar stability to an adenine • thymine pair.

  4. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis.

    PubMed

    Aston, Kenneth I; Punj, Vasu; Liu, Lihua; Carrell, Douglas T

    2012-02-01

    To evaluate genome-wide DNA methylation patterns in sperm from men with abnormal sperm chromatin packaging and patients displaying abnormal embryogenesis after IVF in the absence of known female factors. Case-control study. University andrology and research laboratory. Men with abnormally high and low protamine 1/protamine 2 ratio (n = 15); patients who have undergone IVF/intracytoplasmic sperm injection resulting in abnormal embryogenesis (n = 13); and normozoospermic, fertile controls (n = 15). Genome-wide sperm DNA methylation was measured using the Illumina Infinium HumanMethylation27 BeadChip assay. Follow-up targeted methylation analysis was performed using bisulfite pyrosequencing. Methylation levels at more than 27,000 CpGs genome-wide were compared between groups. Of the 43 men analyzed, 40 displayed highly concordant methylation patterns; however, two men with abnormal protamine 1/protamine 2 and one abnormal embryogenesis patient displayed significantly altered methylation patterns across a large number of CpGs. Imprinted regions were more prone to deregulation than the genome at large. We have identified three individuals displaying broad disruption of sperm DNA methylation profiles. Although the sample set analyzed is relatively small, these results indicate that broad disruptions in sperm DNA methylation may be an important signature in some infertile men. Functional studies will be necessary to characterize the developmental consequences of such epigenetic disruption. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    PubMed

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  6. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood

    PubMed Central

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 – 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 – 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk. PMID:26646899

  7. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters.

    PubMed

    Shen, Lanlan; Kondo, Yutaka; Guo, Yi; Zhang, Jiexin; Zhang, Li; Ahmed, Saira; Shu, Jingmin; Chen, Xinli; Waterland, Robert A; Issa, Jean-Pierre J

    2007-10-01

    The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.

  8. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments

    PubMed Central

    Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2015-01-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541

  9. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India.

    PubMed

    Basu, Baidehi; Chakraborty, Joyeeta; Chandra, Aditi; Katarkar, Atul; Baldevbhai, Jadav Ritesh Kumar; Dhar Chowdhury, Debjit; Ray, Jay Gopal; Chaudhuri, Keya; Chatterjee, Raghunath

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.

  10. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.

    PubMed

    Shames, David S; Girard, Luc; Gao, Boning; Sato, Mitsuo; Lewis, Cheryl M; Shivapurkar, Narayan; Jiang, Aixiang; Perou, Charles M; Kim, Young H; Pollack, Jonathan R; Fong, Kwun M; Lam, Chi-Leung; Wong, Maria; Shyr, Yu; Nanda, Rita; Olopade, Olufunmilayo I; Gerald, William; Euhus, David M; Shay, Jerry W; Gazdar, Adi F; Minna, John D

    2006-12-01

    Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The "rules" governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5' CpG islands, are induced from undetectable levels by 5-aza-2'-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests

  11. A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies

    PubMed Central

    Shames, David S; Girard, Luc; Gao, Boning; Sato, Mitsuo; Lewis, Cheryl M; Shivapurkar, Narayan; Jiang, Aixiang; Perou, Charles M; Kim, Young H; Pollack, Jonathan R; Fong, Kwun M; Lam, Chi-Leung; Wong, Maria; Shyr, Yu; Nanda, Rita; Olopade, Olufunmilayo I; Gerald, William; Euhus, David M; Shay, Jerry W; Gazdar, Adi F; Minna, John D

    2006-01-01

    Background Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. Methods and Findings In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. Conclusions By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation

  12. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene-fixed samples compared with restored formalin-fixed and paraffin-embedded DNA.

    PubMed

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte; Tost, Jörg

    2015-01-01

    Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA.

    PubMed

    Rochette, Patrick J; Lacoste, Sandrine; Therrien, Jean-Philippe; Bastien, Nathalie; Brash, Douglas E; Drouin, Régen

    2009-06-01

    The ultraviolet (UV) component of sunlight is the main cause of skin cancer. More than 50% of all non-melanoma skin cancers and >90% of squamous cell carcinomas in the US carry a sunlight-induced mutation in the p53 tumor suppressor gene. These mutations have a strong tendency to occur at methylated cytosines. Ligation-mediated PCR (LMPCR) was used to compare at nucleotide resolution DNA photoproduct formation at dipyrimidine sites either containing or lacking a methylated cytosine. For this purpose, we exploited the fact that the X chromosome is methylated in females only on the inactive X chromosome, and that the FMR1 (fragile-X mental retardation 1) gene is methylated only in fragile-X syndrome male patients. Purified genomic DNA was irradiated with UVC (254nm), UVB (290-320nm) or monochromatic UVB (302 and 313nm) to determine the effect of different wavelengths on cyclobutane pyrimidine dimer (CPD) formation along the X-linked PGK1 (phosphoglycerate kinase 1) and FMR1 genes. We show that constitutive methylation of cytosine increases the frequency of UVB-induced CPD formation by 1.7-fold, confirming that methylation per se is influencing the probability of damage formation. This was true for both UVB sources used, either broadband or monochromatic, but not for UVC. Our data prove unequivocally that following UVB exposure methylated cytosines are significantly more susceptible to CPD formation compared with unmethylated cytosines.

  14. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes.

    PubMed

    Court, Franck; Martin-Trujillo, Alex; Romanelli, Valeria; Garin, Intza; Iglesias-Platas, Isabel; Salafsky, Ira; Guitart, Miriam; Perez de Nanclares, Guiomar; Lapunzina, Pablo; Monk, David

    2013-04-01

    Genomic imprinting is the parent-of-origin-specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.

  15. Differential Promoter Methylation of Macrophage Genes Is Associated With Impaired Vascular Growth in Ischemic Muscles of Hyperlipidemic and Type 2 Diabetic Mice: Genome-Wide Promoter Methylation Study.

    PubMed

    Babu, Mohan; Durga Devi, Thota; Mäkinen, Petri; Kaikkonen, Minna; Lesch, Hanna P; Junttila, Sini; Laiho, Asta; Ghimire, Bishwa; Gyenesei, Attila; Ylä-Herttuala, Seppo

    2015-07-17

    Hyperlipidemia and type 2 diabetes mellitus (T2DM) severely impair adaptive vascular growth responses in ischemic muscles. This is largely attributed to dysregulated gene expression, although details of the changes are unknown. To define the role of promoter methylation in adaptive vascular growth in hyperlipidemia (LDLR(-/-)ApoB(100/100)) and T2DM (IGF-II/LDLR(-/-)ApoB(100/100)) mouse models of hindlimb ischemia. Unilateral hindlimb ischemia was induced by ligating femoral artery. Perfusion was assessed using ultrasound, and capillary and arteriole parameters were assessed using immunohistochemistry. Genome-wide methylated DNA sequencing was performed with DNA isolated from ischemic muscle, tissue macrophages (Mϕs), and endothelial cells. Compared with the controls, hyperlipidemia and T2DM mice showed impaired perfusion recovery, which was associated with impaired angiogenesis and arteriogenesis. Genome-wide proximal promoter DNA methylation analysis suggested differential patterns of methylation in Mϕ genes in ischemic muscles. Classically activated M1-Mϕ gene promoters, including Cfb, Serping1, and Tnfsf15, were significantly hypomethylated, whereas alternatively activated M2-Mϕ gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes, were significantly hypermethylated in Mϕs isolated from hyperlipidemia and T2DM ischemic muscles compared with controls. These results combined with mRNA expression and immunohistochemistry showed the predominance of proinflammatory M1-Mϕs, compared with anti-inflammatory and proangiogenic M2-Mϕs in hyperlipidemia and T2DM ischemic muscles. We found significant promoter hypomethylation of genes typical for proinflammatory M1-Mϕs and hypermethylation of anti-inflammatory, proangiogenic M2-Mϕ genes in hyperlipidemia and T2DM ischemic muscles. Epigenetic alterations modify Mϕ phenotype toward proinflammatory M1 as opposed to anti-inflammatory, proangiogenic, and tissue repair M2 phenotype, which may contribute to

  16. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia. © 2015 SETAC.

  17. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP).

    PubMed

    Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio

    2017-01-01

    Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.

  18. A genome-wide search for eigenetically regulated genes in zebra finch using MethylCap-seq and RNA-seq

    PubMed Central

    Steyaert, Sandra; Diddens, Jolien; Galle, Jeroen; De Meester, Ellen; De Keulenaer, Sarah; Bakker, Antje; Sohnius-Wilhelmi, Nina; Frankl-Vilches, Carolina; Van der Linden, Annemie; Van Criekinge, Wim; Vanden Berghe, Wim; De Meyer, Tim

    2016-01-01

    Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control. PMID:26864856

  19. Genome Wide Methylome Alterations in Lung Cancer.

    PubMed

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  20. Genome Wide Methylome Alterations in Lung Cancer

    PubMed Central

    Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K.; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D.; Spivack, Simon D.

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)–non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  1. Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases.

    PubMed

    Malik, Garima; Dangwal, Meenakshi; Kapoor, Sanjay; Kapoor, Meenu

    2012-11-01

    Epigenetic mechanisms such as DNA methylation are known to regulate important developmental processes in higher eukaryotes. However, little is known about the necessity and role of this process in early land plants. Using the methyltransferase (MTase) inhibitor zebularine (1-(β-d-ribofuranosyl)-1,2-dihydropyrimidine-2-one), the impact of loss of genome-wide methylation on the overall development in Physcomitrella patens was analyzed. It is observed that various aspects of growth and differentiation during gametophyte development become aberrant. A search for the core molecular components of methylation machinery, cytosine DNA MTases, revealed the presence of seven loci in the P. patens genome. Five of the loci code for MTases that are similar to corresponding proteins in higher plants, while two MTases appear specific to P. patens and are closely related to human DNMT3a and DNMT3b, respectively. These proteins possess all the conserved catalytic motifs characteristic of MTases and a domain of unknown function, DUF3444. Association of these highly conserved motifs with a DUF has not been reported in any of the MTases known so far. All the seven genes are differentially but ubiquitously expressed in gametophytes at low levels. Subcellular localization of GFP-fused proteins shows patterns of distribution that can be correlated with their putative cellular functions. This work bridges the knowledge of MTases in P. patens and makes this simple model plant accessible for studies on epigenetic aspects that remain intractable in higher plants.

  2. Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study.

    PubMed

    FitzGerald, Liesel M; Naeem, Haroon; Makalic, Enes; Schmidt, Daniel F; Dowty, James G; Joo, Jihoon E; Jung, Chol-Hee; Bassett, Julie K; Dugue, Pierre-Antoine; Chung, Jessica; Lonie, Andrew; Milne, Roger L; Wong, Ee Ming; Hopper, John L; English, Dallas R; Severi, Gianluca; Baglietto, Laura; Pedersen, John; Giles, Graham G; Southey, Melissa C

    2017-04-01

    Global measures of peripheral blood DNA methylation have been associated with risk of some malignancies, including breast, bladder, and gastric cancer. Here, we examined genome-wide measures of peripheral blood DNA methylation in prostate cancer and its non-aggressive and aggressive disease forms. We used a matched, case-control study of 687 incident prostate cancer samples, nested within a larger prospective cohort study. DNA methylation was measured in pre-diagnostic, peripheral blood samples using the Illumina Infinium HM450K BeadChip. Genome-wide measures of DNA methylation were computed as the median M-value of all CpG sites and according to CpG site location and regulatory function. We used conditional logistic regression to test for associations between genome-wide measures of DNA methylation and risk of prostate cancer and its subtypes, and by time between blood draw and diagnosis. We observed no associations between the genome-wide measure of DNA methylation based on all CpG sites and risk of prostate cancer or aggressive disease. Risk of non-aggressive disease was associated with higher methylation of CpG islands (OR = 0.80; 95%CI = 0.68-0.94), promoter regions (OR = 0.79; 95%CI = 0.66-0.93), and high density CpG regions (OR = 0.80; 95%CI = 0.68-0.94). Additionally, higher methylation of all CpGs (OR = 0.66; 95%CI = 0.48-0.89), CpG shores (OR = 0.62; 95%CI = 0.45-0.84), and regulatory regions (OR = 0.68; 95% CI = 0.51-0.91) was associated with a reduced risk of overall prostate cancer within 5 years of blood draw but not thereafter. A reduced risk of overall prostate cancer within 5 years of blood draw and non-aggressive prostate cancer was associated with higher genome-wide methylation of peripheral blood DNA. While these data have no immediate clinical utility, with further work they may provide insight into the early events of prostate carcinogenesis. Prostate 77:471-478, 2017. © 2017 Wiley Periodicals

  3. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms

    PubMed Central

    Alonso, Conchita; Pérez, Ricardo; Bazaga, Pilar; Herrera, Carlos M.

    2015-01-01

    DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages. PMID:25688257

  4. Inheritance of cytosine methylation patterns in purebred versus hybrid chicken lines.

    PubMed

    Xu, Q; Sun, D X; Li, J L; Liu, R; Wang, Y C; Zhang, Y

    2013-07-30

    We used methylation-sensitive amplified polymorphism to examine DNA methylation levels and CCGG patterns in parents and offsprings of 3 groups of adult chickens, purebred White Leghorn (AA), White Plymouth Rock (EE), and crossbred individuals (EA) using 10 primer combinations. We found that about 66% of the cytosines at CCGG sites were not methylated. Fully methylated sites were less frequent than hemi-methylated sites in the chicken genome; these frequencies were different from those of plants. We observed that the probability that the offspring would inherit the methylation pattern for any given site from the parents was 88%; consequently, unexpected methylation patterns in offspring occurred at a rate of about 12%. The methylation degree in offspring was lower than in parents, and there were more sites with altered methylation patterns in EA crossbreds compared with AA and EE purebreds. Seven differentially methylated fragments between parental lines and their offspring were isolated, sequenced, and characterized, 4 of which were located in the coding regions. We conclude that most of the methylation status is transferred from parents to offspring in chickens, and that there are differences in the inheritance of methylation status in purebred versus crossbred offspring. We also concluded that methylation-sensitive amplified polymorphism is highly efficient for large-scale detection of cytosine methylation in the chicken genome.

  5. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    PubMed

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed environments.

  6. The role of cytosine methylation on charge transport through a DNA strand

    SciTech Connect

    Qi, Jianqing Anantram, M. P.; Govind, Niranjan

    2015-09-07

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  7. The role of cytosine methylation on charge transport through a DNA strand.

    PubMed

    Qi, Jianqing; Govind, Niranjan; Anantram, M P

    2015-09-07

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  8. The role of cytosine methylation on charge transport through a DNA strand

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  9. Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type 1 interferon responses

    PubMed Central

    Mok, Amanda; Solomon, Olivia; Nayak, Renuka R; Coit, Patrick; Quach, Hong L; Nititham, Joanne; Sawalha, Amr H; Barcellos, Lisa F; Criswell, Lindsey A; Chung, Sharon A

    2016-01-01

    Objective Previous studies have shown that differential DNA methylation is associated with SLE susceptibility. How DNA methylation affects the clinical heterogeneity of SLE has not been fully defined. We conducted this study to identify differentially methylated CpG sites associated with nephritis among women with SLE. Methods The methylation status of 428 229 CpG sites across the genome was characterised for peripheral blood cells from 322 women of European descent with SLE, 80 of whom had lupus nephritis, using the Illumina HumanMethylation450 BeadChip. Multivariable linear regression adjusting for population substructure and leucocyte cell proportions was used to identify differentially methylated sites associated with lupus nephritis. The influence of genetic variation on methylation status was investigated using data from a genome-wide association study of SLE. Pathway analyses were used to identify biological processes associated with lupus nephritis. Results We identified differential methylation of 19 sites in 18 genomic regions that was associated with nephritis among patients with SLE (false discovery rate q<0.05). Associations for four sites in HIF3A, IFI44 and PRR4 were replicated when examining methylation data derived from CD4+ T cells collected from an independent set of patients with SLE. These associations were not driven by genetic variation within or around the genomic regions. In addition, genes associated with lupus nephritis in a prior genome-wide association study were not differentially methylated in this epigenome-wide study. Pathway analysis indicated that biological processes involving type 1 interferon responses and the development of the immune system were associated with nephritis in patients with SLE. Conclusions Differential methylation of genes regulating the response to tissue hypoxia and interferon-mediated signalling is associated with lupus nephritis among women with SLE. These findings have not been identified in genetic

  10. Genome-wide methylation patterns provide insight into differences in breast tumor biology between American women of African and European ancestry.

    PubMed

    Ambrosone, Christine B; Young, Allyson C; Sucheston, Lara E; Wang, Dan; Yan, Li; Liu, Song; Tang, Li; Hu, Qiang; Freudenheim, Jo L; Shields, Peter G; Morrison, Carl D; Demissie, Kitaw; Higgins, Michael J

    2014-01-15

    American women of African ancestry (AA) are more likely than European-Americans (EA) to be diagnosed with aggressive, estrogen receptor (ER) negative breast tumors; mechanisms underlying these disparities are poorly understood. We conducted a genome wide (450K loci) methylation analysis to determine if there were differences in DNA methylation patterns between tumors from AA and EA women and if these differences were similar for both ER positive and ER negative breast cancer. Methylation levels at CpG loci within CpG islands (CGI)s and CGI-shores were significantly higher in tumors (n=138) than in reduction mammoplasty samples (n=124). In hierarchical cluster analysis, there was separation between tumor and normal samples, and in tumors, there was delineation by ER status, but not by ancestry. However, differential methylation analysis identified 157 CpG loci with a mean β value difference of at least 0.17 between races, with almost twice as many differences in ER-negative tumors compared to ER-positive cancers. This first genome-wide methylation study to address disparities indicates that there are likely differing etiologic pathways for the development of ER negative breast cancer between AA and EA women. Further investigation of the genes most differentially methylated by race in ER negative tumors can guide new approaches for cancer prevention and targeted therapies, and elucidate the biologic basis of breast cancer disparities.

  11. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation.

    PubMed Central

    Smith, S S; Kaplan, B E; Sowers, L C; Newman, E M

    1992-01-01

    The properties of the methyl-directed DNA (cytosine-5-)-methyltransferase (EC 2.1.1.37) suggest that it is the enzyme that maintains patterns of methylation in the human genome. Proposals for the enzyme's mechanism of action suggest that 5-methyldeoxycytidine is produced from deoxycytidine via a dihydrocytosine intermediate. We have used an oligodeoxynucleotide containing 5-fluorodeoxycytidine as a suicide substrate to capture the enzyme and the dihydrocytosine intermediate. Gel retardation experiments demonstrate the formation of the expected covalent complex between duplex DNA containing 5-fluorodeoxycytidine and the human enzyme. Formation of the complex was dependent upon the presence of the methyl donor S-adenosylmethionine, suggesting that it comprises an enzyme-linked 5-substituted dihydrocytosine moiety in DNA. Dihydrocytosine derivatives are extremely labile toward hydrolytic deamination in aqueous solution. Because C-to-T transition mutations are especially prevalent at CG sites in human DNA, we have used high-performance liquid chromatography to search for thymidine that might be generated by hydrolysis during the methyl transfer reaction. Despite the potential for deamination inherent in the formation of the intermediate, the methyltransferase did not produce detectable amounts of thymidine. The data suggest that the ability of the human methyltransferase to preserve genetic information when copying a methylation pattern (i.e., its fidelity) is comparable to the ability of a mammalian DNA polymerase to preserve genetic information when copying a DNA sequence. Thus the high frequency of C-to-T transitions at CG sites in human DNA does not appear to be due to the normal enzymatic maintenance of methylation patterns. Images PMID:1584813

  12. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    SciTech Connect

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.

  13. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants: A pilot study.

    PubMed

    Lind, M V; Martino, D; Harsløf, L B S; Kyjovska, Z O; Kristensen, M; Lauritzen, L

    2015-10-01

    Recent evidence suggests that the effects of n-3LCPUFA might be mediated through epigenetic mechanisms, especially DNA-methylation, during pregnancy and early life. A randomized trial was conducted in 133 9-mo-old, infants who received 3.8g/day of fish oil (FO) or sunflower oil (SO) for 9 mo. In a subset of 12 children, buffy-coat DNA was extracted before and after intervention and analyzed on Illumina-Human-Methylation 450-arrays to explore genome-wide differences between the FO and SO groups. Genome-wide-methylation analysis did not reveal significant differences between groups after adjustment for multiple testing. However, analysis of the top-ranked CpG-sites revealed 43 CpG׳s that appear modified with an absolute difference in methylation of ≥10%. Methylation levels at these sites were associated with phenotypic changes mainly in blood pressure. In conclusion, our analyses suggest potential epigenome effects that might be associated with functional outcomes, yet the effect sizes were small and should be verified by additional investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets.

    PubMed

    Hall, Elin; Volkov, Petr; Dayeh, Tasnim; Esguerra, Jonathan Lou S; Salö, Sofia; Eliasson, Lena; Rönn, Tina; Bacos, Karl; Ling, Charlotte

    2014-12-03

    Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. Here, we investigate the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and relate the methylome to changes in expression and insulin secretion. Glucose-stimulated insulin secretion is higher in female versus male islets. Genome-wide DNA methylation data in human islets clusters based on sex. While the chromosome-wide DNA methylation level on the X-chromosome is higher in female versus male islets, the autosomes do not display a global methylation difference between sexes. Methylation of 8,140 individual X-chromosome sites and 470 autosomal sites shows sex-specific differences in human islets. These include sites in/near AR, DUSP9, HNF4A, BCL11A and CDKN2B. 61 X-chromosome genes and 18 autosomal genes display sex-specific differences in both DNA methylation and expression. These include NKAP, SPESP1 and APLN, which exhibited lower expression in females. Functional analyses demonstrate that methylation of NKAP and SPESP1 promoters in vitro suppresses their transcriptional activity. Silencing of Nkap or Apln in clonal beta-cells results in increased insulin secretion. Differential methylation between sexes is associated with altered levels of microRNAs miR-660 and miR-532 and related target genes. Chromosome-wide and gene-specific sex differences in DNA methylation associate with altered expression and insulin secretion in human islets. Our data demonstrate that epigenetics contribute to sex-specific metabolic phenotypes.

  15. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  16. Influence of C5-methylation of cytosine on the formation of cyclobutane pyrimidine dimers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Eriksson, Leif A.

    2005-01-01

    The reaction pathways for thermal and photochemical formation of 5-methylcytosine (m 5C) pyrimidine dimers (CPD) are explored using density functional theory techniques. It is shown that the methylation of cytosine does not contribute to an increased yield of CPDs after UV irradiation due to an even lower excitation energy at the reactant complex of m 5C as compared to cytosine, a larger barrier to reach the decay channel corresponding to the transition state structure along the ground state reaction path, and a higher-lying decay channel.

  17. Genome-wide identification of endogenous RNA-directed DNA methylation loci associated with abundant 21-nucleotide siRNAs in Arabidopsis

    PubMed Central

    Zhao, Jian-Hua; Fang, Yuan-Yuan; Duan, Cheng-Guo; Fang, Rong-Xiang; Ding, Shou-Wei; Guo, Hui-Shan

    2016-01-01

    In Arabidopsis, the 24-nucleotide (nt) small interfering RNAs (siRNAs) mediates RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of transposable elements (TEs). In the present study, we examined genome-wide changes in DNA methylation and siRNA accumulation in Arabidopsis induced by expression of the Cucumber mosaic virus silencing suppressor protein 2b known to directly bind to both the 21/24-nt siRNAs as well as their associated Argonaute proteins. We demonstrated a genome-wide reduction of CHH and CHG methylation in the 2b-transgenic plants. We found that 2b suppressed RdDM not only at the previously annotated loci directed by 24-nt siRNAs but also a new set of loci associated with 21/22-nt siRNAs. Further analysis showed that the reduced methylation of TEs and coding genes targeted by 21/22-nt siRNAs was associated with sequestration of the duplex siRNAs by the 2b protein but not with changes in either siRNA production or transcription. Notably, we detected both the deletion and/or the transposition of multicopy TEs associated with 2b-induced hypomethylation, suggesting potential TE reactivation. We propose that the silencing of many TEs in Arabidopsis is controlled by the 24- and 21-nt endogenous siRNAs analogous to Drosophila TE silencing by PIWI-interacting RNAs and siRNAs. PMID:27786269

  18. Genome-wide DNA methylation and transcriptome analyses reveal genes involved in immune responses of pig peripheral blood mononuclear cells to poly I:C.

    PubMed

    Wang, Haifei; Wang, Jiying; Ning, Chao; Zheng, Xianrui; Fu, Jinlian; Wang, Aiguo; Zhang, Qin; Liu, Jian-Feng

    2017-08-29

    DNA methylation changes play essential roles in regulating the activities of genes involved in immune responses. Understanding of variable DNA methylation linked to immune responses may contribute to identifying biologically promising epigenetic markers for pathogenesis of diseases. Here, we generated genome-wide DNA methylation and transcriptomic profiles of six pairs of polyinosinic-polycytidylic acid-treated pig peripheral blood mononuclear cell (PBMC) samples and corresponding controls using methylated DNA immunoprecipitation sequencing and RNA sequencing. Comparative methylome analyses identified 5,827 differentially methylated regions and 615 genes showing differential expression between the two groups. Integrative analyses revealed inverse associations between DNA methylation around transcriptional start site and gene expression levels. Furthermore, 70 differentially methylated and expressed genes were identified such as TNFRSF9, IDO1 and EBI3. Functional annotation revealed the enriched categories including positive regulation of immune system process and regulation of leukocyte activation. These findings demonstrated DNA methylation changes occurring in immune responses of PBMCs to poly I:C stimulation and a subset of genes potentially regulated by DNA methylation in the immune responses. The PBMC DNA methylome provides an epigenetic overview of this physiological system in response to viral infection, and we expect it to constitute a valuable resource for future epigenetic epidemiology studies in pigs.

  19. Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases

    PubMed Central

    Shirane, Kenjiro; Toh, Hidehiro; Kobayashi, Hisato; Miura, Fumihito; Chiba, Hatsune; Ito, Takashi; Kono, Tomohiro; Sasaki, Hiroyuki

    2013-01-01

    DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes. PMID:23637617

  20. Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq.

    PubMed

    Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo

    2015-03-01

    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

  1. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae

    PubMed Central

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A.; Lee, Yong-Hwan

    2015-01-01

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis. PMID:25708804

  2. Genome-Wide Analysis of DNA Methylation before-and after Exercise in the Thoroughbred Horse with MeDIP-Seq

    PubMed Central

    Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo

    2015-01-01

    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347

  3. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A; Lee, Yong-Hwan

    2015-02-24

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis.

  4. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments.

    PubMed

    Wu, Feinan; Olson, Brennan G; Yao, Jie

    2016-01-27

    The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq.

  5. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects.

    PubMed

    Kok, Dieuwertje E G; Dhonukshe-Rutten, Rosalie A M; Lute, Carolien; Heil, Sandra G; Uitterlinden, André G; van der Velde, Nathalie; van Meurs, Joyce B J; van Schoor, Natasja M; Hooiveld, Guido J E J; de Groot, Lisette C P G M; Kampman, Ellen; Steegenga, Wilma T

    2015-01-01

    Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via B-vitamins later in life, and how this relates to health and disease, is not exactly known. The aim of this study was to identify effects of long-term supplementation with folic acid and vitamin B12 on genome-wide DNA methylation in elderly subjects. This project was part of a randomized, placebo-controlled trial on effects of supplemental intake of folic acid and vitamin B12 on bone fracture incidence (B-vitamins for the PRevention Of Osteoporotic Fractures (B-PROOF) study). Participants with mildly elevated homocysteine levels, aged 65-75 years, were randomly assigned to take 400 μg folic acid and 500 μg vitamin B12 per day or a placebo during an intervention period of 2 years. DNA was isolated from buffy coats, collected before and after intervention, and genome-wide DNA methylation was determined in 87 participants (n = 44 folic acid/vitamin B12, n = 43 placebo) using the Infinium HumanMethylation450 BeadChip. After intervention with folic acid and vitamin B12, 162 (versus 14 in the placebo group) of the 431,312 positions were differentially methylated as compared to baseline. Comparisons of the DNA methylation changes in the participants receiving folic acid and vitamin B12 versus placebo revealed one single differentially methylated position (cg19380919) with a borderline statistical significance. However, based on the analyses of differentially methylated regions (DMRs) consisting of multiple positions, we identified 6 regions that differed statistically significantly between the intervention and placebo group. Pronounced changes were found for regions in the DIRAS3, ARMC8, and NODAL genes, implicated in carcinogenesis and early embryonic development

  6. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes.

    PubMed

    Geyer, Kathrin K; Chalmers, Iain W; Mackintosh, Neil; Hirst, Julie E; Geoghegan, Rory; Badets, Mathieu; Brophy, Peter M; Brehm, Klaus; Hoffmann, Karl F

    2013-07-09

    The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and 'Turbellaria') contain methylated cytosines within their genome compartments. Collectively, these findings

  7. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

    PubMed Central

    2013-01-01

    Background The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Results Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and ‘Turbellaria’) contain methylated cytosines within their genome compartments

  8. Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids[W

    PubMed Central

    Shen, Huaishun; He, Hang; Li, Jigang; Chen, Wei; Wang, Xuncheng; Guo, Lan; Peng, Zhiyu; He, Guangming; Zhong, Shangwei; Qi, Yijun; Terzaghi, William; Deng, Xing Wang

    2012-01-01

    Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid over its parents in many traits, but the underlying molecular basis remains elusive. To investigate whether DNA methylation plays a role in heterosis, we compared at single-base-pair resolution the DNA methylomes of Arabidopsis thaliana Landsberg erecta and C24 parental lines and their reciprocal F1 hybrids that exhibited heterosis. Both hybrids displayed increased DNA methylation across their entire genomes, especially in transposable elements. Interestingly, increased methylation of the hybrid genomes predominantly occurred in regions that were differentially methylated in the two parents and covered by small RNAs, implying that the RNA-directed DNA methylation (RdDM) pathway may direct DNA methylation in hybrids. In addition, we found that 77 genes sensitive to methylome remodeling were transcriptionally repressed in both reciprocal hybrids, including genes involved in flavonoid biosynthesis and two circadian oscillator genes CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL. Moreover, growth vigor of F1 hybrids was compromised by treatment with an agent that demethylates DNA and by abolishing production of functional small RNAs due to mutations in Arabidopsis RNA methyltransferase HUA ENHANCER1. Together, our data suggest that genome-wide remodeling of DNA methylation directed by the RdDM pathway may play a role in heterosis. PMID:22438023

  9. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    NASA Astrophysics Data System (ADS)

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.

    2017-02-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.

  10. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    PubMed Central

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf , Yvonne N.

    2017-01-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin. PMID:28150704

  11. Effects of soluble and particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells.

    PubMed

    Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing

    2015-10-01

    Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  13. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  14. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation

    PubMed Central

    Behringer, Megan G.; Hall, David W.

    2015-01-01

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949

  15. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation.

    PubMed

    Behringer, Megan G; Hall, David W

    2015-11-12

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra.

  16. [Methods for detection of methylated cytosine residues in DNA].

    PubMed

    Smirnikhina, S A; Lavrov, A V

    2009-01-01

    The article provides analysis of common methods for DNA methylation detection. Advantages and limitations of methods used for different purposes are compared. Clue step for most common methods is bisulfite treatment of DNA samples and its protocol is described in details. Recommendations are formulated for each method best in solving specific problems.

  17. Cytosine modifications in myeloid malignancies.

    PubMed

    Meldi, Kristen M; Figueroa, Maria E

    2015-08-01

    Aberrant DNA methylation is a hallmark of many cancers, including the myeloid malignancies acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The discovery of TET-mediated demethylation of 5-methylcytosine (5mC) and technological advancements in next-generation sequencing have permitted the examination of other cytosine modifications, namely 5-hydroxymethylcytosine (5hmC), in these myeloid malignancies on a genome-wide scale. Due to the prominence of mutations in epigenetic modifiers that can influence cytosine modifications in these disorders, including IDH1/2, TET2, and DNMT3A, many recent studies have evaluated the relative levels, distribution, and functional consequences of cytosine modifications in leukemic cells. Furthermore, several therapies are being used to treat AML and MDS that target various proteins within the cytosine modification pathway in an effort to revert the abnormal epigenetic patterns that contribute to the diseases. In this review, we provide an overview of cytosine modifications and selected technologies currently used to distinguish and analyze these epigenetic marks in the genome. Then, we discuss the role of mutant enzymes, including DNMT3A, TET2, IDH1/2, and the transcription factor, WT1, in disrupting normal patterns of 5mC and 5hmC in AML and MDS. Finally, we describe several therapies, both standard, front-line treatments and new drugs in clinical trials, aimed at inhibiting the proteins that ultimately lead to aberrant cytosine modifications in these diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Genome-wide chromatin accessibility, DNA methylation and gene expression analysis of histone deacetylase inhibition in triple-negative breast cancer.

    PubMed

    Bustos, Matias A; Salomon, Matthew P; Nelson, Nellie; Hsu, Sandy C; DiNome, Maggie L; Hoon, Dave S B; Marzese, Diego M

    2017-06-01

    Triple-negative breast cancer (TNBC), especially the subset with a basal phenotype, represents the most aggressive subtype of breast cancer. Unlike other solid tumors, TNBCs harbor a low number of driver mutations. Conversely, we and others have demonstrated a significant impact of epigenetic alterations, including DNA methylation and histone post-translational modifications, affecting TNBCs. Due to the promising results in pre-clinical studies, histone deacetylase inhibitors (HDACi) are currently being tested in several clinical trials for breast cancer and other solid tumors. However, the genome-wide epigenetic and transcriptomic implications of HDAC inhibition are still poorly understood. Here, we provide detailed information about the design of a multi-platform dataset that describes the epigenomic and transcriptomic effects of HDACi. This dataset includes genome-wide chromatin accessibility (assessed by ATAC-Sequencing), DNA methylation (assessed by Illumina HM450K BeadChip) and gene expression (assessed by RNA-Sequencing) analyses before and after HDACi treatment of HCC1806 and MDA-MB-231, two human TNBC cell lines with basal-like phenotype.

  19. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation.

    PubMed

    Valton, Julien; Dupuy, Aurélie; Daboussi, Fayza; Thomas, Séverine; Maréchal, Alan; Macmaster, Rachel; Melliand, Kevin; Juillerat, Alexandre; Duchateau, Philippe

    2012-11-09

    Within the past 2 years, transcription activator-like effector (TALE) DNA binding domains have emerged as the new generation of engineerable platform for production of custom DNA binding domains. However, their recently described sensitivity to cytosine methylation represents a major bottleneck for genome engineering applications. Using a combination of biochemical, structural, and cellular approaches, we were able to identify the molecular basis of such sensitivity and propose a simple, drug-free, and universal method to overcome it.

  20. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  1. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  2. Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway

    PubMed Central

    Yeung, Kit San; Chung, Brian Hon-Yin; Choufani, Sanaa; Mok, Mo Yin; Wong, Wai Lap; Mak, Christopher Chun Yu; Yang, Wanling; Lee, Pamela Pui Wah; Wong, Wilfred Hing Sang; Chen, Yi-an; Grafodatskaya, Daria; Wong, Raymond Woon Sing; Lau, Chak Sing; Chan, Daniel Tak Mao; Weksberg, Rosanna; Lau, Yu-Lung

    2017-01-01

    Background Epigenetic variants have been shown in recent studies to be important contributors to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report a 2-step study of discovery followed by replication to identify DNA methylation alterations associated with SLE in a Chinese population. Using a genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the methylation levels of CpG sites in DNA extracted from white blood cells from 12 female Chinese SLE patients and 10 healthy female controls. Results We identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 25 genes and 7 genes, respectively. Surprisingly, 42% of the hypomethylated CpG sites were located in CpG shores, which indicated the functional importance of the loss of DNA methylation. Microarray results were replicated in another cohort of 100 SLE patients and 100 healthy controls by performing bisulfite pyrosequencing of four hypomethylated genes, MX1, IFI44L, NLRC5 and PLSCR1. In addition, loss of DNA methylation in these genes was associated with an increase in mRNA expression. Gene ontology analysis revealed that the hypomethylated genes identified in the microarray study were overrepresented in the type I interferon pathway, which has long been implicated in the pathogenesis of SLE. Conclusion Our epigenetic findings further support the importance of the type I interferon pathway in SLE pathogenesis. Moreover, we showed that the DNA methylation signatures of SLE can be defined in unfractionated white blood cells. PMID:28085900

  3. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer

    PubMed Central

    Zhang, Jinning; Zhou, Yuhui; Dang, Shuwei; Chen, Hongsheng; Wu, Qiong; Liu, Ming

    2016-01-01

    DNA methylation was regarded as the promising biomarker for rectal cancer diagnosis. However, the optimal methylation biomarkers with ideal diagnostic performance for rectal cancer are still limited. To identify new molecular markers for rectal cancer, we mapped DNA methylation and transcriptomic profiles in the six rectal cancer and paired normal samples. Further analysis revealed the hypermethylated probes in cancer prone to be located in gene promoter. Meanwhile, transcriptome analysis presented 773 low-expressed and 1,161 over-expressed genes in rectal cancer. Correction analysis identified a panel of 36 genes with an inverse correlation between methylation and gene expression levels, including 10 known colorectal cancer related genes. From the other 26 novel marker genes, GFRA1 and GSTM2 were selected for further analysis on the basis of their biological functions. Further experiment analysis confirmed their methylation and expression status in a larger number (44) of rectal cancer samples, and ROC curves showed higher AUC than SEPT9, which has been used as a biomarker in rectal cancer. Our data suggests that aberrant DNA methylation of contiguous CpG sites in methylation array may be potential diagnostic markers of rectal cancer. PMID:27566576

  4. Genome-wide analysis of DNA methylation associated with HIV infection based on a pair of monozygotic twins

    PubMed Central

    Zhang, Yinfeng; Li, Sai-Kam; Tsui, Stephen Kwok-Wing

    2015-01-01

    Alteration of DNA methylation in mammalian cells could be elicited by many factors, including viral infections [1]. HIV has shown the ability to interact with host cellular factors to change the methylation status of some genes [2], [3], [4]. However, the change of the DNA methylation associated with HIV infection based on the whole genome has not been well illustrated. In this study, a unique pair of monozygotic twins was recruited: one of the twins was infected with HIV without further anti-retroviral therapy while the other one was healthy, which could be considered as a relatively ideal model for profiling the alterations of DNA methylation associated with HIV infection. Therefore, using methylated DNA immunoprecipitation–microarray method (MeDIP–microarray), we found the increased DNA methylation level in peripheral blood mononuclear cells from HIV infected twin compared to her normal sibling. Moreover, several distinguished differential methylation regions (DMRs) in HIV infected twin worth further study. The raw data has been deposited in Gene Expression Omnibus (GEO) datasets with reference number GSE68028. PMID:26697319

  5. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data.

    PubMed

    Ma, Xiaoke; Liu, Zaiyi; Zhang, Zhongyuan; Huang, Xiaotai; Tang, Wanxin

    2017-01-31

    With the increase in the amount of DNA methylation and gene expression data, the epigenetic mechanisms of cancers can be extensively investigate. Available methods integrate the DNA methylation and gene expression data into a network by specifying the anti-correlation between them. However, the correlation between methylation and expression is usually unknown and difficult to determine. To address this issue, we present a novel multiple network framework for epigenetic modules, namely, Epigenetic Module based on Differential Networks (EMDN) algorithm, by simultaneously analyzing DNA methylation and gene expression data. The EMDN algorithm prevents the specification of the correlation between methylation and expression. The accuracy of EMDN algorithm is more efficient than that of modern approaches. On the basis of The Cancer Genome Atlas (TCGA) breast cancer data, we observe that the EMDN algorithm can recognize positively and negatively correlated modules and these modules are significantly more enriched in the known pathways than those obtained by other algorithms. These modules can serve as bio-markers to predict breast cancer subtypes by using methylation profiles, where positively and negatively correlated modules are of equal importance in the classification of cancer subtypes. Epigenetic modules also estimate the survival time of patients, and this factor is critical for cancer therapy. The proposed model and algorithm provide an effective method for the integrative analysis of DNA methylation and gene expression. The algorithm is freely available as an R-package at https://github.com/william0701/EMDN .

  6. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells

    PubMed Central

    Reiner, Andrew H.; Coll, Mar; Verhulst, Stefaan; Mannaerts, Inge; Øie, Cristina I.; Smedsrød, Bård; Najimi, Mustapha; Sokal, Etienne; Luttun, Aernout; Sancho-Bru, Pau; Collas, Philippe; van Grunsven, Leo A.

    2015-01-01

    Background & Aims Liver fibrogenesis – scarring of the liver that can lead to cirrhosis and liver cancer – is characterized by hepatocyte impairment, capillarization of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cell (HSC) activation. To date, the molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. Here, we assess the transcriptome and the genome-wide promoter methylome specific for purified, non-cultured human hepatocytes, LSECs and HSCs, and investigate the nature of epigenetic changes accompanying transcriptional changes associated with activation of HSCs. Material and methods Gene expression profile and promoter methylome of purified, uncultured human liver cells and culture-activated HSCs were respectively determined using Affymetrix HG-U219 genechips and by methylated DNA immunoprecipitation coupled to promoter array hybridization. Histone modification patterns were assessed at the single-gene level by chromatin immunoprecipitation and quantitative PCR. Results We unveil a DNA-methylation-based epigenetic relationship between hepatocytes, LSECs and HSCs despite their distinct ontogeny. We show that liver cell type-specific DNA methylation targets early developmental and differentiation-associated functions. Integrative analysis of promoter methylome and transcriptome reveals partial concordance between DNA methylation and transcriptional changes associated with human HSC activation. Further, we identify concordant histone methylation and acetylation changes in the promoter and putative novel enhancer elements of genes involved in liver fibrosis. Conclusions Our study provides the first epigenetic blueprint of three distinct freshly isolated, human hepatic cell types and of epigenetic changes elicited upon HSC activation. PMID:26353929

  7. A pilot examination of the genome-wide DNA methylation signatures of subjects entering and exiting short-term alcohol dependence treatment programs

    PubMed Central

    Philibert, Robert A; Penaluna, Brandan; White, Teresa; Shires, Sarah; Gunter, Tracy; Liesveld, Jill; Erwin, Cheryl; Hollenbeck, Nancy; Osborn, Terry

    2014-01-01

    Alcoholism has a profound impact on millions of people throughout the world. However, the ability to determine if a patient needs treatment is hindered by reliance on self-reporting and the clinician’s capability to monitor the patient’s response to treatment is challenged by the lack of reliable biomarkers. Using a genome-wide approach, we have previously shown that chronic alcohol use is associated with methylation changes in DNA from human cell lines. In this pilot study, we now examine DNA methylation in peripheral mononuclear cell DNA gathered from subjects as they enter and leave short-term alcohol treatment. When compared with abstinent controls, subjects with heavy alcohol use show widespread changes in DNA methylation that have a tendency to reverse with abstinence. Pathway analysis demonstrates that these changes map to gene networks involved in apoptosis. There is no significant overlap of the alcohol signature with the methylation signature previously derived for smoking. We conclude that DNA methylation may have future clinical utility in assessing acute alcohol use status and monitoring treatment response. PMID:25147915

  8. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution

    PubMed Central

    Chen, Xun; Ge, Xianhong; Wang, Jing; Tan, Chen; King, Graham J.; Liu, Kede

    2015-01-01

    Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 105), 2.16% CHG (2.7 × 105), and 1.68% CHH loci (1.05 × 105) (where H = A, T, or C). Our sampling of DNA methylation in B. rapa indicated that 52.4% of CG sites were present as 5mCG, with 31.8% of CHG and 8.3% of CHH. It was found that genic regions of single copy genes had significantly higher methylation compared to those of two or three copy genes. Differences in degree of genic DNA methylation were observed in a hierarchical relationship corresponding to the relative age of the three ancestral subgenomes, primarily accounted by single-copy genes. RNA-seq analysis revealed that overall the level of transcription was negatively correlated with mean gene methylation content and depended on copy number or was associated with the different subgenomes. These results provide new insights into the role epigenetic variation plays in polyploid genome evolution, and suggest an alternative mechanism for duplicate gene loss. PMID:26500672

  9. Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra

    PubMed Central

    Yang, Nannan; Wei, Yang; Wang, Tan; Guo, Jifeng; Sun, Qiying; Hu, Yacen; Yan, Xinxiang; Zhu, Xiongwei; Tang, Beisha; Xu, Qian

    2016-01-01

    Exposure to excessive manganese (Mn) causes manganism, a progressive neurodegenerative disorder similar to idiopathic Parkinson’s disease (IPD). The detailed mechanisms of Mn neurotoxicity in nerve cells, especially in dopaminergic neurons are not yet fully understood. Meanwhile, it is unknown whether there exists a potential antagonist or effective drug for treating neuron damage in manganism. In the present study, we report the discovery of an HIF prolyl-hydroxylase inhibitor, DMOG [N-(2-Methoxy-2-oxoacetyl) glycine methyl ester], that can partially inhibit manganese toxicity not only in the neuroblastoma cell line SH-SY5Y in vitro but also in a mouse model in vivo. A genome-wide methylation DNA analysis was performed using microarray hybridization. Intriguingly, DNA methylation in the promoter region of 226 genes was found to be regulated by MnCl2, while the methylation effects of MnCl2 could be restored with combinatorial DMOG treatment. Furthermore, we found that genes with converted promoter methylation during DMOG antagonism were associated across several categories of molecular function, including mitochondria integrity maintain, cell cycle and DNA damage response, and ion transportation. Collectively, our results serve as the basis of a mechanism analysis of neuron damage in manganism and may supply possible gene targets for clinical therapy. PMID:27380887

  10. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine

    PubMed Central

    Lu, Yi Chen; Feng, Sheng Jun; Zhang, Jing Jing; Luo, Fang; Zhang, Shuang; Yang, Hong

    2016-01-01

    Atrazine (ATR) is a pesticide widely used for controlling weeds for crop production. Crop contamination with ATR negatively affects crop growth and development. This study presents the first genome-wide single-base-resolution maps of DNA methylation in ATR-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between the ATR-exposed and ATR-free (control) rice. Most of DNA methyltransferases, histone methyltransferases and DNA demethylase were differentially regulated by ATR. We found more genes hypermethylated than those hypomethylated in the regions of upstream, genebody and downstream under ATR exposure. A stringent group of 674 genes (p < 0.05, two-fold change) with a strong preference of differential expression in ATR-exposed rice was identified. Some of the genes were identified in a subset of loss of function mutants defective in DNA methylation/demethylation. Provision of 5-azacytidine (AZA, inhibitor of DNA methylation) promoted the rice growth and reduced ATR content. By UPLC/Q-TOF-MS/MS, 8 degraded products and 9 conjugates of ATR in AZA-treated rice were characterized. Two of them has been newly identified in this study. Our data show that ATR-induced changes in DNA methylation marks are possibly involved in an epigenetic mechanism associated with activation of specific genes responsible for ATR degradation and detoxification. PMID:26739616

  11. AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping

    PubMed Central

    Xia, Zhiqiang; Zou, Meiling; Zhang, Shengkui; Feng, Binxiao; Wang, Wenquan

    2014-01-01

    We describe methods for the assessment of amplified-fragment single nucleotide polymorphism and methylation (AFSM) sites using a quick and simple molecular marker-assisted breeding strategy based on the use of two restriction enzyme pairs (EcoRI-MspI and EcoRI-HpaII) and a next-generation sequencing platform. Two sets of 85 adapter pairs were developed to concurrently identify SNPs, indels and methylation sites for 85 lines of cassava population in this study. In addition to SNPs and indels, the simplicity of the AFSM protocol makes it particularly suitable for high-throughput full methylation and hemi-methylation analyses. To further demonstrate the ease of this approach, a cassava genetic linkage map was constructed. This approach should be widely applicable for genetic mapping in a variety of organisms and will improve the application of crop genomics in assisted breeding. PMID:25466435

  12. Genetic variation in one-carbon metabolism in relation to genome-wide DNA methylation in breast tissue from heathy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Llanos, Adana A; Dumitrescu, Ramona G; Liu, Zhenua; Mason, Joel B; Spear, Scott L; Kallakury, Bhaskar V S; Freudenheim, Jo L; Shields, Peter G

    2016-03-09

    Single nucleotide polymorphisms (SNPs) in one-carbon metabolism genes and lifestyle factors (alcohol drinking and breast folate) may be determinants of whole-genome methylation in the breast. DNA methylation profiling was performed using the Illumina Infinium HumanMethylation450 BeadChip in 81 normal breast tissues from women undergoing reduction mammoplasty and no history of cancer. ANCOVA, adjusting for age, race and BMI, was used to identify differentially-methylated (DM) CpGs. Gene expression, by the Affymetrix GeneChip Human Transcriptome Array 2.0, was correlated with DM. Biological networks of DM genes were assigned using Ingenuity Pathway Analysis. Fifty-seven CpG sites were DM in association with eight SNPs in FTHFD, MTHFD1, MTHFR, MTR, MTRR, and TYMS (P <5.0 x 10(-5)); 56% of the DM CpGs were associated with FTHFD SNPs, including DM within FTHFD. Gene expression was negatively correlated with FTHFD methylation (r=-0.25, P=0.017). Four DM CpGs identified by SNPs in MTRR, MTHFR, and FTHFD were significantly associated with alcohol consumption and/or breast folate. The top biological network of DM CpGs was associated with Energy Production, Molecular Transportation, and Nucleic Acid Metabolism. This is the first comprehensive study of the association between SNPs in one-carbon metabolism genes and genome-wide DNA methylation in normal breast tissues. These SNPs, especially FTHFD, as well as alcohol intake and folate exposure, appear to affect DM in breast tissues of healthy women. The finding that SNPs in FTHFD and MTR are associated with their own methylation is novel and highlights a role for these SNPs as cis-methylation quantitative trait loci.

  13. Genome-wide methylation and expression differences in HPV(+) and HPV(−) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis

    PubMed Central

    Sartor, Maureen A; Dolinoy, Dana C; Jones, Tamara R; Colacino, Justin A; Prince, Mark EP; Carey, Thomas E

    2011-01-01

    Oncogenic human papillomaviruses (HPV) are associated with nearly all cervical cancers and are increasingly important in the etiology of oropharyngeal tumors. HPV-associated head and neck squamous cell carcinomas (HNSCC) have distinct risk profiles and appreciate a prognostic advantage compared to HPV-negative HNSCC. Promoter hypermethylation is widely recognized as a mechanism in the progression of HNSCC, but the extent to which this mechanism is consistent between HPV(+) and HPV(−) tumors is unknown. To investigate the epigenetic regulation of gene expression in HPV-induced and carcinogen-induced cancers, we examined genome-wide DNA methylation and gene expression in HPV(+) and HPV(−) SCC cell lines. We used two platforms: the Illumina Infinium Methylation BeadArray and tiling arrays, and confirmed illustrative examples with pyrosequencing and quantitative PCR. These analyses indicate that HPV(+) cell lines have higher DNA methylation in genic and LINE-1 regions than HPV(−) cell lines. Differentially methylated loci between HPV(+) and HPV(−) cell lines significantly correlated with HPV-typed HNSCC primary tumor DNA methylation levels. Novel findings include higher promoter methylation of polycomb repressive complex 2 target genes in HPV(+) cells compared to HPV(−) cells and increased expression of DNMT3A in HPV(+) cells. Additionally, CDKN2A and KRT8 were identified as interaction hubs among genes with higher methylation and lower expression in HPV(−) cells. Conversely, RUNX2, IRS-1 and CCNA1 were major hubs with higher methylation and lower expression in HPV(+) cells. Distinct HPV(+) and HPV(−) epigenetic profiles should provide clues to novel targets for development of individualized therapeutic strategies. PMID:21613826

  14. MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes.

    PubMed

    Wang, Shi; Lv, Jia; Zhang, Lingling; Dou, Jinzhuang; Sun, Yan; Li, Xue; Fu, Xiaoteng; Dou, Huaiqian; Mao, Junxia; Hu, Xiaoli; Bao, Zhenmin

    2015-11-01

    Characterization of dynamic DNA methylomes in diverse phylogenetic groups has attracted growing interest for a better understanding of the evolution of DNA methylation as well as its function and biological significance in eukaryotes. Sequencing-based methods are promising in fulfilling this task. However, none of the currently available methods offers the 'perfect solution', and they have limitations that prevent their application in the less studied phylogenetic groups. The recently discovered Mrr-like enzymes are appealing for new method development, owing to their ability to collect 32-bp methylated DNA fragments from the whole genome for high-throughput sequencing. Here, we have developed a simple and scalable DNA methylation profiling method (called MethylRAD) using Mrr-like enzymes. MethylRAD allows for de novo (reference-free) methylation analysis, extremely low DNA input (e.g. 1 ng) and adjustment of tag density, all of which are still unattainable for most widely used methylation profiling methods such as RRBS and MeDIP. We performed extensive analyses to validate the power and accuracy of our method in both model (plant Arabidopsis thaliana) and non-model (scallop Patinopecten yessoensis) species. We further demonstrated its great utility in identification of a gene (LPCAT1) that is potentially crucial for carotenoid accumulation in scallop adductor muscle. MethylRAD has several advantages over existing tools and fills a void in the current epigenomic toolkit by providing a universal tool that can be used for diverse research applications, e.g. from model to non-model species, from ordinary to precious samples and from small to large genomes, but at an affordable cost.

  15. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis.

    PubMed

    Wang, Linlin; Lin, Shanshan; Zhang, Ji; Tian, Tian; Jin, Lei; Ren, Aiguo

    2017-02-01

    Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.

  16. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood

    PubMed Central

    Toperoff, Gidon; Aran, Dvir; Kark, Jeremy D.; Rosenberg, Michael; Dubnikov, Tatyana; Nissan, Batel; Wainstein, Julio; Friedlander, Yechiel; Levy-Lahad, Ephrat; Glaser, Benjamin; Hellman, Asaf

    2012-01-01

    Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032–1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824–1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586–0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM

  17. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood.

    PubMed

    Toperoff, Gidon; Aran, Dvir; Kark, Jeremy D; Rosenberg, Michael; Dubnikov, Tatyana; Nissan, Batel; Wainstein, Julio; Friedlander, Yechiel; Levy-Lahad, Ephrat; Glaser, Benjamin; Hellman, Asaf

    2012-01-15

    Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032-1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824-1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586-0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM.

  18. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens

    PubMed Central

    Zhang, Meng; Yan, Feng-Bin; Li, Fang; Jiang, Ke-Ren; Li, Dong-Hua; Han, Rui-Li; Li, Zhuan-Jan; Jiang, Rui-Rui; Liu, Xiao-Jun; Kang, Xiang-Tao; Sun, Gui-Rong

    2017-01-01

    Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken. PMID:28378745

  19. Two-stage Genome-wide Methylation Profiling in Childhood-onset Crohn's Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci

    PubMed Central

    Adams, Alex T.; Kennedy, Nicholas A.; Hansen, Richard; Ventham, Nicholas T.; O'Leary, Kate R.; Drummond, Hazel E.; Noble, Colin L.; El-Omar, Emad; Russell, Richard K.; Wilson, David C.; Nimmo, Elaine R.; Hold, Georgina L.

    2014-01-01

    Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P < 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P < 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region

  20. Association of Protein Phosphatase PPM1G With Alcohol Use Disorder and Brain Activity During Behavioral Control in a Genome-Wide Methylation Analysis

    PubMed Central

    Ruggeri, Barbara; Nymberg, Charlotte; Vuoksimaa, Eero; Lourdusamy, Anbarasu; Wong, Cybele P.; Carvalho, Fabiana M.; Jia, Tianye; Cattrell, Anna; Macare, Christine; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L.W.; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J.; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Nees, Frauke; Pausova, Zdenka; Paus, Tomáš; Rietschel, Marcella; Robbins, Trevor; Smolka, Michael N.; Spanagel, Rainer; Bakalkin, Georgy; Mill, Jonathan; Sommer, Wolfgang H.; Rose, Richard J.; Yan, Jia; Aliev, Fazil; Dick, Danielle; Kaprio, Jaakko; Desrivières, Sylvane; Schumann, Gunter

    2016-01-01

    Objective The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. Method The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. Results Hypermethylation in the 3′-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. Conclusions Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype. PMID:25982659

  1. Genome-wide DNA Methylation Profiles and Their Relationships with mRNA and the microRNA Transcriptome in Bovine Muscle Tissue (Bos taurine)

    PubMed Central

    Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E.; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-01-01

    DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development. PMID:25306978

  2. Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb).

    PubMed

    Fresnedo-Ramírez, Jonathan; Chan, Helen M; Parfitt, Dan E; Crisosto, Carlos H; Gradziel, Thomas M

    2017-02-16

    Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop.

  3. Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb)

    PubMed Central

    Fresnedo-Ramírez, Jonathan; Chan, Helen M.; Parfitt, Dan E.; Crisosto, Carlos H.; Gradziel, Thomas M.

    2017-01-01

    Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop. PMID:28202904

  4. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine).

    PubMed

    Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-10-13

    DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development.

  5. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro

    PubMed Central

    Salilew-Wondim, Dessie; Fournier, Eric; Hoelker, Michael; Saeed-Zidane, Mohammed; Tholen, Ernst; Looft, Christian; Neuhoff, Christiane; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; A. Shojaei Saadi, Habib; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and

  6. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    PubMed

    Salilew-Wondim, Dessie; Fournier, Eric; Hoelker, Michael; Saeed-Zidane, Mohammed; Tholen, Ernst; Looft, Christian; Neuhoff, Christiane; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; Shojaei Saadi, Habib A; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and

  7. Comparative genome-wide methylation analysis of longissimus dorsi muscles between Japanese black (Wagyu) and Chinese Red Steppes cattle

    PubMed Central

    Yu, Haibin; Li, Guangpeng; Jiang, Ping; Yang, Yuwei; Yang, Runjun; Yu, Xianzhong

    2017-01-01

    DNA methylation is an important epigenetic mechanism involved in expression of genes in many biological processes including muscle growth and development. Its effects on economically important traits are evinced from reported significant differences in meat quality traits between Japanese black (Wagyu) and Chinese Red Steppes cattle, thus presenting a unique model for analyzing the effects of DNA methylation on these traits. In the present study, we performed whole genome DNA methylation analysis in the two breeds by whole genome bisulfite sequencing (WGBS). Overall, 23150 differentially methylated regions (DMRs) were identified which were located in 8596 genes enriched in 9922 GO terms, of which 1046 GO terms were significantly enriched (p<0.05) including lipid translocation (GO: 0034204) and lipid transport (GO: 0015914). KEGG analysis showed that the DMR related genes were distributed among 276 pathways. Correlation analysis found that 331 DMRs were negatively correlated with the expression levels of differentially expressed genes (DEGs) with 21 DMRs located in promoter regions. Our results identified novel candidate DMRs and DEGs correlated with meat quality traits, which will be valuable for future genomic and epigenomic studies of muscle development and for marker assisted selection of meat quality traits. PMID:28771560

  8. Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse.

    PubMed

    Watanabe, Yutaka; Numata, Koji; Murata, Shinya; Osada, Yuko; Saito, Rintaro; Nakaoka, Hajime; Yamamoto, Naoyuki; Watanabe, Kazufumi; Kato, Hidemasa; Abe, Kuniya; Kiyosawa, Hidenori

    2010-12-01

    The functionality of sense-antisense transcripts (SATs), although widespread throughout the mammalian genome, is largely unknown. Here, we analyzed the SATs expression and its associated promoter DNA methylation status by surveying 12 tissues of mice to gain insights into the relationship between expression and DNA methylation of SATs. We have found that sense and antisense expression positively correlate in most tissues. However, in some SATs with tissue-specific expression, the expression level of a transcript from a CpG island-bearing promoter is low when the promoter DNA methylation is present. In these circumstances, the expression level of its opposite-strand transcript, especially when it is poly(A)-negative was coincidentally higher. These observations suggest that, albeit the general tendency of sense-antisense simultaneous expression, some antisense transcripts have coordinated expression with its counterpart sense gene promoter methylation. This cross-strand relationship is not a privilege of imprinted genes but seems to occur widely in SATs.

  9. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq

    PubMed Central

    Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David

    2016-01-01

    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and

  10. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq.

    PubMed

    Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David

    2016-01-01

    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for 'cell death and survival', 'cell morphology', and 'cell growth and proliferation'. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in 'skeletal system morphogenesis', 'regulation of cell proliferation' and 'regulation of transcription' suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent

  11. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome

    PubMed Central

    Gatto, S.; Gagliardi, M.; Crujeiras, A. B.; Matarazzo, M. R.; Esteller, M.; Sandoval, J.

    2015-01-01

    Introduction and Results Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disease, characterized by severe hypomethylation in pericentromeric regions of chromosomes (1, 16 and 9), marked immunodeficiency and facial anomalies. The majority of ICF patients present mutations in the DNMT3B gene, affecting the DNA methyltransferase activity of the protein. In the present study, we have used the Infinium 450K DNA methylation array to evaluate the methylation level of 450,000 CpGs in lymphoblastoid cell lines and untrasformed fibroblasts derived from ICF patients and healthy donors. Our results demonstrate that ICF-specific DNMT3B variants A603T/STP807ins and V699G/R54X cause global DNA hypomethylation compared to wild-type protein. We identified 181 novel differentially methylated positions (DMPs) including subtelomeric and intrachromosomic regions, outside the classical ICF-related pericentromeric hypomethylated positions. Interestingly, these sites were mainly located in intergenic regions and inside the CpG islands. Among the identified hypomethylated CpG-island associated genes, we confirmed the overexpression of three selected genes, BOLL, SYCP2 and NCRNA00221, in ICF compared to healthy controls, which are supposed to be expressed in germ line and silenced in somatic tissues. Conclusions In conclusion, this study contributes in clarifying the direct relationship between DNA methylation defect and gene expression impairment in ICF syndrome, identifying novel direct target genes of DNMT3B. A high percentage of the DMPs are located in the subtelomeric regions, indicating a specific role of DNMT3B in methylating these chromosomal sites. Therefore, we provide further evidence that hypomethylation in specific non-pericentromeric regions of chromosomes might be involved in the molecular pathogenesis of ICF syndrome. The detection of DNA hypomethylation at BOLL, SYCP2 and NCRNA00221 may pave the way for the

  12. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome.

    PubMed

    Simo-Riudalbas, L; Diaz-Lagares, A; Gatto, S; Gagliardi, M; Crujeiras, A B; Matarazzo, M R; Esteller, M; Sandoval, J

    2015-01-01

    Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disease, characterized by severe hypomethylation in pericentromeric regions of chromosomes (1, 16 and 9), marked immunodeficiency and facial anomalies. The majority of ICF patients present mutations in the DNMT3B gene, affecting the DNA methyltransferase activity of the protein. In the present study, we have used the Infinium 450K DNA methylation array to evaluate the methylation level of 450,000 CpGs in lymphoblastoid cell lines and untrasformed fibroblasts derived from ICF patients and healthy donors. Our results demonstrate that ICF-specific DNMT3B variants A603T/STP807ins and V699G/R54X cause global DNA hypomethylation compared to wild-type protein. We identified 181 novel differentially methylated positions (DMPs) including subtelomeric and intrachromosomic regions, outside the classical ICF-related pericentromeric hypomethylated positions. Interestingly, these sites were mainly located in intergenic regions and inside the CpG islands. Among the identified hypomethylated CpG-island associated genes, we confirmed the overexpression of three selected genes, BOLL, SYCP2 and NCRNA00221, in ICF compared to healthy controls, which are supposed to be expressed in germ line and silenced in somatic tissues. In conclusion, this study contributes in clarifying the direct relationship between DNA methylation defect and gene expression impairment in ICF syndrome, identifying novel direct target genes of DNMT3B. A high percentage of the DMPs are located in the subtelomeric regions, indicating a specific role of DNMT3B in methylating these chromosomal sites. Therefore, we provide further evidence that hypomethylation in specific non-pericentromeric regions of chromosomes might be involved in the molecular pathogenesis of ICF syndrome. The detection of DNA hypomethylation at BOLL, SYCP2 and NCRNA00221 may pave the way for the development of specific clinical biomarkers

  13. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    PubMed

    Wang, Jingzi; Zhang, Youwei; Xu, Kai; Mao, Xiaobei; Xue, Lijun; Liu, Xiaobei; Yu, Hongjun; Chen, Longbang; Chu, Xiaoyuan

    2014-01-01

    Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR). Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays), and chronic exposure for 10 days (0.05Gy/d×10d). High-performance liquid chromatography (HPLC) and MeDIP-quantitative polymerase chain reaction (qPCR) were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP) and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15) were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  14. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling.

    PubMed

    Nones, Katia; Waddell, Nic; Song, Sarah; Patch, Ann-Marie; Miller, David; Johns, Amber; Wu, Jianmin; Kassahn, Karin S; Wood, David; Bailey, Peter; Fink, Lynn; Manning, Suzanne; Christ, Angelika N; Nourse, Craig; Kazakoff, Stephen; Taylor, Darrin; Leonard, Conrad; Chang, David K; Jones, Marc D; Thomas, Michelle; Watson, Clare; Pinese, Mark; Cowley, Mark; Rooman, Ilse; Pajic, Marina; Butturini, Giovanni; Malpaga, Anna; Corbo, Vincenzo; Crippa, Stefano; Falconi, Massimo; Zamboni, Giuseppe; Castelli, Paola; Lawlor, Rita T; Gill, Anthony J; Scarpa, Aldo; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2014-09-01

    The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.

  15. Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+ T-cell Populations

    PubMed Central

    Absher, Devin M.; Li, Xinrui; Waite, Lindsay L.; Gibson, Andrew; Roberts, Kevin; Edberg, Jeffrey; Chatham, W. Winn; Kimberly, Robert P.

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with known genetic, epigenetic, and environmental risk factors. To assess the role of DNA methylation in SLE, we collected CD4+ T-cells, CD19+ B-cells, and CD14+ monocytes from 49 SLE patients and 58 controls, and performed genome-wide DNA methylation analysis with Illumina Methylation450 microarrays. We identified 166 CpGs in B-cells, 97 CpGs in monocytes, and 1,033 CpGs in T-cells with highly significant changes in DNA methylation levels (p<1×10−8) among SLE patients. Common to all three cell-types were widespread and severe hypomethylation events near genes involved in interferon signaling (type I). These interferon-related changes were apparent in patients collected during active and quiescent stages of the disease, suggesting that epigenetically-mediated hypersensitivity to interferon persists beyond acute stages of the disease and is independent of circulating interferon levels. This interferon hypersensitivity was apparent in memory, naïve and regulatory T-cells, suggesting that this epigenetic state in lupus patients is established in progenitor cell populations. We also identified a widespread, but lower amplitude shift in methylation in CD4+ T-cells (>16,000 CpGs at FDR<1%) near genes involved in cell division and MAPK signaling. These cell type-specific effects are consistent with disease-specific changes in the composition of the CD4+ population and suggest that shifts in the proportion of CD4+ subtypes can be monitored at CpGs with subtype-specific DNA methylation patterns. PMID:23950730

  16. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations.

    PubMed

    Absher, Devin M; Li, Xinrui; Waite, Lindsay L; Gibson, Andrew; Roberts, Kevin; Edberg, Jeffrey; Chatham, W Winn; Kimberly, Robert P

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with known genetic, epigenetic, and environmental risk factors. To assess the role of DNA methylation in SLE, we collected CD4+ T-cells, CD19+ B-cells, and CD14+ monocytes from 49 SLE patients and 58 controls, and performed genome-wide DNA methylation analysis with Illumina Methylation 450 microarrays. We identified 166 CpGs in B-cells, 97 CpGs in monocytes, and 1,033 CpGs in T-cells with highly significant changes in DNA methylation levels (p < 1 × 10(-8)) among SLE patients. Common to all three cell-types were widespread and severe hypomethylation events near genes involved in interferon signaling (type I). These interferon-related changes were apparent in patients collected during active and quiescent stages of the disease, suggesting that epigenetically-mediated hypersensitivity to interferon persists beyond acute stages of the disease and is independent of circulating interferon levels. This interferon hypersensitivity was apparent in memory, naïve and regulatory T-cells, suggesting that this epigenetic state in lupus patients is established in progenitor cell populations. We also identified a widespread, but lower amplitude shift in methylation in CD4+ T-cells (> 16,000 CpGs at FDR < 1%) near genes involved in cell division and MAPK signaling. These cell type-specific effects are consistent with disease-specific changes in the composition of the CD4+ population and suggest that shifts in the proportion of CD4+ subtypes can be monitored at CpGs with subtype-specific DNA methylation patterns.

  17. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species.

    PubMed

    Capuano, Floriana; Mülleder, Michael; Kok, Robert; Blom, Henk J; Ralser, Markus

    2014-04-15

    The methylation of cytosine to 5-methylcytosine (5-meC) is an important epigenetic DNA modification in many bacteria, plants, and mammals, but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila melanogaster, is still equivocal. By reporting the presence of 5-meC in a broad variety of wild, laboratory, and industrial yeasts, a recent study also challenged the dogma about the absence of DNA methylation in yeast species. We would like to bring to attention that the protocol used for gas chromatography/mass spectrometry involved hydrolysis of the DNA preparations. As this process separates cytosine and 5-meC from the sugar phosphate backbone, this method is unable to distinguish DNA- from RNA-derived 5-meC. We employed an alternative LC-MS/MS protocol where by targeting 5-methyldeoxycytidine moieties after enzymatic digestion, only 5-meC specifically derived from DNA is quantified. This technique unambiguously identified cytosine DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%). Despite achieving a detection limit at 250 attomoles (corresponding to <0.00002 methylated cytosines per nonmethylated cytosine), we could not confirm any cytosine DNA methylation in laboratory and industrial strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in adult Drosophila melanogaster at a value (0.034%) that is up to 2 orders of magnitude below the detection limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification in drosophila but absent in yeast.

  18. 5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of Biomphalaria glabrata, a snail intermediate host of Schistosoma mansoni.

    PubMed

    Fneich, Sara; Dheilly, Nolwenn; Adema, Coen; Rognon, Anne; Reichelt, Michael; Bulla, Jan; Grunau, Christoph; Cosseau, Céline

    2013-06-06

    Biomphalaria glabrata is the mollusc intermediate host for Schistosoma mansoni, a digenean flatworm parasite that causes human intestinal schistosomiasis. An estimated 200 million people in 74 countries suffer from schistosomiasis, in terms of morbidity this is the most severe tropical disease after malaria. Epigenetic information informs on the status of gene activity that is heritable, for which changes are reversible and that is not based on the DNA sequence. Epigenetic mechanisms generate variability that provides a source for potentially heritable phenotypic variation and therefore could be involved in the adaptation to environmental constraint. Phenotypic variations are particularly important in host-parasite interactions in which both selective pressure and rate of evolution are high. In this context, epigenetic changes are expected to be major drivers of phenotypic plasticity and co-adaptation between host and parasite. Consequently, with characterization of the genomes of invertebrates that are parasite vectors or intermediate hosts, it is also essential to understand how the epigenetic machinery functions to better decipher the interplay between host and parasite. The CpGo/e ratios were used as a proxy to investigate the occurrence of CpG methylation in B. glabrata coding regions. The presence of DNA methylation in B. glabrata was also confirmed by several experimental approaches: restriction enzymatic digestion with isoschizomers, bisulfite conversion based techniques and LC-MS/MS analysis. In this work, we report that DNA methylation, which is one of the carriers of epigenetic information, occurs in B. glabrata; approximately 2% of cytosine nucleotides are methylated. We describe the methylation machinery of B. glabrata. Methylation occurs predominantly at CpG sites, present at high ratios in coding regions of genes associated with housekeeping functions. We also demonstrate by bisulfite treatment that methylation occurs in multiple copies of Nimbus, a

  19. Genome-wide analysis of histone methylation reveals chromatin state-based complex regulation of differential gene transcription and function of CD8 memory T cells

    PubMed Central

    Araki, Yasuto; Wang, Zhibin; Zang, Chongzhi; Wood, William H.; Schones, Dustin; Cui, Kairong; Roh, Tae-Young; Lhotsky, Brad; Wersto, Robert P.; Peng, Weiqun; Becker, Kevin G.; Zhao, Keji; Weng, Nan-ping

    2009-01-01

    Summary Memory lymphocytes are characterized by their ability to exhibit a rapid response to the recall antigen, in which differential transcription plays a significant role, yet the underlying mechanism is not understood. We report here a genome-wide analysis of histone methylation on two histone H3 lysine residues (H3K4me3 and H3K27me3) and gene expression profiles in naïve and memory CD8 T cells. We found that a general correlation exists between the levels of gene expression and the levels of H3K4me3 (positive correlation) and H3K27me3 (negative correlation) across the gene body. These correlations display four distinct modes: repressive, active, poised, and bivalent, reflecting different functions of these genes. Furthermore, a permissive chromatin state of each gene is established by a combination of different histone modifications. Our findings reveal a complex regulation by histone methylation in differential gene expression and suggest that histone methylation may be responsible for memory CD8 T cell function. PMID:19523850

  20. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation.

    PubMed

    Kato, Norihiro; Loh, Marie; Takeuchi, Fumihiko; Verweij, Niek; Wang, Xu; Zhang, Weihua; Kelly, Tanika N; Saleheen, Danish; Lehne, Benjamin; Leach, Irene Mateo; Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; Kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James; Teo, Yik-Ying; He, Jiang; Elliott, Paul; Tai, E Shyong; van der Harst, Pim; Kooner, Jaspal S; Chambers, John C

    2015-11-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.

  1. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes.

    PubMed

    del Rey, M; O'Hagan, K; Dellett, M; Aibar, S; Colyer, H A A; Alonso, M E; Díez-Campelo, M; Armstrong, R N; Sharpe, D J; Gutiérrez, N C; García, J L; De Las Rivas, J; Mills, K I; Hernández-Rivas, J M

    2013-03-01

    Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.

  2. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    PubMed Central

    Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James

    2016-01-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation. PMID:26390057

  3. Genome-wide analysis identifies differential promoter methylation of Leprel2, Foxf1, Mmp25, Igfbp6, and Peg12 in murine tendinopathy.

    PubMed

    Trella, Katie J; Li, Jun; Stylianou, Eleni; Wang, Vincent M; Frank, Jonathan M; Galante, Jorge; Sandy, John D; Plaas, Anna; Wysocki, Robert

    2017-05-01

    We have used a murine Achilles tendinopathy model to investigate whether tissue changes (such as collagen disorganization, chondroid metaplasia, and loss of tensile properties) which are broadly characteristic of human tendinopathies, are accompanied by changes in the expression of chromatin-modifying enzymes and the methylation status of promoter regions of tendon cell DNA. Tendinopathy was induced by two intra-tendinous TGF-β1 injections followed by cage activity or treadmill running for up to 28 days. Activation of DNA methyltransferases occurred at 3 days after the TGF-β1 injections and also at 14 days, but only with treadmill activity. Genome-wide Methyl Mini-Seq™ analysis identified 19 genes with differentially methylated promoters, five of which perform functions with an apparent direct relevance to tendinopathy (Leprel2, Foxf1, Mmp25, Igfbp6, and Peg12). The functions of the genes identified included collagen fiber assembly and pericellular interactions, therefore their perturbation could play a role in the characteristic disorganization of fibers in affected tendons. We postulate that a study of the functional genomics of these genes in animal and human tendon could further delineate the pathogenesis of this multi-factorial complex disease. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:947-955, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Genome-Wide Dynamic Profiling of Histone Methylation during Nuclear Transfer-Mediated Porcine Somatic Cell Reprogramming.

    PubMed

    Cao, Zubing; Li, Yunsheng; Chen, Zhen; Wang, Heng; Zhang, Meiling; Zhou, Naru; Wu, Ronghua; Ling, Yinghui; Fang, Fugui; Li, Ning; Zhang, Yunhai

    2015-01-01

    The low full-term developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos is mainly attributed to imperfect epigenetic reprogramming in the early embryos. However, dynamic expression patterns of histone methylation involved in epigenetic reprogramming progression during porcine SCNT embryo early development remain to be unknown. In this study, we characterized and compared the expression patterns of multiple histone methylation markers including transcriptionally repressive (H3K9me2, H3K9me3, H3K27me2, H3K27me3, H4K20me2 and H4K20me3) and active modifications (H3K4me2, H3K4me3, H3K36me2, H3K36me3, H3K79me2 and H3K79me3) in SCNT early embryos from different developmental stages with that from in vitro fertilization (IVF) counterparts. We found that the expression level of H3K9me2, H3K9me3 and H4K20me3 of SCNT embryos from 1-cell to 4-cell stages was significantly higher than that in the IVF embryos. We also detected a symmetric distribution pattern of H3K9me2 between inner cell mass (ICM) and trophectoderm (TE) in SCNT blastocysts. The expression level of H3K9me2 in both lineages from SCNT expanded blastocyst onwards was significantly higher than that in IVF counterparts. The expression level of H4K20me2 was significantly lower in SCNT embryos from morula to blastocyst stage compared with IVF embryos. However, no aberrant dynamic reprogramming of H3K27me2/3 occurred during early developmental stages of SCNT embryos. The expression of H3K4me3 was higher in SCNT embryos at 4-cell stage than that of IVF embryos. H3K4me2 expression in SCNT embryos from 8-cell stage to blastocyst stage was lower than that in the IVF embryos. Dynamic patterns of other active histone methylation markers were similar between SCNT and IVF embryos. Taken together, histone methylation exhibited developmentally stage-specific abnormal expression patterns in porcine SCNT early embryos.

  5. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  6. Genome-Wide Dynamic Profiling of Histone Methylation during Nuclear Transfer-Mediated Porcine Somatic Cell Reprogramming

    PubMed Central

    Chen, Zhen; Wang, Heng; Zhang, Meiling; Zhou, Naru; Wu, Ronghua; Ling, Yinghui; Fang, Fugui; Li, Ning; Zhang, Yunhai

    2015-01-01

    The low full-term developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos is mainly attributed to imperfect epigenetic reprogramming in the early embryos. However, dynamic expression patterns of histone methylation involved in epigenetic reprogramming progression during porcine SCNT embryo early development remain to be unknown. In this study, we characterized and compared the expression patterns of multiple histone methylation markers including transcriptionally repressive (H3K9me2, H3K9me3, H3K27me2, H3K27me3, H4K20me2 and H4K20me3) and active modifications (H3K4me2, H3K4me3, H3K36me2, H3K36me3, H3K79me2 and H3K79me3) in SCNT early embryos from different developmental stages with that from in vitro fertilization (IVF) counterparts. We found that the expression level of H3K9me2, H3K9me3 and H4K20me3 of SCNT embryos from 1-cell to 4-cell stages was significantly higher than that in the IVF embryos. We also detected a symmetric distribution pattern of H3K9me2 between inner cell mass (ICM) and trophectoderm (TE) in SCNT blastocysts. The expression level of H3K9me2 in both lineages from SCNT expanded blastocyst onwards was significantly higher than that in IVF counterparts. The expression level of H4K20me2 was significantly lower in SCNT embryos from morula to blastocyst stage compared with IVF embryos. However, no aberrant dynamic reprogramming of H3K27me2/3 occurred during early developmental stages of SCNT embryos. The expression of H3K4me3 was higher in SCNT embryos at 4-cell stage than that of IVF embryos. H3K4me2 expression in SCNT embryos from 8-cell stage to blastocyst stage was lower than that in the IVF embryos. Dynamic patterns of other active histone methylation markers were similar between SCNT and IVF embryos. Taken together, histone methylation exhibited developmentally stage-specific abnormal expression patterns in porcine SCNT early embryos. PMID:26683029

  7. Base flip in DNA studied by molecular dynamics simulationsof differently-oxidized forms of methyl-Cytosine.

    PubMed

    Helabad, Mahdi Bagherpoor; Kanaan, Natalia; Imhof, Petra

    2014-07-03

    Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme's active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized) methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.

  8. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits.

    PubMed

    Volkov, Petr; Olsson, Anders H; Gillberg, Linn; Jørgensen, Sine W; Brøns, Charlotte; Eriksson, Karl-Fredrik; Groop, Leif; Jansson, Per-Anders; Nilsson, Emma; Rönn, Tina; Vaag, Allan; Ling, Charlotte

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and

  9. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    PubMed Central

    Volkov, Petr; Olsson, Anders H.; Gillberg, Linn; Jørgensen, Sine W.; Brøns, Charlotte; Eriksson, Karl-Fredrik; Groop, Leif; Jansson, Per-Anders; Nilsson, Emma; Rönn, Tina; Vaag, Allan; Ling, Charlotte

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and

  10. 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC).

    PubMed

    Suderman, M; Stene, L C; Bohlin, J; Page, C M; Holvik, K; Parr, C L; Magnus, M C; Håberg, S E; Joubert, B R; Wu, M C; London, S J; Relton, C; Nystad, W

    2016-05-01

    The aim of the study was to investigate whether maternal mid-pregnancy 25-hydroxyvitamin D concentrations are associated with cord blood DNA methylation. DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip, and maternal plasma 25-hydroxyvitamin D was measured in 819 mothers/newborn pairs participating in the Norwegian Mother and Child Cohort (MoBa) and 597 mothers/newborn pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Across 473,731CpG DNA methylation sites in cord blood DNA, none were strongly associated with maternal 25-hydroxyvitamin D after adjusting for multiple tests (false discovery rate (FDR)>0.5; 473,731 tests). A meta-analysis of the results from both cohorts, using the Fisher method for combining p-values, also did not strengthen findings (FDR>0.2). Further exploration of a set of CpG sites in the proximity of four a priori defined candidate genes (CYP24A1, CYP27B1, CYP27A1 and CYP2R1) did not result in any associations with FDR<0.05 (56 tests). In this large genome wide assessment of the potential influence of maternal vitamin D status on DNA methylation, we did not find any convincing associations in 1416 newborns. If true associations do exist, their identification might require much larger consortium studies, expanded genomic coverage, investigation of alternative cell types or measurements of 25-hydroxyvitamin D at different gestational time points.

  11. 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC)

    PubMed Central

    Suderman, M.; Stene, L.C.; Bohlin, J.; Page, C.M.; Holvik, K.; Parr, C.L.; Magnus, M.C.; Håberg, S.E.; Joubert, B.R.; Wu, M.C.; London, S.J.; Relton, C.; Nystad, W.

    2016-01-01

    The aim of the study was to investigate whether maternal mid-pregnancy 25-hydroxyvitamin D concentrations are associated with cord blood DNA methylation. DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip, and maternal plasma 25-hydroxyvitamin D was measured in 819 mothers/newborn pairs participating in the Norwegian Mother and Child Cohort (MoBa) and 597 mothers/newborn pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Across 473,731CpG DNA methylation sites in cord blood DNA, none were strongly associated with maternal 25-hydroxyvitamin D after adjusting for multiple tests (false discovery rate (FDR) > 0.5; 473,731 tests). A meta-analysis of the results from both cohorts, using the Fisher method for combining p-values, also did not strengthen findings (FDR > 0.2). Further exploration of a set of CpG sites in the proximity of four a priori defined candidate genes (CYP24A1, CYP27B1, CYP27A1 and CYP2R1) did not result in any associations with FDR < 0.05 (56 tests). In this large genome wide assessment of the potential influence of maternal vitamin D status on DNA methylation, we did not find any convincing associations in 1416 newborns. If true associations do exist, their identification might require much larger consortium studies, expanded genomic coverage, investigation of alternative cell types or measurements of 25-hydroxyvitamin D at different gestational time points. PMID:26953979

  12. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.

  13. Genome-wide methylation profiling reveals Zinc finger protein 516 (ZNF516) and FK-506-binding protein 6 (FKBP6) promoters frequently methylated in cervical neoplasia, associated with HPV status and ethnicity in a Chilean population

    PubMed Central

    Brebi, Priscilla; Maldonado, Leonel; Noordhuis, Maartje G; Ili, Carmen; Leal, Pamela; Garcia, Patricia; Brait, Mariana; Ribas, Judit; Michailidi, Christina; Perez, Jimena; Soudry, Ethan; Tapia, Oscar; Guzman, Pablo; Muñoz, Sergio; Van Neste, Leander; Van Criekinge, Wim; Irizarry, Rafael; Sidransky, David; Roa, Juan C; Guerrero-Preston, Rafael

    2014-01-01

    Cervical cancer is a major health concern among women in Latin America due to its high incidence and mortality. Therefore, the discovery of molecular markers for cervical cancer screening and triage is imperative. The aim of this study was to use a genome wide DNA methylation approach to identify novel methylation biomarkers in cervical cancer. DNA from normal cervical mucosa and cervical cancer tissue samples from Chile was enriched with Methylated DNA Immunoprecipitation (MeDIP), hybridized to oligonucleotide methylation microarrays and analyzed with a stringent bioinformatics pipeline to identify differentially methylated regions (DMRs) as candidate biomarkers. Quantitative Methylation Specific PCR (qMSP) was used to study promoter methylation of candidate DMRs in clinical samples from two independent cohorts. HPV detection and genotyping were performed by Reverse Line Blot analysis. Bioinformatics analysis revealed GGTLA4, FKBP6, ZNF516, SAP130, and INTS1 to be differentially methylated in cancer and normal tissues in the Discovery cohort. In the Validation cohort FKBP6 promoter methylation had 73% sensitivity and 80% specificity (AUC = 0.80). ZNF516 promoter methylation was the best biomarker, with both sensitivity and specificity of 90% (AUC = 0.92), results subsequently corroborated in a Prevalence cohort. Together, ZNF516 and FKBP6 exhibited a sensitivity of 84% and specificity of 81%, when considering both cohorts. Our genome wide DNA methylation assessment approach (MeDIP-chip) successfully identified novel biomarkers that differentiate between cervical cancer and normal samples, after adjusting for age and HPV status. These biomarkers need to be further explored in case-control and prospective cohorts to validate them as cervical cancer biomarkers. PMID:24241165

  14. Genome-wide analysis of mutagenesis bias and context sensitivity of N-methyl-N'-nitro-N-nitrosoguanidine (NTG).

    PubMed

    Harper, Marc; Lee, Christopher J

    2012-03-01

    We have analyzed the mutation spectrum of N-methyl-N'-nitro-N-nitrosoguanidine (NTG) from a set of 4099 mutations identified from whole-genome sequencing of 32 E. coli strains mutagenized with NTG. These data permit precise measurement of NTG's bias for G/C to A/T transitions (96.6% of all mutations) and also show that NTG mutagenesis is strongly sensitive to context, favoring guanine residues preceded by purines by five-fold over those preceded by pyrimidines. These data give confident estimates for the GC bias and transition/transversion ratios of NTG mutagenesis, which could not be estimated confidently from previous, much smaller datasets. Published by Elsevier B.V.

  15. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of Acer platanoides L.

    PubMed

    Plitta, Beata P; Michalak, Marcin; Bujarska-Borkowska, Barbara; Barciszewska, Mirosława Z; Barciszewski, Jan; Chmielarz, Paweł

    2014-12-01

    5-methylcytosine, an abundant epigenetic mark, plays an important role in the regulation of plant growth and development, but there is little information about stress-induced changes in DNA methylation in seeds. In the present study, changes in a global level of m5C were measured in orthodox seeds of Acer platanoides L. during seed desiccation from a WC of 1.04 to 0.05-0.06 g H2O g g(-1) dry mass (g g(-1)). Changes in the level of DNA methylation were measured using 2D TLC e based method. Quality of desiccated seeds was examined by germination and seedling emergence tests. Global m5C content (R2)increase was observed in embryonic axes isolated from seeds collected at a high WC of 1.04 g g(-1) after their desiccation to significantly lower WC of 0.17 and 0.19 g g(-1). Further desiccation of these seeds to a WC of 0.06 g g(-1), however, resulted in a significant DNA demethylation to R2 ¼ 11.52-12.22%. Similar m5C decrease was observed in seeds which undergo maturation drying on the tree and had four times lower initial WC of 0.27 g g(-1) at the time of harvest, as they were dried to a WC of 0.05 g g(-1). These data confirm that desiccation induces changes in seed m5C levels. Results were validated by seed lots derived from tree different A. platanoides provenances. It is plausible that sine wave-like alterations in m5C amount may represent a specific response of orthodox seeds to drying and play a relevant role in desiccation tolerance in seeds.

  16. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA

    PubMed Central

    Briggs, Adrian W.; Stenzel, Udo; Meyer, Matthias; Krause, Johannes; Kircher, Martin; Pääbo, Svante

    2010-01-01

    DNA sequences determined from ancient organisms have high error rates, primarily due to uracil bases created by cytosine deamination. We use synthetic oligonucleotides, as well as DNA extracted from mammoth and Neandertal remains, to show that treatment with uracil–DNA–glycosylase and endonuclease VIII removes uracil residues from ancient DNA and repairs most of the resulting abasic sites, leaving undamaged parts of the DNA fragments intact. Neandertal DNA sequences determined with this protocol have greatly increased accuracy. In addition, our results demonstrate that Neandertal DNA retains in vivo patterns of CpG methylation, potentially allowing future studies of gene inactivation and imprinting in ancient organisms. PMID:20028723

  17. Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in TP53-Associated Cancer Susceptibility.

    PubMed

    Samuel, Nardin; Wilson, Gavin; Lemire, Mathieu; Id Said, Badr; Lou, Youliang; Li, Weili; Merino, Diana; Novokmet, Ana; Tran, James; Nichols, Kim E; Finlay, Jonathan L; Choufani, Sanaa; Remke, Marc; Ramaswamy, Vijay; Cavalli, Florence M G; Elser, Christine; Meister, Lynn; Taylor, Michael D; Tabori, Uri; Irwin, Meredith; Weksberg, Rosanna; Wasserman, Jonathan D; Paterson, Andrew D; Hansford, Jordan R; Achatz, Maria Isabel W; Hudson, Thomas J; Malkin, David

    2016-08-22

    Although the link between mutant TP53 and human cancer is unequivocal, a significant knowledge gap exists in clinically actionable molecular targets in Li-Fraumeni syndrome (LFS), a highly penetrant cancer predisposition syndrome associated with germline mutations in TP53. This study surveyed the epigenome to identify functionally and clinically relevant novel genes implicated in LFS. We performed genome-wide methylation analyses of peripheral blood leukocyte DNA in germline TP53 mutation carriers (n = 72) and individuals with TP53 wild type in whom histologically comparable malignancies developed (n = 111). Targeted bisulfite pyrosequencing was performed on a validation cohort of 30 TP53 mutation carriers and 46 patients with TP53 wild type, and candidate sites were evaluated in primary tumors from patients with LFS across multiple histologic tumor types. In 183 patients, distinct DNA methylation signatures were associated with deleterious TP53 mutations in peripheral blood leukocytes. TP53-associated DNA methylation marks occurred in genomic regions that harbored p53 binding sites and in genes encoding p53 pathway proteins. Moreover, loss-of-function TP53 mutations were significantly associated with differential methylation at the locus encoding microRNA miR-34A, a key component of the p53 regulatory network (adjusted P < .001), and validated in an independent patient cohort (n = 76, P < .001). Targeted bisulfite pyrosequencing demonstrated that miR-34A was inactivated by hypermethylation across many histologic types of primary tumors from patients with LFS. Moreover, miR-34A tumor hypermethylation was associated with decreased overall survival in a cohort of 29 patients with choroid plexus carcinomas, a characteristic LFS tumor (P < .05). Epigenetic dysregulation of miR-34A may comprise an important path in TP53-associated cancer predisposition and represents a therapeutically actionable target with potential clinical relevance. © 2016 by American Society of

  18. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome.

    PubMed

    Wu, Hao; Tao, Jifang; Chen, Pauline J; Shahab, Atif; Ge, Weihong; Hart, Ronald P; Ruan, Xiaoan; Ruan, Yijun; Sun, Yi E

    2010-10-19

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function as posttranscriptional regulators of gene expression. Many miRNAs are expressed in the developing brain and regulate multiple aspects of neural development, including neurogenesis, dendritogenesis, and synapse formation. Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). Although Mecp2 is known to act as a global transcriptional regulator, miRNAs that are directly regulated by Mecp2 in the brain are not known. Using massively parallel sequencing methods, we have identified miRNAs whose expression is altered in cerebella of Mecp2-null mice before and after the onset of severe neurological symptoms. In vivo genome-wide analyses indicate that promoter regions of a significant fraction of dysregulated miRNA transcripts, including a large polycistronic cluster of brain-specific miRNAs, are DNA-methylated and are bound directly by Mecp2. Functional analysis demonstrates that the 3' UTR of messenger RNA encoding Brain-derived neurotrophic factor (Bdnf) can be targeted by multiple miRNAs aberrantly up-regulated in the absence of Mecp2. Taken together, these results suggest that dysregulation of miRNAs may contribute to RTT pathoetiology and also may provide a valuable resource for further investigations of the role of miRNAs in RTT.

  19. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq).

    PubMed

    Clark, Stephen J; Smallwood, Sébastien A; Lee, Heather J; Krueger, Felix; Reik, Wolf; Kelsey, Gavin

    2017-03-01

    DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.

  20. Clinical outcomes and genome-wide association for a brain methylation site in an antidepressant pharmacogenetics study in Mexican Americans.

    PubMed

    Wong, Ma-Li; Dong, Chuanhui; Flores, Deborah L; Ehrhart-Bornstein, Monika; Bornstein, Stefan; Arcos-Burgos, Mauricio; Licinio, Julio

    2014-12-01

    The authors compared the effectiveness of fluoxetine and desipramine treatment in a prospective double-blind pharmacogenetics study in first-generation Mexican Americans and examined the role of whole-exome functional gene variations in the patients' antidepressant response. A total of 232 Mexican Americans who met DSM-IV criteria for major depressive disorder were randomly assigned to receive 8 weeks of double-blind treatment with desipramine (50-200 mg/day) or fluoxetine (10-40 mg/day) after a 1-week placebo lead-in period. Outcome measures included the Hamilton Depression Rating Scale (HAM-D), the Hamilton Anxiety Rating Scale, and the Beck Depression Inventory. At week 8, whole-exome genotyping data were obtained for 36 participants who remitted and 29 who did not respond to treatment. Compared with desipramine treatment, fluoxetine treatment was associated with a greater reduction in HAM-D score, higher response and remission rates, shorter time to response and remission, and lower incidences of anticholinergic and cardiovascular side effects. Pharmacogenetics analysis showed that exm-rs1321744 achieved exome-wide significance for treatment remission. This variant is located in a brain methylated DNA immunoprecipitation sequencing site, which suggests that it may be involved in epigenetic regulation of neuronal gene expression. This and two other common gene variants provided a highly accurate cross-validated predictive model for treatment remission of major depression (receiver operating characteristic integral=0.95). Compared with desipramine, fluoxetine treatment showed a more rapid reduction of HAM-D score and a lower incidence of side effects in a population comprising primarily first-generation Mexican Americans with major depression. This study's pharmacogenetics approach strongly implicates the role of functional variants in antidepressant treatment response.

  1. Two-color fluorescent cytosine extension assay for the determination of global DNA methylation.

    PubMed

    Zhou, Gu; Parfett, Craig; Cummings-Lorbetskie, Cathy; Xiao, Gong-Hua; Desaulniers, Daniel

    2017-04-01

    Here, we present a DNA restriction enzyme-based, fluorescent cytosine extension assay (CEA) to improve normalization and technical variation among sample-to-sample measurements. The assay includes end-labeling of parallel methylation-sensitive and methylation-insensitive DNA restriction enzyme digests along with co-purification and subsequent co-measurement of incorporated fluorescence. This non-radioactive, two-color fluorescent CEA (TCF-CEA) was shown to be a relatively rapid and accurate, with 3-fold greater precision than the one-color CEA. In addition, TCF-CEA provided an index of global DNA methylation that was sensitive to differences >5%. TCF-CEA results were highly correlated with LUminometric Methylation Assay (LUMA) results using human liver cell lines (HepG2, HepaRG, HC-04) as well as a human liver primary cell culture. Hypomethylation was observed in cells treated with the de-methylating agent 5-aza-2'-deoxycytidine. These results demonstrate that TCF-CEA provides a simple method for measuring relative degrees of global DNA methylation that could potentially be scaled up to higher-throughput formats.

  2. Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution

    PubMed Central

    He, Ximiao; Tillo, Desiree; Vierstra, Jeff; Syed, Khund-Sayeed; Deng, Callie; Ray, G. Jordan; Stamatoyannopoulos, John; FitzGerald, Peter C.; Vinson, Charles

    2015-01-01

    In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif (TGAC/GTCAN), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (GCAGCTGC), the NF-1 motif (GGCA—TGCC), and the GR (glucocorticoid receptor) motif (G-ACA—TGT-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. PMID:26507798

  3. Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin

    PubMed Central

    Jackel, Jamie N.; Storer, Jessica M.; Coursey, Tami

    2016-01-01

    ABSTRACT In plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirus Beet curly top virus (BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formed de novo in infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to trigger de novo deposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin. IMPORTANCE In plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but

  4. Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula.

    PubMed

    Ochogavía, Ana C; Cervigni, Gerardo; Selva, Juan P; Echenique, Viviana C; Pessino, Silvina C

    2009-05-01

    In many species polyploidization involves rearrangements of the progenitor genomes, at both genetic and epigenetic levels. We analyzed the cytosine methylation status in a 'tetraploid-diploid-tetraploid' series of Eragrostis curvula with a common genetic background by using the MSAP (Methylation-sensitive Amplified Polymorphism) technique. Considerable levels of polymorphisms were detected during ploidy conversions. The total level of methylation observed was lower in the diploid genotype compared to the tetraploid ones. A significant proportion of the epigenetic modifications occurring during the tetraploid-diploid conversion reverted during the diploid-tetraploid one. Genetic and expression data from previous work were used to analyze correlation with methylation variation. All genetic, epigenetic and gene expression variation data correlated significantly when compared by pairs in simple Mantel tests. Dendrograms reflecting genetic, epigenetic and expression distances as well as principal coordinate analysis suggested that plants of identical ploidy levels present similar sets of data. Twelve (12) different genomic fragments displaying different methylation behavior during the ploidy conversions were isolated, sequenced and characterized.

  5. Genome-wide DNA methylation study of hip and knee cartilage reveals embryonic organ and skeletal system morphogenesis as major pathways involved in osteoarthritis.

    PubMed

    Aref-Eshghi, Erfan; Zhang, Yuhua; Liu, Ming; Harper, Patricia E; Martin, Glynn; Furey, Andrew; Green, Roger; Sun, Guang; Rahman, Proton; Zhai, Guangju

    2015-10-09

    Evidence suggests that epigenetics plays a role in osteoarthrits (OA). The aim of the study was to describe the genome wide DNA methylation changes in hip and knee OA and identify novel genes and pathways involved in OA by comparing the DNA methylome of the hip and knee osteoarthritic cartilage tissues with those of OA-free individuals. Cartilage samples were collected from hip or knee joint replacement patients either due to primary OA or hip fractures as controls. DNA was extracted from the collected cartilage and assayed by Illumina Infinium HumanMethylation450 BeadChip array, which allows for the analysis of >480,000 CpG sites. Student T-test was conducted for each CpG site and those sites with at least 10 % methylation difference and a p value <0.0005 were defined as differentially methylated regions (DMRs) for OA. A sub-analysis was also done for hip and knee OA separately. DAVID v6.7 was used for the functional annotation clustering of the DMR genes. Clustering analysis was done using multiple dimensional scaling and hierarchical clustering methods. The study included 5 patients with hip OA, 6 patients with knee OA and 7 hip cartilage samples from OA-free individuals. The comparisons of hip, knee and combined hip/knee OA patients with controls resulted in 26, 72, and 103 DMRs, respectively. The comparison between hip and knee OA revealed 67 DMRs. The overall number of the sites after considering the overlaps was 239, among which 151 sites were annotated to 145 genes. One-fifth of these genes were reported in previous studies. The functional annotation clustering of the identified genes revealed clusters significantly enriched in skeletal system morphogenesis and development. The analysis revealed significant difference among OA and OA-free cartilage, but less different between hip OA and knee OA. We found that a number of CpG sites and genes across the genome were differentially methylated in OA patients, a remarkable portion of which seem to be involved in

  6. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes.

    PubMed

    Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana

    2017-04-01

    Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.

  7. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers.

    PubMed

    Charlet, Jessica; Duymich, Christopher E; Lay, Fides D; Mundbjerg, Kamilla; Dalsgaard Sørensen, Karina; Liang, Gangning; Jones, Peter A

    2016-05-05

    The role of cytosine methylation in the structure and function of enhancers is not well understood. In this study, we investigate the role of DNA methylation at enhancers by comparing the epigenomes of the HCT116 cell line and its highly demethylated derivative, DKO1. Unlike promoters, a portion of regular and super- or stretch enhancers show active H3K27ac marks co-existing with extensive DNA methylation, demonstrating the unexpected presence of bivalent chromatin in both cultured and uncultured cells. Furthermore, our findings also show that bivalent regions have fewer nucleosome-depleted regions and transcription factor-binding sites than monovalent regions. Reduction of DNA methylation genetically or pharmacologically leads to a decrease of the H3K27ac mark. Thus, DNA methylation plays an unexpected dual role at enhancer regions, being anti-correlated focally at transcription factor-binding sites but positively correlated globally with the active H3K27ac mark to ensure structural enhancer integrity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma

    PubMed Central

    Brait, Mariana; Munari, Enrico; LeBron, Cynthia; Noordhuis, Maartje G.; Begum, Shahnaz; Michailidi, Christina; Gonzalez-Roibon, Nilda; Maldonado, Leonel; Sen, Tanusree; Guerrero-Preston, Rafael; Cope, Leslie; Parrella, Paola; Fazio, Vito Michele; Ha, Patrick K.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2013-01-01

    Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood. To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when

  9. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma.

    PubMed

    Brait, Mariana; Munari, Enrico; LeBron, Cynthia; Noordhuis, Maartje G; Begum, Shahnaz; Michailidi, Christina; Gonzalez-Roibon, Nilda; Maldonado, Leonel; Sen, Tanusree; Guerrero-Preston, Rafael; Cope, Leslie; Parrella, Paola; Fazio, Vito Michele; Ha, Patrick K; Netto, George J; Sidransky, David; Hoque, Mohammad O

    2013-04-01

    Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood. To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when

  10. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing

    PubMed Central

    2010-01-01

    Background Cancer cells undergo massive alterations to their DNA methylation patterns that result in aberrant gene expression and malignant phenotypes. However, the mechanisms that underlie methylome changes are not well understood nor is the genomic distribution of DNA methylation changes well characterized. Results Here, we performed methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) to obtain whole-genome DNA methylation profiles for eight human breast cancer cell (BCC) lines and for normal human mammary epithelial cells (HMEC). The MeDIP-seq analysis generated non-biased DNA methylation maps by covering almost the entire genome with sufficient depth and resolution. The most prominent feature of the BCC lines compared to HMEC was a massively reduced methylation level particularly in CpG-poor regions. While hypomethylation did not appear to be associated with particular genomic features, hypermethylation preferentially occurred at CpG-rich gene-related regions independently of the distance from transcription start sites. We also investigated methylome alterations during epithelial-to-mesenchymal transition (EMT) in MCF7 cells. EMT induction was associated with specific alterations to the methylation patterns of gene-related CpG-rich regions, although overall methylation levels were not significantly altered. Moreover, approximately 40% of the epithelial cell-specific methylation patterns in gene-related regions were altered to those typical of mesenchymal cells, suggesting a cell-type specific regulation of DNA methylation. Conclusions This study provides the most comprehensive analysis to date of the methylome of human mammary cell lines and has produced novel insights into the mechanisms of methylome alteration during tumorigenesis and the interdependence between DNA methylome alterations and morphological changes. PMID:20181289

  11. Epigenetic contribution to successful polyploidizations: variation in global cytosine methylation along an extensive ploidy series in Dianthus broteri (Caryophyllaceae).

    PubMed

    Alonso, Conchita; Balao, Francisco; Bazaga, Pilar; Pérez, Ricardo

    2016-11-01

    Polyploidization is a significant evolutionary force in plants which involves major genomic and genetic changes, frequently regulated by epigenetic factors. We explored whether natural polyploidization in Dianthus broteri complex resulted in substantial changes in global DNA cytosine methylation associated to ploidy. Global cytosine methylation was estimated by high-performance liquid chromatography (HPLC) in 12 monocytotypic populations with different ploidies (2×, 4×, 6×, 12×) broadly distributed within D. broteri distribution range. The effects of ploidy level and local variation on methylation were assessed by generalized linear mixed models (GLMMs). Dianthus broteri exhibited a higher methylation percent (˜33%) than expected by its monoploid genome size and a large variation among study populations (range: 29.3-35.3%). Global methylation tended to increase with ploidy but did not significantly differ across levels due to increased variation within the highest-order polyploidy categories. Methylation varied more among hexaploid and dodecaploid populations, despite such cytotypes showing more restricted geographic location and increased genetic relatedness than diploids and tetraploids. In this study, we demonstrate the usefulness of an HPLC method in providing precise and genome reference-free global measure of DNA cytosine methylation, suitable to advance current knowledge of the roles of this epigenetic mechanism in polyploidization processes.

  12. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    PubMed Central

    2012-01-01

    Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation. PMID:22251412

  13. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays).

    PubMed

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-03-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.

  14. Epigenetic Variation, Inheritance, and Parent-of-Origin Effects of Cytosine Methylation in Maize (Zea mays)

    PubMed Central

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-01-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context. PMID:24374354

  15. MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD.

    PubMed

    Nieratschker, V; Massart, R; Gilles, M; Luoni, A; Suderman, M J; Krumm, B; Meier, S; Witt, S H; Nöthen, M M; Suomi, S J; Peus, V; Scharnholz, B; Dukal, H; Hohmeyer, C; Wolf, I A-C; Cirulli, F; Gass, P; Sütterlin, M W; Filsinger, B; Laucht, M; Riva, M A; Rietschel, M; Deuschle, M; Szyf, M

    2014-08-26

    Early life stress (ELS) is associated with increased vulnerability for diseases in later life, including psychiatric disorders. Animal models and human studies suggest that this effect is mediated by epigenetic mechanisms. In humans, epigenetic studies to investigate the influence of ELS on psychiatric phenotypes are limited by the inaccessibility of living brain tissue. Due to the tissue-specific nature of epigenetic signatures, it is impossible to determine whether ELS induced epigenetic changes in accessible peripheral cells, for example, blood lymphocytes, reflect epigenetic changes in the brain. To overcome these limitations, we applied a cross-species approach involving: (i) the analysis of CD34+ cells from human cord blood; (ii) the examination of blood-derived CD3+ T cells of newborn and adolescent nonhuman primates (Macaca mulatta); and (iii) the investigation of the prefrontal cortex of adult rats. Several regions in MORC1 (MORC family CW-type zinc finger 1; previously known as: microrchidia (mouse) homolog) were differentially methylated in response to ELS in CD34+ cells and CD3+ T cells derived from the blood of human and monkey neonates, as well as in CD3+ T cells derived from the blood of adolescent monkeys and in the prefrontal cortex of adult rats. MORC1 is thus the first identified epigenetic marker of ELS to be present in blood cell progenitors at birth and in the brain in adulthood. Interestingly, a gene-set-based analysis of data from a genome-wide association study of major depressive disorder (MDD) revealed an association of MORC1 with MDD.

  16. MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD

    PubMed Central

    Nieratschker, V; Massart, R; Gilles, M; Luoni, A; Suderman, M J; Krumm, B; Meier, S; Witt, S H; Nöthen, M M; Suomi, S J; Peus, V; Scharnholz, B; Dukal, H; Hohmeyer, C; Wolf, I A-C; Cirulli, F; Gass, P; Sütterlin, M W; Filsinger, B; Laucht, M; Riva, M A; Rietschel, M; Deuschle, M; Szyf, M

    2014-01-01

    Early life stress (ELS) is associated with increased vulnerability for diseases in later life, including psychiatric disorders. Animal models and human studies suggest that this effect is mediated by epigenetic mechanisms. In humans, epigenetic studies to investigate the influence of ELS on psychiatric phenotypes are limited by the inaccessibility of living brain tissue. Due to the tissue-specific nature of epigenetic signatures, it is impossible to determine whether ELS induced epigenetic changes in accessible peripheral cells, for example, blood lymphocytes, reflect epigenetic changes in the brain. To overcome these limitations, we applied a cross-species approach involving: (i) the analysis of CD34+ cells from human cord blood; (ii) the examination of blood-derived CD3+ T cells of newborn and adolescent nonhuman primates (Macaca mulatta); and (iii) the investigation of the prefrontal cortex of adult rats. Several regions in MORC1 (MORC family CW-type zinc finger 1; previously known as: microrchidia (mouse) homolog) were differentially methylated in response to ELS in CD34+ cells and CD3+ T cells derived from the blood of human and monkey neonates, as well as in CD3+ T cells derived from the blood of adolescent monkeys and in the prefrontal cortex of adult rats. MORC1 is thus the first identified epigenetic marker of ELS to be present in blood cell progenitors at birth and in the brain in adulthood. Interestingly, a gene-set-based analysis of data from a genome-wide association study of major depressive disorder (MDD) revealed an association of MORC1 with MDD. PMID:25158004

  17. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    PubMed Central

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  18. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans.

    PubMed

    Amarasekera, Manori; Martino, David; Ashley, Sarah; Harb, Hani; Kesper, Dörthe; Strickland, Deborah; Saffery, Richard; Prescott, Susan L

    2014-09-01

    Folate intake during pregnancy may affect the regulation of DNA methylation during fetal development. The genomic regions in the offspring that may be sensitive to folate exposure during in utero development have not been characterized. Using genome-scale profiling, we investigated DNA methylation in 2 immune cell types (CD4(+) and antigen-presenting cells) isolated from neonatal cord blood, selected on the basis of in utero folate exposure. High-folate (HF; n=11) and low-folate (LF; n=12) groups were selected from opposite extremes of maternal serum folate levels measured in the last trimester of pregnancy. A comparison of these groups revealed differential methylation at 7 regions across the genome. By far, the biggest effect observed was hypomethylation of a 923 bp region 3 kb upstream of the ZFP57 transcript, a regulator of DNA methylation during development, observed in both cell types. Levels of H3/H4 acetylation at ZFP57 promoter and ZFP57 mRNA expression were higher in CD4(+) cells in the HF group relative to the LF group. Hypomethylation at this region was replicated in an independent sample set. These data suggest that exposure to folate has effects on the regulation of DNA methylation during fetal development, and this may be important for health and disease.

  19. Computational Modeling Approach in Probing the Effects of Cytosine Methylation on the Transcription Factor Binding to DNA.

    PubMed

    Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo

    2017-01-01

    Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Genome Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Sebastiani, Paola; Solovieff, Nadia

    The availability of high throughput technology for parallel genotyping has opened the field of genetics to genome-wide association studies (GWAS). These studies generate massive amount of genetic data that challenge investigators with issues related to data management, statistical analysis of large data sets, visualization, and annotation of results. We will review the common approach to analysis of GWAS data and then discuss options to learn more from these data.

  1. Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution.

    PubMed

    Carbone, Lucia; Harris, R Alan; Vessere, Gery M; Mootnick, Alan R; Humphray, Sean; Rogers, Jane; Kim, Sung K; Wall, Jeffrey D; Martin, David; Jurka, Jerzy; Milosavljevic, Aleksandar; de Jong, Pieter J

    2009-06-01

    Gibbon species have accumulated an unusually high number of chromosomal changes since diverging from the common hominoid ancestor 15-18 million years ago. The cause of this increased rate of chromosomal rearrangements is not known, nor is it known if genome architecture has a role. To address this question, we analyzed sequences spanning 57 breaks of synteny between northern white-cheeked gibbons (Nomascus l. leucogenys) and humans. We find that the breakpoint regions are enriched in segmental duplications and repeats, with Alu elements being the most abundant. Alus located near the gibbon breakpoints (<150 bp) have a higher CpG content than other Alus. Bisulphite allelic sequencing reveals that these gibbon Alus have a lower average density of methylated cytosine that their human orthologues. The finding of higher CpG content and lower average CpG methylation suggests that the gibbon Alu elements are epigenetically distinct from their human orthologues. The association between undermethylation and chromosomal rearrangement in gibbons suggests a correlation between epigenetic state and structural genome variation in evolution.

  2. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A; Ahn, Antonio; Rodger, Euan J; Leichter, Anna L; Eccles, Michael R

    2017-01-01

    Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis. PMID:28030832

  3. DNA methylation at the C-5 position of cytosine by methyl radicals: a possible role for epigenetic change during carcinogenesis by environmental agents.

    PubMed

    Kasai, Hiroshi; Kawai, Kazuaki

    2009-06-01

    During carcinogenesis, methylation of the C-5 position of cytosines in the promoter region of tumor suppressor genes is often observed. Enzymatic DNA methylation is a widely accepted mechanism for this phenomenon. It is interesting to propose a free radical mechanism for 5-methyldeoxycytidine (m(5)dC) production, because the C-5 position of cytosine is an active site for free radical reactions. When deoxycytidine (dC) and cumene hydroperoxide (CuOOH), a tumor promoter and a methyl radical producer, were reacted in the presence of ferrous ion at pH 7.4, the formation of m(5)dC was observed. The same reaction also proceeded with t-butyl hydroperoxide (BuOOH). The formation of m(5)dC was also observed in DNA by the CuOOH treatment. This is the first report of chemical DNA methylation at cytosine C-5 by environmental tumor promoters. We propose here that this reaction is one of the important mechanisms of de novo DNA methylation during carcinogenesis, because methyl radicals are produced by the biotransformation of various endogenous and exogenous compounds.

  4. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    SciTech Connect

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop; Lister, Ryan; Rowley, M. J.; Gregory, Brian D.; Ecker, Joseph R.; Tang, Haixu; Pikaard, Craig S.

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.

  5. Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene

    PubMed Central

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2017-01-01

    Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling. PMID:28102315

  6. Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene

    NASA Astrophysics Data System (ADS)

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2017-01-01

    Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling.

  7. Effect of C5-Methylation of Cytosine on the UV-Induced Reactivity of Duplex DNA: Conformational and Electronic Factors.

    PubMed

    Banyasz, Akos; Esposito, Luciana; Douki, Thierry; Perron, Marion; Lepori, Clément; Improta, Roberto; Markovitsi, Dimitra

    2016-05-12

    C5-methylation of cytosines is strongly correlated with UV-induced mutations detected in skin cancers. Mutational hot-spots appearing at TCG sites are due to the formation of pyrimidine cyclobutane dimers (CPDs). The present study, performed for the model DNA duplex (TCGTA)3·(TACGA)3 and the constitutive single strands, examines the factors underlying the effect of C5-methylation on pyrimidine dimerization at TCG sites. This effect is quantified for the first time by quantum yields ϕ. They were determined following irradiation at 255, 267, and 282 nm and subsequent photoproduct analysis using HPLC coupled to mass spectrometry. C5-methylation leads to an increase of the CPD quantum yield up to 80% with concomitant decrease of that of pyrimidine(6-4) pyrimidone adducts (64PPs) by at least a factor of 3. The obtained ϕ values cannot be explained only by the change of the cytosine absorption spectrum upon C5-methylation. The conformational and electronic factors that may affect the dimerization reaction are discussed in light of results obtained by fluorescence spectroscopy, molecular dynamics simulations, and quantum mechanical calculations. Thus, it appears that the presence of an extra methyl on cytosine affects the sugar puckering, thereby enhancing conformations of the TC step that are prone to CPD formation but less favorable to 64PPs. In addition, C5-methylation diminishes the amplitude of conformational motions in duplexes; in the resulting stiffer structure, ππ* excitations may be transferred from initially populated exciton states to reactive pyrimidines giving rise to CPDs.

  8. Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques.

    PubMed

    Hiendleder, Stefan; Mund, Cora; Reichenbach, Horst-Dieter; Wenigerkind, Hendrik; Brem, Gottfried; Zakhartchenko, Valeri; Lyko, Frank; Wolf, Eckhard

    2004-07-01

    Epigenetic perturbations are assumed to be responsible for abnormalities observed in fetuses and offspring derived by in vitro techniques. We have designed an experiment with bovine Day 80 fetuses generated by somatic cell nuclear transfer (SCNT), in vitro fertilization (IVF), and artificial insemination (AI) to determine the relationship between fetal phenotype and genome-wide 5-methylcytosine (5mC) content. When compared with AI controls, SCNT and IVF fetuses displayed significantly increased body weight (61% and 28%), liver weight (100% and 36%), and thorax circumference (20% and 11%). A reduced crown-rump length:thorax circumference ratio (1.175 +/- 0.017 in SCNT and 1.292 +/- 0.018 in IVF vs. 1.390 +/- 0.018 in AI, P < 0.001 and P < 0.002) was the external hallmark of this disproportionate overgrowth phenotype. The SCNT fetuses showed significant hypermethylation of liver DNA in comparison with AI controls (3.46% +/- 0.08% vs. 3.17% +/- 0.09% 5mC, P < 0.03), and the cytosine methylation levels for IVF fetuses (3.34% +/- 0.09%) were, as observed for phenotypic parameters, intermediate to the other groups. Regressions of fetal body and liver weight and thorax circumference on 5mC content of liver DNA were positive (P < 0.073-0.079). Furthermore, a significant negative regression (P < 0.021) of the crown-rump length:thorax circumference ratio on liver 5mC was observed. The 5mC content of placental cotyledon DNA was 46% lower than in liver DNA (P < 0.0001) but did not differ among groups. These data are in striking contrast with the recently reported hypomethylation of DNA from SCNT fetuses and indicate that hypermethylation of fetal tissue, but not placenta, is linked to the overgrowth phenotype in bovine SCNT and IVF fetuses.

  9. Lung Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis Exhibit Genome-Wide Differences in DNA Methylation Compared to Fibroblasts from Nonfibrotic Lung

    PubMed Central

    Huang, Steven K.; Scruggs, Anne M.; McEachin, Richard C.; White, Eric S.; Peters-Golden, Marc

    2014-01-01

    Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These

  10. Genome-wide DNA methylation profiling and its involved molecular pathways from one individual with thyroid malignant/benign tumor and hyperplasia

    PubMed Central

    Cai, Liang-Liang; Liu, Guo-Yan; Tzeng, Chi-Meng

    2016-01-01

    Abstract Background: During development, methylation permanently changes gene activity, while aberrant gene methylation is key to human tumorigenesis. Gene methylation is an epigenetic event leading to gene silencing and some tumor suppressor genes that are aberrantly methylated in both thyroid cancer and benign thyroid tumor, suggesting a role for methylation in early thyroid tumorigenesis. Specific gene methylation occurs in certain types of thyroid cancer and depends on particular signaling pathways. Most reports rely on data from varied samples that vary tremendously with respect to methylation. Results: We observed that hyperplastic/malignant (H/M) thyroid tissue and benign/manligant (B/M) tissue had the most profoundly methylated loci compared to hyperplastic/benign (H/B) tissue. These loci are mapped to 863 genes (|Δβ value| > 0.15) in B/M and 1082 genes (|Δβ value| > 0.15) in H/M. After bioinformatic analysis, these genes were found to be involved in T-cell receptor signaling pathway (B/M) and Jak–Stat signaling pathways (H/M). Conclusion: Our study offers the most comprehensive DNA methylation data for thyroid disease to date, using 1 patient with 3 tissue types and high-resolution 450K arrays. Our data may lay the foundation for future identification of novel epigenetic targets or diagnosis of thyroid cancer. PMID:27583899

  11. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood.

    PubMed

    Rönn, Tina; Volkov, Petr; Gillberg, Linn; Kokosar, Milana; Perfilyev, Alexander; Jacobsen, Anna Louisa; Jørgensen, Sine W; Brøns, Charlotte; Jansson, Per-Anders; Eriksson, Karl-Fredrik; Pedersen, Oluf; Hansen, Torben; Groop, Leif; Stener-Victorin, Elisabet; Vaag, Allan; Nilsson, Emma; Ling, Charlotte

    2015-07-01

    Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.

  12. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    PubMed

    Iurlaro, Mario; McInroy, Gordon R; Burgess, Heather E; Dean, Wendy; Raiber, Eun-Ang; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar; Reik, Wolf

    2016-06-29

    Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.

  13. Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion

    PubMed Central

    Dayeh, Tasnim; Volkov, Petr; Salö, Sofia; Hall, Elin; Nilsson, Emma; Olsson, Anders H.; Kirkpatrick, Clare L.; Wollheim, Claes B.; Eliasson, Lena; Rönn, Tina; Bacos, Karl; Ling, Charlotte

    2014-01-01

    Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight

  14. Potential epigenetic dysregulation of genes associated with MODY and type 2 diabetes in humans exposed to a diabetic intrauterine environment: an analysis of genome-wide DNA methylation.

    PubMed

    del Rosario, Melissa C; Ossowski, Vicky; Knowler, William C; Bogardus, Clifton; Baier, Leslie J; Hanson, Robert L

    2014-05-01

    The aim of this study is to investigate the potential role of DNA methylation in mediating the increased risk of developing type 2 diabetes in offspring of mothers who had diabetes during pregnancy. Peripheral blood leukocytes were collected from non-diabetic Pima Indians who were either offspring of diabetic mothers (ODM; n=14) or offspring of nondiabetic mothers (ONDM; n=14). The two groups were matched for age, sex, age of mother, and fraction of Pima ethnicity. Differentially methylated regions were determined using a MeDIP-chip assay on an Affymetrix Human Tiling 2.0R Array. Data were analyzed using the model based analysis of tiling arrays (MAT) algorithm, and 4883 regions overlapping with putative promoters, were identified as differentially methylated, having met an empirically derived threshold (nominal p<0.0077). The list of genes with differentially methylated promoters was subjected to KEGG pathway analysis to determine canonical metabolic pathways enriched by these genes. Pathway analysis of genes with differentially methylated promoters identified the top 3 enriched pathways as maturity onset diabetes of the young (MODY), type 2 diabetes, and Notch signaling. Several genes in these pathways are known to affect pancreatic development and insulin secretion. These findings support the hypothesis that epigenetic changes may increase the risk of type 2 diabetes via an effect on β-cell function in the offspring of mothers with diabetes during pregnancy. Published by Elsevier Inc.

  15. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies

    PubMed Central

    Rodriguez-Torres, Sebastian; Friess, Leah; Michailidi, Christina; Cok, Jaime; Combe, Juan; Vargas, Gloria; Prado, William; Soudry, Ethan; Pérez, Jimena; Yudin, Tikki; Mancinelli, Andrea; Unger, Helen; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Berg, Douglas E.; Hayashi, Masamichi; Sidransky, David; Gilman, Robert H.; Guerrero-Preston, Rafael

    2017-01-01

    Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p < 0.0001). Promoter methylation of IRF4 (p < 0.0001), ELMO1 (p < 0.0001), CLIP4 (p < 0.0001), and MSC (p < 0.0001), is also associated with increasing severity from gastritis with no metaplasia to gastritis with metaplasia and gastric cancer. Our findings suggest that IRF4, ELMO1, CLIP4 and MSC promoter methylation coupled with a GDMI>4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies. PMID:28418867

  16. Genome-wide DNA methylation profiles and their replationship with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos Taurine)

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is a key epigenetic modification in mammals, having essential and important roles in muscle development. We sample longissimus thoracis tissues from a well-known elite native breed of Chinese Qinchuan cattle living within comparable environments at fetal and adult stages, using methy...

  17. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants.

    PubMed

    How-Kit, Alexandre; Daunay, Antoine; Mazaleyrat, Nicolas; Busato, Florence; Daviaud, Christian; Teyssier, Emeline; Deleuze, Jean-François; Gallusci, Philippe; Tost, Jörg

    2015-07-01

    Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing.

  18. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus.

    PubMed

    Schneider, J S; Kidd, S K; Anderson, D W

    2013-02-13

    Developmental exposure to lead (Pb) has adverse effects on cognitive functioning and behavior that can persist into adulthood. Exposures that occur during fetal or early life periods may produce changes in brain related to physiological re-programming from an epigenetic influence such as altered DNA methylation status. Since DNA methylation is regulated by DNA methyltransferases and methyl cytosine-binding proteins, this study assessed the extent to which developmental Pb exposure might affect expression of these proteins in the hippocampus. Long Evans dams were fed chow with or without added Pb acetate (0, 150, 375, 750 ppm) prior to breeding and remained on the same diet through weaning (perinatal exposure group). Other animals were exposed to the same doses of Pb but exposure started on postnatal day 1 and continued through weaning (early postnatal exposure group). All animals were euthanized on day 55 and hippocampi were removed. Western blot analyses showed significant effects of Pb exposure on DNMT1, DNMT3a, and MeCP2 expression, with effects often seen at the lowest level of exposure and modified by sex and developmental window of Pb exposure. These data suggest potential epigenetic effects of developmental Pb exposure on DNA methylation mediated at least in part through dysregulation of methyltransferases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans.

    PubMed

    Hu, Chiung-Wen; Chen, Jian-Lian; Hsu, Yu-Wen; Yen, Cheng-Chieh; Chao, Mu-Rong

    2015-01-01

    From 1986 to the present, the popular research model organism Caenorhabditis elegans has been thought to completely lack DNA methylation and seems to have lost DNA methylation enzymes from its genomes. In the present study, we report the development of a sensitive and selective assay based on LC-MS/MS to simultaneously measure 5-methyl-2'-deoxycytidine (5-mdC) and 5-hydroxymethyl-2'-deoxycytidine (5-hmdC) in DNA hydrolysates. With the use of isotope internal standards ([2H3]5-mdC and [2H3]5-hmdC) and online solid-phase extraction, the detection limits of 5-mdC and 5-hmdC were estimated to be 0.01 and 0.02 pg respectively, which correspond to a 0.000006% and 0.00001% methylation and hydroxymethylation level. This method was applied to investigate whether DNA methylation/hydroxymethylation exists in C. elegans. The present study for the first time demonstrates that 5-mdC is present in C. elegans genomic DNA (0.0019-0.0033% of cytosine methylated) using LC-MS/MS, whereas another epigenetic modification, 5-hmdC, is not detectable. Furthermore, we found that C. elegans DNA was hypo- or hyper-methylated in a dose-dependent manner by the DNA methyltransferase (DNMT)-inhibiting drug decitabine (5-aza-2'-deoxycytidine) or cadmium respectively. Our data support the possible existence of an active DNA-methylation mechanism in C. elegans, in which unidentified DNMTs could be involved. The present study highlights the importance of re-evaluating the evolutionary conservation of DNA-methylation machinery in nematodes which were traditionally considered to lack functional DNA methylation.

  20. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With Cross-Generational Effects of Adolescent THC Exposure

    PubMed Central

    Watson, Corey T; Szutorisz, Henrietta; Garg, Paras; Martin, Qammarah; Landry, Joseph A; Sharp, Andrew J; Hurd, Yasmin L

    2015-01-01

    Drug exposure during critical periods of development is known to have lasting effects, increasing one's risk for developing mental health disorders. Emerging evidence has also indicated the possibility for drug exposure to even impact subsequent generations. Our previous work demonstrated that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana (Cannabis sativa), in a Long-Evans rat model affects reward-related behavior and gene regulation in the subsequent (F1) generation unexposed to the drug. Questions, however, remained regarding potential epigenetic consequences. In the current study, using the same rat model, we employed Enhanced Reduced Representation Bisulfite Sequencing to interrogate the epigenome of the nucleus accumbens, a key brain area involved in reward processing. This analysis compared 16 animals with parental THC exposure and 16 without to characterize relevant systems-level changes in DNA methylation. We identified 1027 differentially methylated regions (DMRs) associated with parental THC exposure in F1 adults, each represented by multiple CpGs. These DMRs fell predominantly within introns, exons, and intergenic intervals, while showing a significant depletion in gene promoters. From these, we identified a network of DMR-associated genes involved in glutamatergic synaptic regulation, which also exhibited altered mRNA expression in the nucleus accumbens. These data provide novel insight into drug-related cross-generational epigenetic effects, and serve as a useful resource for investigators to explore novel neurobiological systems underlying drug abuse vulnerability. PMID:26044905

  1. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA.

    PubMed

    Pearlman, D A; Kollman, P A

    We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.

  2. Genomic Change, Retrotransposon Mobilization and Extensive Cytosine Methylation Alteration in Brassica napus Introgressions from Two Intertribal Hybridizations

    PubMed Central

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed. PMID:23468861

  3. Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism

    PubMed Central

    Zhao, Bailin; Yang, Ying; Wang, Xiaoli; Chong, Zechen; Yin, Ruichuan; Song, Shu-Hui; Zhao, Chao; Li, Cuiping; Huang, Hua; Sun, Bao-Fa; Wu, Danni; Jin, Kang-Xuan; Song, Maoyong; Zhu, Ben-Zhan; Jiang, Guibin; Rendtlew Danielsen, Jannie M.; Xu, Guo-Liang; Yang, Yun-Gui; Wang, Hailin

    2014-01-01

    DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5mC to 5hmC in vivo, and increase 5hmC in 5751 genes in cells. 5hmC increase is associated with significantly altered gene expression of 3414 genes. Interestingly, in quinone-treated cells, labile iron-sensitive protein ferritin light chain showed a significant increase at both mRNA and protein levels indicating a role of iron regulation in stimulating Tet-mediated 5mC oxidation. Consistently, the deprivation of cellular labile iron using specific chelator blocked the 5hmC increase, and a delivery of labile iron increased the 5hmC level. Moreover, both Tet1/Tet2 knockout and dimethyloxalylglycine-induced Tet inhibition diminished the 5hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules. PMID:24214992

  4. REMPI spectroscopy of cytosine

    NASA Astrophysics Data System (ADS)

    Nir, E.; Müller, M.; Grace, L. I.; de Vries, M. S.

    2002-03-01

    We report resonant two-photon ionization spectra of laser desorbed, jet cooled, cytosine, 1-methyl cytosine, 5-methyl cytosine, and dimers of these. Unlike other pyrimidine bases, cytosine exhibits vibronic spectra with sharp features in two spectral regions, separated by about 5000 cm-1. We interpret these as being due to two tautomeric forms, one keto and one enol. The dimers absorb at wavelengths that are intermediate between those of the two monomer forms. By UV-UV hole burning we determined the numbers of isomers contributing to each spectrum and by delayed two color ionization we determined triplet lifetimes. We observed hydrogen transfer between bases both in collisions between monomers and after photo-excitation in clusters.

  5. Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006

    PubMed Central

    Ouellette, Matthew; Jackson, Laura; Chimileski, Scott; Papke, R. Thane

    2015-01-01

    Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an annotated DNA methyltransferase gene HVO_A0006 was deleted from the genome. Sequence analysis of H26 revealed two motifs which are modified in the genome: Cm4TAG and GCAm6BN6VTGC. Analysis of the ΔHVO_A0006 strain indicated that it exhibited reduced adenine methylation compared to the parental strain and altered the detected adenine motif. However, protein domain architecture analysis and amino acid alignments revealed that HVO_A0006 is homologous only to the N-terminal endonuclease region of Type IIG RM proteins and contains a PD-(D/E)XK nuclease motif, suggesting that HVO_A0006 is a PD-(D/E)XK nuclease family protein. Further bioinformatic analysis of the HVO_A0006 gene demonstrated that the gene is rare among the Halobacteria. It is surrounded by two transposition genes suggesting that HVO_A0006 is a fragment of a Type IIG RM gene, which has likely been acquired through gene transfer, and affects restriction-modification activity by interacting with another RM system component(s). Here, we present the first genome-wide characterization of DNA methylation in an archaeal species and examine the function of a DNA methyltransferase related gene HVO_A0006. PMID:25904898

  6. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.

    PubMed

    Prickett, Adam R; Barkas, Nikolaos; McCole, Ruth B; Hughes, Siobhan; Amante, Samuele M; Schulz, Reiner; Oakey, Rebecca J

    2013-10-01

    DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.

  7. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  8. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  9. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation

    PubMed Central

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-01-01

    Background Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine–phosphate–guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine–phosphate–guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation–specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and

  10. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  11. Effect of C5-methylation of cytosine on the photoreactivity of DNA: a joint experimental and computational study of TCG trinucleotides.

    PubMed

    Esposito, Luciana; Banyasz, Akos; Douki, Thierry; Perron, Marion; Markovitsi, Dimitra; Improta, Roberto

    2014-08-06

    DNA methylation, occurring at the 5 position of cytosine, is a natural process associated with mutational hotspots in skin tumors. By combining experimental techniques (optical spectroscopy, HPLC coupled to mass spectrometry) with theoretical methods (molecular dynamics, DFT/TD-DFT calculations in solution), we study trinucleotides with key sequences (TCG/T5mCG) in the UV-induced DNA damage. We show how the extra methyl, affecting the conformational equilibria and, hence, the electronic excited states, increases the quantum yield for the formation of cyclobutane dimers while reducing that of (6-4) adducts.

  12. Base-pairing energies of protonated nucleobase pairs and proton affinities of 1-methylated cytosines: model systems for the effects of the sugar moiety on the stability of DNA i-motif conformations.

    PubMed

    Yang, Bo; Moehlig, Aaron R; Frieler, C E; Rodgers, M T

    2015-02-05

    Expansion of (CCG)n·(CGG)n trinucleotide repeats leads to hypermethylation of cytosine residues and results in Fragile X syndrome, the most common cause of inherited intellectual disability in humans. The (CCG)n·(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical protonated nucleobase pairs of cytosine (C(+)·C). Previously, we investigated the effects of 5-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present work, we extend our investigations to include protonated homo- and heteronucleobase pairs of cytosine, 1-methylcytosine, 5-methylcytosine, and 1,5-dimethylcytosine. The 1-methyl substituent prevents most tautomerization processes of cytosine and serves as a mimic for the sugar moiety of DNA nucleotides. In contrast to permethylation of cytosine at the 5-position, 1-methylation is found to exert very little influence on the BPE. All modifications to both nucleobases lead to a small increase in the BPEs, with 5-methylation producing a larger enhancement than either 1-methyl or 1,5-dimethylation. In contrast, modifications to a single nucleobase are found to produce a small decrease in the BPEs, again with 5-methylation producing a larger effect than 1-methylation. However, the BPEs of all of the protonated nucleobase pairs examined here significantly exceed those of canonical G·C and neutral C·C base pairs, and thus should still provide the driving force stabilizing DNA i-motif conformations even in the presence of such modifications. The proton affinities of the methylated cytosines are also obtained from the TCID experiments by competitive analyses of the primary dissociation pathways that occur in parallel for the protonated heteronucleobase pairs.

  13. Attenuation of genome-wide 5-methylcytosine level is an epigenetic feature of cutaneous malignant melanomas.

    PubMed

    Micevic, Goran; Theodosakis, Nicholas; Taube, Janis M; Bosenberg, Marcus W; Rodić, Nemanja

    2017-04-01

    Epigenetic modification of DNA, namely covalent changes of cytosine residues, plays a key role in the maintenance of inactive chromatin regions, both in health and in disease. In the vast majority of malignant melanomas, the most notable known epigenetic abnormality is the attenuation of 5-hydroxymethylcytosine (5-hmC) residues. However, it remains unknown whether a decrease in 5-hmC represents a primary defect of melanoma cancer epigenome or whether it is secondary to the loss of 5-methylcytosine (5-mC), a chemical substrate for 5-hmC. Here, we evaluated 5-mC levels in a spectrum of melanocytic proliferations. To study the epigenetic features of melanocytic nuclei, we began by measuring 5-mC levels in histologic specimens semiquantitatively by immunohistochemistry. We next treated established melanoma cell lines with S-adenosyl methionine (SAM), a universal methyl group donor, in an effort to cause changes in 5-mC levels. We detected a marked reduction in 5-mC levels in both primary and metastatic melanomas compared with 5-mC levels in benign melanocytic nevi. We also empirically induced changes in 5-mC in melanoma cell lines by incubation with SAM. To our surprise, we observed a significant cytoreductive effect of SAM on all melanoma cell lines examined. At subcytotoxic levels, SAM treatment is accompanied by a genome-wide increase in 5-mC. Moreover, we recorded a dose-dependent increase in genome-wide 5-mC levels in melanoma cell lines following SAM treatment. Taken together, we report that genome-wide attenuation of 5-mC is a hallmark of malignant melanomas. We propose that genome-wide attenuation of 5-mC is not merely an epiphenomenon as it is required for melanoma cell growth, albeit by an as of yet undetermined mechanism. Given its potential benefit in slowing down the growth of melanoma cells, SAM should be studied further to determine its role in epigenome modulation.

  14. 5-Methylation of cytosine in CG:CG base-pair steps: a physicochemical mechanism for the epigenetic control of DNA nanomechanics.

    PubMed

    Yusufaly, Tahir I; Li, Yun; Olson, Wilma K

    2013-12-27

    van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile "opening" mode and two shear "sliding" and "tearing" modes in the orthogonal plane. The stacking interactions of the methyl groups globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. Additionally, the indirect effects of the methyl groups on possible base-pair steps neighboring CG:CG are observed to be of comparable importance to their direct effects on CG:CG. The results have implications for the epigenetic control of DNA mechanics.

  15. 5-Methylation of Cytosine in CG:CG Base-Pair Steps: A Physicochemical Mechanism for the Epigenetic Control of DNA Nanomechanics

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Olson, Wilma; Li, Yun

    2014-03-01

    Van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile ``opening'' mode and two shear ``sliding'' and ``tearing'' modes in the orthogonal plane. The stacking interactions of the methyl groups are observed to globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. The results have implications for the epigenetic control of DNA mechanics.

  16. Impact of C5-cytosine methylation on the solution structure of d(GAAAACGTTTTC)2. An NMR and molecular modelling investigation.

    PubMed

    Marcourt, L; Cordier, C; Couesnon, T; Dodin, G

    1999-11-01

    The solution structures of d(GAAAACGTTTTC)2 and of its methylated derivative d(GAAAAMe5CGTTTTC)2 have been determined by NMR and molecular modelling in order to examine the impact of cytosine methylation on the central CpG conformation. Detailed 1H NMR and 31P NMR investigation of the two oligomers includes quantitative NOESY, 2D homonuclear Hartmann-Hahn spectroscopy, double-quantum-filtered COSY and heteronuclear 1H-31P correlation. Back-calculations of NOESY spectra and simulations of double-quantum-filtered COSY patterns were performed to gain accurate information on interproton distances and sugar phase angles. Molecular models under experimental constraints were generated by energy minimization by means of the molecular mechanics program JUMNA. The MORASS software was used to iteratively refine the structures obtained. After methylation, the oligomer still has a B-DNA conformation. However, there are differences in the structural parameters and the thermal stability as compared to the unmethylated molecule. Careful structural analysis shows that after methylation CpG departs from the usual conformation observed in other ACGT tetramers with different surroundings. Subtle displacements of bases, sugars and backbone imposed by the steric interaction of the two methyl groups inside the major groove are accompanied by severe pinching of the minor groove at the C-G residues.

  17. Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth

    PubMed Central

    Basenko, Evelina Y.; Sasaki, Takahiko; Ji, Lexiang; Prybol, Cameron J.; Burckhardt, Rachel M.; Schmitz, Robert J.; Lewis, Zachary A.

    2015-01-01

    H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress. PMID:26578794

  18. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  19. Genome-wide positioning of bivalent mononucleosomes.

    PubMed

    Sen, Subhojit; Block, Kirsten F; Pasini, Alice; Baylin, Stephen B; Easwaran, Hariharan

    2016-09-15

    Bivalent chromatin refers to overlapping regions containing activating histone H3 Lys4 trimethylation (H3K4me3) and inactivating H3K27me3 marks. Existence of such bivalent marks on the same nucleosome has only recently been suggested. Previous genome-wide efforts to characterize bivalent chromatin have focused primarily on individual marks to define overlapping zones of bivalency rather than mapping positions of truly bivalent mononucleosomes. Here, we developed an efficacious sequential ChIP technique for examining global positioning of individual bivalent nucleosomes. Using next generation sequencing approaches we show that although individual H3K4me3 and H3K27me3 marks overlap in broad zones, bivalent nucleosomes are focally enriched in the vicinity of the transcription start site (TSS). These seem to occupy the H2A.Z nucleosome positions previously described as salt-labile nucleosomes, and are correlated with low gene expression. Although the enrichment profiles of bivalent nucleosomes show a clear dependency on CpG island content, they demonstrate a stark anti-correlation with methylation status. We show that regional overlap of H3K4me3 and H3K27me3 chromatin tend to be upstream to the TSS, while bivalent nucleosomes with both marks are mainly promoter proximal near the TSS of CpG island-containing genes with poised/low expression. We discuss the implications of the focal enrichment of bivalent nucleosomes around the TSS on the poised chromatin state of promoters in stem cells.

  20. Genome-wide epigenomic profiling for biomarker discovery.

    PubMed

    Dirks, René A M; Stunnenberg, Hendrik G; Marks, Hendrik

    2016-01-01

    A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.

  1. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer

    PubMed Central

    Marzese, Diego M.; Hoon, Dave S.B.

    2015-01-01

    DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping were recently developed and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers. PMID:25797072

  2. Genome-wide association mapping in plants.

    PubMed

    George, Andrew W; Cavanagh, Colin

    2015-06-01

    We present new association mapping methods which address the unique challenges of analyzing genome-wide data from multi-environment plant studies. Association studies on a genome-wide scale are being performed in plants. Unlike human studies, plant studies contain replicates whose data may be recorded across different environments. Plant studies also often employ elaborate experimental designs for controlling extraneous phenotypic variation. As a result, the genome-wide analysis of data from plant studies can be challenging. In this paper, we present QK-based association mapping for the analysis of data from plant association studies. In doing so, we have developed: (a) a general multivariate QK framework for association mapping in plant studies of arbitrary complexity; (b) a new weighted two-stage analysis approach for QK-based association mapping; (c) a heuristic procedure for determining when two-stage analysis is appropriate; and (d) a Monte Carlo sampling procedure for controlling the genome-wide type I error rate. We conduct a simulation study to evaluate the performance of our genome-wide mapping technique. We also analyze data from a multi-environment association study in wheat.

  3. Genome-wide association studies of cancer.

    PubMed

    Jorgenson, Eric; Witte, John S

    2007-08-01

    Genome-wide association studies provide a new and powerful approach to investigate the effect of inherited genetic variation on the risk of human disease. These studies rely on high throughput DNA microarray technology to genotype hundreds of thousands of genetic variants across the human genome. The first genome-wide association studies have identified previously unknown genetic risk factors that influence a range of diseases, including prostate cancer, breast cancer, myocardial infarction, age-related macular degeneration, diabetes, Crohn's disease and obesity. Many more studies are currently underway, including a number that will focus on other cancers (e.g., colorectal). Here we discuss the major issues involved in conducting genome-wide association studies and how these studies can be used to examine cancer phenotypes.

  4. Conversion of 1-[((S)-2-hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl)methyl]cytosine to cidofovir by an intracellular cyclic CMP phosphodiesterase.

    PubMed Central

    Mendel, D B; Cihlar, T; Moon, K; Chen, M S

    1997-01-01

    Cidofovir (HPMPC) [1-[(S)-3-hydroxy-2-(phosphonomethoxy)propyl]-cytosine] is an acyclic nucleotide analog with potent and selective activity against herpesviruses. The prodrug, cyclic HPMPC (cHPMPC) [1-[((S)-2-hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl) methyl]cytosine], has antiviral activity similar to that of the parent compound but exhibits reduced toxicity in animal models. cHPMPC is converted to cidofovir by a cellular cyclic CMP phosphodiesterase (EC 3.1.4.37) which hydrolyzes a variety of substrates, including adenosine 3',5'-cyclic monophosphate (cAMP) and cytidine 3',5'-cyclic monophosphate (cCMP). The K(m) and Vmax values for hydrolysis of cHPMPC by cCMP phosphodiesterase purified from human liver are 250 microM and 0.66 nmol.min-1.unit-1, respectively. These values are similar to the K(m) and Vmax values for cAMP (23 microM and 1.16 nmol.min-1.unit-1, respectively) and cCMP (75 microM and 2.32 nmol.min-1.unit of enzyme-1, respectively). The catalytic efficiency (Vmax/K(m) ratio) of this enzyme for the cHPMPC substrate is only 10- to 20-fold lower than those for the natural cyclic nucleotides, indicating that cHPMPC is a viable intracellular substrate for the human enzyme. Kinetic analysis indicates that cHPMPC, cAMP, and cCMP are competitive with respect to each other and that they are hydrolyzed by the same enzyme. cHPMPC is hydrolyzed to cidofovir in all primary human cell systems tested, including those derived from target organs that might be infected in patients with human cytomegalovirus (HCMV) disease. Importantly, hydrolysis of cHPMPC is not diminished in cells infected with HCMV. PMID:9056007

  5. Use of DNA methylation for cancer detection and molecular classification.

    PubMed

    Zhu, Jingde; Yao, Xuebiao

    2007-03-31

    Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

  6. DNA methylation and cancer diagnosis: new methods and applications.

    PubMed

    Dehan, Pierre; Kustermans, Gaelle; Guenin, Samuel; Horion, Julie; Boniver, Jacques; Delvenne, Philippe

    2009-10-01

    Methylation of cytosines in cytosine-guanine (CpG) dinucleotides is one of the most important epigenetic alterations in animals. The presence of methylcytosine in the promoter of specific genes has profound consequences on local chromatin structure and on the regulation of gene expression. Changes in DNA methylation play a central role in carcinogenesis. Hypermethylation and consecutive transcriptional silencing of tumor-suppressor genes has been documented in numerous cancers. The identification of target genes silenced by this modification has a great impact on diagnosis, classification, definition of risk groups and prognosis of cancer patients. Here we outline genome-wide techniques aiming at the identification of relevant methylated promoters. Methods and applications allowing clinicians to monitor the methylation of target genes will be also reviewed.

  7. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum

    PubMed Central

    Podio, Maricel; Rodríguez, María P.; Felitti, Silvina; Stein, Juliana; Martínez, Eric J.; Siena, Lorena A.; Quarin, Camilo L.; Pessino, Silvina C.; Ortiz, Juan Pablo A.

    2012-01-01

    In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected. PMID:23271945

  8. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum.

    PubMed

    Podio, Maricel; Rodríguez, María P; Felitti, Silvina; Stein, Juliana; Martínez, Eric J; Siena, Lorena A; Quarin, Camilo L; Pessino, Silvina C; Ortiz, Juan Pablo A

    2012-12-01

    In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2-4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.

  9. Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize.

    PubMed

    Qian, Yexiong; Xi, Yilong; Cheng, Beijiu; Zhu, Suwen

    2014-10-01

    In this study, we identified eight DNA MTase genes in maize and the diversity of expression patterns of them was presented by EST mining, microarray and semi-quantitative expression profile analyses. DNA methylation plays a pivotal role in promoting genomic stability through diverse biological processes including regulation of gene expression during development and chromatin organization. Although this important biological process is mainly regulated by several conserved Cytosine-5 DNA methyltransferases encoded by a smaller multigene family in plants, investigation of the plant C5-MTase-encoding gene family will serve to elucidate the epigenetic mechanism diversity in plants. Recently, genome-wide identification and evolutionary analyses of the C5-MTase-encoding gene family have been characterized in multiple plant species including Arabidopsis, rice, carrot and wheat. However, little is known regarding the C5-MTase-encoding genes in the entire maize genome. Here, genome-wide identification and expression profile analyses of maize C5-MTase-encoding genes (ZmMETs) were performed from the latest version of the maize (B73) genome. Phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were categorized into four classes. Chromosomal location of these genes revealed that they are unevenly distributed on 6 of all 10 chromosomes with three chromosomal/segmental duplication events, suggesting that gene duplication played a key role in expansion of the maize C5-MTase-encoding gene family. Furthermore, EST expression data mining, microarray data and semi-quantitative expression profile analyses detected in the leaves by two different abiotic stress treatments have demonstrated that these genes had temporal and spatial expression pattern and exhibited different expression levels in stress treatments, suggesting that functional diversification of ZmMET genes family. Overall, our study will serve to present signification

  10. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  11. Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging.

    PubMed

    Shimoda, Nobuyoshi; Izawa, Toshiaki; Yoshizawa, Akio; Yokoi, Hayoto; Kikuchi, Yutaka; Hashimoto, Naohiro

    2014-02-01

    Age-related changes in DNA methylation have been demonstrated in mammals, but it remains unclear as to the generality of this phenomenon in vertebrates, which is a criterion for the fundamental cause of senescence. Here we showed that the zebrafish genome gradually and clearly lost methylcytosine in somatic cells, but not in male germ cells during aging, and that age-dependent hypomethylation preferentially occurred at a particular domain called the CpG island shore, which is associated with vertebrates' genes and has been shown to be hypomethylated in humans with age. We also found that two CpG island shores hypomethylated in zebrafish oocytes were de novo methylated in fertilized eggs, which suggests that the zebrafish epigenome is reset upon fertilization, enabling new generations to restart with a heavily methylated genome. Furthermore, we observed an increase in cleavage of the zebrafish genome to an oligonucleosome length in somatic cells from the age of 12 months, which is suggestive of an elevated rate of apoptosis in the senescent stage.

  12. A/T Run Geometry of B-form DNA Is Independent of Bound Methyl-CpG Binding Domain, Cytosine Methylation and Flanking Sequence

    PubMed Central

    Chia, Jyh Yea; Tan, Wen Siang; Ng, Chyan Leong; Hu, Nien-Jen; Foo, Hooi Ling; Ho, Kok Lian

    2016-01-01

    DNA methylation in a CpG context can be recognised by methyl-CpG binding protein 2 (MeCP2) via its methyl-CpG binding domain (MBD). An A/T run next to a methyl-CpG maximises the binding of MeCP2 to the methylated DNA. The A/T run characteristics are reported here with an X-ray structure of MBD A140V in complex with methylated DNA. The A/T run geometry was found to be strongly stabilised by a string of conserved water molecules regardless of its flanking nucleotide sequences, DNA methylation and bound MBD. New water molecules were found to stabilise the Rett syndrome-related E137, whose carboxylate group is salt bridged to R133. A structural comparison showed no difference between the wild type and MBD A140V. However, differential scanning calorimetry showed that the melting temperature of A140V constructs in complex with methylated DNA was reduced by ~7 °C, although circular dichroism showed no changes in the secondary structure content for A140V. A band shift analysis demonstrated that the larger fragment of MeCP2 (A140V) containing the transcriptional repression domain (TRD) destabilises the DNA binding. These results suggest that the solution structure of MBD A140V may differ from the wild-type MBD although no changes in the biochemical properties of X-ray A140V were observed. PMID:27502833

  13. Methylation by a Unique α-class N4-Cytosine Methyltransferase Is Required for DNA Transformation of Caldicellulosiruptor bescii DSM6725

    PubMed Central

    Chung, Daehwan; Farkas, Joel; Huddleston, Jennifer R.; Olivar, Estefania; Westpheling, Janet

    2012-01-01

    Thermophilic microorganisms capable of using complex substrates offer special advantages for the conversion of lignocellulosic biomass to biofuels and bioproducts. Members of the Gram-positive bacterial genus Caldicellulosiruptor are anaerobic thermophiles with optimum growth temperatures between 65°C and 78°C and are the most thermophilic cellulolytic organisms known. In fact, they efficiently use biomass non-pretreated as their sole carbon source and in successive rounds of application digest 70% of total switchgrass substrate. The ability to genetically manipulate these organisms is a prerequisite to engineering them for use in conversion of these complex substrates to products of interest as well as identifying gene products critical for their ability to utilize non-pretreated biomass. Here, we report the first example of DNA transformation of a member of this genus, C. bescii. We show that restriction of DNA is a major barrier to transformation (in this case apparently absolute) and that methylation with an endogenous unique α-class N4-Cytosine methyltransferase is required for transformation of DNA isolated from E. coli. The use of modified DNA leads to the development of an efficient and reproducible method for DNA transformation and the combined frequencies of transformation and recombination allow marker replacement between non-replicating plasmids and chromosomal genes providing the basis for rapid and efficient methods of genetic manipulation. PMID:22928042

  14. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality.

    PubMed

    Hu, Lanjuan; Li, Ning; Xu, Chunming; Zhong, Silin; Lin, Xiuyun; Yang, Jingjing; Zhou, Tianqi; Yuliang, Anzhi; Wu, Ying; Chen, Yun-Ru; Cao, Xiaofeng; Zemach, Assaf; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-07-22

    Cytosine methylation at CG sites ((m)CG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain (m)CG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2(-/-)), which directly segregated from normal heterozygote plants (OsMET1-2(+/-)), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of (m)CG occurred in the mutant methylome, which was accompanied by a plethora of quantitative molecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.

  15. Effects of protonation and C5 methylation on the electrophilic addition reaction of cytosine: a computational study.

    PubMed

    Jin, Lingxia; Wang, Wenliang; Hu, Daodao; Min, Suotian

    2013-01-10

    The mechanism for the effects of protonation and C5 methylation on the electrophilic addition reaction of Cyt has been explored by means of CBS-QB3 and CBS-QB3/PCM methods. In the gas phase, three paths, two protonated paths (N3 and O2 protonated paths B and C) as well as one neutral path (path A), were mainly discussed, and the calculated results indicate that the reaction of the HSO(3)(-) group with neutral Cyt is unlikely because of its high activation free energy, whereas O2-protonated path (path C) is the most likely to occur. In the aqueous phase, path B is the most feasible mechanism to account for the fact that the activation free energy of path B decreases compared with the corresponding path in the gas phase, whereas those of paths A and C increase. The main striking results are that the HSO(3)(-) group directly interacts with the C5═C6 bond rather than the N3═C4 bond and that the C5 methylation, compared with Cyt, by decreasing values of global electrophilicity index manifests that C5 methylation forms are less electrophilic power as well as by decreasing values of NPA charges on C5 site of the intermediates make the trend of addition reaction weaken, which is in agreement with the experimental observation that the rate of 5-MeCyt reaction is approximately 2 orders of magnitude slower than that of Cyt in the presence of bisulfite. Apart from cis and trans isomers, the rare third isomer where both the CH(3) and SO(3) occupy axial positions has been first found in the reactions of neutral and protonated 5-MeCyt with the HSO(3)(-) group. Furthermore, the transformation of the third isomer from the cis isomer can occur easily.

  16. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  17. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution.

    PubMed

    Garrett-Bakelman, Francine E; Sheridan, Caroline K; Kacmarczyk, Thadeous J; Ishii, Jennifer; Betel, Doron; Alonso, Alicia; Mason, Christopher E; Figueroa, Maria E; Melnick, Ari M

    2015-02-24

    DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.

  18. Genome-Wide Approaches to Schizophrenia

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Gejman, Pablo V.

    2010-01-01

    Schizophrenia (SZ) is a common and severe psychiatric disorder with both environmental and genetic risk factors, and a high heritability. After over 20 years of molecular genetics research, new molecular strategies, primarily genome-wide association studies (GWAS), have generated major tangible progress. This new data provides evidence for: 1) A number of chromosomal regions with common polymorphisms showing genome-wide association with SZ (the major histocompatibility complex, MHC, region at 6p22-p21; 18q21.2; and 2q32.1). The associated alleles present small odds ratios (the odds of a risk variant being present in cases versus controls) and suggest causative involvement of gene regulatory mechanisms in SZ. 2) Polygenic inheritance. 3) Involvement of rare (<1%) and large (>100kb) copy number variants (CNVs). 4) A genetic overlap of SZ with autism and with bipolar disorder (BP) challenging the classical clinical classifications. Most new SZ findings (chromosomal regions and genes) have generated new biological leads. These new findings, however, still need to be translated into a better understanding of the underlying biology and into causal mechanisms. Furthermore, a considerable amount of heritability still remains unexplained (missing heritability). Deep resequencing for rare variants and system biology approaches (e.g., integrating DNA sequence and functional data) are expected to further improve our understanding of the genetic architecture of SZ and its underlying biology. PMID:20433910

  19. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation.

    PubMed

    Ming, Xun; Matter, Brock; Song, Matthew; Veliath, Elizabeth; Shanley, Ryan; Jones, Roger; Tretyakova, Natalia

    2014-03-19

    DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated (Me)CG dinucleotides and at 5' Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of (Me)CG sequences may be caused by a lowered ionization potential of guanine bases paired with (Me)C and the preferential intercalation of riboflavin photosensitizer adjacent to (Me)C:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational "hotspots" at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer.

  20. Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses.

    PubMed

    Hiendleder, Stefan; Wirtz, Michaela; Mund, Cora; Klempt, Martina; Reichenbach, Horst-Dieter; Stojkovic, Miodrag; Weppert, Myriam; Wenigerkind, Hendrik; Elmlinger, Martin; Lyko, Frank; Schmitz, Oliver J; Wolf, Eckhard

    2006-07-01

    Epigenetic perturbations are assumed to be responsible for phenotypic abnormalities of fetuses and offspring originating from in vitro embryo techniques. We studied 29 viable Day-80 bovine fetuses to assess the effects of two in vitro fertilization protocols (IVF1 and IVF2) on fetal phenotype and genomic cytosine methylation levels in liver, skeletal muscle, and brain. The IVF1 protocol employed 0.01 U/ml of FSH and LH in oocyte maturation medium and 5% estrous cow serum (ECS) in embryo culture medium, whereas the IVF2 protocol employed 0.2 U/ml of FSH and no LH for oocyte maturation and 10% ECS for embryo culture. Comparisons with in vivo-fertilized controls (n=14) indicated an apparently normal phenotype for IVF1 fetuses (n=5), but IVF2 fetuses (n=10) were significantly heavier (19.9%) and longer (4.7%), with increased heart (25.2%) and liver (27.9%) weights, and thus displayed an overgrowth phenotype. A clinicochemical screen of 18 plasma parameters revealed significantly increased levels of insulin-like growth factor 1 (40.8%) and creatinine (37.5%) in IVF2, but not in IVF1, fetuses. Quantification of genomic 5-methylcytosine (5mC) by capillary electrophoresis indicated that both IVF1 and IVF2 fetuses differed from controls. We observed significant DNA hypomethylation in liver and muscle of IVF1 fetuses (-16.1% and -9.3%, respectively) and significant hypermethylation in liver of IVF2 fetuses (+11.2%). The 5mC level of cerebral DNA was not affected by IVF protocol. Our data indicate that bovine IVF procedures can affect fetal genomic 5mC levels in a protocol- and tissue-specific manner and show that hepatic hypermethylation is associated with fetal overgrowth and its correlated endocrine changes.

  1. Patterns of Genome-Wide VDR Locations

    PubMed Central

    Tuoresmäki, Pauli; Väisänen, Sami; Neme, Antonio

    2014-01-01

    The genome-wide analysis of the binding sites of the transcription factor vitamin D receptor (VDR) is essential for a global appreciation the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide analysis of lipopolysaccharide (LPS)-polarized THP-1 human monocytic leukemia cells via chromatin immunoprecipitation sequencing (ChIP-seq) resulted in 1,318 high-confidence VDR binding sites, of which 789 and 364 occurred uniquely with and without 1,25(OH)2D3 stimulation, while only 165 were common. We re-analyzed five public VDR ChIP-seq datasets with identical peak calling settings (MACS, version 2) and found, using a novel consensus summit identification strategy, in total 23,409 non-overlapping VDR binding sites, 75% of which are unique within the six analyzed cellular models. LPS-differentiated THP-1 cells have 22% more genomic VDR locations than undifferentiated cells and both cell types display more overlap in their VDR locations than the other investigated cell types. In general, the intersection of VDR binding profiles of ligand-stimulated cells is higher than those of unstimulated cells. De novo binding site searches and HOMER screening for binding motifs formed by direct repeats spaced by three nucleotides (DR3) suggest for all six VDR ChIP-seq datasets that these sequences are found preferentially at highly ligand responsive VDR loci. Importantly, all VDR ChIP-seq datasets display the same relationship between the VDR occupancy and the percentage of DR3-type sequences below the peak summits. The comparative analysis of six VDR ChIP-seq datasets demonstrated that the mechanistic basis for the action of the VDR is independent of the cell type. Only the minority of genome-wide VDR binding sites contains a DR3-type sequence. Moreover, the total number of identified VDR binding sites in each ligand-stimulated cell line inversely correlates with the percentage of peak summits with DR3 sites. PMID:24787735

  2. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  3. Genome-wide determination of drug localization

    PubMed Central

    Anders, Lars; Guenther, Matthew G.; Qi, Jun; Fan, Zi Peng; Marineau, Jason J.; Rahl, Peter B.; Lovén, Jakob; Sigova, Alla A.; Smith, William B.; Lee, Tong Ihn; Bradner, James E.; Young, Richard A.

    2014-01-01

    A vast number of small-molecule ligands, including therapeutic drugs under development and in clinical use, elicit their effects by binding specific proteins associated with the genome. An ability to map the direct interactions of a chemical entity with chromatin genome-wide could provide new and important insights into chemical perturbation of cellular function. Here we describe a method that couples ligand-affinity capture and massively parallel DNA sequencing (Chem-seq) to identify the sites bound by small chemical molecules throughout the human genome. We show how Chem-seq can be combined with ChIP-seq to gain unique insights into the interaction of drugs with their target proteins throughout the genome of tumor cells. These methods provide a powerful approach to enhance understanding of therapeutic action and characterize the specificity of chemical entities that interact with DNA or genome-associated proteins. PMID:24336317

  4. Genome-Wide Association Studies of Cancer

    PubMed Central

    Stadler, Zsofia K.; Thom, Peter; Robson, Mark E.; Weitzel, Jeffrey N.; Kauff, Noah D.; Hurley, Karen E.; Devlin, Vincent; Gold, Bert; Klein, Robert J.; Offit, Kenneth

    2010-01-01

    Knowledge of the inherited risk for cancer is an important component of preventive oncology. In addition to well-established syndromes of cancer predisposition, much remains to be discovered about the genetic variation underlying susceptibility to common malignancies. Increased knowledge about the human genome and advances in genotyping technology have made possible genome-wide association studies (GWAS) of human diseases. These studies have identified many important regions of genetic variation associated with an increased risk for human traits and diseases including cancer. Understanding the principles, major findings, and limitations of GWAS is becoming increasingly important for oncologists as dissemination of genomic risk tests directly to consumers is already occurring through commercial companies. GWAS have contributed to our understanding of the genetic basis of cancer and will shed light on biologic pathways and possible new strategies for targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers remains limited. PMID:20585100

  5. Replication in genome-wide association studies

    PubMed Central

    Kraft, Peter; Zeggini, Eleftheria; Ioannidis, John P. A.

    2009-01-01

    Summary Replication helps ensure that a genotype-phenotype association observed in a genome-wide association (GWA) study represents a credible association and is not a chance finding or an artifact due to uncontrolled biases. We discuss prerequisites for exact replication; issues of heterogeneity; advantages and disadvantages of different methods of data synthesis across multiple studies; frequentist vs. Bayesian inferences for replication; and challenges that arise from multi-team collaborations. While consistent replication can greatly improve the credibility of a genotype-phenotype association, it may not eliminate spurious associations due to biases shared by many studies. Conversely, lack of replication in well-powered follow-up studies usually invalidates the initially proposed association, although occasionally it may point to differences in linkage disequilibrium or effect modifiers across studies. PMID:20454541

  6. Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice.

    PubMed

    Chopra, Pankaj; Papale, Ligia A; White, Andrew T J; Hatch, Andrea; Brown, Ryan M; Garthwaite, Mark A; Roseboom, Patrick H; Golos, Thaddeus G; Warren, Stephen T; Alisch, Reid S

    2014-02-13

    Methylation on the fifth position of cytosine (5-mC) is an essential epigenetic mark that is linked to both normal neurodevelopment and neurological diseases. The recent identification of another modified form of cytosine, 5-hydroxymethylcytosine (5-hmC), in both stem cells and post-mitotic neurons, raises new questions as to the role of this base in mediating epigenetic effects. Genomic studies of these marks using model systems are limited, particularly with array-based tools, because the standard method of detecting DNA methylation cannot distinguish between 5-mC and 5-hmC and most methods have been developed to only survey the human genome. We show that non-human data generated using the optimization of a widely used human DNA methylation array, designed only to detect 5-mC, reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R(2) > 0.99). Genome-wide methylation analysis, using this approach, reveals 6,102 differentially methylated loci between rhesus placental and fetal tissues with pathways analysis significantly overrepresented for developmental processes. Restricting the analysis to oncogenes and tumor suppressor genes finds 76 differentially methylated loci, suggesting that rhesus placental tissue carries a cancer epigenetic signature. Similarly, adapting the assay to detect 5-hmC finds highly reproducible 5-hmC levels within human, rhesus, and mouse brain tissue that is species-specific with a hierarchical abundance among the three species (human > rhesus > mouse). Annotation of 5-hmC with respect to gene structure reveals a significant prevalence in the 3'UTR and an association with chromatin-related ontological terms, suggesting an epigenetic feedback loop mechanism for 5-hmC. Together, these data show that this array-based methylation assay is generalizable to all mammals for the detection of both 5-mC and 5-hmC, greatly improving the utility of mammalian model systems

  7. IPPP-CLOPPA Analysis of the Influence of the Methylation on the Potential Energy and the Molecular Polarizability of the Hydrogen Bonds in the Cytosine-Guanine Base Pair.

    PubMed

    Giribet, Claudia G; Ruiz de Azúa, Martín C

    2017-04-05

    The IPPP-CLOPPA method is applied to investigate the influence of a methyl group on the energy of the hydrogen bonds and the potential energy curve of the bridge protons in model compounds, which mimic the methylated and unmethylated cytosine-guanine base pairs. On the same grounds, this influence on the polarizability of the intermolecular hydrogen bonds of these compounds is also addressed, in order to determine whether this linear response property provides a significant proof of the electronic mechanisms that affect the stabilization of the hydrogen bonds. Results obtained show that the methyl electronic system delocalizes on the hydrogen bond region, and changes of these intermolecular hydrogen bonds are due to this effect of delocalization.

  8. A Genome-Wide Perspective on Metabolism.

    PubMed

    Rauch, Alexander; Mandrup, Susanne

    2016-01-01

    Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.

  9. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pit