Science.gov

Sample records for genome-wide linkage search

  1. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

    PubMed Central

    Shete, Sanjay; Lau, Ching C; Houlston, Richard S; Claus, Elizabeth B; Barnholtz-Sloan, Jill; Lai, Rose; Il’yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Johansen, Christoffer; Bernstein, Jonine L; Olson, Sara H; Jenkins, Robert B; Yang, Ping; Vick, Nicholas A; Wrensch, Margaret; Davis, Faith G; McCarthy, Bridget J; Leung, Eastwood Hon-chiu; Davis, Caleb; Cheng, Rita; Hosking, Fay J; Armstrong, Georgina N; Liu, Yanhong; Yu, Robert K; Henriksson, Roger; Consortium, The Gliogene; Melin, Beatrice S; Bondy, Melissa L

    2011-01-01

    Gliomas, which generally have a poor prognosis, are the most common primary malignant brain tumors in adults. Recent genome-wide association studies have demonstrated that inherited susceptibility plays a role in the development of glioma. Although first-degree relatives of patients exhibit a two-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge, the Genetic Epidemiology of Glioma International Consortium (Gliogene) was formed to collect DNA samples from families with two or more cases of histologically confirmed glioma. In this study, we present results obtained from 46 U.S. families in which multipoint linkage analyses were undertaken using nonparametric (model-free) methods. After removal of high linkage disequilibrium SNPs, we obtained a maximum nonparametric linkage score (NPL) of 3.39 (P=0.0005) at 17q12–21.32 and the Z-score of 4.20 (P=0.000007). To replicate our findings, we genotyped 29 independent U.S. families and obtained a maximum NPL score of 1.26 (P=0.008) and the Z-score of 1.47 (P=0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P=0.00001). The genomic regions we have implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma. PMID:22037877

  2. Heritability and genome-wide linkage scan of subjective happiness.

    PubMed

    Bartels, Meike; Saviouk, Viatcheslav; de Moor, Marleen H M; Willemsen, Gonneke; van Beijsterveldt, Toos C E M; Hottenga, Jouke-Jan; de Geus, Eco J C; Boomsma, Dorret I

    2010-04-01

    Causes of individual differences in happiness, as assessed with the Subjective Happiness Scale, are investigated in a large of sample twins and siblings from the Netherlands Twin Register. Over 12,000 twins and siblings, average age 24.7 years (range 12 to 88), took part in the study. A genetic model with an age by sex design was fitted to the data with structural equation modeling in Mx. The heritability of happiness was estimated at 22% for males and 41% in females. No effect of age was observed. To identify the genomic regions contributing to this heritability, a genome-wide linkage study for happiness was conducted in sibling pairs. A subsample of 1157 offspring from 441 families was genotyped with an average of 371 micro-satellite markers per individual. Phenotype and genotype data were analyzed in MERLIN with multipoint variance component linkage analysis and age and sex as covariates. A linkage signal (logarithm of odds score 2.73, empirical p value 0.095) was obtained at the end of the long arm of chromosome 19 for marker D19S254 at 110 cM. A second suggestive linkage peak was found at the short arm of chromosome 1 (LOD of 2.37) at 153 cM, marker D1S534 (empirical p value of .209). These two regions of interest are not overlapping with the regions found for contrasting phenotypes (such as depression, which is negatively associated with happiness). Further linkage and future association studies are warranted.

  3. A genome-wide linkage study of individuals with high scores on NEO personality traits.

    PubMed

    Amin, N; Schuur, M; Gusareva, E S; Isaacs, A; Aulchenko, Y S; Kirichenko, A V; Zorkoltseva, I V; Axenovich, T I; Oostra, B A; Janssens, A C J W; van Duijn, C M

    2012-10-01

    The NEO-Five-Factor Inventory divides human personality traits into five dimensions: neuroticism, extraversion, openness, conscientiousness and agreeableness. In this study, we sought to identify regions harboring genes with large effects on the five NEO personality traits by performing genome-wide linkage analysis of individuals scoring in the extremes of these traits (>90th percentile). Affected-only linkage analysis was performed using an Illumina 6K linkage array in a family-based study, the Erasmus Rucphen Family study. We subsequently determined whether distinct, segregating haplotypes found with linkage analysis were associated with the trait of interest in the population. Finally, a dense single-nucleotide polymorphism genotyping array (Illumina 318K) was used to search for copy number variations (CNVs) in the associated regions. In the families with extreme phenotype scores, we found significant evidence of linkage for conscientiousness to 20p13 (rs1434789, log of odds (LOD)=5.86) and suggestive evidence of linkage (LOD >2.8) for neuroticism to 19q, 21q and 22q, extraversion to 1p, 1q, 9p and12q, openness to 12q and 19q, and agreeableness to 2p, 6q, 17q and 21q. Further analysis determined haplotypes in 21q22 for neuroticism (P-values = 0.009, 0.007), in 17q24 for agreeableness (marginal P-value = 0.018) and in 20p13 for conscientiousness (marginal P-values = 0.058, 0.038) segregating in families with large contributions to the LOD scores. No evidence for CNVs in any of the associated regions was found. Our findings imply that there may be genes with relatively large effects involved in personality traits, which may be identified with next-generation sequencing techniques.

  4. Genome-wide linkage analysis of blood pressure under locus heterogeneity

    PubMed Central

    Yang, Xinqun; Wang, Kai; Huang, Jian; Vieland, Veronica J

    2003-01-01

    We describe a method for mapping quantitative trait loci that allows for locus heterogeneity. A genome-wide linkage analysis of blood pressure was performed using sib-pair data from the Framingham Heart Study. Evidence of linkage was found on four markers (GATA89G08, GATA23D06, GATA14E09, and 049xd2) at a significance level of 0.01. Two of them (GATA14E09 and 049xd2) seem to overlap with linkage signals reported previously, while the other two are not linked to any known signals. PMID:14975146

  5. Genome-wide Linkage Screen in Familial Parkinson Disease Identifies Loci on Chromosomes 3 and 18

    PubMed Central

    Gao, Xiaoyi; Martin, Eden R.; Liu, Yutao; Mayhew, Gregory; Vance, Jeffery M.; Scott, William K.

    2009-01-01

    Parkinson disease (PD) is a complex, multifactorial neurodegenerative disease with substantial evidence for genetic risk factors. We conducted a genome-wide linkage screen of 5824 single-nucleotide polymorphisms in 278 families of European, non-Hispanic descent to localize regions that harbor susceptibility loci for PD. By using parametric and nonparametric linkage analyses and allowing for genetic heterogeneity among families, we found two loci for PD. Significant evidence for linkage was detected on chromosome 18q11 (maximum lod score [MLOD] = 4.1) and suggestive evidence for linkage was obtained on chromosome 3q25 (MLOD = 2.5). These results were strongest in families not previously screened for linkage, and simulation studies suggest that these findings are likely due to locus heterogeneity rather than random statistical error. The finding of two loci (one highly statistically significant) suggests that additional PD susceptibility genes might be identified through targeted candidate gene studies in these regions. PMID:19327735

  6. Genome-wide Linkage Analyses of Quantitative and Categorical Autism Subphenotypes

    PubMed Central

    Liu, Xiao-Qing; Paterson, Andrew D.; Szatmari, Peter

    2008-01-01

    Background The search for susceptibility genes in autism and autism spectrum disorders (ASD) has been hindered by the possible small effects of individual genes and by genetic (locus) heterogeneity. To overcome these obstacles, one method is to use autism-related subphenotypes instead of the categorical diagnosis of autism since they may be more directly related to the underlying susceptibility loci. Another strategy is to analyze subsets of families that meet certain clinical criteria to reduce genetic heterogeneity. Methods In this study, using 976 multiplex families from the Autism Genome Project consortium, we performed genome-wide linkage analyses on two quantitative subphenotypes, the total scores of the reciprocal social interaction domain and the restricted, repetitive, and stereotyped patterns of behavior domain from the Autism Diagnostic Interview-Revised. We also selected subsets of ASD families based on four binary subphenotypes, delayed onset of first words, delayed onset of first phrases, verbal status, and IQ ≥ 70. Results When the ASD families with IQ ≥ 70 were used, a logarithm of odds (LOD) score of 4.01 was obtained on chromosome 15q13.3-q14, which was previously linked to schizophrenia. We also obtained a LOD score of 3.40 on chromosome 11p15.4-p15.3 using the ASD families with delayed onset of first phrases. No significant evidence for linkage was obtained for the two quantitative traits. Conclusions This study demonstrates that selection of informative subphenotypes to define a homogeneous set of ASD families could be very important in detecting the susceptibility loci in autism. PMID:18632090

  7. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  8. Genome Wide Linkage Analysis of 972 Bipolar Pedigrees Using Single Nucleotide Polymorphisms

    PubMed Central

    Badner, Judith A; Koller, Daniel; Foroud, Tatiana; Edenberg, Howard; Nurnberger, John I; Zandi, Peter P; Willour, Virginia L.; McMahon, Francis J; Potash, James B; Hamshere, Marian; Grozeva, Detelina; Green, Elaine; Kirov, George; Jones, Ian; Jones, Lisa; Craddock, Nicholas; Morris, Derek; Segurado, Ricardo; Gill, Mike; Sadovnick, Dessa; Remick, Ronald; Keck, Paul; Kelsoe, John; Ayub, Muhammad; MacLean, Alan; Blackwood, Douglas; Liu, Chun-Yu; Gershon, Elliot S; McMahon, William; Lyon, Gholson; Robinson, Reid; Ross, Jessica; Byerley, William

    2011-01-01

    Because of the high costs associated with ascertainment of families most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. While microsatellite markers spaced every 10 centimorgans typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carry out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 SNPs. Of the ~1100 families, 972 were informative for further analyses and mean information content was 0.86 after pruning for LD. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with Bipolar II disorder (BPII) and 702 subjects with Recurrent Major Depression. Three affection status models were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus Recurrent Major Depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (Nonparametric Pairs Lod 3.4 for rs1046943 at 119 cM) and 9q21 (Nonparametric Pairs Lod 3.4 for rs722642 at 78 cM) using only BPI and SA, BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis we observed 59 parametric lods of 2 or greater, many of which are likely to be close to maximum possible scores. While some linkage findings may be false positives the results could help prioritize the search for rare variants

  9. Genome-wide linkage analysis in families with infantile hypertrophic pyloric stenosis indicates novel susceptibility loci.

    PubMed

    Svenningsson, Anna; Söderhäll, Cilla; Persson, Sofia; Lundberg, Fredrik; Luthman, Holger; Chung, Eddie; Gardiner, Mark; Kockum, Ingrid; Nordenskjöld, Agneta

    2012-02-01

    Infantile hypertrophic pyloric stenosis (IHPS) is a common cause of upper gastrointestinal obstruction during infancy. A multifactorial background of the disease is well established. Multiple susceptibility loci including the neuronal nitric oxide synthase (NOS1) gene have previously been linked to IHPS, but contradictory results of linkage studies in different materials indicate genetic heterogeneity. To identify IHPS susceptibility loci, we conducted a genome-wide linkage analysis in 37 Swedish families. In regions where the Swedish material showed most evidence in favor of linkage, 31 additional British IHPS families were analyzed. Evidence in favor of significant linkage was observed in the Swedish material to two loci on chromosome 2q24 (non-parametric linkage (NPL) =3.77) and 7p21 (NPL=4.55). In addition, evidence of suggestive linkage was found to two loci on chromosome 6p21 (NPL=2.97) and 12q24 (NPL=2.63). Extending the material with British samples did not enhance the level of significance. Regions with linkage harbor interesting candidate genes, such as glucagon-like peptide-2 (GLP-2 encoded by the glucagon gene GCG), NOS1, motilin (MLN) and neuropeptide Y (NPY). The coding exons for GLP-2, and NPY were screened for mutations with negative results. In conclusion, we could confirm suggestive linkage to the region harboring the NOS1 gene and detected additional novel susceptibility loci for IHPS.

  10. A high-density SNP genome-wide linkage scan in a large autism extended pedigree.

    PubMed

    Allen-Brady, K; Miller, J; Matsunami, N; Stevens, J; Block, H; Farley, M; Krasny, L; Pingree, C; Lainhart, J; Leppert, M; McMahon, W M; Coon, H

    2009-06-01

    We performed a high-density, single nucleotide polymorphism (SNP), genome-wide scan on a six-generation pedigree from Utah with seven affected males, diagnosed with autism spectrum disorder. Using a two-stage linkage design, we first performed a nonparametric analysis on the entire genome using a 10K SNP chip to identify potential regions of interest. To confirm potentially interesting regions, we eliminated SNPs in high linkage disequilibrium (LD) using a principal components analysis (PCA) method and repeated the linkage results. Three regions met genome-wide significance criteria after controlling for LD: 3q13.2-q13.31 (nonparametric linkage (NPL), 5.58), 3q26.31-q27.3 (NPL, 4.85) and 20q11.21-q13.12 (NPL, 5.56). Two regions met suggestive criteria for significance 7p14.1-p11.22 (NPL, 3.18) and 9p24.3 (NPL, 3.44). All five chromosomal regions are consistent with other published findings. Haplotype sharing results showed that five of the affected subjects shared more than a single chromosomal region of interest with other affected subjects. Although no common autism susceptibility genes were found for all seven autism cases, these results suggest that multiple genetic loci within these regions may contribute to the autism phenotype in this family, and further follow-up of these chromosomal regions is warranted.

  11. Genome-wide linkage and association analysis of cardiometabolic phenotypes in Hispanic Americans.

    PubMed

    Hellwege, Jacklyn N; Palmer, Nicholette D; Dimitrov, Latchezar; Keaton, Jacob M; Tabb, Keri L; Sajuthi, Satria; Taylor, Kent D; Ng, Maggie C Y; Speliotes, Elizabeth K; Hawkins, Gregory A; Long, Jirong; Ida Chen, Yii-Der; Lorenzo, Carlos; Norris, Jill M; Rotter, Jerome I; Langefeld, Carl D; Wagenknecht, Lynne E; Bowden, Donald W

    2017-02-01

    Linkage studies of complex genetic diseases have been largely replaced by genome-wide association studies, due in part to limited success in complex trait discovery. However, recent interest in rare and low-frequency variants motivates re-examination of family-based methods. In this study, we investigated the performance of two-point linkage analysis for over 1.6 million single-nucleotide polymorphisms (SNPs) combined with single variant association analysis to identify high impact variants, which are both strongly linked and associated with cardiometabolic traits in up to 1414 Hispanics from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of all 50 phenotypes yielded 83 557 000 LOD (logarithm of the odds) scores, with 9214 LOD scores ⩾3.0, 845 ⩾4.0 and 89 ⩾5.0, with a maximal LOD score of 6.49 (rs12956744 in the LAMA1 gene for tumor necrosis factor-α (TNFα) receptor 2). Twenty-seven variants were associated with P<0.005 as well as having an LOD score >4, including variants in the NFIB gene under a linkage peak with TNFα receptor 2 levels on chromosome 9. Linkage regions of interest included a broad peak (31 Mb) on chromosome 1q with acute insulin response (max LOD=5.37). This region was previously documented with type 2 diabetes in family-based studies, providing support for the validity of these results. Overall, we have demonstrated the utility of two-point linkage and association in comprehensive genome-wide array-based SNP genotypes.

  12. Genome-wide Linkage and Association Analysis of Cardiometabolic Phenotypes in Hispanic Americans

    PubMed Central

    Hellwege, Jacklyn N.; Palmer, Nicholette D.; Dimitrov, Latchezar; Keaton, Jacob M.; Tabb, Keri L.; Sajuthi, Satria; Taylor, Kent D.; Ng, Maggie C.Y.; Speliotes, Elizabeth K.; Hawkins, Gregory A.; Long, Jirong; Chen, Yii-Der Ida; Lorenzo, Carlos; Norris, Jill M.; Rotter, Jerome I.; Langefeld, Carl D.; Wagenknecht, Lynne E.; Bowden, Donald W.

    2016-01-01

    Linkage studies of complex genetic diseases have been largely replaced by Genome-Wide Association studies (GWAS), due in part to limited success in complex trait discovery. However, recent interest in rare and low-frequency variants motivates reexamination of family-based methods. In this study we investigated the performance of two-point linkage analysis for over 1.6 million SNPs combined with single variant association analysis to identify high impact variants which are both strongly linked and associated with cardiometabolic traits in up to 1 414 Hispanics from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of all 50 phenotypes yielded 83 557 000 LOD scores with 9 214 LOD scores ≥ 3.0, 845 ≥ 4.0, and 89 ≥ 5.0, with a maximal LOD score of 6.49 (rs12956744 in the LAMA1 gene for TNFα receptor 2). Twenty-seven variants were associated with p < 0.005 as well as having a LOD score > 4, including variants in the NFIB gene under a linkage peak with TNFα receptor 2 levels on chromosome 9. Linkage regions of interest included a broad peak (31Mb) on chromosome 1q with acute insulin response (max LOD = 5.37). This region was previously documented with type 2 diabetes in family-based studies, providing support for the validity of these results. Overall, we have demonstrated the utility of two-point linkage and association in comprehensive genome-wide array-based SNP genotypes. PMID:27535031

  13. Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes

    PubMed Central

    Webb, Bradley T; Guo, An-Yuan; Maher, Brion S; Zhao, Zhongming; van den Oord, Edwin J; Kendler, Kenneth S; Riley, Brien P; Gillespie, Nathan A; Prescott, Carol A; Middeldorp, Christel M; Willemsen, Gonneke; de Geus, Eco JC; Hottenga, Jouke-Jan; Boomsma, Dorret I; Slagboom, Eline P; Wray, Naomi R; Montgomery, Grant W; Martin, Nicholas G; Wright, Margie J; Heath, Andrew C; Madden, Pamela A; Gelernter, Joel; Knowles, James A; Hamilton, Steven P; Weissman, Myrna M; Fyer, Abby J; Huezo-Diaz, Patricia; McGuffin, Peter; Farmer, Anne; Craig, Ian W; Lewis, Cathryn; Sham, Pak; Crowe, Raymond R; Flint, Jonathan; Hettema, John M

    2012-01-01

    Genetic factors underlying trait neuroticism, reflecting a tendency towards negative affective states, may overlap genetic susceptibility for anxiety disorders and help explain the extensive comorbidity amongst internalizing disorders. Genome-wide linkage (GWL) data from several studies of neuroticism and anxiety disorders have been published, providing an opportunity to test such hypotheses and identify genomic regions that harbor genes common to these phenotypes. In all, 11 independent GWL studies of either neuroticism (n=8) or anxiety disorders (n=3) were collected, which comprised of 5341 families with 15 529 individuals. The rank-based genome scan meta-analysis (GSMA) approach was used to analyze each trait separately and combined, and global correlations between results were examined. False discovery rate (FDR) analysis was performed to test for enrichment of significant effects. Using 10 cM intervals, bins nominally significant for both GSMA statistics, PSR and POR, were found on chromosomes 9, 11, 12, and 14 for neuroticism and on chromosomes 1, 5, 15, and 16 for anxiety disorders. Genome-wide, the results for the two phenotypes were significantly correlated, and a combined analysis identified additional nominally significant bins. Although none reached genome-wide significance, an excess of significant PSRP-values were observed, with 12 bins falling under a FDR threshold of 0.50. As demonstrated by our identification of multiple, consistent signals across the genome, meta-analytically combining existing GWL data is a valuable approach to narrowing down regions relevant for anxiety-related phenotypes. This may prove useful for prioritizing emerging genome-wide association data for anxiety disorders. PMID:22473089

  14. Genome-wide linkage analysis for human longevity: Genetics of Healthy Ageing Study

    PubMed Central

    Beekman, Marian; Blanché, Hélène; Perola, Markus; Hervonen, Anti; Bezrukov, Vladyslav; Sikora, Ewa; Flachsbart, Frederieke; Christiansen, Lene; De Craen, Anton J.M.; Kirkwood, Tom B.L.; Rea, I. Meave; Poulain, Michel; Robine, Jean-Marie; Stazi, Maria Antonietta; Passarino, Giuseppe; Deiana, Luca; Gonos, Efstathios S.; Valensin, Silvana; Paternoster, Lavinia; Sørensen, Thorkild I.A.; Tan, Qihua; Helmer, Quinta; Van den Akker, Erik B.; Deelen, Joris; Martella, Francesca; Cordell, Heather J.; Ayers, Kristin L.; Vaupel, James W.; Törnwall, Outi; Johnson, Thomas E.; Schreiber, Stefan; Lathrop, Mark; Skytthe, Axel; Westendorp, Rudi G.J.; Christensen, Kaare; Gampe, Jutta; Nebel, Almut; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Franceschi, Claudio

    2013-01-01

    Summary Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in fifteen study centers of eleven European countries as part of the Genetics of Healthy Ageing (GEHA) project. In the joint linkage analyses we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD=3.47), chromosome 17q12-q22 (LOD=2.95), chromosome 19p13.3-p13.11 (LOD=3.76) and chromosome 19q13.11-q13.32 (LOD=3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1,228 unrelated nonagenarian and 1,907 geographically matched controls. Using a fixed effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (p-value=9.6 × 10−8). By combined modeling of linkage and association we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with p-value=0.02 and p-value=1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22 and 19p13.3-p13.11. Since the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity. PMID:23286790

  15. Genome-wide association and linkage analyses localize a progressive retinal atrophy locus in Persian cats.

    PubMed

    Alhaddad, Hasan; Gandolfi, Barbara; Grahn, Robert A; Rah, Hyung-Chul; Peterson, Carlyn B; Maggs, David J; Good, Kathryn L; Pedersen, Niels C; Lyons, Leslie A

    2014-08-01

    Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.

  16. A genome-wide search for quantitative trait loci influencing substance dependence vulnerability in adolescence.

    PubMed

    Stallings, Michael C; Corley, Robin P; Hewitt, John K; Krauter, Kenneth S; Lessem, Jeffrey M; Mikulich, Susan K; Rhee, Soo Hyun; Smolen, Andrew; Young, Susan E; Crowley, Thomas J

    2003-06-05

    This study describes results from a genome-wide search for quantitative trait loci (QTL) influencing substance dependence vulnerability in adolescence. We utilized regression-based multipoint (and single-point) QTL mapping procedures designed for selected sibpair samples. Selected sibling pairs included 250 proband-sibling pairs from 192 families. Clinical probands (13-19 years of age) were drawn from consecutive admissions to substance abuse treatment facilities in the Denver metropolitan area; siblings of probands ranged in age from 12 to 25 years. In addition to the selected sample, a community-based sample of 3676 adolescents and young adults were utilized to define a clinically-significant, heritable, age- and sex-normed index of substance dependence vulnerability-a priori and independent of our linkage results. Siblings and their parents were genotyped for 374 STR micro-satellite markers distributed across the 22 autosomes (average inter-marker distance=9.2 cM). Non-parametric single-point linkage results indicated 17 markers on 11 chromosomes with nominally significant tests of linkage; six markers with LOD scores greater than 1.0 and one marker (D3S1614) with a LOD score of 2.2. Multipoint mapping corroborated two locations and provided preliminary evidence for linkage to regions on chromosome 3q24-25 (near markers D3S1279 and D3S1614) and chromosome 9q34 (near markers D9S1826 and D9S1838).

  17. A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage.

    PubMed

    Kolte, A M; Nielsen, H S; Moltke, I; Degn, B; Pedersen, B; Sunde, L; Nielsen, F C; Christiansen, O B

    2011-06-01

    Previously, siblings of patients with idiopathic recurrent miscarriage (IRM) have been shown to have a higher risk of miscarriage. This study comprises two parts: (i) an epidemiological part, in which we introduce data on the frequency of miscarriage among 268 siblings of 244 patients with IRM and (ii) a genetic part presenting data from a genome-wide linkage study of 38 affected sibling pairs with IRM. All IRM patients (probands) had experienced three or more miscarriages and affected siblings two or more miscarriages. The sibling pairs were genotyped by the Affymetrix GeneChip 50K XbaI platform and non-parametric linkage analysis was performed via the software package Merlin. We find that siblings of IRM patients exhibit a higher frequency of miscarriage than population controls regardless of age at the time of pregnancy. We identify chromosomal regions with LOD scores between 2.5 and 3.0 in subgroups of affected sibling pairs. Maximum LOD scores were identified in four occurrences: for rs10514716 (3p14.2) when analyzing sister-pairs only; for rs10511668 (9p22.1) and rs341048 (11q13.4) when only analyzing families where the probands have had four or more miscarriages; and for rs10485275 (6q16.3) when analyzing one sibling pair from each family only. We identify no founder mutations. Concluding, our results imply that IRM patients and their siblings share factors which increase the risk of miscarriage. In this first genome-wide linkage study of affected sibling pairs with IRM, we identify regions on chromosomes 3, 6, 9 and 11 which warrant further investigation in order to elucidate their putative roles in the genesis of IRM.

  18. Genome-wide linkage analysis and association study identifies loci for polydactyly in chickens.

    PubMed

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2014-04-21

    Polydactyly occurs in some chicken breeds, but the molecular mechanism remains incompletely understood. Combined genome-wide linkage analysis and association study (GWAS) for chicken polydactyly helps identify loci or candidate genes for the trait and potentially provides further mechanistic understanding of this phenotype in chickens and perhaps other species. The linkage analysis and GWAS for polydactyly was conducted using an F2 population derived from Beijing-You chickens and commercial broilers. The results identified two QTLs through linkage analysis and seven single-nucleotide polymorphisms (SNPs) through GWAS, associated with the polydactyly trait. One QTL located at 35 cM on the GGA2 was significant at the 1% genome-wise level and another QTL at the 1% chromosome-wide significance level was detected at 39 cM on GGA19. A total of seven SNPs, four of 5% genome-wide significance (P < 2.98 × 10(-6)) and three of suggestive significance (5.96 × 10(-5)) were identified, including two SNPs (GGaluGA132178 and Gga_rs14135036) in the QTL on GGA2. Of the identified SNPs, the eight nearest genes were sonic hedgehog (SHH), limb region 1 homolog (mouse) (LMBR1), dipeptidyl-peptidase 6, transcript variant 3 (DPP6), thyroid-stimulating hormone, beta (TSHB), sal-like 4 (Drosophila) (SALL4), par-6 partitioning defective 6 homolog beta (Caenorhabditis elegans) (PARD6B), coenzyme Q5 (COQ5), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, etapolypeptide (YWHAH). The GWAS supports earlier reports of the importance of SHH and LMBR1 as regulating genes for polydactyly in chickens and other species, and identified others, most of which have not previously been associated with limb development. The genes and associated SNPs revealed here provide detailed information for further exploring the molecular and developmental mechanisms underlying polydactyly.

  19. Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens.

    PubMed

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2015-08-06

    Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0-10.0 cM/0.00-0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8. A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken (Gallus gallus; GG) chromosome 3 (i.e., GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0-11.0 cM/0.00-2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0-53.0 cM/11.37-12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken.

  20. Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens

    PubMed Central

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2015-01-01

    Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0−10.0 cM/0.00−0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8. A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken (Gallus gallus; GG) chromosome 3 (i.e., GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0−11.0 cM/0.00−2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0−53.0 cM/11.37−12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken. PMID:26248982

  1. Genome-wide analysis of zygotic linkage disequilibrium and its components in crossbred cattle

    PubMed Central

    2012-01-01

    Background Linkage disequilibrium (LD) between genes at linked or independent loci can occur at gametic and zygotic levels known asgametic LD and zygotic LD, respectively. Gametic LD is well known for its roles in fine-scale mapping of quantitative trait loci, genomic selection and evolutionary inference. The less-well studied is the zygotic LD and its components that can be also estimated directly from the unphased SNPs. Results This study was set up to investigate the genome-wide extent and patterns of zygotic LD and its components in a crossbred cattle population using the genomic data from the Illumina BovineSNP50 beadchip. The animal population arose from repeated crossbreeding of multiple breeds and selection for growth and cow reproduction. The study showed that similar genomic structures in gametic and zygotic LD were observed, with zygotic LD decaying faster than gametic LD over marker distance. The trigenic and quadrigenic disequilibria were generally two- to three-fold smaller than the usual digenic disequilibria (gametic or composite LD). There was less power of testing for these high-order genic disequilibria than for the digenic disequilibria. The power estimates decreased with the marker distance between markers though the decay trend is more obvious for the digenic disequilibria than for high-order disequilibria. Conclusions This study is the first major genome-wide survey of all non-allelic associations between pairs of SNPs in a cattle population. Such analysis allows us to assess the relative importance of gametic LD vs. all other non-allelic genic LDs regardless of whether or not the population is in HWE. The observed predominance of digenic LD (gametic or composite LD) coupled with insignificant high-order trigenic and quadrigenic disequilibria supports the current intensive focus on the use of high-density SNP markers for genome-wide association studies and genomic selection activities in the cattle population. PMID:22827586

  2. Genome-wide Linkage on Chromosome 10q26 for a Dimensional Scale of Major Depression

    PubMed Central

    Knowles, Emma. E. M.; Kent, Jack W.; McKay, D. Reese; Sprooten, Emma; Mathias, Samuel R.; Curran, Joanne E.; Carless, Melanie A.; de Almeida, Marcio A. A.; Goring, Harald, H. H.; Dyer, Tom D.; Olvera, Rene L.; Fox, Peter T.; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C.

    2015-01-01

    Major depressive disorder (MDD) is a common and potentially life-threatening mood disorder. Identifying genetic markers for depression might provide reliable indicators of depression risk, which would, in turn, substantially improve detection, enabling earlier and more effective treatment. The aim of this study was to identify rare variants for depression, modeled as a continuous trait, using linkage and post-hoc association analysis. The sample comprised 1221 Mexican-American individuals from extended pedigrees. A single dimensional scale of MDD was derived using confirmatory factor analysis applied to all items from the Past Major Depressive Episode section of the Mini-International Neuropsychiatric Interview. Scores on this scale of depression were subjected to linkage analysis followed by QTL region-specific association analysis. Linkage analysis revealed a single genome-wide significant QTL (LOD = 3.43) on 10q26.13, QTL-specific association analysis conducted in the entire sample revealed a suggestive variant within an intron of the gene LHPP (rs11245316, p = 7.8×10-04; LD-adjusted Bonferroni-corrected p = 8.6×10-05). This region of the genome has previously been implicated in the etiology of MDD; the present study extends our understanding of the involvement of this region by highlighting a putative gene of interest (LHPP). PMID:26655122

  3. Genome-wide linkage scan for the metabolic syndrome: the GENNID study.

    PubMed

    Edwards, Karen L; Hutter, Carolyn M; Wan, Jia Yin; Kim, Helen; Monks, Stephanie A

    2008-07-01

    In the United States, the metabolic syndrome (MetS) constitutes a major public health problem with over 47 million persons meeting clinical criteria for MetS. Numerous studies have suggested genetic susceptibility to MetS. The goals of this study were (i) to identify susceptibility loci for MetS in well-characterized families with type 2 diabetes (T2D) in four ethnic groups and (ii) to determine whether evidence for linkage varies across the four groups. The GENNID study (Genetics of NIDDM) is a multicenter study established by the American Diabetes Association in 1993 and comprises a comprehensive, well-characterized resource of T2D families from four ethnic groups (whites, Mexican Americans, African Americans, and Japanese Americans). Principal component factor analysis (PCFA) was used to define quantitative phenotypes of the MetS. Variance components linkage analysis was conducted using microsatellite markers from a 10-cM genome-wide linkage scan, separately in each of the four ethnic groups. Three quantitative MetS factors were identified by PCFA and used as phenotypes for MetS: (i) a weight/waist factor, (ii) a blood pressure factor, and (iii) a lipid factor. Evidence for linkage to each of these factors was observed. For each ethnic group, our results suggest that several regions harbor susceptibility genes for the MetS. The strongest evidence for linkage for MetS phenotypes was observed on chromosome 2 (2q12.1-2q13) in the white sample and on chromosome 3 (3q26.1-3q29) in the Mexican-American sample. In conclusion, the results suggest that several regions harbor MetS susceptibility genes and that heterogeneity may exist across groups.

  4. Genome-wide linkage analysis and physical mapping of the rippling muscle disease gene

    SciTech Connect

    Stephan, D.A.; Buist, N.R.M.; Bhaskar, A.C.

    1994-09-01

    Rippling muscle disease (RMD) is an inherited disorder of skeletal muscle in which mechanical stimuli provoke electrically silent contractions. The patient`s symptoms are muscle cramps, pain, and stiffness, particularly during or following exercise. Clinical signs are balling of muscle following percussion, and a characteristic lateral rolling movement of muscle occurring after contraction followed by stretching. We report a new 44-member pedigree segregating RMD as an autosomal dominant trait. A genome-wide genetic linkage study in this family, using a novel approach of testing closely spaced highly polymorphic markers in affected individuals, localized the responsible gene to the distal end of the long arm of chromosome 1 with a maximum multi-point lod score of 3.56 ({theta}=0). In this family, RMD is localized to a 6 cM region near D1S235. Physical mapping of the linked region yielded several positive YAC clones, one of which spans the entire 6 cM distance. Several candidate genes not present in the YAC contig, but in the region of 1q4, have been excluded as causative by either linkage analysis of intragenic microsatellite repeats (alpha-actinin, angiotensinogen) or by SSCP of exons (skeletal muscle alpha-actinin). We studied two previously reported German families for linkage to the same locus and this same area did not co-segregate with the disease, a finding that shows that different genetic defects can cause a similar clinical phenotype (genetic heterogeneity). An understanding of the defect in contraction control within the muscle fibers in this disease may lead to a better understanding of muscle force transduction, intracellular calcium homeostasis, or both.

  5. Genome-wide linkage using the Social Responsiveness Scale in Utah autism pedigrees

    PubMed Central

    2010-01-01

    Background Autism Spectrum Disorders (ASD) are phenotypically heterogeneous, characterized by impairments in the development of communication and social behaviour and the presence of repetitive behaviour and restricted interests. Dissecting the genetic complexity of ASD may require phenotypic data reflecting more detail than is offered by a categorical clinical diagnosis. Such data are available from the Social Responsiveness Scale (SRS) which is a continuous, quantitative measure of social ability giving scores that range from significant impairment to above average ability. Methods We present genome-wide results for 64 multiplex and extended families ranging from two to nine generations. SRS scores were available from 518 genotyped pedigree subjects, including affected and unaffected relatives. Genotypes from the Illumina 6 k single nucleotide polymorphism panel were provided by the Center for Inherited Disease Research. Quantitative and qualitative analyses were done using MCLINK, a software package that uses Markov chain Monte Carlo (MCMC) methods to perform multilocus linkage analysis on large extended pedigrees. Results When analysed as a qualitative trait, linkage occurred in the same locations as in our previous affected-only genome scan of these families, with findings on chromosomes 7q31.1-q32.3 [heterogeneity logarithm of the odds (HLOD) = 2.91], 15q13.3 (HLOD = 3.64), and 13q12.3 (HLOD = 2.23). Additional positive qualitative results were seen on chromosomes 6 and 10 in regions that may be of interest for other neuropsychiatric disorders. When analysed as a quantitative trait, results replicated a peak found in an independent sample using quantitative SRS scores on chromosome 11p15.1-p15.4 (HLOD = 2.77). Additional positive quantitative results were seen on chromosomes 7, 9, and 19. Conclusions The SRS linkage peaks reported here substantially overlap with peaks found in our previous affected-only genome scan of clinical diagnosis. In addition, we

  6. Genome-wide searches for bipolar disorder genes.

    PubMed

    Alsabban, Shaza; Rivera, Margarita; McGuffin, Peter

    2011-12-01

    Whole-genome linkage and association studies of bipolar disorder are beginning to provide some compelling evidence for the involvement of several chromosomal regions and susceptibility genes in the pathogenesis of bipolar disorder. Developments in genotyping technology and efforts to combine data from different studies have helped in identifying chromosomes 6q16-q25, 13q, and 16p12 as probable susceptibility loci for bipolar disorder and confirmed CACNA1C and ANK3 as susceptibility genes for bipolar disorder. However, a lack of replication is still apparent in the literature. New studies focusing on copy number variants as well as new analytical approaches utilizing pathway analysis offer a new direction in the study of the genetics of bipolar disorder.

  7. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies.

    PubMed

    Xu, P; Wu, X; Wang, B; Luo, J; Liu, Y; Ehlers, J D; Close, T J; Roberts, P A; Lu, Z; Wang, S; Li, G

    2012-07-01

    Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.

  8. Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The level of population structure and the extent of linkage disequilibrium (LD) can have large impacts on the power, resolution, and design of genome-wide association studies (GWAS) in plants. Until recently, the topics of LD and population structure have not been explored in oat due to the lack of...

  9. Genome-wide linkage disequilibruim revealed by microsatellite markers and association study of fiber quality traits in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of association mapping based on existing genome-wide linkage disequilibrium (LD) between DNA polymorphisms and genes underlying traits is becoming powerful tool that overcome many limitations (high cost, poor resolution, requirement for bi-parentally crossed lines assessing only two ...

  10. Creative Activities in Music – A Genome-Wide Linkage Analysis

    PubMed Central

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  11. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    PubMed

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  12. Genome-Wide Significant Linkage of Schizophrenia-Related Neuroanatomical Trait to 12q24

    PubMed Central

    Sprooten, Emma; Gupta, Cota Navin; Knowles, Emma EM; McKay, D Reese; Mathias, Samuel R; Curran, Joanne E; Kent, Jack W; Carless, Melanie A; Almeida, Marcio A; Dyer, Thomas D; Göring, Harald HH; Olvera, Rene L; Kochunov, Peter; Fox, Peter T; Duggirala, Ravi; Almasy, Laura; Calhoun, Vince D.; Blangero, John; Turner, Jessica A; Glahn, David C

    2015-01-01

    The insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional and developmental characteristics and they serve higher cognitive functions of theoretical relevance to schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions in schizophrenia are the most consistent and pronounced in a network primarily composed of the insula and mPFC. We used source-based morphometry, a multivariate technique optimized for structural MRI, in a large sample of randomly ascertained pedigrees (N = 887) to derive an insula-mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-mPFC gray matter component as an independent source of gray matter variation in the general population, and verified its relevance to schizophrenia in an independent case-control sample. Secondly, we showed that the neuroanatomical variation defined by this component is largely determined by additive genetic variation (h2 = 0.59), and genome-wide linkage analysis resulted in a significant linkage peak at 12q24 (LOD = 3.76). This region has been of significant interest to psychiatric genetics as it contains the Darier’s disease locus and other proposed susceptibility genes (e.g. DAO, NOS1), and it has been linked to affective disorders and schizophrenia in multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula gray matter concentration. PMID:26440917

  13. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families.

    PubMed

    Gao, Hanxiang; Li, Lin; Rao, Shaoqi; Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G; Chen, Qiuyun; Topol, Eric J; Wang, Qing K

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of "missing heritability". Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18-4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.

  14. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians.

    PubMed

    Elbein, S C; Hoffman, M D; Teng, K; Leppert, M F; Hasstedt, S J

    1999-05-01

    Considerable evidence supports a major inherited component of type 2 diabetes. We initially conducted a genome-wide scan with 440 microsatellite markers at 10-cM intervals in 19 multigenerational families of Northern European ancestry with at least two diabetic siblings. Initial two-point analyses of these families directed marker typing of 23 additional families. Subsequently, all available marker data on the total of 42 families were analyzed using both parametric and nonparametric multipoint methods to test for linkage to type 2 diabetes. One locus on chromosome 1q21-1q23 met genome-wide criteria for significant linkage under a model of recessive inheritance with a common diabetes allele (logarithm of odds [LOD] = 4.295). Both pedigree-based nonparametric linkage (NPL) analysis and affected sib pair (MAPMAKER/SIBS) nonparametric methods also showed the highest genome-wide scores at this region, near markers CRP and APOA2, but failed to meet levels of genome-wide significance. The risk of type 2 diabetes to siblings of a diabetic person when compared with the population (lambdaS) was estimated from MAPMAKER/SIBS to be 2.8 in these 42 families. Simulation studies using study data confirmed a genome-wide significance level of P<0.05 (95% CI 0.005-0.0466). However, analysis of 20 similarly ascertained but smaller families failed to confirm this linkage. The LOD score with 50% heterogeneity for all 62 families considered together was only 2.25, with an estimated lambdaS of 1.87. Our data suggest a novel diabetes susceptibility locus near APOA2 on chromosome 1 in a region with many transcribed genes.

  15. Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica.

    PubMed

    DeLisi, Lynn E; Mesen, Andrea; Rodriguez, Carlos; Bertheau, Arturo; LaPrade, Beatrice; Llach, Michelle; Riondet, Silvina; Razi, Kamran; Relja, Margaret; Byerley, William; Sherrington, Robin

    2002-07-08

    Genetic isolates have been useful cohorts in which to search for genes underlying disorders of unknown pathology. One such cohort is thought to exist in the Central Valley of Costa Rica surrounding the city of San Jose. Previous investigators identified a rare dominant gene for hereditary deafness in this population, and a suggestive linkage of severe bipolar psychosis has been reported in another study. Ninety-nine families with at least one pair of siblings affected with schizophrenia or a schizophrenia-spectrum diagnosis had clinical evaluations and DNA collected for genotyping. The Marshfield Medical Research Foundation (NHLBI) Mammalian Genotyping Service performed all genotyping using 404 short-tandem repeat polymorphic markers (STRPs) spaced on average 10 cM apart. Data were analyzed using the nonparametric program, GeneHunterPlus. The population structure was investigated using the STRUCT program. No region was found with genome-wide significance for linkage. Using a phenotype of schizophrenia plus schizoaffective disorder, the highest maximum likelihood score (MLS) observed was 1.78 (P < 0.004) at 176.6 cM from pter on chromosome 5q, an area previously implicated by some other groups. In addition, five regions on chromosomes 1p, 2p, 2q, 14p, and 8p had MLSs above 1.0. All other regions produced scores below 1.0. Population genetic analysis reveals no evidence for population substructure, for admixture with other populations, such as Amerindians, or for inbreeding in the parental generation. The latter casts some doubt on this population being an isolate, although there was evidence of inbreeding among the offspring.

  16. Genome-Wide Linkage Scan Identifies Two Novel Genetic Loci for Coronary Artery Disease: In GeneQuest Families

    PubMed Central

    Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G.; Chen, Qiuyun; Topol, Eric J.; Wang, Qing K.

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD. PMID:25485937

  17. Genome-wide Study of Families with Absolute Pitch Reveals Linkage to 8q24.21 and Locus Heterogeneity

    PubMed Central

    Theusch, Elizabeth; Basu, Analabha; Gitschier, Jane

    2009-01-01

    Absolute pitch (AP) is the rare ability to instantaneously recognize and label tones with their musical note names without using a reference pitch for comparison. The etiology of AP is complex. Prior studies have implicated both genetic and environmental factors in its genesis, yet the molecular basis for AP remains unknown. To locate regions of the human genome that may harbor AP-predisposing genetic variants, we performed a genome-wide linkage study on 73 multiplex AP families by genotyping them with 6090 SNP markers. Nonparametric multipoint linkage analyses were conducted, and the strongest evidence for linkage was observed on chromosome 8q24.21 in the subset of 45 families with European ancestry (exponential LOD score = 3.464, empirical genome-wide p = 0.03). Other regions with suggestive LOD scores included chromosomes 7q22.3, 8q21.11, and 9p21.3. Of these four regions, only the 7q22.3 linkage peak was also evident when 19 families with East Asian ancestry were analyzed separately. Though only one of these regions has yet reached statistical significance individually, we detected a larger number of independent linkage peaks than expected by chance overall, indicating that AP is genetically heterogeneous. PMID:19576568

  18. A comparison in association and linkage genome-wide scans for alcoholism susceptibility genes using single-nucleotide polymorphisms.

    PubMed

    Chiu, Yen-Feng; Liu, Su-Yun; Tsai, Ya-Yu

    2005-12-30

    We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P linkage (NPL) scores from SNP and microsatellite genome scans are fairly consistent; however, the peaks of the NPL scores are mostly higher in the SNP-based scan than those using microsatellite markers, which might be located at different regions. Furthermore, SNPs identified from linkage screens were not so strongly associated with alcoholism (the most significant SNP had a p-value of 0.030) as those identified from association genomic screening (the most significant SNP had a p-value of 2.0 x 10(-8)).

  19. Genome-wide search for genes affecting the risk for alcohol dependence.

    PubMed

    Reich, T; Edenberg, H J; Goate, A; Williams, J T; Rice, J P; Van Eerdewegh, P; Foroud, T; Hesselbrock, V; Schuckit, M A; Bucholz, K; Porjesz, B; Li, T K; Conneally, P M; Nurnberger, J I; Tischfield, J A; Crowe, R R; Cloninger, C R; Wu, W; Shears, S; Carr, K; Crose, C; Willig, C; Begleiter, H

    1998-05-08

    Alcohol dependence is a leading cause of morbidity and premature death. Several lines of evidence suggest a substantial genetic component to the risk for alcoholism: sibs of alcoholic probands have a 3-8 fold increased risk of also developing alcoholism, and twin heritability estimates of 50-60% are reported by contemporary studies of twins. We report on the results of a six-center collaborative study to identify susceptibility loci for alcohol dependence. A genome-wide screen examined 291 markers in 987 individuals from 105 families. Two-point and multipoint nonparametric linkage analyses were performed to detect susceptibility loci for alcohol dependence. Multipoint methods provided the strongest suggestions of linkage with susceptibility loci for alcohol dependence on chromosomes 1 and 7, and more modest evidence for a locus on chromosome 2. In addition, there was suggestive evidence for a protective locus on chromosome 4 near the alcohol dehydrogenase genes, for which protective effects have been reported in Asian populations.

  20. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  1. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  2. Genome-wide linkage analysis of the tracking of systolic blood pressure using a mixed model

    PubMed Central

    Wang, Tao; Zhu, Guohua; Keen, Kevin J

    2003-01-01

    Background Elevated blood pressure in middle age is a major risk factor for subsequent cardiovascular complications. An important longitudinal characteristic of blood pressure is the "tracking phenomenon". Tracking is defined as the persistence of the rank of a person's blood pressure level in a group over a long period of time. In this analysis, we used the Framingham data to investigate whether there are some genes responsible for this phenomenon. Results Both two-point and multipoint linkage analyses were applied to family members with complete data only and to all family data with missing values imputed by a Gaussian model. The results of two-point linkage analysis indicated that two loci for linkage with the intercept were on chromosomes 10 and 13, and two loci for linkage with both slope and intercept were on chromosomes 1 and 3. Multipoint linkage analysis indicated only one region, 200–240 cM on chromosome 1, to be linked with both intercept and slope. For the intercept of SBP, the highest LOD (4.43) was found at 214 cM when missing data were imputed, and the highest LOD (2.81) was at 231 cM for the complete case data. For the slope of SBP, the highest multipoint LODs were 3.63 at 227 cM and 2.02 at 234 cM for the complete case data and imputation data, respectively. Conclusion One or more genes in the range of 200–240 cM on chromosome 1 may be related to the tracking phenomenon of SBP. PMID:14975156

  3. Genome-wide linkage and association analysis identifies major gene loci for guttural pouch tympany in Arabian and German warmblood horses.

    PubMed

    Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2012-01-01

    Equine guttural pouch tympany (GPT) is a hereditary condition affecting foals in their first months of life. Complex segregation analyses in Arabian and German warmblood horses showed the involvement of a major gene as very likely. Genome-wide linkage and association analyses including a high density marker set of single nucleotide polymorphisms (SNPs) were performed to map the genomic region harbouring the potential major gene for GPT. A total of 85 Arabian and 373 German warmblood horses were genotyped on the Illumina equine SNP50 beadchip. Non-parametric multipoint linkage analyses showed genome-wide significance on horse chromosomes (ECA) 3 for German warmblood at 16-26 Mb and 34-55 Mb and for Arabian on ECA15 at 64-65 Mb. Genome-wide association analyses confirmed the linked regions for both breeds. In Arabian, genome-wide association was detected at 64 Mb within the region with the highest linkage peak on ECA15. For German warmblood, signals for genome-wide association were close to the peak region of linkage at 52 Mb on ECA3. The odds ratio for the SNP with the highest genome-wide association was 0.12 for the Arabian. In conclusion, the refinement of the regions with the Illumina equine SNP50 beadchip is an important step to unravel the responsible mutations for GPT.

  4. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians.

    PubMed

    Seda, Ondrej; Tremblay, Johanne; Gaudet, Daniel; Brunelle, Pierre-Luc; Gurau, Alexandru; Merlo, Ettore; Pilote, Louise; Orlov, Sergei N; Boulva, Francis; Petrovich, Milan; Kotchen, Theodore A; Cowley, Allen W; Hamet, Pavel

    2008-04-01

    The sexual dimorphism of cardiovascular traits, as well as susceptibility to a variety of related diseases, has long been recognized, yet their sex-specific genomic determinants are largely unknown. We systematically assessed the sex-specific heritability and linkage of 539 hemodynamic, metabolic, anthropometric, and humoral traits in 120 French-Canadian families from the Saguenay-Lac-St-Jean region of Quebec, Canada. We performed multipoint linkage analysis using microsatellite markers followed by peak-wide linkage scan based on Affymetrix Human Mapping 50K Array Xba240 single nucleotide polymorphism genotypes in 3 settings, including the entire sample and then separately in men and women. Nearly one half of the traits were age and sex independent, one quarter were both age and sex dependent, and one eighth were exclusively age or sex dependent. Sex-specific phenotypes are most frequent in heart rate and blood pressure categories, whereas sex- and age-independent determinants are predominant among humoral and biochemical parameters. Twenty sex-specific loci passing multiple testing criteria were corroborated by 2-point single nucleotide polymorphism linkage. Several resting systolic blood pressure measurements showed significant genotype-by-sex interaction, eg, male-specific locus at chromosome 12 (male-female logarithm of odds difference: 4.16; interaction P=0.0002), which was undetectable in the entire population, even after adjustment for sex. Detailed interrogation of this locus revealed a 220-kb block overlapping parts of TAO-kinase 3 and SUDS3 genes. In summary, a large number of complex cardiovascular traits display significant sexual dimorphism, for which we have demonstrated genomic determinants at the haplotype level. Many of these would have been missed in a traditional, sex-adjusted setting.

  5. Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo

    2008-02-01

    The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.

  6. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins.

    PubMed

    Khater, Shradha; Mohanty, Debasisa

    2014-07-24

    Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.

  7. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.).

    PubMed

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A; Colecchia, Salvatore A; Mastrangelo, Anna M; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.

  8. Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.

    PubMed

    Somers, Daryl J; Banks, Travis; Depauw, Ron; Fox, Stephen; Clarke, John; Pozniak, Curtis; McCartney, Curt

    2007-06-01

    Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.

  9. Linkage Disequilibrium and Genome-Wide Association Mapping in Tetraploid Wheat (Triticum turgidum L.)

    PubMed Central

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A.; Colecchia, Salvatore A.; Mastrangelo, Anna M.; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations. PMID:24759998

  10. Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds.

    PubMed

    Sudrajad, P; Seo, D W; Choi, T J; Park, B H; Roh, S H; Jung, W Y; Lee, S S; Lee, J H; Kim, S; Lee, S H

    2017-02-01

    The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high-density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (Ne ), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and Ne in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15-0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small Ne values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and Ne for each breed reflect the breeding strategy applied. The Ne for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract.

  11. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.

    PubMed

    Raman, Harsh; Dalton-Morgan, Jessica; Diffey, Simon; Raman, Rosy; Alamery, Salman; Edwards, David; Batley, Jacqueline

    2014-09-01

    An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.

  12. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

    PubMed Central

    2014-01-01

    Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These

  13. STAMS: STRING-assisted module search for genome wide association studies and application to autism

    PubMed Central

    Hillenmeyer, Sara; Davis, Lea K.; Gamazon, Eric R.; Cook, Edwin H.; Cox, Nancy J.; Altman, Russ B.

    2016-01-01

    Motivation: Analyzing genome wide association data in the context of biological pathways helps us understand how genetic variation influences phenotype and increases power to find associations. However, the utility of pathway-based analysis tools is hampered by undercuration and reliance on a distribution of signal across all of the genes in a pathway. Methods that combine genome wide association results with genetic networks to infer the key phenotype-modulating subnetworks combat these issues, but have primarily been limited to network definitions with yes/no labels for gene-gene interactions. A recent method (EW_dmGWAS) incorporates a biological network with weighted edge probability by requiring a secondary phenotype-specific expression dataset. In this article, we combine an algorithm for weighted-edge module searching and a probabilistic interaction network in order to develop a method, STAMS, for recovering modules of genes with strong associations to the phenotype and probable biologic coherence. Our method builds on EW_dmGWAS but does not require a secondary expression dataset and performs better in six test cases. Results: We show that our algorithm improves over EW_dmGWAS and standard gene-based analysis by measuring precision and recall of each method on separately identified associations. In the Wellcome Trust Rheumatoid Arthritis study, STAMS-identified modules were more enriched for separately identified associations than EW_dmGWAS (STAMS P-value 3.0 × 10−4; EW_dmGWAS- P-value = 0.8). We demonstrate that the area under the Precision-Recall curve is 5.9 times higher with STAMS than EW_dmGWAS run on the Wellcome Trust Type 1 Diabetes data. Availability and Implementation: STAMS is implemented as an R package and is freely available at https://simtk.org/projects/stams. Contact: rbaltman@stanford.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27542772

  14. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data.

    PubMed

    Mdladla, K; Dzomba, E F; Huson, H J; Muchadeyi, F C

    2016-08-01

    The sustainability of goat farming in marginal areas of southern Africa depends on local breeds that are adapted to specific agro-ecological conditions. Unimproved non-descript goats are the main genetic resources used for the development of commercial meat-type breeds of South Africa. Little is known about genetic diversity and the genetics of adaptation of these indigenous goat populations. This study investigated the genetic diversity, population structure and breed relations, linkage disequilibrium, effective population size and persistence of gametic phase in goat populations of South Africa. Three locally developed meat-type breeds of the Boer (n = 33), Savanna (n = 31), Kalahari Red (n = 40), a feral breed of Tankwa (n = 25) and unimproved non-descript village ecotypes (n = 110) from four goat-producing provinces of the Eastern Cape, KwaZulu-Natal, Limpopo and North West were assessed using the Illumina Goat 50K SNP Bead Chip assay. The proportion of SNPs with minor allele frequencies >0.05 ranged from 84.22% in the Tankwa to 97.58% in the Xhosa ecotype, with a mean of 0.32 ± 0.13 across populations. Principal components analysis, admixture and pairwise FST identified Tankwa as a genetically distinct population and supported clustering of the populations according to their historical origins. Genome-wide FST identified 101 markers potentially under positive selection in the Tankwa. Average linkage disequilibrium was highest in the Tankwa (r(2)  = 0.25 ± 0.26) and lowest in the village ecotypes (r(2) range = 0.09 ± 0.12 to 0.11 ± 0.14). We observed an effective population size of <150 for all populations 13 generations ago. The estimated correlations for all breed pairs were lower than 0.80 at marker distances >100 kb with the exception of those in Savanna and Tswana populations. This study highlights the high level of genetic diversity in South African indigenous goats as well as the utility of the genome-wide SNP marker panels in

  15. Identifying Loci for the Overlap between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-Wide QTL Linkage Approach

    ERIC Educational Resources Information Center

    Nijmeijer, Judith S.; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Anney, Richard J. L.; Asherson, Philip; Banaschewski, Tobias; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Gill, Michael; Minderaa, Ruud B.; Poustka, Luise; Sergeant, Joseph A.; Buitelaar, Jan K.; Franke, Barbara; Ebstein, Richard P.; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sonuga-Barke, Edmund J. S.; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Hartman, Catharina A.; Hoekstra, Pieter J.

    2010-01-01

    Objective: The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. Method: Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and…

  16. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...

  17. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping

    PubMed Central

    Nemri, Adnane; Atwell, Susanna; Tarone, Aaron M.; Huang, Yu S.; Zhao, Keyan; Studholme, David J.; Nordborg, Magnus; Jones, Jonathan D. G.

    2010-01-01

    The model plant Arabidopsis thaliana exhibits extensive natural variation in resistance to parasites. Immunity is often conferred by resistance (R) genes that permit recognition of specific races of a disease. The number of such R genes and their distribution are poorly understood. In this study, we investigated the basis for resistance to the downy mildew agent Hyaloperonospora arabidopsidis ex parasitica (Hpa) in a global sample of A. thaliana. We implemented a combined genome-wide mapping of resistance using populations of recombinant inbred lines and a collection of wild A. thaliana accessions. We tested the interaction between 96 host genotypes collected worldwide and five strains of Hpa. Then, a fraction of the species-wide resistance was genetically dissected using six recently constructed populations of recombinant inbred lines. We found that resistance is usually governed by single dominant R genes that are concentrated in four genomic regions only. We show that association genetics of resistance to diseases such as downy mildew enables increased mapping resolution from quantitative trait loci interval to candidate gene level. Association patterns in quantitative trait loci intervals indicate that the pool of A. thaliana resistance sources against the tested Hpa isolates may be predominantly confined to six RPP (Resistance to Hpa) loci isolated in previous studies. Our results suggest that combining association and linkage mapping could accelerate resistance gene discovery in plants. PMID:20479233

  18. A genome-wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep.

    PubMed

    Miller, J M; Poissant, J; Kijas, J W; Coltman, D W

    2011-03-01

    The development of genomic resources for wild species is still in its infancy. However, cross-species utilization of technologies developed for their domestic counterparts has the potential to unlock the genomes of organisms that currently lack genomic resources. Here, we apply the OvineSNP50 BeadChip, developed for domestic sheep, to two related wild ungulate species: the bighorn sheep (Ovis canadensis) and the thinhorn sheep (Ovis dalli). Over 95% of the domestic sheep markers were successfully genotyped in a sample of fifty-two bighorn sheep while over 90% were genotyped in two thinhorn sheep. Pooling the results from both species identified 868 single-nucleotide polymorphisms (SNPs), 570 were detected in bighorn sheep, while 330 SNPs were identified in thinhorn sheep. The total panel of SNPs was able to discriminate between the two species, assign population of origin for bighorn sheep and detect known relationship classes within one population of bighorn sheep. Using an informative subset of these SNPs (n=308), we examined the extent of genome-wide linkage disequilibrium (LD) within one population of bighorn sheep and found that high levels of LD persist over 4 Mb.

  19. A genome-wide search for genes predisposing to familial psoriasis by using a stratification approach.

    PubMed

    Samuelsson, L; Enlund, F; Torinsson, A; Yhr, M; Inerot, A; Enerbäck, C; Wahlström, J; Swanbeck, G; Martinsson, T

    1999-12-01

    We have performed a genome scan, using markers spaced by 10 cM, in the search for psoriasis-susceptibility loci. The family material of 134 affected sibling pairs was ascertained on the basis of a population genetic study in which 65% of the probands had two healthy parents. Genotyping results were analyzed for non-random excessive allele-sharing between sib pairs by using GENEHUNTER ver 1.1. A stratification approach was applied to increase the homogeneity of the material by means of an operational definition of joint complaints among affected individuals. Significant linkage to the human leukocyte antigen region on chromosome 6p in a cohort including 42 families without joint complaints (nonparametric linkage score of 2.83, P=0.002) strongly supported the validity of this operational definition as it replicated results from an earlier linkage report with similar stratification criteria. New candidate regions on chromosomes 3 and 15 were identified. The highest non-parametric linkage values in this study, 2.96 (P=0.0017) and 2.89 (P=0.0020), were reached on chromosome 15 in a subgroup with joint complaints and on chromosome 3 in a subgroup without joint complaints. In addition, confirmation of previously reported loci was established on chromosomes 4q, 6p, and 17q. This study indicates that distinct disease loci might be involved in psoriasis etiology for various phenotypes.

  20. Genome-wide SNP-Based Linkage Scan Identifies a Locus on 8q24 for an Age-Related Hearing Impairment Trait

    PubMed Central

    Huyghe, Jeroen R.; Van Laer, Lut; Hendrickx, Jan-Jaap; Fransen, Erik; Demeester, Kelly; Topsakal, Vedat; Kunst, Sylvia; Manninen, Minna; Jensen, Mona; Bonaconsa, Amanda; Mazzoli, Manuela; Baur, Manuela; Hannula, Samuli; Mäki-Torkko, Elina; Espeso, Angeles; Van Eyken, Els; Flaquer, Antonia; Becker, Christian; Stephens, Dafydd; Sorri, Martti; Orzan, Eva; Bille, Michael; Parving, Agnete; Pyykkö, Ilmari; Cremers, Cor W.R.J.; Kremer, Hannie; Van de Heyning, Paul H.; Wienker, Thomas F.; Nürnberg, Peter; Pfister, Markus; Van Camp, Guy

    2008-01-01

    Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait. PMID:18760390

  1. Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait.

    PubMed

    Huyghe, Jeroen R; Van Laer, Lut; Hendrickx, Jan-Jaap; Fransen, Erik; Demeester, Kelly; Topsakal, Vedat; Kunst, Sylvia; Manninen, Minna; Jensen, Mona; Bonaconsa, Amanda; Mazzoli, Manuela; Baur, Manuela; Hannula, Samuli; Mäki-Torkko, Elina; Espeso, Angeles; Van Eyken, Els; Flaquer, Antonia; Becker, Christian; Stephens, Dafydd; Sorri, Martti; Orzan, Eva; Bille, Michael; Parving, Agnete; Pyykkö, Ilmari; Cremers, Cor W R J; Kremer, Hannie; Van de Heyning, Paul H; Wienker, Thomas F; Nürnberg, Peter; Pfister, Markus; Van Camp, Guy

    2008-09-01

    Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait.

  2. Genome wide search for variation associated with micronutrient density of developing rice grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Omic" tools are rapidly being employed to delineate the biological framework controlling phenotypes of interest in crop species. An advanced understanding of the genetic basis for quantitative trait variation has been made possible through genome wide association studies (GWAS) that make use of gen...

  3. Search and Validation of Short Genome-Wide Biomarkers for Bacterial Biological Phylogenies

    NASA Astrophysics Data System (ADS)

    Garzon, Max H.; Wong, Tit-Yee

    We continue the exploration of DNA-based indexing as a universal coordinate system in DNA spaces to characterize very large groups (families, genera, and even phylla) of organisms on a uniform biomarker reference system, a comprehensive "Atlas of Life", as it is or as it could be on earth. We provide a second confirmation that DNA noncrosshybridizing (nxh) sets can be successfully applied to infer ab-initio phylogenetic trees by providing a method to measure distances among entire genomes indexed by sets of short oligonucleotides selected so as to minimize crosshybridization. These phylogenies are solidly established and well accepted in bacterial biology, albeit done by analyses of relatively small segments of highly conserved rybozomic DNA. Second, it is further demonstrated that DNA indexing does provide novel and principled genome-wide predictions into the phylogenesis of organisms hitherto inaccessible by current methods, such as a prediction of the origin of the Salmonella plasmid 50 as being acquired horizontally, likely from some bacteria somewhat related to Yesinia. We conclude with some discussion about the scalability and potential of this method to develop a comprehensive tree of life based on genome-wide methods.

  4. A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

    PubMed Central

    Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations. PMID:22238593

  5. A Genome-Wide Search for Greek and Jewish Admixture in the Kashmiri Population

    PubMed Central

    Tashi, Tsewang; Lorenzo, Felipe Ramos; Feusier, Julie Ellen; Mir, Hyder

    2016-01-01

    The Kashmiri population is an ethno-linguistic group that resides in the Kashmir Valley in northern India. A longstanding hypothesis is that this population derives ancestry from Jewish and/or Greek sources. There is historical and archaeological evidence of ancient Greek presence in India and Kashmir. Further, some historical accounts suggest ancient Hebrew ancestry as well. To date, it has not been determined whether signatures of Greek or Jewish admixture can be detected in the Kashmiri population. Using genome-wide genotyping and admixture detection methods, we determined there are no significant or substantial signs of Greek or Jewish admixture in modern-day Kashmiris. The ancestry of Kashmiri Tibetans was also determined, which showed signs of admixture with populations from northern India and west Eurasia. These results contribute to our understanding of the existing population structure in northern India and its surrounding geographical areas. PMID:27490348

  6. White matter lesion progression: A genome-wide search for genetic influences

    PubMed Central

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C; DeCarli, Charles; Fornage, Myriam; Sigurdsson, Sigurdur; Srikanth, Velandai; Trompet, Stella; Verhaaren, Benjamin FJ; Wolf, Christiane; Yang, Qiong; Adams, Hieab HH; Amouyel, Philippe; Beiser, Alexa; Buckley, Brendan M; Callisaya, Michele; Chauhan, Ganesh; de Craen, Anton JM; Dufouil, Carole; van Duijn, Cornelia M; Ford, Ian; Freudenberger, Paul; Gottesman, Rebecca F; Gudnason, Vilmundur; Heiss, Gerardo; Hofman, Albert; Lumley, Thomas; Martinez, Oliver; Mazoyer, Bernard; Moran, Chris; Niessen, Wiro J.; Phan, Thanh; Psaty, Bruce M; Satizabal, Claudia L; Sattar, Naveed; Schilling, Sabrina; Shibata, Dean K; Slagboom, P Eline; Smith, Albert; Stott, David J; Taylor, Kent D; Thomson, Russell; Töglhofer, Anna M; Tzourio, Christophe; van Buchem, Mark; Wang, Jing; Westendorp, Rudi GJ; Windham, B Gwen; Vernooij, Meike W; Zijdenbos, Alex; Beare, Richard; Debette, Stéphanie; Ikram, M Arfan; Jukema, J Wouter; Launer, Lenore J; Longstreth, W T; Mosley, Thomas H; Seshadri, Sudha; Schmidt, Helena; Schmidt, Reinhold

    2016-01-01

    Background and Purpose White matter lesion (WML) progression on magnetic resonance imaging (MRI) is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from 10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in seven cohorts risk models including demographics, vascular risk factors plus single nucleotide polymorphisms (SNPs) that have been shown to be associated cross-sectionally with WML in the current and previous association studies. Results A total of 1085 subjects showed WML progression. The heritability estimate for WML progression was low at 6.5%, and no SNPs achieved genome-wide significance (p-value < 5×10−8). Four loci were suggestive (p-value < 1×10−5) of an association with WML progression: 10q24.32 (rs10883817, p=1.46×10−6); 12q13.13 (rs4761974, p=8.71×10−7); 20p12.1 (rs6135309, p=3.69×10−6); and 4p15.31 (rs7664442, p=2.26×10−6). Variants that have been previously related to WML explained only 0.8% to 11.7% more of the variance in WML progression than age, vascular risk factors and baseline WML burden. Conclusions Common genetic factors contribute little to the progression of age-related WML in middle-aged and older adults. Future research on determinants of WML progression should focus more on environmental, life-style or host-related biological factors. PMID:26451028

  7. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

    PubMed Central

    Wright, Fred A.; Strug, Lisa J.; Doshi, Vishal K.; Commander, Clayton W.; Blackman, Scott M.; Sun, Lei; Berthiaume, Yves; Cutler, David; Cojocaru, Andreea; Collaco, J. Michael; Corey, Mary; Dorfman, Ruslan; Goddard, Katrina; Green, Deanna; Kent, Jack W.; Lange, Ethan M.; Lee, Seunggeun; Li, Weili; Luo, Jingchun; Mayhew, Gregory M.; Naughton, Kathleen M.; Pace, Rhonda G.; Paré, Peter; Rommens, Johanna M.; Sandford, Andrew; Stonebraker, Jaclyn R.; Sun, Wei; Taylor, Chelsea; Vanscoy, Lori L.; Zou, Fei; Blangero, John; Zielenski, Julian; O’Neal, Wanda K.; Drumm, Mitchell L.; Durie, Peter R.; Knowles, Michael R.; Cutting, Garry R.

    2012-01-01

    A combined genome-wide association and linkage study was used to identify loci causing variation in CF lung disease severity. A significant association (P=3. 34 × 10-8) near EHF and APIP (chr11p13) was identified in F508del homozygotes (n=1,978). The association replicated in F508del homozygotes (P=0.006) from a separate family-based study (n=557), with P=1.49 × 10-9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family-based study identified a significant QTL on chromosome 20q13.2 (LOD=5.03). Our findings provide insight into the causes of variation in lung disease severity in CF and suggest new therapeutic targets for this life-limiting disorder. PMID:21602797

  8. Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites

    PubMed Central

    Weth, Oliver; Weth, Christine; Bartkuhn, Marek; Leers, Joerg; Uhle, Florian; Renkawitz, Rainer

    2010-01-01

    The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. PMID:20404925

  9. First-generation linkage map of the gray, short-tailed opossum, Monodelphis domestica, reveals genome-wide reduction in female recombination rates.

    PubMed Central

    Samollow, Paul B; Kammerer, Candace M; Mahaney, Susan M; Schneider, Jennifer L; Westenberger, Scott J; VandeBerg, John L; Robinson, Edward S

    2004-01-01

    The gray, short-tailed opossum, Monodelphis domestica, is the most extensively used, laboratory-bred marsupial resource for basic biologic and biomedical research worldwide. To enhance the research utility of this species, we are building a linkage map, using both anonymous markers and functional gene loci, that will enable the localization of quantitative trait loci (QTL) and provide comparative information regarding the evolution of mammalian and other vertebrate genomes. The current map is composed of 83 loci distributed among eight autosomal linkage groups and the X chromosome. The autosomal linkage groups appear to encompass a very large portion of the genome, yet span a sex-average distance of only 633.0 cM, making this the most compact linkage map known among vertebrates. Most surprising, the male map is much larger than the female map (884.6 cM vs. 443.1 cM), a pattern contrary to that in eutherian mammals and other vertebrates. The finding of genome-wide reduction in female recombination in M. domestica, coupled with recombination data from two other, distantly related marsupial species, suggests that reduced female recombination might be a widespread metatherian attribute. We discuss possible explanations for reduced female recombination in marsupials as a consequence of the metatherian characteristic of determinate paternal X chromosome inactivation. PMID:15020427

  10. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy.

    PubMed

    Norton, Nadine; Li, Duanxiang; Rampersaud, Evadnie; Morales, Ana; Martin, Eden R; Zuchner, Stephan; Guo, Shengru; Gonzalez, Michael; Hedges, Dale J; Robertson, Peggy D; Krumm, Niklas; Nickerson, Deborah A; Hershberger, Ray E

    2013-04-01

    BACKGROUND- Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. METHODS AND RESULTS- We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. CONCLUSIONS- These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing.

  11. A genome-wide search for genes predisposing to manic-depression, assuming autosomal dominant inheritance

    SciTech Connect

    Coon, H.; Jensen, S.; Hoff, M.; Holik, J.; Plaetke, R.; Reimherr, F.; Wender, P.; Leppert, M.; Byerley, W. )

    1993-06-01

    Manic-depressive illness (MDI), also known as [open quotes]bipolar affective disorder[close quotes], is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, the authors ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping at 5 cM from the disease gene, the pedigree sample has >97% power to detect a dominant allele under genetic homogeneity and has >73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores <[minus]2.0 at [theta] = .05, and 4 DNA marker loci yielded lod scores >1 (chromosome 5 -- D5S39, D5S43, and D5S62; chromosome 11 -- D11S85). Of the markers giving lod scores >1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, the linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk. 72 refs., 2 tabs.

  12. Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies†

    PubMed Central

    Shriner, Daniel; Baye, Tesfaye M.; Padilla, Miguel A.; Zhang, Shiju; Vaughan, Laura K.; Loraine, Ann E.

    2008-01-01

    Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO. PMID:18263617

  13. A Genome-Wide SNP Linkage Analysis Suggests a Susceptibility Locus on 6p21 for Ankylosing Spondylitis and Inflammatory Back Pain Trait

    PubMed Central

    Zhang, Yanli; Liao, Zetao; Wei, Qiujing; Pan, Yunfeng; Wang, Xinwei; Cao, Shuangyan; Guo, Zishi; Wu, Yuqiong; Rong, Ju; Jin, Ou; Xu, Manlong; Gu, Jieruo

    2016-01-01

    Objectives To screen susceptibility loci for ankylosing spondylitis (AS) using an affected-only linkage analysis based on high-density single nucleotide polymorphisms (SNPs) in a genome-wide manner. Patients and Methods AS patients from ten families with Cantonese origin of China were enrolled in the study. Blood samples were genotyped using genomic DNA derived from peripheral blood leukocytes by Illumina HumanHap 610-Quad SNP Chip. Genotype data were generated using the Illumina BeadStudio 3.2 software. PLINK package was used to remove non-autosomal SNPs and to further eliminate markers of typing errors. An affected-only linkage analysis was carried out using both non-parametric and parametric linkage analyses, as implemented in MERLIN. Result Seventy-eight AS patients (48 males and 30 females, mean age: 39±16 years) were enrolled in the study. The mean age of onset was 23±10 years and mean duration of disease was 16.7±12.2 years. Iritis (2/76, 2.86%), dactylitis (5/78, 6.41%), hip joint involvement (9/78, 11.54%), peripheral arthritis (22/78, 28.21%), inflammatory back pain (IBP) (69/78, 88.46%) and HLA-B27 positivity (70/78, 89.74%) were observed in these patients. Using non-parameter linkage analysis, we found one susceptibility locus for AS, IBP and HLA-B27 in 6p21 respectively, spanning about 13.5Mb, 20.9Mb and 21.2Mb, respectively No significant results were found in the other clinical trait groups including dactylitis, hip involved and arthritis. The identical susceptibility locus region spanning above 9.44Mb was detected in AS IBP and HLA-B27 by the parametric linkage analysis. Conclusion Our genome-wide SNP linkage analysis in ten families with ankylosing spondylitis suggests a susceptibility locus on 6p21 in AS, which is a risk locus for IBP in AS patients. PMID:27973620

  14. Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses

    PubMed Central

    Liu, Jia; Wang, Jun; Wang, Hui; Wang, Wenxiang; Zhou, Rijin; Mei, Desheng; Cheng, Hongtao; Yang, Juan; Raman, Harsh; Hu, Qiong

    2016-01-01

    The majority of rapeseed cultivars shatter seeds upon maturity especially under hot-dry and windy conditions, reducing yield and gross margin return to growers. Here, we identified quantitative trait loci (QTL) for resistance to pod shatter in an unstructured diverse panel of 143 rapeseed accessions, and two structured populations derived from bi-parental doubled haploid (DH) and inter-mated (IF2) crosses derived from R1 (resistant to pod shattering) and R2 (prone to pod shattering) accessions. Genome-wide association analysis identified six significant QTL for resistance to pod shatter located on chromosomes A01, A06, A07, A09, C02, and C05. Two of the QTL, qSRI.A09 delimited with the SNP marker Bn-A09-p30171993 (A09) and qSRI.A06 delimited with the SNP marker Bn-A06-p115948 (A06) could be repeatedly detected across environments in a diversity panel, DH and IF2 populations, suggesting that at least two loci on chromosomes A06 and A09 were the main contributors to pod shatter resistance in Chinese germplasm. Significant SNP markers identified in this study especially those that appeared repeatedly across environments provide a cost-effective and an efficient method for introgression and pyramiding of favorable alleles for pod shatter resistance via marker-assisted selection in rapeseed improvement programs. PMID:27493651

  15. Genome-Wide Linkage and Regional Association Study of Blood Pressure Response to the Cold Pressor Test in Han Chinese: The GenSalt Study

    PubMed Central

    Yang, Xueli; Gu, Dongfeng; He, Jiang; Hixson, James E.; Rao, Dabeeru C.; Lu, Fanghong; Mu, Jianjun; Jaquish, Cashell E.; Chen, Jing; Huang, Jianfeng; Shimmin, Lawrence C.; Rice, Treva K.; Chen, Jichun; Wu, Xigui; Liu, Depei; Kelly, Tanika N.

    2014-01-01

    Background Blood pressure (BP) response to cold pressor test (CPT) is associated with increased risk of cardiovascular disease. We performed a genome-wide linkage scan and regional association analysis to identify genetic determinants of BP response to CPT. Methods and Results A total of 1,961 Chinese participants completed the CPT. Multipoint quantitative trait linkage analysis was performed, followed by single-marker and gene-based analyses of variants in promising linkage regions (logarithm of odds, LOD ≥ 2). A suggestive linkage signal was identified for systolic BP (SBP) response to CPT at 20p13-20p12.3, with a maximum multipoint LOD score of 2.37. Based on regional association analysis with 1,351 SNPs in the linkage region, we found that marker rs2326373 at 20p13 was significantly associated with mean arterial pressure (MAP) responses to CPT (P = 8.8×10−6) after FDR adjustment for multiple comparisons. A similar trend was also observed for SBP response (P = 0.03) and DBP response (P = 4.6×10−5). Results of gene-based analyses showed that variants in genes MCM8 and SLC23A2 were associated with SBP response to CPT (P = 4.0×10−5 and 2.7×10−4, respectively), and variants in genes MCM8 and STK35 were associated with MAP response to CPT (P = 1.5×10−5 and 5.0×10−5, respectively). Conclusions Within a suggestive linkage region on chromosome 20, we identified a novel variant associated with BP responses to CPT. We also found gene-based associations of MCM8, SLC23A2 and STK35 in this region. Further work is warranted to confirm these findings. Clinical Trial Registration URL: http://www.clinicaltrials.gov; Unique identifier: NCT00721721. PMID:25028485

  16. Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes

    PubMed Central

    Culminskaya, Irina; Kulminski, Alexander M.; Yashin, Anatoli I.

    2017-01-01

    A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10−22 and p=5.8×10−18), in general, and in short genes (p=1.4×10−47 and p=4.6×10−7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10−4, q<10−4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan. PMID:28357417

  17. A Genome-Wide Linkage Scan for Cleft Lip and Cleft Palate Identifies a Novel Locus on 8p11-23

    PubMed Central

    Riley, B.M.; Schultz, R.E.; Cooper, M.E.; Goldstein-McHenry, T.; Daack-Hirsch, S.; Lee, K.T.; Dragan, E.; Vieira, A.R.; Lidral, A.C.; Marazita, M.L.; Murray, J.C.

    2008-01-01

    Isolated or nonsyndromic cleft lip and palate (NS CLP) is a complex disorder resulting from multiple genetic and environmental factors. NS CLP has a birth prevalence of 1 per 500 in the Philippines where large families provide an opportunity for gene localization. Genotyping of 392 microsatellite repeat markers at 10 cM intervals over the genome was performed by the Center for Inherited Disease Research (CIDR) on 220 Filipino families with 567 affected and 1,109 unaffected family members genotyped. Among the most statistically significant results from analysis of the genome-wide scan data was a 20 cM region at 8p11-23 in which markers had LODs ≥1.0. This region on 8p11-23 has not been found in any previous genome wide scan nor does it contain any of the candidate genes widely studied in CLP. Fine mapping in 8p11-23 was done in the 220 families plus an additional 51 families, using SNP markers from 10 known genes (FGFR1, NRG1, FZD3, SLC8A1, PPP3CC, EPHX2, BNIP3L, EGR3, PPP2R2A, and NAT1) within the 20 cM region of 8p11-23. Linkage and association analyses of these SNPs yield suggestive results for markers in FGFR1 (recessive multipoint HLOD 1.07) and BAG4 (recessive multipoint HLOD 1.31). PMID:17366557

  18. Genome-wide scan for serum ghrelin detects linkage on chromosome 1p36 in Hispanic children: results from the Viva La Familia study.

    PubMed

    Voruganti, V Saroja; Göring, Harald H H; Diego, Vincent P; Cai, Guowen; Mehta, Nitesh R; Haack, Karin; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2007-10-01

    This study was conducted to investigate genetic influence on serum ghrelin and its relationship with adiposity-related phenotypes in Hispanic children (n=1030) from the Viva La Familia study (VFS). Anthropometric measurements and levels of serum ghrelin were estimated and genetic analyses conducted according to standard procedures. Mean age, body mass index (BMI), and serum ghrelin were 11+/-0.13 y, 25+/-0.24 kg/m2 and 38+/-0.5 ng/mL, respectively. Significant heritabilities (p<0.001) were obtained for BMI, weight, fat mass, percent fat, waist circumference, waist-to-height ratio, and ghrelin. Bivariate analyses of ghrelin with adiposity traits showed significant negative genetic correlations (p<0.0001) with weight, BMI, fat mass, percent fat, waist circumference, and waist-to-height ratio. A genome-wide scan for ghrelin detected significant linkage on chromosome 1p36.2 between STR markers D1S2697 and D1S199 (LOD=3.2). The same region on chromosome 1 was the site of linkage for insulin (LOD=3.3), insulinlike growth factor binding protein 1 (IGFBP1) (LOD=3.4), homeostatic model assessment method (HOMA) (LOD=2.9), and C-peptide (LOD=2.0). Several family-based studies have reported linkages for obesity-related phenotypes in the region of 1p36. These results indicate the importance of this region in relation to adiposity in children from the VFS.

  19. Genome Wide Linkage Study, Using a 250K SNP Map, of Plasmodium falciparum Infection and Mild Malaria Attack in a Senegalese Population

    PubMed Central

    Milet, Jacqueline; Nuel, Gregory; Watier, Laurence; Courtin, David; Slaoui, Yousri; Senghor, Paul; Migot-Nabias, Florence; Gaye, Oumar; Garcia, André

    2010-01-01

    Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5×10−5 and 9×10−5 respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5×10−4). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31–q33 region (p-value = 3.7×10−5). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to

  20. Genome-wide linkage study suggests a susceptibility locus for isolated bilateral microtia on 4p15.32-4p16.2.

    PubMed

    Li, Xin; Hu, Jintian; Zhang, Jiao; Jin, Qian; Wang, Duen-Mei; Yu, Jun; Zhang, Qingguo; Zhang, Yong-Biao

    2014-01-01

    Microtia is a congenital deformity where the external ear is underdeveloped. Genetic investigations have identified many susceptibility genes of microtia-related syndromes. However, no causal genes were reported for isolated microtia, the main form of microtia. We conducted a genome-wide linkage analysis on a 5-generation Chinese pedigree with isolated bilateral microtia. We identified a suggestive linkage locus on 4p15.32-4p16.2 with parametric LOD score of 2.70 and nonparametric linkage score (Zmean) of 12.28 (simulated occurrence per genome scan equal to 0.46 and 0.47, respectively). Haplotype reconstruction analysis of the 4p15.32-4p16.2 region further confined the linkage signal to a 10-Mb segment located between rs12505562 and rs12649803 (9.65-30.24 cM; 5.54-15.58 Mb). Various human organ developmental genes reside in this 10-Mb susceptibility region, such as EVC, EVC2, SLC2A9, NKX3-2, and HMX1. The coding regions of three genes, EVC known for cartilage development and NKX3-2, HMX1 involved in microtia, were selected for sequencing with 5 individuals from the pedigree. Of the 38 identified sequence variants, none segregates along with the disease phenotype. Other genes or DNA sequences of the 10-Mb region warrant for further investigation. In conclusion, we report a susceptibility locus of isolated microtia, and this finding will encourage future studies on the genetic basis of ear deformity.

  1. Sex-limited genome-wide linkage scan for body mass index in an unselected sample of 933 Australian twin families.

    PubMed

    Cornes, Belinda K; Medland, Sarah E; Ferreira, Manuel A R; Morley, Katherine I; Duffy, David L; Heijmans, Bastiaan T; Montgomery, Grant W; Martin, Nicholas G

    2005-12-01

    Genes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general nonscalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (-log10p = 3.02), which was near the recommended threshold for suggestive linkage (-log10p = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for noninsulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a -log10p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation.

  2. Two-Stage Genome-Wide Search for Epistasis with Implementation to Recombinant Inbred Lines (RIL) Populations

    PubMed Central

    Goldstein, Pavel; Korol, Abraham B.; Reiner-Benaim, Anat

    2014-01-01

    Objective and Methods This paper proposes an inegrative two-stage genome-wide search for pairwise epistasis on expression quantitative trait loci (eQTL). The traits are clustered into multi-trait complexes that account for correlations between them that may result from common epistasis effects. The search is done by first screening for epistatic regions and then using dense markers within the identified regions, resulting in substantial reduction in the number of tests for epistasis. The FDR is controlled using a hierarchical procedure that accounts for the search structure. Each combination of trait and marker-pair is tested using a model that accounts for both statistical and functional interpretations of epistasis and considers orthogonal effects, such that their contributions to heritability can be estimated individually. We examine the impact of using multi-trait complexes rather than single traits, and of using a hierarchical search for epistasis rather than skipping the initial screen for epistatic regions. We apply the proposed algorithm on Arabidopsis transcription data. Principal Findings Both epistasis detection power and heritability contributed by epistasis increased when using multi-trait complexes rather than single traits. Epistatic effects common to the eQTLs included in the complexes have higher chance of being identified by analysis of multi-trait complexes, particularly when epistatic effects on individual traits are small. Compared to direct testing for all potential epistatic effects, the hierarchical search was substantially more powerful in detecting epistasis, while controlling the FDR at the desired level. Association in functional roles within genomic regions was observed, supporting an initial screen for epistatic QTLs. PMID:25536193

  3. A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions.

    PubMed

    Oikkonen, J; Huang, Y; Onkamo, P; Ukkola-Vuoti, L; Raijas, P; Karma, K; Vieland, V J; Järvelä, I

    2015-02-01

    Humans have developed the perception, production and processing of sounds into the art of music. A genetic contribution to these skills of musical aptitude has long been suggested. We performed a genome-wide scan in 76 pedigrees (767 individuals) characterized for the ability to discriminate pitch (SP), duration (ST) and sound patterns (KMT), which are primary capacities for music perception. Using the Bayesian linkage and association approach implemented in program package KELVIN, especially designed for complex pedigrees, several single nucleotide polymorphisms (SNPs) near genes affecting the functions of the auditory pathway and neurocognitive processes were identified. The strongest association was found at 3q21.3 (rs9854612) with combined SP, ST and KMT test scores (COMB). This region is located a few dozen kilobases upstream of the GATA binding protein 2 (GATA2) gene. GATA2 regulates the development of cochlear hair cells and the inferior colliculus (IC), which are important in tonotopic mapping. The highest probability of linkage was obtained for phenotype SP at 4p14, located next to the region harboring the protocadherin 7 gene, PCDH7. Two SNPs rs13146789 and rs13109270 of PCDH7 showed strong association. PCDH7 has been suggested to play a role in cochlear and amygdaloid complexes. Functional class analysis showed that inner ear and schizophrenia-related genes were enriched inside the linked regions. This study is the first to show the importance of auditory pathway genes in musical aptitude.

  4. FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium

    PubMed Central

    2010-01-01

    Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag

  5. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence.

    PubMed

    Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A

    2015-03-01

    Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus.

  6. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles

    PubMed Central

    Wang, Quan; Yu, Hui; Zhao, Zhongming; Jia, Peilin

    2015-01-01

    Summary: We previously developed dmGWAS to search for dense modules in a human protein–protein interaction (PPI) network; it has since become a popular tool for network-assisted analysis of genome-wide association studies (GWAS). dmGWAS weights nodes by using GWAS signals. Here, we introduce an upgraded algorithm, EW_dmGWAS, to boost GWAS signals in a node- and edge-weighted PPI network. In EW_dmGWAS, we utilize condition-specific gene expression profiles for edge weights. Specifically, differential gene co-expression is used to infer the edge weights. We applied EW_dmGWAS to two diseases and compared it with other relevant methods. The results suggest that EW_dmGWAS is more powerful in detecting disease-associated signals. Availability and implementation: The algorithm of EW_dmGWAS is implemented in the R package dmGWAS_3.0 and is available at http://bioinfo.mc.vanderbilt.edu/dmGWAS. Contact: zhongming.zhao@vanderbilt.edu or peilin.jia@vanderbilt.edu Supplementary information: Supplementary materials are available at Bioinformatics online. PMID:25805723

  7. Genome-wide search for genetic modulators in gene regulatory pathways: weighted window-based peak identification algorithm.

    PubMed

    Lee, Eunjee; Kim, Kyunga; Park, Taesung

    2011-06-01

    Genome-wide gene expression and genotype data have been integratively analyzed in expression quantitative trait loci (eQTL) studies to elucidate the genetics of gene transcription. Most eQTL analyses have focused on identifying polymorphic genetic variants that influence the expression levels of individual genes, and such analyses may have limitations in explaining gene regulatory pathways that are likely to involve multiple genes and their genetic and/or non-genetic modulators. We have developed a novel two-step method for identifying potential genetic modulators of transcription processes for multiple genes in a biological pathway. We proposed a new weighted window-based peak identification algorithm to improve the detection of genetic modulators for individual genes and employed a Poisson-based test to search for master genetic modulators of multiple genes. Here, we have illustrated this two-step approach by analyzing the gene expression data in the Centre d'Etude du Polymorphisme Humain (CEPH) lymphoblast cells and single nucleotide polymorphism chip data.

  8. Multipoint genome-wide linkage scan for nonword repetition in a multigenerational family further supports chromosome 13q as a locus for verbal trait disorders.

    PubMed

    Truong, D T; Shriberg, L D; Smith, S D; Chapman, K L; Scheer-Cohen, A R; DeMille, M M C; Adams, A K; Nato, A Q; Wijsman, E M; Eicher, J D; Gruen, J R

    2016-12-01

    Verbal trait disorders encompass a wide range of conditions and are marked by deficits in five domains that impair a person's ability to communicate: speech, language, reading, spelling, and writing. Nonword repetition is a robust endophenotype for verbal trait disorders that is sensitive to cognitive processes critical to verbal development, including auditory processing, phonological working memory, and motor planning and programming. In the present study, we present a six-generation extended pedigree with a history of verbal trait disorders. Using genome-wide multipoint variance component linkage analysis of nonword repetition, we identified a region spanning chromosome 13q14-q21 with LOD = 4.45 between 52 and 55 cM, spanning approximately 5.5 Mb on chromosome 13. This region overlaps with SLI3, a locus implicated in reading disability in families with a history of specific language impairment. Our study of a large multigenerational family with verbal trait disorders further implicates the SLI3 region in verbal trait disorders. Future studies will further refine the specific causal genetic factors in this locus on chromosome 13q that contribute to language traits.

  9. The impact of incomplete linkage disequilibrium and genetic model choice on the analysis and interpretation of genome-wide association studies.

    PubMed

    Iles, Mark M

    2010-07-01

    When conducting a genetic association study, it has previously been observed that a multiplicative risk model tends to fit better at a disease-associated marker locus than at the ungenotyped causative locus. This suggests that, while overall risk decreases as linkage disequilibrium breaks down, non-multiplicative components are more affected. This effect is investigated here, in particular the practical consequences it has on testing for trait/marker associations and the estimation of mode of inheritance and risk once an associated locus has been found. The extreme significance levels required for genome-wide association studies define a restricted range of detectable allele frequencies and effect sizes. For such parameters there is little to be gained by using a test that models the correct mode of inheritance rather than the multiplicative; thus the Cochran-Armitage trend test, which assumes a multiplicative model, is preferable to a more general model as it uses fewer degrees of freedom. Equally when estimating risk, it is likely that a multiplicative risk model will provide a good fit to the data, regardless of the underlying mode of inheritance at the true susceptibility locus. This may lead to problems in interpreting risk estimates.

  10. Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip

    PubMed Central

    2012-01-01

    Background The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. Results Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. Conclusions The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation. PMID

  11. Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations; significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes (FIND) Research Group

    PubMed Central

    Malhotra, Alka; Igo, Robert P.; Thameem, Farook; Kao, W.H. Linda; Abboud, Hanna E.; Adler, Sharon G.; Arar, Nedal H.; Bowden, Donald W.; Duggirala, Ravindranath; Freedman, Barry I.; Goddard, Katrina A.B.; Ipp, Eli; Iyengar, Sudha K.; Kimmel, Paul L.; Knowler, William C.; Kohn, Orly; Leehey, David; Meoni, Lucy A.; Nelson, Robert G.; Nicholas, Susanne B.; Parekh, Rulan S.; Rich, Stephen S.; Chen, Yii-Der I.; Saad, Mohammed F.; Scavini, Marina; Schelling, Jeffrey R.; Sedor, John R.; Shah, Vallabh O.; Taylor, Kent D.; Thornley-Brown, Denyse; Zager, Philip G.; Horvath, Amanda; Hanson, Robert L.

    2009-01-01

    Background Previous studies have shown that, in addition to environmental influences, type 2 diabetes mellitus (T2DM) has a strong genetic component. The goal of the current study is to identify regions of linkage for T2DM in ethnically diverse populations. Methods Phenotypic and genotypic data were obtained from African American (AA; total number of individuals (N)=1004), American Indian (AI; N=883), European American (EA; N=537), and Mexican American (MA; N=1634) individuals from the Family Investigation of Nephropathy and Diabetes. Nonparametric linkage analysis, using an average of 4,404 SNPs, was performed in relative pairs affected with T2DM in each ethnic group. In addition, family-based tests were performed to detect association with T2DM. Results Statistically significant evidence for linkage was observed on chromosomes 4q21.1 (LOD=3.13; genome-wide p=0.04) in AA. In addition, a total of eleven regions showed suggestive evidence for linkage (estimated at LOD>1.71), with the highest LOD scores on chromosomes 12q21.31 (LOD=2.02) and 22q12.3 (LOD=2.38) in AA, 2p11.1 (LOD=2.23) in AI, 6p12.3 (LOD=2.77) in EA, and 13q21.1 (LOD=2.24) in MA. While no region overlapped across all ethnic groups, at least five loci showing LOD>1.71 have been identified in previously published studies. Conclusions The results from this study provide evidence for the presence of genes affecting T2DM on chromosomes 4q, 12q, and 22q in AA, 6p in EA, 2p in AI, and 13q in MA. The strong evidence for linkage on chromosome 4q in AA provides important information given the paucity of diabetes genetic studies in this population. PMID:19795399

  12. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    PubMed

    Khajuria, Yash Paul; Saxena, Maneesha S; Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  13. Genome-wide significant linkage to IgG subclass responses against Plasmodium falciparum antigens on chromosomes 8p22-p21, 9q34 and 20q13.

    PubMed

    Brisebarre, A; Kumulungui, B; Sawadogo, S; Afridi, S; Fumoux, F; Rihet, P

    2015-01-01

    A genome-wide scan was conducted for the levels of total immunoglobulin G (IgG) and IgG subclasses directed against Plasmodium falciparum antigens in an urban population living in Burkina Faso. Non-parametric multipoint linkage analysis provided three chromosomal regions with genome-wide significant evidence (logarithm of the odds (LOD) score >3.6), and five chromosomal regions with genome-wide suggestive evidence (LOD score >2.2). IgG3 levels were significantly linked to chromosomes 8p22-p21 and 20q13, whereas IgG4 levels were significantly linked to chromosome 9q34. In addition, we detected suggestive linkage of IgG1 levels to chromosomes 18p11-q12 and 18q12-q21, IgG4 levels to chromosomes 1p31 and 12q24 and IgG levels to chromosome 6p24-p21. Moreover, we genotyped genetic markers located within the regions of interest in a rural population living in Burkina Faso. We detected genome-wide significant and suggestive linkage results when combining the two study populations for chromosomes 1p31, 6p24-p21, 8p22-p21, 9q34, 12q24 and 20q13. Because high anti-parasite IgG3 and low anti-parasite IgG4 levels were associated with malaria resistance, the chromosomal regions linked to IgG3 and IgG4 levels are of special interest. Although the results should be confirmed in an independent population, they may provide new insights in understanding both the genetic control of IgG production and malaria resistance.

  14. High-resolution genetic map for understanding the effect of genome-wide recombination rate, selection sweep and linkage disequilibrium on nucleotide diversity in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...

  15. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping

    PubMed Central

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A.; Ficco, Donatella B. M.; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M.

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the “Ug99 lineage” are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar “Cirillo” and susceptible “Neodur.” The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub

  16. A genome-wide search for common SNP x SNP interactions on the risk of venous thrombosis

    PubMed Central

    2013-01-01

    Background Venous Thrombosis (VT) is a common multifactorial disease with an estimated heritability between 35% and 60%. Known genetic polymorphisms identified so far only explain ~5% of the genetic variance of the disease. This study was aimed to investigate whether pair-wise interactions between common single nucleotide polymorphisms (SNPs) could exist and modulate the risk of VT. Methods A genome-wide SNP x SNP interaction analysis on VT risk was conducted in a French case–control study and the most significant findings were tested for replication in a second independent French case–control sample. The results obtained in the two studies totaling 1,953 cases and 2,338 healthy subjects were combined into a meta-analysis. Results The smallest observed p-value for interaction was p = 6.00 10-11 but it did not pass the Bonferroni significance threshold of 1.69 10-12 correcting for the number of investigated interactions that was 2.96 1010. Among the 37 suggestive pair-wise interactions with p-value less than 10-8, one was further shown to involve two SNPs, rs9804128 (IGFS21 locus) and rs4784379 (IRX3 locus) that demonstrated significant interactive effects (p = 4.83 10-5) on the variability of plasma Factor VIII levels, a quantitative biomarker of VT risk, in a sample of 1,091 VT patients. Conclusion This study, the first genome-wide SNP interaction analysis conducted so far on VT risk, suggests that common SNPs are unlikely exerting strong interactive effects on the risk of disease. PMID:23509962

  17. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America Diabetes Mellitus (AADM) Study.

    PubMed

    Rotimi, Charles N; Chen, Guanjie; Adeyemo, Adebowale A; Furbert-Harris, Paulette; Parish-Gause, Debra; Zhou, Jie; Berg, Kate; Adegoke, Olufemi; Amoah, Albert; Owusu, Samuel; Acheampong, Joseph; Agyenim-Boateng, Kofi; Eghan, Benjamin A; Oli, Johnnie; Okafor, Godfrey; Ofoegbu, Ester; Osotimehin, Babatunde; Abbiyesuku, Fayeofori; Johnson, Thomas; Rufus, Theresa; Fasanmade, Olufemi; Kittles, Rick; Daniel, Harold; Chen, Yuanxiu; Dunston, Georgia; Collins, Francis S; Guass, Debra

    2004-03-01

    The incidence of type 2 diabetes is growing rapidly, not only in developed countries but also worldwide. We chose to study type 2 diabetes in West Africa, where diabetes is less common than in the U.S., reasoning that in an environment where calories are less abundant, incident cases of type 2 diabetes might carry a proportionately greater genetic component. Through the Africa America Diabetes Mellitus (AADM) study, we carried out a genome-wide linkage analysis of type 2 diabetes in a cohort of 343 affected sibling pairs (691 individuals) enrolled from five West African centers in two countries (Ghana: Accra and Kumasi; Nigeria: Enugu, Ibadan, and Lagos). A total of 390 polymorphic markers were genotyped, and multipoint linkage analysis was conducted using the GENEHUNTER-PLUS and ASM programs. Suggestive evidence of linkage was observed in four regions on three chromosomes (12, 19, and 20). The two largest logarithm of odds scores of 2.63 and 1.92 for chromosomes 20q13.3 and 12q24, respectively, are particularly interesting because these regions have been reported to harbor diabetes susceptibility genes in several other populations and ethnic groups. Given the history of forced migration of West African populations during the slave trade, these results should have considerable relevance to the study of type 2 diabetes in African Americans.

  18. A genome-wide linkage analysis for the personality trait neuroticism in the Irish affected sib-pair study of alcohol dependence.

    PubMed

    Kuo, Po-Hsiu; Neale, Michael C; Riley, Brien P; Patterson, Diana G; Walsh, Dermot; Prescott, Carol A; Kendler, Kenneth S

    2007-06-05

    Neuroticism is a personality trait which reflects individual differences in emotional stability and vulnerability to stress and anxiety. Consistent evidence shows substantial genetic influences on variation in this trait. The present study seeks to identify regions containing susceptibility loci for neuroticism using a selected sib-pair sample from Ireland. Using Merlin regress, we conducted a 4 cM whole-genome linkage analysis on 714 sib-pairs. Evidence for linkage to neuroticism was found on chromosomes 11p, 12q, and 15q. The highest linkage peak was on 12q at marker D12S1638 with a Lod score of 2.13 (-log p = 2.76, empirical P-value <0.001). Our data also support gender specific loci for neuroticism, with male specific linkage regions on chromosomes 1, 4, 11, 12, 15, 16, and 22, and female specific linkage regions on chromosomes 2, 4, 9, 12, 13, and 18. Some genome regions reported in the present study replicate findings from previous linkage studies of neuroticism. These results, together with prior studies, indicate several potential regions for quantitative trait loci for neuroticism that warrant further study.

  19. Genome-Wide Linkage Screen for Systolic Blood Pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and Confirmation of a Major Susceptibility Locus on Chromosome 6q14.1

    PubMed Central

    Puppala, Sobha; Coletta, Dawn K.; Schneider, Jennifer; Hu, Shirley L.; Farook, Vidya S.; Dyer, Thomas D.; Arya, Rector; Blangero, John; Duggirala, Ravindranath; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2011-01-01

    Objective Hypertension or high blood pressure is a strong correlate of diseases such as obesity and type 2 diabetes. We conducted a genome-wide linkage screen to identify susceptibility genes influencing systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Mexican-Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). Methods Using data from 1,089 individuals distributed across 266 families, we performed a multipoint linkage analysis to localize susceptibility loci for SBP and DBP by applying two models. In model 1, we added a sensible constant to the observed BP values in treated subjects [Tobin et al.; Stat Med 2005;24:2911–2935] to account for antihypertensive use (i.e. 15 and 10 mm Hg to SBP and DBP values, respectively). In model 2, we fixed values of 140 mm Hg for SBP and 90 mm Hg for DBP, if the treated values were less than the standard referenced treatment thresholds of 140/90 mm Hg for hypertensive status. However, if the observed treated BP values were found to be above these standard treatment thresholds, the actual observed treated BP values were retained in order not to reduce them by substitution of the treatment threshold values. Results The multipoint linkage analysis revealed strong linkage signals for SBP compared with DBP. The strongest evidence for linkage of SBP (model 1, LOD = 5.0; model 2, LOD = 3.6) was found on chromosome 6q14.1 near the marker D6S1031 (89 cM) in both models. In addition, some evidence for SBP linkage occurred on chromosomes 1q, 4p, and 16p. Most importantly, our major SBP linkage finding on chromosome 6q near marker D6S1031 was independently confirmed in a Caucasian population (LOD = 3.3). In summary, our study found evidence for a major locus on chromosome 6q influencing SBP levels in Mexican-Americans. PMID:21293138

  20. AnABlast: a new in silico strategy for the genome-wide search of novel genes and fossil regions

    PubMed Central

    Jimenez, Juan; Duncan, Caia D. S.; Gallardo, María; Mata, Juan; Perez-Pulido, Antonio J.

    2015-01-01

    Genome annotation, assisted by computer programs, is one of the great advances in modern biology. Nevertheless, the in silico identification of small and complex coding sequences is still challenging. We observed that amino acid sequences inferred from coding—but rarely from non-coding—DNA sequences accumulated alignments in low-stringency BLAST searches, suggesting that this alignments accumulation could be used to highlight coding regions in sequenced DNA. To investigate this possibility, we developed a computer program (AnABlast) that generates profiles of accumulated alignments in query amino acid sequences using a low-stringency BLAST strategy. To validate this approach, all six-frame translations of DNA sequences between every two annotated exons of the fission yeast genome were analysed with AnABlast. AnABlast-generated profiles identified three new copies of known genes, and four new genes supported by experimental evidence. New pseudogenes, ancestral carboxyl- and amino-terminal subtractions, complex gene rearrangements, and ancient fragments of mitDNA and of bacterial origin, were also inferred. Thus, this novel in silico approach provides a powerful tool to uncover new genes, as well as fossil-coding sequences, thus providing insight into the evolutionary history of annotated genomes. PMID:26494834

  1. Genome Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Sebastiani, Paola; Solovieff, Nadia

    The availability of high throughput technology for parallel genotyping has opened the field of genetics to genome-wide association studies (GWAS). These studies generate massive amount of genetic data that challenge investigators with issues related to data management, statistical analysis of large data sets, visualization, and annotation of results. We will review the common approach to analysis of GWAS data and then discuss options to learn more from these data.

  2. A Sequence-Anchored Linkage Map of the Plant–Parasitic Nematode Meloidogyne hapla Reveals Exceptionally High Genome-Wide Recombination

    PubMed Central

    Thomas, Varghese P.; Fudali, Sylwia L.; Schaff, Jennifer E.; Liu, Qingli; Scholl, Elizabeth H.; Opperman, Charles H.; Bird, David McK; Williamson, Valerie M.

    2012-01-01

    Root-knot nematodes (Meloidogyne spp.) cause major yield losses to many of the world’s crops, but efforts to understand how these pests recognize and interact with their hosts have been hampered by a lack of genetic resources. Starting with progeny of a cross between inbred strains (VW8 and VW9) of Meloidogyne hapla that differed in host range and behavioral traits, we exploited the novel, facultative meiotic parthenogenic reproductive mode of this species to produce a genetic linkage map. Molecular markers were derived from SNPs identified between the sequenced and annotated VW9 genome and de novo sequence of VW8. Genotypes were assessed in 183 F2 lines. The colinearity of the genetic and physical maps supported the veracity of both. Analysis of local crossover intervals revealed that the average recombination rate is exceptionally high compared with that in other metazoans. In addition, F2 lines are largely homozygous for markers flanking crossover points, and thus resemble recombinant inbred lines. We suggest that the unusually high recombination rate may be an adaptation to generate within-population genetic diversity in this organism. This work presents the most comprehensive linkage map of a parasitic nematode to date and, together with genomic and transcript sequence resources, empowers M. hapla as a tractable model. Alongside the molecular map, these progeny lines can be used for analyses of genome organization and the inheritance of phenotypic traits that have key functions in modulating parasitism, behavior, and survival and for the eventual identification of the responsible genes. PMID:22870404

  3. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

    PubMed Central

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M. K.; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014–2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  4. In Search of Genes Associated with Risk for Psychopathic Tendencies in Children: A Two-Stage Genome-Wide Association Study of Pooled DNA

    ERIC Educational Resources Information Center

    Viding, Essi; Hanscombe, Ken B.; Curtis, Charles J. C.; Davis, Oliver S. P.; Meaburn, Emma L.; Plomin, Robert

    2010-01-01

    Background: Quantitative genetic data from our group indicates that antisocial behaviour (AB) is strongly heritable when coupled with psychopathic, callous-unemotional (CU) personality traits. We have also demonstrated that the genetic influences for AB and CU overlap considerably. We conducted a genome-wide association scan that capitalises on…

  5. A genome-wide search for eigenetically regulated genes in zebra finch using MethylCap-seq and RNA-seq

    PubMed Central

    Steyaert, Sandra; Diddens, Jolien; Galle, Jeroen; De Meester, Ellen; De Keulenaer, Sarah; Bakker, Antje; Sohnius-Wilhelmi, Nina; Frankl-Vilches, Carolina; Van der Linden, Annemie; Van Criekinge, Wim; Vanden Berghe, Wim; De Meyer, Tim

    2016-01-01

    Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control. PMID:26864856

  6. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  7. Genome-wide scan of bipolar disorder and investigation of population stratification effects on linkage: support for susceptibility loci at 4q21, 7q36, 9p21, 12q24, 14q24, and 16p13.

    PubMed

    Cassidy, F; Zhao, C; Badger, J; Claffey, E; Dobrin, S; Roche, S; McKeon, P

    2007-09-05

    Bipolar disorder (BPD) is a complex genetic disorder with cycling symptoms of depression and mania. Despite the extreme complexity of this psychiatric disorder, attempts to localize genes which confer vulnerability to the disorder have had some success. Chromosomal regions including 4p16, 12q24, 18p11, 18q22, and 21q21 have been repeatedly linked to BPD in different populations. Here we present the results of a whole genome scan for linkage to BPD in an Irish population. Our most significant result was at 14q24 which yielded a non-parametric LOD (NPL) score of 3.27 at the D14S588 marker with a nominal P-value of 0.0006 under a narrow (bipolar type I only) model of affection. We previously reported linkage to 14q22-24 in a subset of the families tested in this analysis. We also obtained suggestive evidence for linkage at 4q21, 9p21, 12q24, and 16p13, chromosomal regions that have all been previously linked to BPD. Additionally, we report on a novel approach to linkage analysis, STRUCTURE-Guided Linkage Analysis (SGLA), which is designed to reduce genetic heterogeneity and increase the power to detect linkage. Application of this technique resulted in more highly significant evidence for linkage of BPD to three regions including 16p13, a locus that has been repeatedly linked to numerous psychiatric disorders.

  8. Genome-Wide Linkage Scan of Bipolar Disorder in a Colombian Population Isolate Replicates Loci on Chromosomes 7p21–22, 1p31, 16p12 and 21q21–22 and Identifies a Novel Locus on Chromosome 12q

    PubMed Central

    Kremeyer, B.; García, J.; Müller, H.; Burley, M.W.; Herzberg, I.; Parra, M.V.; Duque, C.; Vega, J.; Montoya, P.; López, M.C.; Bedoya, G.; Reus, V.; Palacio, C.; López, C.; Ospina-Duque, J.; Freimer, N.B.; Ruiz-Linares, A.

    2011-01-01

    Background/Aims: Bipolar disorder (BP) is a severe psychiatric illness, characterised by alternating episodes of depression and mania, which ranks among the top ten causes of morbidity and life-long disability world-wide. We have previously performed a whole-genome linkage scan on 6 pedigrees segregating severe BP from the well-characterised population isolate of Antioquia, Colombia. We recently collected genotypes for the same set of 382 autosomal microsatellite markers in 9 additional Antioquian BP pedigrees. Here, we report the analysis of the combined pedigree set. Methods: Linkage analysis using both parametric and nonparametric approaches was conducted for 3 different diagnostic models: severe BP only (BPI); mood disorders (BPI, BPII and major depression); and psychosis (operationally defined by the occurrence of at least 1 episode of hallucinations and/or delusions). Results and Conclusion: For BPI only, the most interesting result was obtained for chromosome 7p21.1–p22.2 under a recessive model of inheritance (heterogeneity LOD score = 2.80), a region that had previously been linked to BP in a study on Portuguese Island families. For both BPI and mood disorders, nonparametric analyses identified a locus on chromosome 12ct–q14 (nonparametric linkage = 2.55 and 2.35, respectively). This locus has not previously been reported as a candidate region for BP. Additional candidate regions were found on chromosomes 1p22–31 (mood disorders) and 21q21–22 (BPI), 2 loci that have repeatedly been implicated in BP susceptibility. Linkage analysis of psychosis as a phenotype identified candidate regions on chromosomes 2q24–31 and 16p12–q12. The finding on chromosome 16p is noteworthy because the same locus has been implicated by genome-wide association analyses of BP. PMID:21071953

  9. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring

    PubMed Central

    Gao, Fengmei; Wen, Weie; Liu, Jindong; Rasheed, Awais; Yin, Guihong; Xia, Xianchun; Wu, Xiaoxia; He, Zhonghu

    2015-01-01

    Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F8 RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012–2013 and 2013–2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m2 (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3–33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly

  10. A novel statistic for genome-wide interaction analysis.

    PubMed

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  11. Genome-Wide Association Study of Schizophrenia in Japanese Population

    PubMed Central

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  12. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    DTIC Science & Technology

    2011-04-01

    distribution unlimited. QC – quality control QTL – quantitative trait loci SNP – single nucleotide polymorphism TE – Tris + EDTA TBE – Tris + Boric Acid + EDTA WGSA – whole genome sampling assay ...canine intelligence testing protocol EDTA – ethylenediaminetetraacetic acid GWAS – genome-wide association study LD – linkage disequilibrium MWD

  13. Genome-wide differentiation of various melon horticultural groups for use in genome wide association study for fruit firmness and construction of a high resolution genetic map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We generated 13,789 single nucleotide plymorphism (SNP) markers from 97 melon accessions using genotyping by sequencing and anchored them to chromosomes to understand genome-wide fixation index between various melon morphotypes and linkage disequilibrium (LD) decay for inodorus and cantalupensis, th...

  14. A genome-wide association study of antidepressant response in Koreans.

    PubMed

    Myung, W; Kim, J; Lim, S-W; Shim, S; Won, H-H; Kim, Seonwoo; Kim, Sangha; Lee, M-S; Chang, H S; Kim, J-W; Carroll, B J; Kim, D K

    2015-09-08

    We conducted a three-stage genome-wide association study (GWAS) of response to antidepressant drugs in an ethnically homogeneous sample of Korean patients in untreated episodes of nonpsychotic unipolar depression, mostly of mature onset. Strict quality control was maintained in case selection, diagnosis, verification of adherence and outcome assessments. Analyzed cases completed 6 weeks of treatment with adequate plasma drug concentrations. The overall successful completion rate was 85.5%. Four candidate single-nucleotide polymorphisms (SNPs) on three chromosomes were identified by genome-wide search in the discovery sample of 481 patients who received one of four allowed selective serotonin reuptake inhibitor (SSRI) antidepressant drugs (Stage 1). In a focused replication study of 230 SSRI-treated patients, two of these four SNP candidates were confirmed (Stage 2). Analysis of the Stage 1 and Stage 2 samples combined (n = 711) revealed GWAS significance (P = 1.60 × 10(-8)) for these two SNP candidates, which were in perfect linkage disequilibrium. These two significant SNPs were confirmed also in a focused cross-replication study of 159 patients treated with the non-SSRI antidepressant drug mirtazapine (Stage 3). Analysis of the Stage 1, Stage 2 and Stage 3 samples combined (n = 870) also revealed GWAS significance for these two SNPs, which was sustained after controlling for gender, age, number of previous episodes, age at onset and baseline severity (P = 3.57 × 10(-8)). For each SNP, the response rate decreased (odds ratio=0.31, 95% confidence interval: 0.20-0.47) as a function of the number of minor alleles (non-response alleles). The two SNPs significantly associated with antidepressant response are rs7785360 and rs12698828 of the AUTS2 gene, located on chromosome 7 in 7q11.22. This gene has multiple known linkages to human psychological functions and neurobehavioral disorders. Rigorous replication efforts in other ethnic populations are recommended.

  15. Genome-wide scans for loci under selection in humans.

    PubMed

    Ronald, James; Akey, Joshua M

    2005-06-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection.

  16. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development—Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    PubMed Central

    Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin

    2016-01-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  17. Genome-wide discovery of loci influencing chemotherapy cytotoxicity.

    PubMed

    Watters, James W; Kraja, Aldi; Meucci, Melissa A; Province, Michael A; McLeod, Howard L

    2004-08-10

    Little is known about the heritability of chemotherapy activity or the identity of genes that may enable the individualization of cancer chemotherapy. Although numerous genes are likely to influence chemotherapy response, current candidate gene-based pharmacogenetics approaches require a priori knowledge and the selection of a small number of candidate genes for hypothesis testing. In this study, an ex vivo familial genetics strategy using lymphoblastoid cells derived from Centre d'Etude du Polymorphisme Humain reference pedigrees was used to discover genetic determinants of chemotherapy cytotoxicity. Cytotoxicity to the mechanistically distinct chemotherapy agents 5-fluorouracil and docetaxel were shown to be heritable traits, with heritability values ranging from 0.26 to 0.65 for 5-fluorouracil and 0.21 to 0.70 for docetaxel, varying with dose. Genome-wide linkage analysis was also used to map a quantitative trait locus influencing the cellular effects of 5-fluorouracil to chromosome 9q13-q22 [logarithm of odds (LOD) = 3.44], and two quantitative trait loci influencing the cellular effects of docetaxel to chromosomes 5q11-21 (LOD = 2.21) and 9q13-q22 (LOD = 2.73). Finally, 5-fluorouracil and docetaxel were shown to cause apoptotic cell death involving caspase-3 cleavage in Centre d'Etude du Polymorphisme Humain lymphoblastoid cells. This study identifies genomic regions likely to harbor genes important for chemotherapy cytotoxicity using genome-wide linkage analysis in human pedigrees and provides a widely applicable strategy for pharmacogenomic discovery without the requirement for a priori candidate gene selection.

  18. Profiling genome-wide DNA methylation.

    PubMed

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  19. Genome-Wide Approaches to Schizophrenia

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Gejman, Pablo V.

    2010-01-01

    Schizophrenia (SZ) is a common and severe psychiatric disorder with both environmental and genetic risk factors, and a high heritability. After over 20 years of molecular genetics research, new molecular strategies, primarily genome-wide association studies (GWAS), have generated major tangible progress. This new data provides evidence for: 1) A number of chromosomal regions with common polymorphisms showing genome-wide association with SZ (the major histocompatibility complex, MHC, region at 6p22-p21; 18q21.2; and 2q32.1). The associated alleles present small odds ratios (the odds of a risk variant being present in cases versus controls) and suggest causative involvement of gene regulatory mechanisms in SZ. 2) Polygenic inheritance. 3) Involvement of rare (<1%) and large (>100kb) copy number variants (CNVs). 4) A genetic overlap of SZ with autism and with bipolar disorder (BP) challenging the classical clinical classifications. Most new SZ findings (chromosomal regions and genes) have generated new biological leads. These new findings, however, still need to be translated into a better understanding of the underlying biology and into causal mechanisms. Furthermore, a considerable amount of heritability still remains unexplained (missing heritability). Deep resequencing for rare variants and system biology approaches (e.g., integrating DNA sequence and functional data) are expected to further improve our understanding of the genetic architecture of SZ and its underlying biology. PMID:20433910

  20. An Efficient Resampling Method for Assessing Genome-Wide Statistical Significance in Mapping Quantitative Trait Loci

    PubMed Central

    Zou, Fei; Fine, Jason P.; Hu, Jianhua; Lin, D. Y.

    2004-01-01

    Assessing genome-wide statistical significance is an important and difficult problem in multipoint linkage analysis. Due to multiple tests on the same genome, the usual pointwise significance level based on the chi-square approximation is inappropriate. Permutation is widely used to determine genome-wide significance. Theoretical approximations are available for simple experimental crosses. In this article, we propose a resampling procedure to assess the significance of genome-wide QTL mapping for experimental crosses. The proposed method is computationally much less intensive than the permutation procedure (in the order of 102 or higher) and is applicable to complex breeding designs and sophisticated genetic models that cannot be handled by the permutation and theoretical methods. The usefulness of the proposed method is demonstrated through simulation studies and an application to a Drosophila backcross. PMID:15611194

  1. Sample Reproducibility of Genetic Association Using Different Multimarker TDTs in Genome-Wide Association Studies: Characterization and a New Approach

    PubMed Central

    Abad-Grau, Mara M.; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet

    2012-01-01

    Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker -Groups TDT (), a test which under the hypothesis of no linkage, asymptotically follows a distribution with degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases. PMID:22363405

  2. Genome-Wide Association Studies of Cancer

    PubMed Central

    Stadler, Zsofia K.; Thom, Peter; Robson, Mark E.; Weitzel, Jeffrey N.; Kauff, Noah D.; Hurley, Karen E.; Devlin, Vincent; Gold, Bert; Klein, Robert J.; Offit, Kenneth

    2010-01-01

    Knowledge of the inherited risk for cancer is an important component of preventive oncology. In addition to well-established syndromes of cancer predisposition, much remains to be discovered about the genetic variation underlying susceptibility to common malignancies. Increased knowledge about the human genome and advances in genotyping technology have made possible genome-wide association studies (GWAS) of human diseases. These studies have identified many important regions of genetic variation associated with an increased risk for human traits and diseases including cancer. Understanding the principles, major findings, and limitations of GWAS is becoming increasingly important for oncologists as dissemination of genomic risk tests directly to consumers is already occurring through commercial companies. GWAS have contributed to our understanding of the genetic basis of cancer and will shed light on biologic pathways and possible new strategies for targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers remains limited. PMID:20585100

  3. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  4. Efficient strategies for genomic searching using the affected-pedigree-member method of linkage analysis

    SciTech Connect

    Brown, D.L.; Gorin, M.B.; Weeks, D.E. )

    1994-03-01

    The affected-pedigree-member (APM) method of linkage analysis is a nonparametric statistic that tests for nonrandom cosegregation of a disease and marker loci. The APM statistic is based on the observation that if a marker locus is near a disease-susceptibility locus, then affected individuals within a family should be more similar at the marker locus than is expected by chance. The APM statistic measures marker similarity in terms of identity by state (IBS) of marker alleles; that is, two alleles are IBS if they are the same, regardless of their ancestral origin. Since the APM statistic measures increased marker similarity, it makes no assumptions concerning how the disease is inherited; this can be an advantage when dealing with complex diseases for which the mode of inheritance is difficult to determine. The authors investigate here the power of the APM statistic to detect linkage in the context of a genomewide search. In such a search, the APM statistic is evaluated at a grid of markers. Then regions with high APM statistics are investigated more thoroughly by typing more markers in the region. Using simulated data, they investigate various search strategies and recommended an optimal search strategy that maximizes the power to detect linkage while minimizing the false-positive rate and number of markers. They determine an optimal series of three increasing cut-points and an independent criterion for significance. 14 refs., 7 figs., 4 tabs.

  5. [Genome-wide associations for cigarette smoking behavior].

    PubMed

    Strauss, Ewa

    2013-01-01

    Diseases related to tobacco smoking are the second leading cause of death in the world. Despite increasing evidence of genetic determination, the susceptibility genes and loci underlying various aspects of smoking behavior are largely unknown. Genome-wide association studies (GWASs) provided a new conceptual framework in the search for variants underlying common traits/disorders. A massive scan of the genome and a "hypothesis-free" approach enable discovery of new aspects of genetics of complex traits. In this paper the results of GWASs and GWAS meta-analyzes of cigarette smoking behavior and nicotine dependence are reviewed with the particular attention to smoking cessation success and the replacement therapy. The results of these studies are discussed in the context of the results of the candidate gene association studies. Studies on the role of the genomic regions, identified in GWASs, in the development of smoking-related diseases are also discussed.

  6. Genome-wide association filtering using a highly locus-specific transmission/disequilibrium test.

    PubMed

    Abad-Grau, María M; Medina-Medina, Nuria; Montes-Soldado, Rosana; Moreno-Ortega, José; Matesanz, Fuencisla

    2010-09-01

    Multimarker transmission/disequilibrium tests (TDTs) are powerful association and linkage tests used to perform genome-wide filtering in the search for disease susceptibility loci. In contrast to case/control studies, they have a low rate of false positives for population stratification and admixture. However, the length of a region found in association with a disease is usually very large because of linkage disequilibrium (LD). Here, we define a multimarker proportional TDT (mTDT ( P )) designed to improve locus specificity in complex diseases that has good power compared to the most powerful multimarker TDTs. The test is a simple generalization of a multimarker TDT in which haplotype frequencies are used to weight the effect that each haplotype has on the whole measure. Two concepts underlie the features of the metric: the 'common disease, common variant' hypothesis and the decrease in LD with chromosomal distance. Because of this decrease, the frequency of haplotypes in strong LD with common disease variants decreases with increasing distance from the disease susceptibility locus. Thus, our haplotype proportional test has higher locus specificity than common multimarker TDTs that assume a uniform distribution of haplotype probabilities. Because of the common variant hypothesis, risk haplotypes at a given locus are relatively frequent and a metric that weights partial results for each haplotype by its frequency will be as powerful as the most powerful multimarker TDTs. Simulations and real data sets demonstrate that the test has good power compared with the best tests but has remarkably higher locus specificity, so that the association rate decreases at a higher rate with distance from a disease susceptibility or disease protective locus.

  7. Genome-wide association filtering using a highly locus-specific transmission/disequilibrium test

    PubMed Central

    Medina-Medina, Nuria; Montes-Soldado, Rosana; Moreno-Ortega, José; Matesanz, Fuencisla

    2010-01-01

    Multimarker transmission/disequilibrium tests (TDTs) are powerful association and linkage tests used to perform genome-wide filtering in the search for disease susceptibility loci. In contrast to case/control studies, they have a low rate of false positives for population stratification and admixture. However, the length of a region found in association with a disease is usually very large because of linkage disequilibrium (LD). Here, we define a multimarker proportional TDT (mTDTP) designed to improve locus specificity in complex diseases that has good power compared to the most powerful multimarker TDTs. The test is a simple generalization of a multimarker TDT in which haplotype frequencies are used to weight the effect that each haplotype has on the whole measure. Two concepts underlie the features of the metric: the ‘common disease, common variant’ hypothesis and the decrease in LD with chromosomal distance. Because of this decrease, the frequency of haplotypes in strong LD with common disease variants decreases with increasing distance from the disease susceptibility locus. Thus, our haplotype proportional test has higher locus specificity than common multimarker TDTs that assume a uniform distribution of haplotype probabilities. Because of the common variant hypothesis, risk haplotypes at a given locus are relatively frequent and a metric that weights partial results for each haplotype by its frequency will be as powerful as the most powerful multimarker TDTs. Simulations and real data sets demonstrate that the test has good power compared with the best tests but has remarkably higher locus specificity, so that the association rate decreases at a higher rate with distance from a disease susceptibility or disease protective locus. PMID:20603721

  8. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  9. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity

    PubMed Central

    Fernandez, Christian A.; Smith, Colton; Yang, Wenjian; Mullighan, Charles G.; Qu, Chunxu; Larsen, Eric; Bowman, W. Paul; Liu, Chengcheng; Ramsey, Laura B.; Chang, Tamara; Karol, Seth E.; Loh, Mignon L.; Raetz, Elizabeth A.; Winick, Naomi J.; Hunger, Stephen P.; Carroll, William L.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Devidas, Meenakshi

    2015-01-01

    Asparaginase is used to treat acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions can lead to suboptimal asparaginase exposure. Our objective was to use a genome-wide approach to identify loci associated with asparaginase hypersensitivity in children with ALL enrolled on St. Jude Children’s Research Hospital (SJCRH) protocols Total XIIIA (n = 154), Total XV (n = 498), and Total XVI (n = 271), or Children’s Oncology Group protocols POG 9906 (n = 222) and AALL0232 (n = 2163). Germline DNA was genotyped using the Affymetrix 500K, Affymetrix 6.0, or the Illumina Exome BeadChip array. In multivariate logistic regression, the intronic rs6021191 variant in nuclear factor of activated T cells 2 (NFATC2) had the strongest association with hypersensitivity (P = 4.1 × 10−8; odds ratio [OR] = 3.11). RNA-seq data available from 65 SJCRH ALL tumor samples and 52 Yoruba HapMap samples showed that samples carrying the rs6021191 variant had higher NFATC2 expression compared with noncarriers (P = 1.1 × 10−3 and 0.03, respectively). The top ranked nonsynonymous polymorphism was rs17885382 in HLA-DRB1 (P = 3.2 × 10−6; OR = 1.63), which is in near complete linkage disequilibrium with the HLA-DRB1*07:01 allele we previously observed in a candidate gene study. The strongest risk factors for asparaginase allergy are variants within genes regulating the immune response. PMID:25987655

  10. Reconstructing Roma History from Genome-Wide Data

    PubMed Central

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  11. Weighted SNP set analysis in genome-wide association study.

    PubMed

    Dai, Hui; Zhao, Yang; Qian, Cheng; Cai, Min; Zhang, Ruyang; Chu, Minjie; Dai, Juncheng; Hu, Zhibin; Shen, Hongbing; Chen, Feng

    2013-01-01

    Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk. Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis (wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population. Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than the linear kernel, IBS kernel and PCA.

  12. Genome Wide Methylome Alterations in Lung Cancer.

    PubMed

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  13. Genome Wide Methylome Alterations in Lung Cancer

    PubMed Central

    Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K.; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D.; Spivack, Simon D.

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)–non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  14. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  15. Genome-wide association study dissects the genetic architecture of oil biosynthesis and accumulation in maize kernel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Genome Wide Association Study (GWAS) on a population of 368 maize inbreds with 1.06 million SNPs was performed and identified 74 highly significantly associated genes influencing maize kernel oil content and fatty acid composition. To validate these findings, three biparental linkage mapping popul...

  16. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo

    PubMed Central

    Jin, Ying; Birlea, Stanca A; Fain, Pamela R; Ferrara, Tracey M; Ben, Songtao; Riccardi, Sheri L; Cole, Joanne B; Gowan, Katherine; Holland, Paulene J; Bennett, Dorothy C; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Hartmann, Anke; Eichner, Saskia; Schuler, Gerold; van Geel, Nanja; Lambert, Jo; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Taïeb, Alain; Jouary, Thomas; Ezzedine, Khaled; Wallace, Margaret R; McCormack, Wayne T; Picardo, Mauro; Leone, Giovanni; Overbeck, Andreas; Silverberg, Nanette B; Spritz, Richard A

    2012-01-01

    In previous linkage and genome-wide association studies we identified 17 susceptibility loci for generalized vitiligo. By a second genome-wide association study, meta-analysis, and independent replication study, we have now identified 13 additional vitiligo-associated loci, including OCA2-HERC2, a region of 16q24.3 containing MC1R, a region of chromosome 11q21 near TYR, several immunoregulatory loci including IFIH1, CD80, CLNK, BACH2, SLA, CASP7, CD44, IKZF4, SH2B3, and a region of 22q13.2 where the causal gene remains uncertain. Functional pathway analysis shows that most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and genetic relationships among vitiligo, malignant melanoma, and normal variation of eye, skin, and hair color. PMID:22561518

  17. Sample reproducibility of genetic association using different multimarker TDTs in genome-wide association studies: characterization and a new approach.

    PubMed

    Abad-Grau, Mara M; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet

    2012-01-01

    Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker 2-Groups TDT (mTDT(2G)), a test which under the hypothesis of no linkage, asymptotically follows a χ2 distribution with 1 degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that mTDT(2G) test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, mTDT(2G) turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases.

  18. Adjusted P values for genome-wide scans.

    PubMed Central

    Lystig, Theodore C

    2003-01-01

    Genome-wide scans for quantitative trait loci (QTL) have traditionally been summarized with plots of logarithm of odds (LOD) scores. A valuable modification is to supplement such plots with an additional vertical axis displaying quantiles of adjusted P values and labeling local maxima of the LOD scores with location-specific adjusted P values. This provides a visible gradation of genome-wide significance for the LOD score curve, instead of the stark dichotomy that a single threshold yields. Adjusted P values give genome-wide significance of individual LOD scores and are obtained through a straightforward modification of the familiar algorithm for generating permutation-based thresholds. PMID:12930772

  19. Genome-Wide Specific Selection in Three Domestic Sheep Breeds

    PubMed Central

    Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Background Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. Results We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Conclusions Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding. PMID:26083354

  20. Genome-Wide Scan Reveals Mutation Associated with Melanoma

    MedlinePlus

    ... historical) Genome-Wide Scan Reveals Mutation Associated with Melanoma A team of international researchers supported by the ... when they divide and grow uncontrollably, develop into melanoma. Also, MITF activity is known to be amplified ...

  1. Genome-wide genetic investigation of serological measures of common infections

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A; Dyer, Thomas D; Kent Jr, Jack; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Fowler, Sharon P; Arya, Rector; Puppala, Sobha; Almasy, Laura; Moses, Eric K; Kraig, Ellen; Duggirala, Ravindranath; Blangero, John; Leach, Charles T; Göring, Harald HH

    2015-01-01

    Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10−8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels. PMID:25758998

  2. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    PubMed Central

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association approach. Method The authors administered 4 Internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2,329 twelve-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and 1 million imputed SNPs were included in a genome-wide association analysis of receptive language composite scores. Results No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p < 5 × 10–8). The strongest SNP association did not replicate in an additional sample of 2,639 twelve-year-olds. Conclusions These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for more than 3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants. PMID:24687471

  3. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  4. Genome-wide Association and Functional Studies Identify a Role for IGFBP3 in Hip Osteoarthritis

    PubMed Central

    Evans, Daniel S.; Cailotto, Frederic; Parimi, Neeta; Valdes, Ana M.; Castaño-Betancourt, Martha C.; Liu, Youfang; Kaplan, Robert C.; Bidlingmaier, Martin; Vasan, Ramachandran S.; Teumer, Alexander; Tranah, Gregory J.; Nevitt, Michael C.; Cummings, Steven R.; Orwoll, Eric S.; Barrett-Connor, Elizabeth; Renner, Jordan B.; Jordan, Joanne M.; Doherty, Michael; Doherty, Sally A.; Uitterlinden, Andre G.; van Meurs, Joyce B.J.; Spector, Tim D.; Lories, Rik J.; Lane, Nancy E.

    2015-01-01

    Objectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and controls defined radiographically and by total hip replacement were selected from the Osteoporotic Fractures in Men (MrOS) Study and the Study of Osteoporotic Fractures (SOF) (654 cases and 4697 controls, combined). Replication of genome-wide significant SNP associations (P-value ≤ 5x10−8) was examined in five studies (3243 cases and 6891 controls, combined). Functional studies were performed using in vitro models of chondrogenesis and osteogenesis. Results The A allele of rs788748, located 65 kb upstream of the IGFBP3 gene, was associated with lower HOA odds at the genome-wide significance level in the discovery stage (OR = 0.71, P-value = 2x10−8). The association replicated in five studies (OR = 0.92, P-value = 0.020), but the joint analysis of discovery and replication results was not genome-wide significant (P-value = 1x10−6). In separate study populations, the rs788748 A allele was also associated with lower circulating IGFBP3 protein levels (P-value = 4x10−13), suggesting that this SNP or a variant in linkage disequilibrium (LD) could be an IGFBP3 regulatory variant. Results from functional studies were consistent with association results. Chondrocyte hypertrophy, a deleterious event in OA pathogenesis, was largely prevented upon IGFBP3 knockdown in chondrocytes. Furthermore, IGFBP3 overexpression induced cartilage catabolism and osteogenic differentiation. Conclusions Results from GWAS and functional studies provided suggestive links between IGFBP3 and HOA. PMID:24928840

  5. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    PubMed

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes.

  6. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations.

    PubMed

    Segura, Vincent; Vilhjálmsson, Bjarni J; Platt, Alexander; Korte, Arthur; Seren, Ümit; Long, Quan; Nordborg, Magnus

    2012-06-17

    Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but they do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying new associations and evidence for allelic heterogeneity. We also show how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large data sets (n > 10,000) practicable.

  7. Genome-wide association studies in maize: praise and stargaze

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...

  8. A super powerful method for genome wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-Wide Association Studies shed light on the identification of genes underlying human diseases and agriculturally important traits. This potential has been shadowed by false positive findings. The Mixed Linear Model (MLM) method is flexible enough to simultaneously incorporate population struct...

  9. Genome-wide association study identifies five new schizophrenia loci

    PubMed Central

    2012-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9). PMID:21926974

  10. Genome-wide association mapping of soybean aphid resistance traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid is the most damaging insect pest of soybean in the Upper Midwest and is primarily controlled by insecticides. Soybean aphid resistance (i.e., Rag genes) has been documented in some soybean lines at chromosomes 6, 7, 13, and 16, but more sources of resistance are needed. Genome-wide ass...

  11. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population

    PubMed Central

    Villanueva, Pia; Newbury, Dianne F; Jara, Lilian; De Barbieri, Zulema; Mirza, Ghazala; Palomino, Hernán M; Fernández, María Angélica; Cazier, Jean-Baptiste; Monaco, Anthony P; Palomino, Hernán

    2011-01-01

    Specific language impairment (SLI) is an unexpected deficit in the acquisition of language skills and affects between 5 and 8% of pre-school children. Despite its prevalence and high heritability, our understanding of the aetiology of this disorder is only emerging. In this paper, we apply genome-wide techniques to investigate an isolated Chilean population who exhibit an increased frequency of SLI. Loss of heterozygosity (LOH) mapping and parametric and non-parametric linkage analyses indicate that complex genetic factors are likely to underlie susceptibility to SLI in this population. Across all analyses performed, the most consistently implicated locus was on chromosome 7q. This locus achieved highly significant linkage under all three non-parametric models (max NPL=6.73, P=4.0 × 10−11). In addition, it yielded a HLOD of 1.24 in the recessive parametric linkage analyses and contained a segment that was homozygous in two affected individuals. Further, investigation of this region identified a two-SNP haplotype that occurs at an increased frequency in language-impaired individuals (P=0.008). We hypothesise that the linkage regions identified here, in particular that on chromosome 7, may contain variants that underlie the high prevalence of SLI observed in this isolated population and may be of relevance to other populations affected by language impairments. PMID:21248734

  12. Poor replication of candidate genes for major depressive disorder using genome-wide association data.

    PubMed

    Bosker, F J; Hartman, C A; Nolte, I M; Prins, B P; Terpstra, P; Posthuma, D; van Veen, T; Willemsen, G; DeRijk, R H; de Geus, E J; Hoogendijk, W J; Sullivan, P F; Penninx, B W; Boomsma, D I; Snieder, H; Nolen, W A

    2011-05-01

    Data from the Genetic Association Information Network (GAIN) genome-wide association study (GWAS) in major depressive disorder (MDD) were used to explore previously reported candidate gene and single-nucleotide polymorphism (SNP) associations in MDD. A systematic literature search of candidate genes associated with MDD in case-control studies was performed before the results of the GAIN MDD study became available. Measured and imputed candidate SNPs and genes were tested in the GAIN MDD study encompassing 1738 cases and 1802 controls. Imputation was used to increase the number of SNPs from the GWAS and to improve coverage of SNPs in the candidate genes selected. Tests were carried out for individual SNPs and the entire gene using different statistical approaches, with permutation analysis as the final arbiter. In all, 78 papers reporting on 57 genes were identified, from which 92 SNPs could be mapped. In the GAIN MDD study, two SNPs were associated with MDD: C5orf20 (rs12520799; P=0.038; odds ratio (OR) AT=1.10, 95% CI 0.95-1.29; OR TT=1.21, 95% confidence interval (CI) 1.01-1.47) and NPY (rs16139; P=0.034; OR C allele=0.73, 95% CI 0.55-0.97), constituting a direct replication of previously identified SNPs. At the gene level, TNF (rs76917; OR T=1.35, 95% CI 1.13-1.63; P=0.0034) was identified as the only gene for which the association with MDD remained significant after correction for multiple testing. For SLC6A2 (norepinephrine transporter (NET)) significantly more SNPs (19 out of 100; P=0.039) than expected were associated while accounting for the linkage disequilibrium (LD) structure. Thus, we found support for involvement in MDD for only four genes. However, given the number of candidate SNPs and genes that were tested, even these significant may well be false positives. The poor replication may point to publication bias and false-positive findings in previous candidate gene studies, and may also be related to heterogeneity of the MDD phenotype as well as

  13. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    PubMed

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  14. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication

    PubMed Central

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M.; Tao, Ryutaro

    2016-01-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops. PMID:27085183

  15. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication.

    PubMed

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M; Tao, Ryutaro

    2016-06-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.

  16. A novel bayesian graphical model for genome-wide multi-SNP association mapping.

    PubMed

    Zhang, Yu

    2012-01-01

    Most disease association mapping algorithms are based on hypothesis testing procedures that test one variant at a time. Those methods lose power when the disease mutations are jointly tagged by multiple variants, or when gene-gene interaction exist. Nearby variants are also correlated, for which procedures ignoring the dependence between variants will inevitably produce redundant results. With a large number of variants genotyped in current genome-wide disease association studies, simultaneous multivariant association mapping algorithms are strongly desired. We present a novel Bayesian method for automatic detection of multivariant joint association in genome-wide case-control studies. Our method has improved power and specificity over existing tools. We fit a joint probabilistic model to the entire data and identify disease variants simultaneously. The method dynamically accounts for the strong linkage disequilibrium (LD) between variants. As a result, only the primary disease variants will be identified, with all secondary associations due to LD effects filtered out. Our method better pinpoints the disease variants with improved resolution. The method is also computationally efficient for genome-wide studies. When applied to a real data set of inflammatory bowel disease (IBD) containing 401,473 variants in 4,720 individuals, our method detected all previously reported IBD loci in the same data, and recovered two missed loci. We further detected two novel interchromosome interactions. The first is between STAT3 and PARD6G, and the second is between DLG5 and an intergenic region at 5p14. We further validated the two interactions in an independent study.

  17. Genome-wide evidence for speciation with gene flow in Heliconius butterflies

    PubMed Central

    Martin, Simon H.; Dasmahapatra, Kanchon K.; Nadeau, Nicola J.; Salazar, Camilo; Walters, James R.; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D.

    2013-01-01

    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time. PMID:24045163

  18. Power comparison of admixture mapping and direct association analysis in genome-wide association studies.

    PubMed

    Qin, Huaizhen; Zhu, Xiaofeng

    2012-04-01

    When dense markers are available, one can interrogate almost every common variant across the genome via imputation and single nucleotide polymorphism (SNP) test, which has become a routine in current genome-wide association studies (GWASs). As a complement, admixture mapping exploits the long-range linkage disequilibrium (LD) generated by admixture between genetically distinct ancestral populations. It is then questionable whether admixture mapping analysis is still necessary in detecting the disease associated variants in admixed populations. We argue that admixture mapping is able to reduce the burden of massive comparisons in GWASs; it therefore can be a powerful tool to locate the disease variants with substantial allele frequency differences between ancestral populations. In this report we studied a two-stage approach, where candidate regions are defined by conducting admixture mapping at stage 1, and single SNP association tests are followed at stage 2 within the candidate regions defined at stage 1. We first established the genome-wide significance levels corresponding to the criteria to define the candidate regions at stage 1 by simulations. We next compared the power of the two-stage approach with direct association analysis. Our simulations suggest that the two-stage approach can be more powerful than the standard genome-wide association analysis when the allele frequency difference of a causal variant in ancestral populations, is larger than 0.4. Our conclusion is consistent with a theoretical prediction by Risch and Tang ([2006] Am J Hum Genet 79:S254). Surprisingly, our study also suggests that power can be improved when we use less strict criteria to define the candidate regions at stage 1.

  19. Genome-wide association scan in psoriasis: new insights into chronic inflammatory disease.

    PubMed

    Schrodi, Steven J

    2008-09-01

    Evaluation of: Liu Y, Helms C, Liao W et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008). Genome-wide association scans have delivered on their promise of revealing susceptibility polymorphisms underlying common diseases. This comprehensive psoriasis study by Liu and colleagues reports confirmation of previously identified genes (HLA-C, IL12B and IL23R), identifies several novel psoriasis loci and is the first to report psoriatic arthritis association on a genome-wide scale. Along with other recent studies, this work gives further evidence that IL-23-mediated signaling is a key component of both psoriasis and psoriatic arthritis pathogenesis. Importantly, this study provides evidence of a single-nucleotide polymorphism (SNP), 35 kb upstream of HLA-C, which is stronger than Cw 0602 - the variant traditionally attributed to the MHC-linked psoriasis-susceptibility effect. Within this region, the authors also discovered an independent SNP with very strong predisposing effects. SNPs in the COG6 region and the USP8-TNFAIP8l3 region are among the novel psoriasis associations reported. In addition, a region showing linkage on chromosome 1q demonstrated association in the epidermal differentiation complex. Four SNPs over a 439-kb region on chromosome 4q27, where KIAA1109, ADAD1 and two cytokine-encoding genes (IL2 and IL21) reside, exhibit intriguing correlation with psoriatic arthritis, although the signal strength is moderate. These results, while still preliminary, may substantially expand our knowledge of psoriasis and psoriatic arthritis genetics, opening new avenues of chronic inflammatory disease research.

  20. Analysis of Heritability Using Genome-Wide Data.

    PubMed

    Hall, Jacob B; Bush, William S

    2016-10-11

    Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley & Sons, Inc.

  1. Genome-wide functional analysis in Candida albicans.

    PubMed

    Motaung, Thabiso E; Ells, Ruan; Pohl, Carolina H; Albertyn, Jacobus; Tsilo, Toi J

    2017-02-08

    Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.

  2. Genome-wide patterns of selection in 230 ancient Eurasians.

    PubMed

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R; Llamas, Bastien; Dryomov, Stanislav; Pickrell, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vyacheslav; Guerra, Manuel A Rojo; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2015-12-24

    Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

  3. Genome-wide patterns of selection in 230 ancient Eurasians

    PubMed Central

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  4. Genome-wide association studies of obesity and metabolic syndrome.

    PubMed

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years.

  5. Genome-wide association study of paliperidone efficacy

    PubMed Central

    Wineinger, Nathan E.; Fu, Dong-Jing; Libiger, Ondrej; Alphs, Larry; Savitz, Adam; Gopal, Srihari; Cohen, Nadine; Schork, Nicholas J.

    2017-01-01

    Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples. PMID:27846195

  6. Genome-Wide Profiling of Alternative Translation Initiation Sites.

    PubMed

    Gao, Xiangwei; Wan, Ji; Qian, Shu-Bing

    2016-01-01

    Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables identification of translation initiation sites on a genome-wide scale. By capturing initiating ribosomes using lactimidomycin, this approach permits qualitative and quantitative analysis of alternative translation initiation.

  7. Genome-Wide Association Studies and Liver Disease

    PubMed Central

    Speliotes, Elizabeth K.

    2016-01-01

    Sequencing of the human genome has opened up many opportunities to learn about our own genetic susceptibilities to disease. In this Foreword to this issue of Seminars in Liver Disease, I provide some required background to understanding genome-wide association analyses in general, including a list of terms (Table 1) often used in such studies. Five areas of particular significance are then reviewed in detail in the articles that follow. PMID:26676811

  8. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    PubMed Central

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10−5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  9. Genome-wide DNA polymorphism analyses using VariScan

    PubMed Central

    Hutter, Stephan; Vilella, Albert J; Rozas, Julio

    2006-01-01

    Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data. PMID:16968531

  10. Voxelwise genome-wide association study (vGWAS).

    PubMed

    Stein, Jason L; Hua, Xue; Lee, Suh; Ho, April J; Leow, Alex D; Toga, Arthur W; Saykin, Andrew J; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J; Craig, David W; Gerber, Jill D; Allen, April N; Corneveaux, Jason J; Dechairo, Bryan M; Potkin, Steven G; Weiner, Michael W; Thompson, Paul

    2010-11-15

    The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.

  11. Genome-Wide Estimates of Heritability for Social Demographic Outcomes

    PubMed Central

    Domingue, Benjamin W.; Wedow, Robbee; Conley, Dalton; McQueen, Matt; Hoffmann, Thomas J.; Boardman, Jason D.

    2016-01-01

    An increasing number of studies that are widely used in the demographic research community have collected genome-wide data from their respondents. It is therefore important that demographers have a proper understanding of some of the methodological tools needed to analyze such data. Our paper details the underlying methodology behind one of the most common techniques for analyzing genome-wide data, Genome-Wide Complex Trait Analysis (GCTA). GCTA models provide heritability estimates for health, health behaviors, or indicators of attainment using data from unrelated persons.. Our goal is to describe this model, to highlight the utility of the model for biodemographic research, and to demonstrate the performance of this approach under modifications of the underlying assumptions. The first set of modifications involves changing the nature of the genetic data used to compute genetic similarities between individuals (the genetic relationship matrix). We then explore the sensitivity of the model to heteroscedastic errors. In general, GCTA estimates are robust to the modifications proposed here but we also highlight potential limitations of GCTA estimates. PMID:27050030

  12. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis.

    PubMed

    Spritz, Richard A

    2012-02-01

    Generalized vitiligo (GV) is a complex disease in which patchy depigmentation results from autoimmune loss of melanocytes from affected regions. Genetic analyses of GV span six decades, with the goal of understanding biological mechanisms and elucidating pathways that underlie the disease. The earliest studies attempted to describe the mode of inheritance and genetic epidemiology. Early genetic association studies of biological candidate genes resulted in some successes, principally HLA and PTPN22, but in hindsight many such reports now seem to be false-positives. Later, genome-wide linkage studies of multiplex GV families identified NLRP1 and XBP1, which appear to be valid GV susceptibility genes that control key aspects of immune regulation. Recently, the application of genome-wide association studies to analysis of GV has produced a rich yield of validated GV susceptibility genes that encode components of biological pathways reaching from immune cells to the melanocyte. These genes and pathways provide insights into underlying pathogenetic mechanisms and possible triggers of GV, establish relationships to other autoimmune diseases, and may provide clues to potential new approaches to GV treatment and perhaps even prevention. These results thus validate the hopes and efforts of the early investigators who first attempted to comprehend the genetic basis of vitiligo.

  13. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  14. Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle.

    PubMed

    Peñagaricano, F; Weigel, K A; Khatib, H

    2012-07-01

    The decline in the reproductive efficiency of dairy cattle has become a challenging problem worldwide. Female fertility is now taken into account in breeding goals while generally less attention is given to male fertility. The objective of this study was to perform a genome-wide association study in Holstein bulls to identify genetic variants significantly related to sire conception rate (SCR), a new phenotypic evaluation of bull fertility. The analysis included 1755 sires with SCR data and 38,650 single nucleotide polymorphisms (SNPs) spanning the entire bovine genome. Associations between SNPs and SCR were analyzed using a mixed linear model that included a random polygenic effect and SNP genotype either as a linear covariate or as a categorical variable. A multiple testing correction approach was used to account for the correlation between SNPs because of linkage disequilibrium. After genome-wide correction, eight SNPs showed significant association with SCR. Some of these SNPs are located close to or in the middle of genes with functions related to male fertility, such as the sperm acrosome reaction, chromatin remodeling during the spermatogenesis, and the meiotic process during male germ cell maturation. Some SNPs showed marked dominance effects, which provide more evidence for the relevance of non-additive effects in traits closely related to fitness such as fertility. The results could contribute to the identification of genes and pathways associated with male fertility in dairy cattle.

  15. Implications of genome wide association studies for addiction: Are our a priori assumptions all wrong?

    PubMed Central

    Hall, F. Scott; Drgonova, Jana; Jain, Siddharth; Uhl, George R.

    2013-01-01

    Substantial genetic contributions to addiction vulnerability are supported by data from twin studies, linkage studies, candidate gene association studies and, more recently, Genome Wide Association Studies (GWAS). Parallel to this work, animal studies have attempted to identify the genes that may contribute to responses to addictive drugs and addiction liability, initially focusing upon genes for the targets of the major drugs of abuse. These studies identified genes/proteins that affect responses to drugs of abuse; however, this does not necessarily mean that variation in these genes contributes to the genetic component of addiction liability. One of the major problems with initial linkage and candidate gene studies was an a priori focus on the genes thought to be involved in addiction based upon the known contributions of those proteins to drug actions, making the identification of novel genes unlikely. The GWAS approach is systematic and agnostic to such a priori assumptions. From the numerous GWAS now completed several conclusions may be drawn: (1) addiction is highly polygenic; each allelic variant contributing in a small, additive fashion to addiction vulnerability; (2) unexpected, compared to our a priori assumptions, classes of genes are most important in explaining addiction vulnerability; (3) although substantial genetic heterogeneity exists, there is substantial convergence of GWAS signals on particular genes. This review traces the history of this research; from initial transgenic mouse models based upon candidate gene and linkage studies, through the progression of GWAS for addiction and nicotine cessation, to the current human and transgenic mouse studies post-GWAS. PMID:23872493

  16. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  17. Implications of genome wide association studies for addiction: are our a priori assumptions all wrong?

    PubMed

    Hall, F Scott; Drgonova, Jana; Jain, Siddharth; Uhl, George R

    2013-12-01

    Substantial genetic contributions to addiction vulnerability are supported by data from twin studies, linkage studies, candidate gene association studies and, more recently, Genome Wide Association Studies (GWAS). Parallel to this work, animal studies have attempted to identify the genes that may contribute to responses to addictive drugs and addiction liability, initially focusing upon genes for the targets of the major drugs of abuse. These studies identified genes/proteins that affect responses to drugs of abuse; however, this does not necessarily mean that variation in these genes contributes to the genetic component of addiction liability. One of the major problems with initial linkage and candidate gene studies was an a priori focus on the genes thought to be involved in addiction based upon the known contributions of those proteins to drug actions, making the identification of novel genes unlikely. The GWAS approach is systematic and agnostic to such a priori assumptions. From the numerous GWAS now completed several conclusions may be drawn: (1) addiction is highly polygenic; each allelic variant contributing in a small, additive fashion to addiction vulnerability; (2) unexpected, compared to our a priori assumptions, classes of genes are most important in explaining addiction vulnerability; (3) although substantial genetic heterogeneity exists, there is substantial convergence of GWAS signals on particular genes. This review traces the history of this research; from initial transgenic mouse models based upon candidate gene and linkage studies, through the progression of GWAS for addiction and nicotine cessation, to the current human and transgenic mouse studies post-GWAS.

  18. Genome-wide association study of 12 agronomic traits in peach

    PubMed Central

    Cao, Ke; Zhou, Zhengkui; Wang, Qi; Guo, Jian; Zhao, Pei; Zhu, Gengrui; Fang, Weichao; Chen, Changwen; Wang, Xinwei; Wang, Xiaoli; Tian, Zhixi; Wang, Lirong

    2016-01-01

    Peach (Prunus persica L.) is a highly valuable crop species and is recognized by molecular researchers as a model fruit for the Rosaceae family. Using whole-genome sequencing data generated from 129 peach accessions, here we perform a comprehensive genome-wide association study for 12 key agronomic traits. We show that among the 10 qualitative traits investigated, nine exhibit consistent and more precise association signals than previously identified by linkage analysis. For two of the qualitative traits, we describe candidate genes, one potentially involved in cell death and another predicted to encode an auxin-efflux carrier, that are highly associated with fruit shape and non-acidity, respectively. Furthermore, we find that several genomic regions harbouring association signals for fruit weight and soluble solid content overlapped with predicted selective sweeps that occurred during peach domestication and improvement. Our findings contribute to the large-scale characterization of genes controlling agronomic traits in peach. PMID:27824331

  19. The identification of loci for polydactyly in chickens using a genome-wide association study.

    PubMed

    Sheng, Xihui; Chen, Yu; Jia, Yaxiong; Qi, Xiaolong; Feng, Yun; Huang, Zhen; Guo, Yong

    2015-09-01

    Polydactyly is a commonly observed limb malformation in humans and other vertebrates. The Beijing-You chicken expressing the polydactyly phenotype provides an opportunity to investigate the potential cause for polydactyly. Here we extensively exploited genetic determinants of the chicken polydactyly in a genome wide association study using over 580,000 SNPs characterized in a Beijing-You × Lohmann F1 cross, consisting of 79 animals. A total of 10 loci clustered on the short arm of chromosome 2 were identified to be significantly associated with the trait. Among the 10 significant SNPs, 7 were located in a linkage disequilibrium block of 1737kb. The strongest association signal (rs317674023, P=5.48×10(-8)) residing nearby Bone Morphogenetic Protein Receptor-Associated Molecule 1 (BRAM1) was identified in the genomic region. Our results provide insights to the genetic basis underlying chicken polydactyly and may facilitate studies of the limb malformation in humans and other species.

  20. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals

    PubMed Central

    Chen, Wei; Wang, Wensheng; Peng, Meng; Gong, Liang; Gao, Yanqiang; Wan, Jian; Wang, Shouchuang; Shi, Lei; Zhou, Bin; Li, Zongmei; Peng, Xiaoxi; Yang, Chenkun; Qu, Lianghuan; Liu, Xianqing; Luo, Jie

    2016-01-01

    The plant metabolome is characterized by extensive diversity and is often regarded as a bridge between genome and phenome. Here we report metabolic and phenotypic genome-wide studies (mGWAS and pGWAS) in rice grain that, in addition to previous metabolic GWAS in rice leaf and maize kernel, show both distinct and overlapping aspects of genetic control of metabolism within and between species. We identify new candidate genes potentially influencing important metabolic and/or morphological traits. We show that the differential genetic architecture of rice metabolism between different tissues is in part determined by tissue specific expression. Using parallel mGWAS and pGWAS we identify new candidate genes potentially responsible for variation in traits such as grain colour and size, and provide evidence of metabotype-phenotype linkage. Our study demonstrates a powerful strategy for interactive functional genomics and metabolomics in plants, especially the cloning of minor QTLs for complex phenotypic traits. PMID:27698483

  1. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar).

    PubMed

    Gutierrez, Alejandro P; Yáñez, José M; Fukui, Steve; Swift, Bruce; Davidson, William S

    2015-01-01

    Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼ 480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.

  2. Genome-Wide Association Study of Metabolic Syndrome in Koreans

    PubMed Central

    Jeong, Seok Won; Chung, Myungguen; Park, Soo-Jung; Cho, Seong Beom

    2014-01-01

    Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10-8), 8 SNPs with genome-wide suggestive p-values (5 × 10-8 ≤ p < 1 × 10-5), and 2 SNPs of more functional variants with borderline p-values (5 × 10-5 ≤ p < 1 × 10-4). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. PMID:25705157

  3. Genome-Wide Approaches to Drosophila Heart Development

    PubMed Central

    Frasch, Manfred

    2016-01-01

    The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level. PMID:27294102

  4. Genome-Wide Association of Heroin Dependence in Han Chinese

    PubMed Central

    Coleman, Jonathan R. I.; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J.; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A.; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110−6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field. PMID:27936112

  5. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  6. Genome-wide association study of parity in Bangladeshi women.

    PubMed

    Aschebrook-Kilfoy, Briseis; Argos, Maria; Pierce, Brandon L; Tong, Lin; Jasmine, Farzana; Roy, Shantanu; Parvez, Faruque; Ahmed, Alauddin; Islam, Tariqul; Kibriya, Muhammad G; Ahsan, Habibul

    2015-01-01

    Human fertility is a complex trait determined by gene-environment interactions in which genetic factors represent a significant component. To better understand inter-individual variability in fertility, we performed one of the first genome-wide association studies (GWAS) of common fertility phenotypes, lifetime number of pregnancies and number of children in a developing country population. The fertility phenotype data and DNA samples were obtained at baseline recruitment from individuals participating in a large prospective cohort study in Bangladesh. GWAS analyses of fertility phenotypes were conducted among 1,686 married women. One SNP on chromosome 4 was non-significantly associated with number of children at P <10(-7) and number of pregnancies at P <10(-6). This SNP is located in a region without a gene within 1 Mb. One SNP on chromosome 6 was non-significantly associated with extreme number of children at P <10(-6). The closest gene to this SNP is HDGFL1, a hepatoma-derived growth factor. When we excluded hormonal contraceptive users, a SNP on chromosome 5 was non-significantly associated at P <10(-5) for number of children and number of pregnancies. This SNP is located near C5orf64, an open reading frame, and ZSWIM6, a zinc ion binding gene. We also estimated the heritability of these phenotypes from our genotype data using GCTA (Genome-wide Complex Trait Analysis) for number of children (hg2 = 0.149, SE = 0.24, p-value = 0.265) and number of pregnancies (hg2 = 0.007, SE = 0.22, p-value = 0.487). Our genome-wide association study and heritability estimates of number of pregnancies and number of children in Bangladesh did not confer strong evidence of common variants for parity variation. However, our results suggest that future studies may want to consider the role of 3 notable SNPs in their analysis.

  7. Validating, augmenting and refining genome-wide association signals.

    PubMed

    Ioannidis, John P A; Thomas, Gilles; Daly, Mark J

    2009-05-01

    Studies using genome-wide platforms have yielded an unprecedented number of promising signals of association between genomic variants and human traits. This Review addresses the steps required to validate, augment and refine such signals to identify underlying causal variants for well-defined phenotypes. These steps include: large-scale exact replication across both similar and diverse populations; fine mapping and resequencing; determination of the most informative markers and multiple independent informative loci; incorporation of functional information; and improved phenotype mapping of the implicated genetic effects. Even in cases for which replication proves that an effect exists, confident localization of the causal variant often remains elusive.

  8. Genome-wide association studies and contribution to cardiovascular physiology

    PubMed Central

    Munroe, Patricia B.

    2015-01-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology. PMID:26106147

  9. Genome-wide approaches to defining macrophage identity and function

    PubMed Central

    Fonseca, Gregory J; Seidman, Jason S; Glass, Christopher K

    2016-01-01

    Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression. PMID:28087927

  10. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  11. [New insight of genome-wide association study (GWAS)].

    PubMed

    Hotta, Kikuko

    2013-02-01

    The number of obese patients is increasing in Japan, due to the westernization of lifestyle. Obesity, especially visceral fat obesity, is important for the development of metabolic syndrome. Genetic factors are important for the development of obesity as well as environmental factors. Importance of genetic factors of fat distribution is also reported. Recent genome-wide association studies (GWASs) have revealed the obesity and fat distribution-related polymorphisms. GWAS will highlight a better understanding of the underlying molecular mechanisms in the regulation of obesity and distribution of body fat.

  12. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  13. Automated linkage analysis in psychiatric disorders

    SciTech Connect

    He, L.; Mansfield, D.C.; Brown, A.F.; Green, D.K.

    1995-06-19

    A genome-wide search for linkage of microsatellite markers to chromosomal loci containing genes responsible for the major psychoses is a laborious task which can be carried out with greater speed and economy by introducing automation to several steps in the procedure. We describe the use of the Automated Linkage Preprocessor (ALP) program for the computer analysis of the waveform generated by fluorescein-labelled markers after electrophoretic separation. (To obtain a copy send a request to A.F. Brown at the below MRC address or use Anonymous FTP to ftp.hgu.mrc.ac.uk. Software is in directory pub/ALP.) The program runs on a PC in the Microsoft Windows environment, and is used in conjunction with an automated laser fluorescence (ALF) sequencer (Pharmacia) and its Fragment Manager{trademark} software to detect and size the PCR products, filter out peaks of fluorescence due to nonallele fragments, and generate genotypes in a format suitable for direct input to standard linkage analysis programs. The method should offer the advantages of speed, accuracy, and reduced cost. Its use in linkage studies in a large family with manic-depressive illness is discussed. 14 refs., 3 figs., 1 tab.

  14. Genome-wide mapping of DNA strand breaks.

    PubMed

    Leduc, Frédéric; Faucher, David; Bikond Nkoma, Geneviève; Grégoire, Marie-Chantal; Arguin, Mélina; Wellinger, Raymund J; Boissonneault, Guylain

    2011-02-25

    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  15. Genome-wide analysis of differential RNA editing in epilepsy

    PubMed Central

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.

    2017-01-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018

  16. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    PubMed

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  17. Genome-wide analysis of differential RNA editing in epilepsy.

    PubMed

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M; Petretto, Enrico; Johnson, Michael R

    2017-03-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine-temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including "neuron projection" and "seizures." Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.

  18. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  19. A Genome-Wide Association Study of Aging

    PubMed Central

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W.; Garcia, Melissa E.; Kaplan, Robert C.; Kumari, Meena; Lunetta, Kathryn L.; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J.; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J.; Biffar, Reiner; Buchman, Aron S.; Boerwinkle, Eric; Couper, David; De Jager, Philip L.; Evans, Denis A.; Harris, Tamara B.; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P.; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J.; Lohman, Kurt K.; Lutsey, Pamela L.; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M.; Reiman, Eric M.; Rotter, Jerome I.; Seshadri, Sudha; Shardell, Michelle D.; Smith, Albert V.; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M. Carola; Bandinelli, Stefania; Baumeister, Sebastian E.; Bennett, David A.; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M.; Newman, Anne B.; Tiemeier, Henning; Franceschini, Nora

    2011-01-01

    Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-analysis of genome-wide association studies from nine studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. PMID:21782286

  20. Genome-wide identification of hypoxia-induced enhancer regions

    PubMed Central

    Preston, Jessica L.; Randel, Melissa A.; Johnson, Eric A.

    2015-01-01

    Here we present a genome-wide method for de novo identification of enhancer regions. This approach enables massively parallel empirical investigation of DNA sequences that mediate transcriptional activation and provides a platform for discovery of regulatory modules capable of driving context-specific gene expression. The method links fragmented genomic DNA to the transcription of randomer molecule identifiers and measures the functional enhancer activity of the library by massively parallel sequencing. We transfected a Drosophila melanogaster library into S2 cells in normoxia and hypoxia, and assayed 4,599,881 genomic DNA fragments in parallel. The locations of the enhancer regions strongly correlate with genes up-regulated after hypoxia and previously described enhancers. Novel enhancer regions were identified and integrated with RNAseq data and transcription factor motifs to describe the hypoxic response on a genome-wide basis as a complex regulatory network involving multiple stress-response pathways. This work provides a novel method for high-throughput assay of enhancer activity and the genome-scale identification of 31 hypoxia-activated enhancers in Drosophila. PMID:26713262

  1. Genome-wide association interaction analysis for Alzheimer's disease

    PubMed Central

    Gusareva, Elena S.; Carrasquillo, Minerva M.; Bellenguez, Céline; Cuyvers, Elise; Colon, Samuel; Graff-Radford, Neill R.; Petersen, Ronald C.; Dickson, Dennis W.; Mahachie Johna, Jestinah M.; Bessonov, Kyrylo; Van Broeckhoven, Christine; Williams, Julie; Amouyel, Philippe; Sleegers, Kristel; Ertekin-Taner, Nilüfer; Lambert, Jean-Charles; Van Steen, Kristel

    2015-01-01

    We propose a minimal protocol for exhaustive genome-wide association interaction analysis that involves screening for epistasis over large-scale genomic data combining strengths of different methods and statistical tools. The different steps of this protocol are illustrated on a real-life data application for Alzheimer's disease (AD) (2259 patients and 6017 controls from France). Particularly, in the exhaustive genome-wide epistasis screening we identified AD-associated interacting SNPs-pair from chromosome 6q11.1 (rs6455128, the KHDRBS2 gene) and 13q12.11 (rs7989332, the CRYL1 gene) (p = 0.006, corrected for multiple testing). A replication analysis in the independent AD cohort from Germany (555 patients and 824 controls) confirmed the discovered epistasis signal (p = 0.036). This signal was also supported by a meta-analysis approach in 5 independent AD cohorts that was applied in the context of epistasis for the first time. Transcriptome analysis revealed negative correlation between expression levels of KHDRBS2 and CRYL1 in both the temporal cortex (β = −0.19, p = 0.0006) and cerebellum (β = −0.23, p < 0.0001) brain regions. This is the first time a replicable epistasis associated with AD was identified using a hypothesis free screening approach. PMID:24958192

  2. A genome-wide association study of aging.

    PubMed

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  3. A Pooled Genome-Wide Association Study of Asperger Syndrome

    PubMed Central

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E.; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision. PMID:26176695

  4. A genome-wide scan for tying-up syndrome in Japanese Thoroughbreds.

    PubMed

    Tozaki, T; Hirota, K; Sugita, S; Ishida, N; Miyake, T; Oki, H; Hasegawa, T

    2010-12-01

    Tying-up syndrome, also known as recurrent exertional rhabdomyolysis in Thoroughbreds, is a common muscle disorder for racehorses. In this study, we performed a multipoint linkage analysis using LOKI based on the Bayesian Markov chain Monte Carlo method using 5 half-sib families (51 affected and 277 nonaffected horses in total), and a genome-wide association study (GWAS) using microsatellites (144 affected and 144 nonaffected horses) to map candidate regions for tying-up syndrome in Japanese Thoroughbreds. The linkage analysis identified one strong L-score (82.45) between the loci UCDEQ411 and COR058 (24.9-27.9 Mb) on ECA12. The GWAS identified two suggestive genomic regions on ECA12 (24.9-27.8 Mb) and ECA20 (29.3-33.5 Mb). Based on both results, the genomic region between UCDEQ411 and TKY499 (24.9-27.8 Mb) on ECA12 was the most significant and was considered as a candidate region for tying-up syndrome in Japanese Thoroughbreds.

  5. Genome-wide association study of antisocial personality disorder

    PubMed Central

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  6. Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium.

    PubMed

    van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, Karin J H; Krueger, Robert F; Luciano, Michelle; Arias Vasquez, Alejandro; Matteson, Lindsay K; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D; Hansell, Narelle K; Hart, Amy B; Seppälä, Ilkka; Huffman, Jennifer E; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abdellaoui, Abdel; Abecasis, Goncalo R; Adkins, Daniel E; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B; Busonero, Fabio; Campbell, Harry; Costa, Paul T; Smith, George Davey; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E; Eriksson, Johan G; Fedko, Iryna O; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M; Heath, Andrew C; Heinonen, Kati; Henders, Anjali K; Homuth, Georg; Hottenga, Jouke-Jan; Iacono, William G; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P; Kirkpatrick, Matthew G; Latvala, Antti; Lehtimäki, Terho; Liewald, David C; Madden, Pamela A F; Magri, Chiara; Magnusson, Patrik K E; Marten, Jonathan; Maschio, Andrea; Mbarek, Hamdi; Medland, Sarah E; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W; Nauck, Matthias; Nivard, Michel G; Ouwens, Klaasjan G; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T; Realo, Anu; Rose, Richard J; Ruggiero, Daniela; Schmidt, Carsten O; Slutske, Wendy S; Sorice, Rossella; Starr, John M; St Pourcain, Beate; Sutin, Angelina R; Timpson, Nicholas J; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J; Zgaga, Lina; Porteous, David; Minelli, Alessandra; Palmer, Abraham A; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J; Räikkönen, Katri; Wilson, James F; Keltikangas-Järvinen, Liisa; Bierut, Laura J; Hettema, John M; Grabe, Hans J; Penninx, Brenda W J H; van Duijn, Cornelia M; Evans, David M; Schlessinger, David; Pedersen, Nancy L; Terracciano, Antonio; McGue, Matt; Martin, Nicholas G; Boomsma, Dorret I

    2016-03-01

    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion.

  7. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    PubMed Central

    Belfield, Eric J.; Gan, Xiangchao; Mithani, Aziz; Brown, Carly; Jiang, Caifu; Franklin, Keara; Alvey, Elizabeth; Wibowo, Anjar; Jung, Marko; Bailey, Kit; Kalwani, Sharan; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas P.

    2012-01-01

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)–induced single base substitutions differed substantially from those of “background” mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations. PMID:22499668

  8. Externalizing disorders in American Indians: comorbidity and a genome wide linkage analysis.

    PubMed

    Ehlers, Cindy L; Gilder, David A; Slutske, Wendy S; Lind, Penelope A; Wilhelmsen, Kirk C

    2008-09-05

    Alcohol dependence is one of the leading causes of morbidity and mortality in Native Americans. Externalizing disorders such as conduct disorder (CD) and antisocial personality disorder (ASPD) have been demonstrated to have significant comorbidity with alcohol dependence in the general population. This study's aims were to: assess the comorbidity of DSM-III-R ASPD and CD with alcohol dependence, to map susceptibility loci for ASPD and CD, and to see if there is overlap with loci previously mapped for alcohol dependence phenotypes in 587 American Indians. Alcohol dependence was found to be comorbid with DSM-III-R ASPD but not CD. However, the amount of alcohol dependence in the population attributable to ASPD and/or CD is low. ASPD and the combined phenotype of participants with ASPD or CD were both found to have significant heritability, whereas no significant evidence was found for CD alone. Genotypes were determined for a panel of 791 micro-satellite polymorphisms in 251 of the participants. Analyses of multipoint variance component LOD scores, for ASPD and ASPD/CD, revealed six locations that had a LOD score of 2.0 or above: on chromosome 13 for ASPD and on chromosomes 1, 3, 4, 14, 17, and 20 for ASPD/CD. These results corroborate the importance of several chromosomal regions highlighted in prior segregation studies for externalizing diagnoses. These results also further identify new regions of the genome, that do not overlap with alcohol dependence phenotypes previously identified in this population, that may be unique to either the phenotypes evaluated or this population of American Indians.

  9. An integrated approach to exploit linkage disequilibrium for ultra high dimensional genome-wide data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the advent of recent DNA sequencing methods (determining molecule order) that quickly produce millions of DNA sequences, variation among sequences in a genome (all the DNA contained in chromosomes of an organism) can be tested for association with traits of economic interest on a relatively lar...

  10. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    PubMed Central

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  11. Genome-wide association study of drought-related resistance traits in Aegilops tauschii

    PubMed Central

    Qin, Peng; Lin, Yu; Hu, Yaodong; Liu, Kun; Mao, Shuangshuang; Li, Zhanyi; Wang, Jirui; Liu, Yaxi; Wei, Yuming; Zheng, Youliang

    2016-01-01

    Abstract The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection. PMID:27560650

  12. High-resolution genome-wide mapping of histone modifications.

    PubMed

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  13. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.

  14. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable.

  15. Genome-wide measurement of RNA folding energies.

    PubMed

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  16. Genome-wide studies of telomere biology in budding yeast

    PubMed Central

    Harari, Yaniv; Kupiec, Martin

    2014-01-01

    Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  17. Ultrafast laser nanosurgery in microfluidics for genome-wide screenings

    PubMed Central

    Ben-Yakar, Adela; Bourgeois, Frederic

    2009-01-01

    Summary The use of ultrafast laser pulses in surgery has allowed for unprecedented precision with minimal collateral damage to surrounding tissues. For these reasons, ultrafast laser nanosurgery, as an injury model, has gained tremendous momentum in experimental biology ranging from in-vitro manipulations of subcellular structures to in-vivo studies in whole living organisms. For example, femtosecond laser nanosurgery on such model organism as the nematode Caenorhabditis elegans (C. elegans) has opened new opportunities for in-vivo nerve regeneration studies. Meanwhile, the development of novel microfluidic devices has brought the control in experimental environment to the level required for precise nanosurgery in various animal models. Merging microfluidics and laser nanosurgery has recently improved the specificities and increased the speed of laser surgeries enabling fast genome-wide screenings that can more readily decode the genetic map of various biological processes. PMID:19278850

  18. Genome-wide association studies in pharmacogenomics of antidepressants.

    PubMed

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  19. Discovering Genome-Wide Tag SNPs Based on the Mutual Information of the Variants

    PubMed Central

    Elmas, Abdulkadir; Ou Yang, Tai-Hsien; Wang, Xiaodong

    2016-01-01

    Exploring linkage disequilibrium (LD) patterns among the single nucleotide polymorphism (SNP) sites can improve the accuracy and cost-effectiveness of genomic association studies, whereby representative (tag) SNPs are identified to sufficiently represent the genomic diversity in populations. There has been considerable amount of effort in developing efficient algorithms to select tag SNPs from the growing large-scale data sets. Methods using the classical pairwise-LD and multi-locus LD measures have been proposed that aim to reduce the computational complexity and to increase the accuracy, respectively. The present work solves the tag SNP selection problem by efficiently balancing the computational complexity and accuracy, and improves the coverage in genomic diversity in a cost-effective manner. The employed algorithm makes use of mutual information to explore the multi-locus association between SNPs and can handle different data types and conditions. Experiments with benchmark HapMap data sets show comparable or better performance against the state-of-the-art algorithms. In particular, as a novel application, the genome-wide SNP tagging is performed in the 1000 Genomes Project data sets, and produced a well-annotated database of tagging variants that capture the common genotype diversity in 2,504 samples from 26 human populations. Compared to conventional methods, the algorithm requires as input only the genotype (or haplotype) sequences, can scale up to genome-wide analyses, and produces accurate solutions with more information-rich output, providing an improved platform for researchers towards the subsequent association studies. PMID:27992465

  20. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

    PubMed

    Skwark, Marcin J; Croucher, Nicholas J; Puranen, Santeri; Chewapreecha, Claire; Pesonen, Maiju; Xu, Ying Ying; Turner, Paul; Harris, Simon R; Beres, Stephen B; Musser, James M; Parkhill, Julian; Bentley, Stephen D; Aurell, Erik; Corander, Jukka

    2017-02-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  1. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

    PubMed Central

    Pesonen, Maiju; Musser, James M.; Bentley, Stephen D.; Aurell, Erik; Corander, Jukka

    2017-01-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  2. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  3. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    PubMed

    McKay, James D; Truong, Therese; Gaborieau, Valerie; Chabrier, Amelie; Chuang, Shu-Chun; Byrnes, Graham; Zaridze, David; Shangina, Oxana; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Holcatova, Ivana; Janout, Vladimir; Foretova, Lenka; Lagiou, Pagona; Trichopoulos, Dimitrios; Benhamou, Simone; Bouchardy, Christine; Ahrens, Wolfgang; Merletti, Franco; Richiardi, Lorenzo; Talamini, Renato; Barzan, Luigi; Kjaerheim, Kristina; Macfarlane, Gary J; Macfarlane, Tatiana V; Simonato, Lorenzo; Canova, Cristina; Agudo, Antonio; Castellsagué, Xavier; Lowry, Ray; Conway, David I; McKinney, Patricia A; Healy, Claire M; Toner, Mary E; Znaor, Ariana; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Neto, José Eluf; Garrote, Leticia Fernández; Boccia, Stefania; Cadoni, Gabriella; Arzani, Dario; Olshan, Andrew F; Weissler, Mark C; Funkhouser, William K; Luo, Jingchun; Lubiński, Jan; Trubicka, Joanna; Lener, Marcin; Oszutowska, Dorota; Schwartz, Stephen M; Chen, Chu; Fish, Sherianne; Doody, David R; Muscat, Joshua E; Lazarus, Philip; Gallagher, Carla J; Chang, Shen-Chih; Zhang, Zuo-Feng; Wei, Qingyi; Sturgis, Erich M; Wang, Li-E; Franceschi, Silvia; Herrero, Rolando; Kelsey, Karl T; McClean, Michael D; Marsit, Carmen J; Nelson, Heather H; Romkes, Marjorie; Buch, Shama; Nukui, Tomoko; Zhong, Shilong; Lacko, Martin; Manni, Johannes J; Peters, Wilbert H M; Hung, Rayjean J; McLaughlin, John; Vatten, Lars; Njølstad, Inger; Goodman, Gary E; Field, John K; Liloglou, Triantafillos; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; González, Carlos A; Quirós, J Ramón; Martínez, Carmen; Navarro, Carmen; Ardanaz, Eva; Larrañaga, Nerea; Khaw, Kay-Tee; Key, Timothy; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Trichopoulou, Antonia; Linseisen, Jakob; Boeing, Heiner; Hallmans, Göran; Overvad, Kim; Tjønneland, Anne; Kumle, Merethe; Riboli, Elio; Välk, Kristjan; Vooder, Tõnu; Voodern, Tõnu; Metspalu, Andres; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Blanché, Hélène; Gut, Ivo G; Galan, Pilar; Heath, Simon; Hashibe, Mia; Hayes, Richard B; Boffetta, Paolo; Lathrop, Mark; Brennan, Paul

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  4. A Genome-Wide Association Study of Upper Aerodigestive Tract Cancers Conducted within the INHANCE Consortium

    PubMed Central

    McKay, James D.; Truong, Therese; Gaborieau, Valerie; Chabrier, Amelie; Chuang, Shu-Chun; Byrnes, Graham; Zaridze, David; Shangina, Oxana; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Holcatova, Ivana; Janout, Vladimir; Foretova, Lenka; Lagiou, Pagona; Trichopoulos, Dimitrios; Benhamou, Simone; Bouchardy, Christine; Ahrens, Wolfgang; Merletti, Franco; Richiardi, Lorenzo; Talamini, Renato; Barzan, Luigi; Kjaerheim, Kristina; Macfarlane, Gary J.; Macfarlane, Tatiana V.; Simonato, Lorenzo; Canova, Cristina; Agudo, Antonio; Castellsagué, Xavier; Lowry, Ray; Conway, David I.; McKinney, Patricia A.; Healy, Claire M.; Toner, Mary E.; Znaor, Ariana; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Neto, José Eluf; Garrote, Leticia Fernández; Boccia, Stefania; Cadoni, Gabriella; Arzani, Dario; Olshan, Andrew F.; Weissler, Mark C.; Funkhouser, William K.; Luo, Jingchun; Lubiński, Jan; Trubicka, Joanna; Lener, Marcin; Oszutowska, Dorota; Schwartz, Stephen M.; Chen, Chu; Fish, Sherianne; Doody, David R.; Muscat, Joshua E.; Lazarus, Philip; Gallagher, Carla J.; Chang, Shen-Chih; Zhang, Zuo-Feng; Wei, Qingyi; Sturgis, Erich M.; Wang, Li-E; Franceschi, Silvia; Herrero, Rolando; Kelsey, Karl T.; McClean, Michael D.; Marsit, Carmen J.; Nelson, Heather H.; Romkes, Marjorie; Buch, Shama; Nukui, Tomoko; Zhong, Shilong; Lacko, Martin; Manni, Johannes J.; Peters, Wilbert H. M.; Hung, Rayjean J.; McLaughlin, John; Vatten, Lars; Njølstad, Inger; Goodman, Gary E.; Field, John K.; Liloglou, Triantafillos; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; González, Carlos A.; Quirós, J. Ramón; Martínez, Carmen; Navarro, Carmen; Ardanaz, Eva; Larrañaga, Nerea; Khaw, Kay-Tee; Key, Timothy; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulou, Antonia; Linseisen, Jakob; Boeing, Heiner; Hallmans, Göran; Overvad, Kim; Tjønneland, Anne; Kumle, Merethe; Riboli, Elio; Välk, Kristjan; Voodern, Tõnu; Metspalu, Andres; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Blanché, Hélène; Gut, Ivo G.; Galan, Pilar; Heath, Simon; Hashibe, Mia; Hayes, Richard B.; Boffetta, Paolo; Lathrop, Mark; Brennan, Paul

    2011-01-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility. PMID:21437268

  5. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Slof-Op t Landt, Margarita CT; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O’Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2013-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10−7) in SOX2OT and rs17030795 (P=5.84×10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10−6) between CUL3 and FAM124B and rs1886797 (P=8.05×10−6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P= 4×10−6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:21079607

  6. A genome-wide association study of anorexia nervosa.

    PubMed

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  7. Genome-Wide Association Studies for Comb Traits in Chickens

    PubMed Central

    Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  8. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  9. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  10. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  11. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  12. Genome-wide association study of atypical psychosis.

    PubMed

    Kanazawa, Tetsufumi; Ikeda, Masashi; Glatt, Stephen J; Tsutsumi, Atsushi; Kikuyama, Hiroki; Kawamura, Yoshiya; Nishida, Nao; Miyagawa, Taku; Hashimoto, Ryota; Takeda, Masatoshi; Sasaki, Tsukasa; Tokunaga, Katsushi; Koh, Jun; Iwata, Nakao; Yoneda, Hiroshi

    2013-10-01

    Atypical psychosis with a periodic course of exacerbation and features of major psychiatric disorders [schizophrenia (SZ) and bipolar disorder (BD)] has a long history in clinical psychiatry in Japan. Based upon the new criteria of atypical psychosis, a Genome-Wide Association Study (GWAS) was conducted to identify the risk gene or variants. The relationships between atypical psychosis, SZ and BD were then assessed using independent GWAS data. Forty-seven patients with solid criteria of atypical psychosis and 882 normal controls (NCs) were scanned using an Affymetrics 6.0 chip. GWAS SZ data (560 SZ cases and 548 NCs) and GWAS BD (107 cases with BD type 1 and 107 NCs) were compared using gene-based analysis. The most significant SNPs were detected around the CHN2/CPVL genes (rs245914, P = 1.6 × 10(-7)) , COL21A1 gene (rs12196860, P = 2.45 × 10(-7) ), and PYGL/TRIM9 genes (rs1959536, P = 7.73 × 10(-7) ), although none of the single-nucleotide polymorphisms exhibited genome-wide significance (P = 5 × 10(-8) ). One of the highest peaks was detected on the major histocompatibility complex region, where large SZ GWASs have previously disclosed an association. The gene-based analysis suggested significant enrichment between SZ and atypical psychosis (P = 0.01), but not BD. This study provides clues about the types of patient whose diagnosis lies between SZ and BD. Studies with larger samples are required to determine the causal variant.

  13. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  14. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea.

    PubMed

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-01-01

    The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93-96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13-89%)/functional allelic diversity (18-77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54-0.68) and extended LD decay (400-500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating

  15. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study

    PubMed Central

    2012-01-01

    Summary Background Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. Methods We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11 009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42 938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. Findings We identified five genome-wide significant loci (binomial test p≤5·0×10−8) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08–1·16]; p=7·24×10−11), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight—a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Interpretation Our findings provide insight into the genetics of arthritis and identify new

  16. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  17. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)

    PubMed Central

    MacArthur, Jacqueline; Bowler, Emily; Cerezo, Maria; Gil, Laurent; Hall, Peggy; Hastings, Emma; Junkins, Heather; McMahon, Aoife; Milano, Annalisa; Morales, Joannella; Pendlington, Zoe May; Welter, Danielle; Burdett, Tony; Hindorff, Lucia; Flicek, Paul; Cunningham, Fiona; Parkinson, Helen

    2017-01-01

    The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future. PMID:27899670

  18. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  19. Meta-analysis for genome-wide association studies using case-control design: application and practice

    PubMed Central

    2016-01-01

    This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate related factors of heterogeneities. PMID:28092928

  20. Meta-analysis for genome-wide association studies using case-control design: application and practice.

    PubMed

    Shim, Sungryul; Kim, Jiyoung; Jung, Wonguen; Shin, In-Soo; Bae, Jong-Myon

    2016-01-01

    This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy-Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The 'genhwcci' and 'metan' commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the 'metareg' command of STATA should be conducted to evaluate related factors of heterogeneities.

  1. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  2. Genome-wide association study of circulating retinol levels.

    PubMed

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  3. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  4. Identification of differential translation in genome wide studies.

    PubMed

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  5. Genome-Wide Analysis of Human Metapneumovirus Evolution.

    PubMed

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

  6. Genome-wide DNA methylation profile in mungbean

    PubMed Central

    Kang, Yang Jae; Bae, Ahra; Shim, Sangrea; Lee, Taeyoung; Lee, Jayern; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2017-01-01

    DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding. PMID:28084412

  7. A synergistic DNA logic predicts genome-wide chromatin accessibility

    PubMed Central

    Hashimoto, Tatsunori; Sherwood, Richard I.; Kang, Daniel D.; Rajagopal, Nisha; Barkal, Amira A.; Zeng, Haoyang; Emons, Bart J.M.; Srinivasan, Sharanya; Jaakkola, Tommi; Gifford, David K.

    2016-01-01

    Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types. PMID:27456004

  8. Genome-Wide Identification of KANADI1 Target Genes

    PubMed Central

    Ott, Felix; Weigel, Detlef; Bowman, John L.; Heisler, Marcus G.; Wenkel, Stephan

    2013-01-01

    Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown. PMID:24155946

  9. Genome-wide Association Studies for Osteoporosis: A 2013 Update

    PubMed Central

    Liu, Yong-Jun; Zhang, Lei; Papasian, Christopher J.

    2014-01-01

    In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies. PMID:25006567

  10. A genome wide dosage suppressor network reveals genomic robustness

    PubMed Central

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  11. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    PubMed Central

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on IR and on LCR, respectively. A statistical-physical relationship between IR and LCR was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  12. Genome-wide profiling of forum domains in Drosophila melanogaster

    PubMed Central

    Tchurikov, Nickolai A.; Kretova, Olga V.; Sosin, Dmitri V.; Zykov, Ivan A.; Zhimulev, Igor F.; Kravatsky, Yuri V.

    2011-01-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin. PMID:21247882

  13. Genome-wide significant risk associations for mucinous ovarian carcinoma

    PubMed Central

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  14. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  15. Genome-wide association study of aggressive behaviour in chicken

    PubMed Central

    Li, Zhenhui; Zheng, Ming; Abdalla, Bahareldin Ali; Zhang, Zhe; Xu, Zhenqiang; Ye, Qiao; Xu, Haiping; Luo, Wei; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine. After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1, DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that SORCS2 might play an important role in chicken aggressive behaviour through the regulation of dopaminergic pathways and NGF. PMID:27485826

  16. Genome-Wide Association Mapping for Phenotypic Plasticity in Rice.

    PubMed

    Kikuchi, Shinji; Bheemanahalli, Raju; Jagadish, Krishna S V; Kumagai, Etsushi; Masuya, Yusuke; Kuroda, Eiki; Raghavan, Chitra; Dingkuhn, Michael; Abe, Akira; Shimono, Hiroyuki

    2017-03-31

    Phenotypic plasticity of plants in response to environmental changes is important for adapting to changing climate. Less attention has been paid to exploring the advantages of phenotypic plasticity in resource-rich environments to enhance the productivity of agricultural crops. Here, we examined genetic variation in phenotypic plasticity in indica rice (Oryza sativa L.) across two diverse panels: (i) a Phenomics of Rice Adaptation and Yield (PRAY) population comprising 301 accessions and (ii) a Multi-parent-Advanced-Generation-Inter-Cross (MAGIC) indica population comprising 151 accessions. Altered planting density was used as a proxy for elevated atmospheric CO2 response. Low planting density significantly increased panicle weight per plant compared with normal density, and the magnitude of the increase ranged from 1.10 to 2.78 times among accessions for the PRAY population and from 1.05 to 2.45 times for the MAGIC population. Genome-wide-association studies revealed three Environmental Responsiveness (ER) candidate alleles (qER1-3) that were associated with relative response of panicle weight to low density. Two of these alleles were tested in 13 genotypes to clarify their biomass responses during vegetative growth under elevated CO2 in Japan. Our study provides evidence for polymorphisms that control rice phenotypic plasticity in environments that are rich in resources such as light and CO2 .

  17. A genome-wide association study in multiple system atrophy

    PubMed Central

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  18. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  19. Genome-wide profiling of forum domains in Drosophila melanogaster.

    PubMed

    Tchurikov, Nickolai A; Kretova, Olga V; Sosin, Dmitri V; Zykov, Ivan A; Zhimulev, Igor F; Kravatsky, Yuri V

    2011-05-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50-200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.

  20. Genome-Wide Analysis of DNA Methylation in Human Amnion

    PubMed Central

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  1. Search for linkage to schizophrenia on the X and Y chromosomes

    SciTech Connect

    Devoto, M.; Ott, J.; Vita, A.

    1994-06-15

    Markers for X chromosome loci were used in linkage studies of a large group of small families (n = 126) with at least two schizophrenic members in one sibship. Based on the hypothesis that a gene for schizophrenia could be X-Y linked, with homologous loci on both X and Y, our analyses included all families regardless of the pattern of familial inheritance. Lod scores were computed with both standard X-linked and a novel X-Y model, and sib-pair analyses were performed for all markers examining the sharing of maternal alleles. Small positive lod scores were obtained for loci pericentromeric, from Xp11.4 to Xq12. Lod scores were also computed separately in families selected for evidence of maternal inheritance and absence of male to male transmission of psychosis. The lod scores for linkage to the locus DXS7 reached a maximum of 1.83 at 0.08% recombination, assuming dominant inheritance on the X chromosome in these families (n = 34). Further investigation of the X-Y homologous gene hypothesis focussing on this region is warranted. 39 refs. 1 fig., 6 tabs.

  2. Family-based designs for genome-wide association studies.

    PubMed

    Ott, Jurg; Kamatani, Yoichiro; Lathrop, Mark

    2011-06-01

    Association mapping has successfully identified common SNPs associated with many diseases. However, the inability of this class of variation to account for most of the supposed heritability has led to a renewed interest in methods - primarily linkage analysis - to detect rare variants. Family designs allow for control of population stratification, investigations of questions such as parent-of-origin effects and other applications that are imperfectly or not readily addressed in case-control association studies. This article guides readers through the interface between linkage and association analysis, reviews the new methodologies and provides useful guidelines for applications. Just as effective SNP-genotyping tools helped to realize the potential of association studies, next-generation sequencing tools will benefit genetic studies by improving the power of family-based approaches.

  3. Scalable privacy-preserving data sharing methodology for genome-wide association studies.

    PubMed

    Yu, Fei; Fienberg, Stephen E; Slavković, Aleksandra B; Uhler, Caroline

    2014-08-01

    The protection of privacy of individual-level information in genome-wide association study (GWAS) databases has been a major concern of researchers following the publication of "an attack" on GWAS data by Homer et al. (2008). Traditional statistical methods for confidentiality and privacy protection of statistical databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach that provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new methods to release aggregate GWAS data without compromising an individual's privacy. We extend the methods developed in Uhler et al. (2013) for releasing differentially-private χ(2)-statistics by allowing for arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We also provide a new interpretation by assuming the controls' data are known, which is a realistic assumption because some GWAS use publicly available data as controls. We assess the performance of the proposed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private release mechanism proposed by Johnson and Shmatikov (2013).

  4. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  5. A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish

    PubMed Central

    Geng, Xin; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Chao; Wang, Ruijia; Sha, Jin; Zeng, Peng; Zhi, Degui; Liu, Zhanjiang

    2016-01-01

    Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies. PMID:27558670

  6. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.

  7. GWAPP: a web application for genome-wide association mapping in Arabidopsis.

    PubMed

    Seren, Ümit; Vilhjálmsson, Bjarni J; Horton, Matthew W; Meng, Dazhe; Forai, Petar; Huang, Yu S; Long, Quan; Segura, Vincent; Nordborg, Magnus

    2012-12-01

    Arabidopsis thaliana is an important model organism for understanding the genetics and molecular biology of plants. Its highly selfing nature, small size, short generation time, small genome size, and wide geographic distribution make it an ideal model organism for understanding natural variation. Genome-wide association studies (GWAS) have proven a useful technique for identifying genetic loci responsible for natural variation in A. thaliana. Previously genotyped accessions (natural inbred lines) can be grown in replicate under different conditions and phenotyped for different traits. These important features greatly simplify association mapping of traits and allow for systematic dissection of the genetics of natural variation by the entire A. thaliana community. To facilitate this, we present GWAPP, an interactive Web-based application for conducting GWAS in A. thaliana. Using an efficient implementation of a linear mixed model, traits measured for a subset of 1386 publicly available ecotypes can be uploaded and mapped with a mixed model and other methods in just a couple of minutes. GWAPP features an extensive, interactive, and user-friendly interface that includes interactive Manhattan plots and linkage disequilibrium plots. It also facilitates exploratory data analysis by implementing features such as the inclusion of candidate polymorphisms in the model as cofactors.

  8. A Fast Implementation of a Scan Statistic for Identifying Chromosomal Patterns of Genome Wide Association Studies.

    PubMed

    Sun, Yan V; Jacobsen, Douglas M; Turner, Stephen T; Boerwinkle, Eric; Kardia, Sharon L R

    2009-03-15

    In order to take into account the complex genomic distribution of SNP variations when identifying chromosomal regions with significant SNP effects, a single nucleotide polymorphism (SNP) association scan statistic was developed. To address the computational needs of genome wide association (GWA) studies, a fast Java application, which combines single-locus SNP tests and a scan statistic for identifying chromosomal regions with significant clusters of significant SNP effects, was developed and implemented. To illustrate this application, SNP associations were analyzed in a pharmacogenomic study of the blood pressure lowering effect of thiazide-diuretics (N=195) using the Affymetrix Human Mapping 100K Set. 55,335 tagSNPs (pair-wise linkage disequilibrium R(2)<0.5) were selected to reduce the frequency correlation between SNPs. A typical workstation can complete the whole genome scan including 10,000 permutation tests within 3 hours. The most significant regions locate on chromosome 3, 6, 13 and 16, two of which contain candidate genes that may be involved in the underlying drug response mechanism. The computational performance of ChromoScan-GWA and its scalability were tested with up to 1,000,000 SNPs and up to 4,000 subjects. Using 10,000 permutations, the computation time grew linearly in these datasets. This scan statistic application provides a robust statistical and computational foundation for identifying genomic regions associated with disease and provides a method to compare GWA results even across different platforms.

  9. Extensive genome-wide autozygosity in the population isolates of Daghestan

    PubMed Central

    Karafet, Tatiana M; Bulayeva, Kazima B; Bulayev, Oleg A; Gurgenova, Farida; Omarova, Jamilia; Yepiskoposyan, Levon; Savina, Olga V; Veeramah, Krishna R; Hammer, Michael F

    2015-01-01

    Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases. PMID:25604856

  10. Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Alaparthi, Suresh B.; Almeida, Aldo; Davenport, Brittany; Nadimi, Marjan; Davidson, Joshua; Tonapi, Krittika; Yadav, Lav; Malkaram, Sridhar; Vajja, Gopinath; Hankins, Gerald; Harris, Robert; Park, Minkyu; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes. PMID:27901114

  11. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution

    PubMed Central

    Liu, Chang; Wang, Congmao; Wang, George; Becker, Claude; Zaidem, Maricris; Weigel, Detlef

    2016-01-01

    The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5′ and 3′ ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5′ and 3′ ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies. PMID:27225844

  12. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians

    PubMed Central

    2012-01-01

    Background There is reason to expect strong genetic influences on the risk of developing active pulmonary tuberculosis (TB) among latently infected individuals. Many of the genome wide linkage and association studies (GWAS) to date have been conducted on African populations. In order to identify additional targets in genetically dissimilar populations, and to enhance our understanding of this disease, we performed a multi-stage GWAS in a Southeast Asian cohort from Indonesia. Methods In stage 1, we used the Affymetrix 100 K SNP GeneChip marker set to genotype 259 Indonesian samples. After quality control filtering, 108 cases and 115 controls were analyzed for association of 95,207 SNPs. In stage 2, we attempted validation of 2,453 SNPs with promising associations from the first stage, in 1,189 individuals from the same Indonesian cohort, and finally in stage 3 we selected 251 SNPs from this stage to test TB association in an independent Caucasian cohort (n = 3,760) from Russia. Results Our study suggests evidence of association (P = 0.0004-0.0067) for 8 independent loci (nominal significance P < 0.05), which are located within or near the following genes involved in immune signaling: JAG1, DYNLRB2, EBF1, TMEFF2, CCL17, HAUS6, PENK and TXNDC4. Conclusions Mechanisms of immune defense suggested by some of the identified genes exhibit biological plausibility and may suggest novel pathways involved in the host containment of infection with TB. PMID:22239941

  13. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii.

    PubMed

    Jang, Hyosik; Ehrenreich, Ian M

    2012-01-01

    Chlamydomonas reinhardtii is a model system for studying cilia, photosynthesis, and other core features of eukaryotes, and is also an emerging source of biofuels. Despite its importance to basic and applied biological research, the level and pattern of genetic variation in this haploid green alga has yet to be characterized on a genome-wide scale. To improve understanding of C. reinhardtii's genetic variability, we generated low coverage whole genome resequencing data for nearly all of the available isolates of this species, which were sampled from a number of sites in North America over the past ∼70 years. Based on the analysis of more than 62,000 single nucleotide polymorphisms, we identified two groups of isolates that represent geographical subpopulations of the species. We also found that measurements of genetic diversity were highly variable throughout the genome, in part due to technical factors. We studied the level and pattern of linkage disequilibrium (LD), and observed one chromosome that exhibits elevated LD. Furthermore, we detected widespread evidence of recombination across the genome, which implies that outcrossing occurs in natural populations of this species. In summary, our study provides multiple insights into the sequence diversity of C. reinhardtii that will be useful to future studies of natural genetic variation in this organism.

  14. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit.

    PubMed

    Pantalião, Gabriel Feresin; Narciso, Marcelo; Guimarães, Cléber; Castro, Adriano; Colombari, José Manoel; Breseghello, Flavio; Rodrigues, Luana; Vianello, Rosana Pereira; Borba, Tereza Oliveira; Brondani, Claudio

    2016-12-01

    The identification of rice drought tolerant materials is crucial for the development of best performing cultivars for the upland cultivation system. This study aimed to identify markers and candidate genes associated with drought tolerance by Genome Wide Association Study analysis, in order to develop tools for use in rice breeding programs. This analysis was made with 175 upland rice accessions (Oryza sativa), evaluated in experiments with and without water restriction, and 150,325 SNPs. Thirteen SNP markers associated with yield under drought conditions were identified. Through stepwise regression analysis, eight SNP markers were selected and validated in silico, and when tested by PCR, two out of the eight SNP markers were able to identify a group of rice genotypes with higher productivity under drought. These results are encouraging for deriving markers for the routine analysis of marker assisted selection. From the drought experiment, including the genes inherited in linkage blocks, 50 genes were identified, from which 30 were annotated, and 10 were previously related to drought and/or abiotic stress tolerance, such as the transcription factors WRKY and Apetala2, and protein kinases.

  15. Genome-wide analysis in endangered populations: a case study in Barbaresca sheep.

    PubMed

    Mastrangelo, S; Portolano, B; Di Gerlando, R; Ciampolini, R; Tolone, M; Sardina, M T

    2017-01-12

    Analysis of genomic data is becoming increasingly common in the livestock industry and the findings have been an invaluable resource for effective management of breeding programs in small and endangered populations. In this paper, with the goal of highlighting the potential of genomic analysis for small and endangered populations, genome-wide levels of linkage disequilibrium, measured as the squared correlation coefficient of allele frequencies at a pair of loci, effective population size, runs of homozygosity (ROH) and genetic diversity parameters, were estimated in Barbaresca sheep using Illumina OvineSNP50K array data. Moreover, the breed's genetic structure and its relationship with other breeds were investigated. Levels of pairwise linkage disequilibrium decreased with increasing distance between single nucleotide polymorphisms. An average correlation coefficient <0.25 was found for markers located up to 50 kb apart. Therefore, these results support the need to use denser single nucleotide polymorphism panels for high power association mapping and genomic selection efficiency in future breeding programs. The estimate of past effective population size ranged from 747 animals 250 generations ago to 28 animals five generations ago, whereas the contemporary effective population size was 25 animals. A total of 637 ROH were identified, most of which were short (67%) and ranged from 1 to 10 Mb. The genetic analyses revealed that the Barbaresca breed tended to display lower variability than other Sicilian breeds. Recent inbreeding was evident, according to the ROH analysis. All the investigated parameters showed a comparatively narrow genetic base and indicated an endangered status for Barbaresca. Multidimensional scaling, model-based clustering, measurement of population differentiation, neighbor networks and haplotype sharing distinguished Barbaresca from other breeds, showed a low level of admixture with the other breeds considered in this study, and indicated

  16. A genome-wide association study of heat stress-associated SNPs in catfish.

    PubMed

    Jin, Y; Zhou, T; Geng, X; Liu, S; Chen, A; Yao, J; Jiang, C; Tan, S; Su, B; Liu, Z

    2017-04-01

    Heat tolerance is a complex and economically important trait for catfish genetic breeding programs. With global climate change, it is becoming an increasingly important trait. To better understand the molecular basis of heat stress, a genome-wide association study (GWAS) was carried out using the 250 K catfish SNP array with interspecific backcross progenies, which derived from crossing female channel catfish with male F1 hybrid catfish (female channel catfish × male blue catfish). Three significant associated SNPs were detected by performing an EMMAX approach for GWAS. The SNP located on linkage group 14 explained 12.1% of phenotypical variation. The other two SNPs, located on linkage group 16, explained 11.3 and 11.5% of phenotypical variation respectively. A total of 14 genes with heat stress related functions were detected within the significant associated regions. Among them, five genes-TRAF2, FBXW5, ANAPC2, UBR1 and KLHL29- have known functions in the protein degradation process through the ubiquitination pathway. Other genes related to heat stress include genes involved in protein biosynthesis (PRPF4 and SYNCRIP), protein folding (DNAJC25), molecule and iron transport (SLC25A46 and CLIC5), cytoskeletal reorganization (COL12A1) and energy metabolism (COX7A2, PLCB1 and PLCB4) processes. The results provide fundamental information about genes and pathways that is useful for further investigation into the molecular mechanisms of heat stress. The associated SNPs could be promising candidates for selecting heat-tolerant catfish lines after validating their effects on larger and various catfish populations.

  17. A genome-wide association study of brain lesion distribution in multiple sclerosis.

    PubMed

    Gourraud, Pierre-Antoine; Sdika, Michael; Khankhanian, Pouya; Henry, Roland G; Beheshtian, Azadeh; Matthews, Paul M; Hauser, Stephen L; Oksenberg, Jorge R; Pelletier, Daniel; Baranzini, Sergio E

    2013-04-01

    Brain magnetic resonance imaging is widely used as a diagnostic and monitoring tool in multiple sclerosis and provides a non-invasive, sensitive and reproducible way to track the disease. Topological characteristics relating to the distribution and shape of lesions are recognized as important neuroradiological markers in the diagnosis of multiple sclerosis, although these have been much less well characterized quantitatively than have traditional measures such as T2 hyperintense or T1 hypointense lesion volumes. Here, we used voxel-level 3 T magnetic resonance imaging T1-weighted scans to reconstruct the 3D topology of lesions in 284 subjects with multiple sclerosis and tested whether this is a heritable phenotype. To this end, we extracted the genotypes from a published genome-wide association study on these same individuals and searched for genetic associations with lesion load, shape and topological distribution. Lesion probability maps were created to identify frequently affected areas and to assess the overall distribution of T1 lesions in the subject population as a whole. We then developed an original algorithm to cluster adjacent lesional voxels (cluxels) in each subject and tested whether cluxel topology was significantly associated with any single-nucleotide polymorphism in our data set. To focus on patterns of lesion distribution, we computed the first 10 principal components. Although principal component 1 correlated with lesion load, none of the remaining orthogonal components correlated with any other known variable. We then conducted genome-wide association studies on each of these and found 31 significant associations (false discovery rate <0.01) with principal component 8, which represents a mode of variation of lesion topology in the population. The majority of the loci can be linked to genes related to immune cell function and to myelin and neural growth; some (SYK, MYT1L, TRAPPC9, SLITKR6 and RIC3) have been previously associated with the

  18. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    PubMed

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient.

  19. Multicentric Genome-Wide Association Study for Primary Spontaneous Pneumothorax

    PubMed Central

    Abrantes, Patrícia; Francisco, Vânia; Teixeira, Gilberto; Monteiro, Marta; Neves, João; Norte, Ana; Robalo Cordeiro, Carlos; Moura e Sá, João; Reis, Ernestina; Santos, Patrícia; Oliveira, Manuela; Sousa, Susana; Fradinho, Marta; Malheiro, Filipa; Negrão, Luís

    2016-01-01

    Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08–2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29–2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis. PMID:27203581

  20. Genome-wide methylation analyses in glioblastoma multiforme.

    PubMed

    Lai, Rose K; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  1. Genome-wide characteristics of de novo mutations in autism

    PubMed Central

    Yuen, Ryan K C; Merico, Daniele; Cao, Hongzhi; Pellecchia, Giovanna; Alipanahi, Babak; Thiruvahindrapuram, Bhooma; Tong, Xin; Sun, Yuhui; Cao, Dandan; Zhang, Tao; Wu, Xueli; Jin, Xin; Zhou, Ze; Liu, Xiaomin; Nalpathamkalam, Thomas; Walker, Susan; Howe, Jennifer L.; Wang, Zhuozhi; MacDonald, Jeffrey R.; Chan, Ada; D’Abate, Lia; Deneault, Eric; Siu, Michelle T.; Tammimies, Kristiina; Uddin, Mohammed; Zarrei, Mehdi; Wang, Mingbang; Li, Yingrui; Wang, Jun; Wang, Jian; Yang, Huanming; Bookman, Matt; Bingham, Jonathan; Gross, Samuel S.; Loy, Dion; Pletcher, Mathew; Marshall, Christian R.; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Weksberg, Rosanna; Fernandez, Bridget A; Roberts, Wendy; Szatmari, Peter; Glazer, David; Frey, Brendan J.; Ring, Robert H.; Xu, Xun; Scherer, Stephen W.

    2016-01-01

    De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10−10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10−13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10−24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10−9; OR=1.84), of which 15.6% (p=4.3×10−3) and 22.5% (p=7.0×10−5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD. PMID:27525107

  2. Genome-Wide Association Studies of Multiple Keratinocyte Cancers

    PubMed Central

    Verkouteren, Joris A. C.; Hofman, Albert; Uitterlinden, André G.; Kraft, Peter; Turman, Constance; Han, Jiali; Cho, Eunyoung; Murabito, Joanne M.; Levy, Daniel; Qureshi, Abrar A.; Nijsten, Tamar

    2017-01-01

    There is strong evidence for a role of environmental risk factors involved in susceptibility to develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in mKCs susceptibility has not been thoroughly investigated. We investigated whether single nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC (sKCs; controls) from Harvard cohorts (the Nurses' Health Study [NHS], NHS II, and the Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical associations (p-value≤ 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-value ≤5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In stage-2, none of these SNPs replicated and only two of them were associated with mKCs in the same direction in the combined meta-analysis. We tested the associations for 19 previously reported basal cell carcinoma-related SNPs (candidate gene association analysis), and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not replicated, we found that previously identified BCC variants may also be associated with mKC, which the most significant association (rs1805007) located at the MC1R gene. PMID:28081215

  3. Genome-wide association study of sleep in Drosophila melanogaster

    PubMed Central

    2013-01-01

    Background Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. Results We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. Conclusions We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes. PMID:23617951

  4. Genome-wide SNP typing reveals signatures of population history.

    PubMed

    Hughes, Austin L; Welch, Robert; Puri, Vinita; Matthews, Casey; Haque, Kashif; Chanock, Stephen J; Yeager, Meredith

    2008-07-01

    Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.

  5. Assessing statistical significance in multivariable genome wide association analysis

    PubMed Central

    Buzdugan, Laura; Kalisch, Markus; Navarro, Arcadi; Schunk, Daniel; Fehr, Ernst; Bühlmann, Peter

    2016-01-01

    Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear model, and we show its use for extremely high-dimensional datasets. Our method yields P-values for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any additional information about the phenotype beyond that available by all the other SNPs. This rules out spurious correlations between phenotypes and SNPs that can arise from marginal methods because the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In addition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly contain informative signals about the phenotype. We demonstrate the value of our method by applying it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We show, in particular, that our method is also capable of finding significant SNPs that were not identified in the original WTCCC study, but were replicated in other independent studies. Availability and implementation: Reproducibility of our research is supported by the open-source Bioconductor package hierGWAS. Contact: peter.buehlmann@stat.math.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153677

  6. Technical note: Computing strategies in genome-wide selection.

    PubMed

    Legarra, A; Misztal, I

    2008-01-01

    Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.

  7. Genome-wide analysis highlights genetic dilution in Algerian sheep.

    PubMed

    Gaouar, S B S; Lafri, M; Djaout, A; El-Bouyahiaoui, R; Bouri, A; Bouchatal, A; Maftah, A; Ciani, E; Da Silva, A B

    2017-03-01

    Algeria represents a reservoir of genetic diversity with local sheep breeds adapted to a large range of environments and showing specific features necessary to deal with harsh conditions. This remarkable diversity results from the traditional management of dryland by pastoralists over centuries. Most of these breeds are poorly productive, and the economic pressure leads farmers to realize anarchic cross-breeding (that is, not carried out in the framework of selection plans) with the hope to increase animal's conformation. In this study, eight of the nine local Algerian sheep breeds (D'men, Hamra, Ouled-Djellal, Rembi, Sidaoun, Tazegzawt, Berber and Barbarine) were investigated for the first time by genome-wide single-nucleotide polymorphism genotyping. At an international scale, Algerian sheep occupied an original position shaped by relations with African and European (particularly Italian) breeds. The strong genetic proximity with Caribbean and Brazilian breeds confirmed that the genetic make-up of these American breeds was largely influenced by the Atlantic slave trade. At a national scale, an alarming genetic dilution of the Berber (a primitive breed) and the Rembi was observed, as a consequence of uncontrolled mating practices with Ouled-Djellal. A similar, though less pronounced, phenomenon was also detected for the Barbarine, another ancestral breed. Genetic originality appeared to be better preserved in Tazegzawt, Hamra, D'men and Sidaoun. These breeds should be given high priority in the establishment of conservation plans to halt their progressive loss. For Berber and Barbarine that also occur in the bordering neighbor countries, urgent concerted transnational actions are needed.

  8. Genome-wide analysis of condensin binding in Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II. PMID:24125077

  9. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  10. A genome-wide DNA methylation study in azoospermia.

    PubMed

    Ferfouri, F; Boitrelle, F; Ghout, I; Albert, M; Molina Gomes, D; Wainer, R; Bailly, M; Selva, J; Vialard, F

    2013-11-01

    The objective of this study was to assess genome-wide DNA methylation in testicular tissue from azoospermic patients. A total of 94 azoospermic patients were recruited and classified into three groups: 29 patients presented obstructive azoospermia (OA), 26 displayed non-obstructive azoospermia (NOA) and successful retrieval of spermatozoa by testicular sperm extraction (TESE+) and 39 displayed NOA and failure to retrieve spermatozoa by TESE (TESE-). An Illumina Infinium Human Methylation27 BeadChip DNA methylation array was used to establish a testicular DNA methylation pattern for each type of azoospermic patient. The OA and NOA groups were compared in terms of the relative M-value (the log2 ratio between methylated and non-methylated probe intensities) for each CpG site. We observed significantly different DNA methylation profiles for the NOA and OA groups, with differences at over 9000 of the 27 578 CpG sites; 212 CpG sites had a relative M-value >3. The results highlighted 14 testis-specific genes. Patient clustering with respect to these 212 CpG sites corresponded closely to the clinical classification. The DNA methylation patterns showed that in the NOA group, 78 of the 212 CpG sites were hypomethylated and 134 were hypermethylated (relative to the OA group). On the basis of these DNA methylation profiles, azoospermic patients could be classified as OA or NOA by considering the 212 CpG sites with the greatest methylation differences. Furthermore, we identified genes that may provide insight into the mechanism of idiopathic NOA.

  11. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  12. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases.

    PubMed

    Liu, Yang; Xu, Haiming; Chen, Suchao; Chen, Xianfeng; Zhang, Zhenguo; Zhu, Zhihong; Qin, Xueying; Hu, Landian; Zhu, Jun; Zhao, Guo-Ping; Kong, Xiangyin

    2011-03-01

    Genome-wide interaction-based association (GWIBA) analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS). However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named "pair-wise interaction-based association mapping" (PIAM) for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohn's disease, with a Bonferroni corrected P < 0.05 (P = 0.039). This interaction was replicated with a pair of proxy linked loci (P = 0.013) on an independent dataset. Five other interactions had corrected P < 0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09 × 10⁻⁷). Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P < 0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future.

  13. Genome-wide association study identifies genetic determinants of urine PCA3 levels in men.

    PubMed

    Chen, Zhuo; Sun, Jielin; Kim, Seong-Tae; Groskopf, Jack; Feng, Junjie; Isaacs, William B; Rittmaster, Roger S; Condreay, Lynn D; Zheng, Siqun Lilly; Xu, Jianfeng

    2013-04-01

    Prostate cancer gene 3 (PCA3) is a non-coding gene specifically overexpressed in prostate cancer (PCa) that has great potential as a clinical biomarker for predicting prostate biopsy outcome. However, genetic determinants of PCA3 expression level remain unknown. To investigate the association between genetic variants and PCA3 mRNA level, a genome-wide association study was conducted in 1371 men of European descent in the REduction by DUtasteride of prostate Cancer Events trial. First-voided urine specimens containing prostate cells were obtained after digital rectal examination. The PROGENSA PCA3 assay was used to determine PCA3 score in the urinary samples. A linear regression model was used to detect the associations between (single nucleotide polymorphisms) SNPs and PCA3 score under an additive genetic model, adjusting for age and population stratification. Two SNPs, rs10993994 in β-microseminoprotein at 10q11.23 and rs10424878 in kallikrein-related peptidase 2 at 19q13.33, were associated with PCA3 score at genome-wide significance level (P = 1.22 x 10(-9) and 1.06 x 10(-8), respectively). Men carrying the rs10993994 "T" allele or rs10424878 "A" allele had higher PCA3 score compared with men carrying rs10993994 "C" allele or rs10424878 "G" allele (β = 1.25 and 1.24, respectively). This is the first comprehensive search for genetic determinants of PCA3 score. The novel loci identified may provide insight into the molecular mechanisms of PCA3 expression as a potential marker of PCa.

  14. Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles

    PubMed Central

    2015-01-01

    Background Despite the large increase of transcriptomic studies that look for gene signatures on diseases, there is still a need for integrative approaches that obtain separation of multiple pathological states providing robust selection of gene markers for each disease subtype and information about the possible links or relations between those genes. Results We present a network-oriented and data-driven bioinformatic approach that searches for association of genes and diseases based on the analysis of genome-wide expression data derived from microarrays or RNA-Seq studies. The approach aims to (i) identify gene sets associated to different pathological states analysed together; (ii) identify a minimum subset within these genes that unequivocally differentiates and classifies the compared disease subtypes; (iii) provide a measurement of the discriminant power of these genes and (iv) identify links between the genes that characterise each of the disease subtypes. This bioinformatic approach is implemented in an R package, named geNetClassifier, available as an open access tool in Bioconductor. To illustrate the performance of the tool, we applied it to two independent datasets: 250 samples from patients with four major leukemia subtypes analysed using expression arrays; another leukemia dataset analysed with RNA-Seq that includes a subtype also present in the previous set. The results show the selection of key deregulated genes recently reported in the literature and assigned to the leukemia subtypes studied. We also show, using these independent datasets, the selection of similar genes in a network built for the same disease subtype. Conclusions The construction of gene networks related to specific disease subtypes that include parameters such as gene-to-gene association, gene disease specificity and gene discriminant power can be very useful to draw gene-disease maps and to unravel the molecular features that characterize specific pathological states. The

  15. Genome-Wide Signatures of ‘Rearrangement Hotspots’ within Segmental Duplications in Humans

    PubMed Central

    Uddin, Mohammed; Sturge, Mitch; Peddle, Lynette; O'Rielly, Darren D.; Rahman, Proton

    2011-01-01

    The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp) of ‘rearrangement hotspots’ which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a ‘seed and extend’ approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage), including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs). These regions are correlated with increased non-allelic homologous recombination (NAHR) event frequency which presumably represents the origin of copy number variations (CNVs) and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of ‘rearrangement hotspots’, which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s) for development of constitutional and acquired diseases. PMID:22194928

  16. Phenotype prediction based on genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes. Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA. Results We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data. We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case–control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case–control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii

  17. A Genome-wide Pleiotropy Scan for Prostate Cancer Risk

    PubMed Central

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I.; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R.; Siddiq, Afshan; Papatheodorou, Stefania I.; Stanford, Janet L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J.; Diver, W. Ryan; Gapstur, Susan M.; Stevens, Victoria L.; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Gurrea, Aurelio Barricarte; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J. Michael; Hunter, DavidJ.; Koutros, Stella; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Wacholder, Sholom; Key, Timothy J.; Tsilidis, Konstantinos K

    2014-01-01

    Background No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). Objective To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. Design, setting, and participants SNPs implicated in any phenotype other than prostate cancer (p ≤ 10−7) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24 534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Outcome measurements and statistical analysis Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. Results and limitations A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p = 1.6 × 10-6), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95%CI 1.16–1.27; p = 3.22 × 10−18). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86–0.94; p = 2.5 × 10−6). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12,95% CI 1.06–1.19; p = 4.67 × 10−5); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. Conclusions We did

  18. Nightshift work and genome-wide DNA methylation.

    PubMed

    Bhatti, Parveen; Zhang, Yuzheng; Song, Xiaoling; Makar, Karen W; Sather, Cassandra L; Kelsey, Karl T; Houseman, E Andres; Wang, Pei

    2015-02-01

    The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be

  19. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens.

    PubMed

    Liao, R; Zhang, X; Chen, Q; Wang, Z; Wang, Q; Yang, C; Pan, Y

    2016-10-01

    This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue-shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome-wide SNPs in 252 Dongxiang blue-shelled chickens and 252 White Leghorn chickens. The Dongxiang blue-shelled chicken breed has many specific traits and is characterized by blue-shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg-type breed with high productivity. As multibreed genome-wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome-wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome-wide report for the genetics of growth and egg traits in the Dongxiang blue-shelled and White Leghorn chickens.

  20. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.

    PubMed

    Owens, Brenda F; Lipka, Alexander E; Magallanes-Lundback, Maria; Tiede, Tyler; Diepenbrock, Christine H; Kandianis, Catherine B; Kim, Eunha; Cepela, Jason; Mateos-Hernandez, Maria; Buell, C Robin; Buckler, Edward S; DellaPenna, Dean; Gore, Michael A; Rocheford, Torbert

    2014-12-01

    Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.

  1. Linkage disequilibrium analysis by searching for shared segments: Mapping a locus for benign recurrent intrahepatic cholestasis (BRIC)

    SciTech Connect

    Freimer, N.; Baharloo, S.; Blankenship, K.

    1994-09-01

    The lod score method of linkage analysis has two important drawbacks: parameters must be specified for the transmission of the disease (e.g. penetrance), and large numbers of genetically informative individuals must be studied. Although several robust non-parametric methods are available, these also require large sample sizes. The availability of dense genetic maps permits genome screening to be conducted by linkage disequilibrium (LD) mapping methods, which are statistically powerful and non-parametric. Lander & Botstein proposed that LD mapping could be employed to screen the human genome for disease loci; we have now applied this strategy to map a gene for an autosomal recessive disorder, benign recurrent intrahepatic cholestatis (BRIC). Our approach to LD mapping was based on identifying chromosome segments shared between distantly related patients; we used 256 microsatellite markers to genotype three affected individuals, and their parents, from an isolated town in The Netherlands. Because endogamy occurred in this population for several generations, all of the BRIC patients are known to be distantly related to each other, but the pedigree structure and connections could not be certainly established more than three generations before the present, so lod score analysis was impossible. A 20 cM region on chromosome 18 is shared by 5/6 patient chromosomes; subsequently, we noted that 6/6 chromosomes shared an interval of about 3 cM in this region. Calculations indicate that it is extremely unlikely that such a region could be inherited by chance rather than by descent from a common ancestor. Thus, LD mapping by searching for shared chromosomal segments is an extremely powerful approach for genome screening to identify disease loci.

  2. Genome-Wide Methylation Analysis Identifies Specific Epigenetic Marks In Severely Obese Children

    PubMed Central

    Fradin, Delphine; Boëlle, Pierre-Yves; Belot, Marie-Pierre; Lachaux, Fanny; Tost, Jorg; Besse, Céline; Deleuze, Jean-François; De Filippo, Gianpaolo; Bougnères, Pierre

    2017-01-01

    Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the “IRS1 target genes” and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications. PMID:28387357

  3. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  4. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  5. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  6. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  7. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Van Tassell, Curtis P; Sonstegard, Tad S; Liu, George E

    2014-06-01

    Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.

  8. Mining Gold Dust under the Genome Wide Significance Level: A Two-Stage Approach to Analysis of GWAS

    PubMed Central

    Shi, Gang; Boerwinkle, Eric; Morrison, Alanna C.; Gu, C. Charles; Chakravarti, Aravinda; Rao, DC

    2013-01-01

    We propose a two-stage approach to analyze genome-wide association (GWA) data in order to identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list of top signals from single SNP analyses by controlling false discovery rate (FDR). In stage two, we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false positives. The proposed approach was evaluated using simulated quantitative traits based on genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better power than using Bonferroni corrected significance level. The LASSO regression reduces the number of significant SNPs in stage two: it reduces false positive SNPs and it reduces true positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the LASSO regression preserves the power from stage one, i.e., the number of causal loci detected from the LASSO regression in stage two is almost the same as in stage one, while reducing false positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our two-stage approach which identified two significant SNPs, one of which was reported to be genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a single SNP association scan did not yield any significant results. PMID:21254218

  9. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis

    PubMed Central

    de Oliveira, Marco Antônio Rott; Higashi, Wilson; Scapim, Carlos Alberto; Schuster, Ivan

    2017-01-01

    Mapping quantitative trait loci through the use of linkage disequilibrium (LD) in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max). The haplotype-based genome-wide association study (GWAS) has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW), plant height (PH) and seed yield (SY) in a soybean association mapping panel using single nucleotide polymorphism (SNP) markers and haplotype information. The soybean cultivars (N = 169) were field-evaluated across four locations of southern Brazil. The genome-wide haplotype association analysis (941 haplotypes) identified eleven, seventeen and fifty-nine SNP-based haplotypes significantly associated with SY, SW and PH, respectively. Although most marker-trait associations were environment and trait specific, stable haplotype associations were identified for SY and SW across environments (i.e., haplotypes Gm12_Hap12). The haplotype block 42 on Chr19 (Gm19_Hap42) was confirmed to be associated with PH in two environments. These findings enable us to refine the breeding strategy for tropical soybean, which confirm that haplotype-based GWAS can provide new insights on the genetic determinants that are not captured by the single-marker approach. PMID:28152092

  10. Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs.

    PubMed

    He, Yuna; Ma, Junwu; Zhang, Feng; Hou, Lijuan; Chen, Hao; Guo, Yuanmei; Zhang, Zhiyan

    2016-11-01

    Numerous quantitative trait loci (QTL) for loin eye area had been identified by linkage mapping studies, but the lack of their precise position hinders their application in the pig breeding industry. To map QTL for loin eye area to a precise genomic region, we conducted a genome-wide association study (GWAS) using Illumina 60 K PorcineSNP60 Beadchip in four swine populations: 819 F2 pigs, 273 Laiwu pigs, 434 Sutai pigs, and 326 Erhualian pigs. In total, 26 single nucleotide polymorphisms (SNPs) deposited on seven chromosomes associated with loin eye area were identified, 11 of which surpassed the genome-wide significant threshold; of the 11 SNPs, seven located on SSC2 in F2 pigs and four located on SSC12 and SSC18 in Laiwu pigs. Of note, all of the identified QTL were breed specific and no common QTL was identified across the four populations in our study. These findings not only confirmed a previous QTL on SSC2 harboring the candidate gene insulin-like growth factor 2 (IGF2), but also identified some novel candidate genes, far upstream element binding protein 3 (FUBP3), myosin heavy chain (MYH) family, leucine-rich repeats and guanylate kinase domain containing (LRGUK). Our study will contribute to the further identification of the causal mutation underlying these QTL and improve our knowledge of the complex genetic architecture for loin eye area in pigs.

  11. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.

    PubMed

    Shi, Gang; Boerwinkle, Eric; Morrison, Alanna C; Gu, C Charles; Chakravarti, Aravinda; Rao, D C

    2011-02-01

    We propose a two-stage approach to analyze genome-wide association data in order to identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list of top signals from single SNP analyses by controlling false discovery rate. In stage two, we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false positives. The proposed approach was evaluated using simulated quantitative traits based on genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better power than using Bonferroni-corrected significance level. The LASSO regression reduces the number of significant SNPs in stage two: it reduces false-positive SNPs and it reduces true-positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the LASSO regression preserves the power from stage one, i.e., the number of causal loci detected from the LASSO regression in stage two is almost the same as in stage one, while reducing false positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our two-stage approach which identified two significant SNPs, one of which was reported to be genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a single SNP association scan did not yield any significant results.

  12. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci

    PubMed Central

    Ellinghaus, Eva; Ellinghaus, David; Krusche, Petra; Greiner, Aljoscha; Schreiber, Claudia; Nikolaus, Susanna; Gieger, Christian; Strauch, Konstantin; Lieb, Wolfgang; Rosenstiel, Philip; Frings, Norbert; Fiebig, Andreas; Schreiber, Stefan; Franke, Andre

    2017-01-01

    Chronic venous disease (CVD) is a multifactorial condition representing one of the most common disorders among populations of Western countries. The heritability of about 17% suggests genetic risk factors in CVD etiology. However, so far the genetic causes are unknown. We undertook the hitherto first genome-wide association study (GWAS) for CVD, analyzing more than 1.93 M SNPs in 4,942 German individuals, followed by replication in two independent German data sets. The combined analysis of discovery and replication stages (2,269 cases and 7,765 controls) yielded robust associations within the two genes EFEMP1 and KCNH8 (rs17278665, rs727139 with P < 5 × 10−8), and suggestive association within gene SKAP2 (rs2030136 with P < 5 × 10−7). Association signals of rs17278665 and rs727139 reside in regions of low linkage disequilibrium containing no other genes. Data from the ENCODE and Roadmap Epigenomics projects show that tissue specific marks overlap with the variants. SNPs rs17278665 and rs2030136 are known eQTLs. Our study demonstrates that GWAS are a valuable tool to study the genetic component of CVD. With our approach, we identified two novel genome-wide significant susceptibility loci for this common disease. Particularly, the extracellular matrix glycoprotein EFEMP1 is promising for future functional studies due to its antagonistic role in vessel development and angiogenesis. PMID:28374850

  13. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13.

    PubMed

    Cho, Michael H; Castaldi, Peter J; Wan, Emily S; Siedlinski, Mateusz; Hersh, Craig P; Demeo, Dawn L; Himes, Blanca E; Sylvia, Jody S; Klanderman, Barbara J; Ziniti, John P; Lange, Christoph; Litonjua, Augusto A; Sparrow, David; Regan, Elizabeth A; Make, Barry J; Hokanson, John E; Murray, Tanda; Hetmanski, Jacqueline B; Pillai, Sreekumar G; Kong, Xiangyang; Anderson, Wayne H; Tal-Singer, Ruth; Lomas, David A; Coxson, Harvey O; Edwards, Lisa D; MacNee, William; Vestbo, Jørgen; Yates, Julie C; Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D; Beaty, Terri H; Silverman, Edwin K

    2012-02-15

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.

  14. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis

    PubMed Central

    Weidinger, Stephan; Willis-Owen, Saffron A.G.; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M.; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M.; Winge, Mårten C.G.; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I.; Mclean, W.H. Irwin; Brown, Sara J.; Cookson, William O.C.; Lathrop, G. Mark; Irvine, Alan D.; Moffatt, Miriam F.

    2013-01-01

    Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci. PMID:23886662

  15. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.).

    PubMed

    Wang, Jia; Jian, Hongju; Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS.

  16. More heritability probably captured by psoriasis genome-wide association study in Han Chinese.

    PubMed

    Jiang, Long; Liu, Lu; Cheng, Yuyan; Lin, Yan; Shen, Changbing; Zhu, Caihong; Yang, Sen; Yin, Xianyong; Zhang, Xuejun

    2015-11-15

    Missing heritability is a common problem in genome-wide association studies in complex diseases/traits. To quantify the unbiased heritability estimate, we applied the phenotype correlation-genotype correlation regression in psoriasis genome-wide association data in Han Chinese which comprises 1139 cases and 1132 controls. We estimated that 45.7% heritability of psoriasis in Han Chinese were captured by common variants (s.e.=12.5%), which reinforced that the majority of psoriasis heritability can be covered by common variants in genome-wide association data (68.2%). The results provided evidence that the heritability covered by psoriasis genome-wide genotyping data was probably underestimated in previous restricted maximum likelihood method. Our study highlights the broad role of common variants in the etiology of psoriasis and sheds light on the possibility to identify more common variants of small effect by increasing the sample size in psoriasis genome-wide association studies.

  17. A genome-wide scan for signatures of differential artificial selection in ten cattle breeds

    PubMed Central

    2013-01-01

    Background Since the times of domestication, cattle have been continually shaped by the influence of humans. Relatively recent history, including breed formation and the still enduring enormous improvement of economically important traits, is expected to have left distinctive footprints of selection within the genome. The purpose of this study was to map genome-wide selection signatures in ten cattle breeds and thus improve the understanding of the genome response to strong artificial selection and support the identification of the underlying genetic variants of favoured phenotypes. We analysed 47,651 single nucleotide polymorphisms (SNP) using Cross Population Extended Haplotype Homozygosity (XP-EHH). Results We set the significance thresholds using the maximum XP-EHH values of two essentially artificially unselected breeds and found up to 229 selection signatures per breed. Through a confirmation process we verified selection for three distinct phenotypes typical for one breed (polledness in Galloway, double muscling in Blanc-Bleu Belge and red coat colour in Red Holstein cattle). Moreover, we detected six genes strongly associated with known QTL for beef or dairy traits (TG, ABCG2, DGAT1, GH1, GHR and the Casein Cluster) within selection signatures of at least one breed. A literature search for genes lying in outstanding signatures revealed further promising candidate genes. However, in concordance with previous genome-wide studies, we also detected a substantial number of signatures without any yet known gene content. Conclusions These results show the power of XP-EHH analyses in cattle to discover promising candidate genes and raise the hope of identifying phenotypically important variants in the near future. The finding of plausible functional candidates in some short signatures supports this hope. For instance, MAP2K6 is the only annotated gene of two signatures detected in Galloway and Gelbvieh cattle and is already known to be associated with carcass

  18. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    DTIC Science & Technology

    2011-09-01

    were down-selected and successfully genotyped for whole genome (WG) single nucleotide polymorphism (SNP) markers by means of the Affymetrix Canine...SUBJECT TERMS Military working dog genome-wide association study genetic marker intelligence... marker , intelligence, Canine Intelligence Testing Protocol, classification technique, clustering analysis Technical Report: September 2011 2

  19. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions

    PubMed Central

    Mwadzingeni, Learnmore; Shimelis, Hussein; Rees, D. Jasper G.; Tsilo, Toi J.

    2017-01-01

    This study determined the population structure and genome-wide marker-trait association of agronomic traits of wheat for drought-tolerance breeding. Ninety-three diverse bread wheat genotypes were genotyped using the Diversity Arrays Technology sequencing (DArTseq) protocol. The number of days-to-heading (DTH), number of days-to-maturity (DTM), plant height (PHT), spike length (SPL), number of kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GYLD), assessed under drought-stressed and non-stressed conditions, were considered for the study. Population structure analysis and genome-wide association mapping were undertaken based on 16,383 silico DArTs loci with < 10% missing data. The population evaluated was grouped into nine distinct genetic structures. Inter-chromosomal linkage disequilibrium showed the existence of linkage decay as physical distance increased. A total of 62 significant (P < 0.001) marker-trait associations (MTAs) were detected explaining more than 20% of the phenotypic variation observed under both drought-stressed and non-stressed conditions. Significant (P < 0.001) MTA event(s) were observed for DTH, PHT, SPL, SPS, and KPS; under both stressed and non-stressed conditions, while additional significant (P < 0.05) associations were observed for TKW, DTM and GYLD under non-stressed condition. The MTAs reported in this population could be useful to initiate marker-assisted selection (MAS) and targeted trait introgression of wheat under drought-stressed and non-stressed conditions, and for fine mapping and cloning of the underlying genes and QTL. PMID:28234945

  20. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map

    PubMed Central

    Nimmakayala, Padma; Tomason, Yan R.; Abburi, Venkata L.; Alvarado, Alejandra; Saminathan, Thangasamy; Vajja, Venkata G.; Salazar, Germania; Panicker, Girish K.; Levi, Amnon; Wechter, William P.; McCreight, James D.; Korol, Abraham B.; Ronin, Yefim; Garcia-Mas, Jordi; Reddy, Umesh K.

    2016-01-01

    Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19–0.53 and between inodorus and agrestis accessions was in a range of 0.21–0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops. PMID:27713759

  1. A genome-wide map of diversity in Plasmodium falciparum.

    PubMed

    Volkman, Sarah K; Sabeti, Pardis C; DeCaprio, David; Neafsey, Daniel E; Schaffner, Stephen F; Milner, Danny A; Daily, Johanna P; Sarr, Ousmane; Ndiaye, Daouda; Ndir, Omar; Mboup, Soulyemane; Duraisingh, Manoj T; Lukens, Amanda; Derr, Alan; Stange-Thomann, Nicole; Waggoner, Skye; Onofrio, Robert; Ziaugra, Liuda; Mauceli, Evan; Gnerre, Sante; Jaffe, David B; Zainoun, Joanne; Wiegand, Roger C; Birren, Bruce W; Hartl, Daniel L; Galagan, James E; Lander, Eric S; Wirth, Dyann F

    2007-01-01

    Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (pi = 1.16 x 10(-3)) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.

  2. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda

    PubMed Central

    Gloria-Soria, Andrea; Dunn, W. Augustine; Telleria, Erich L.; Evans, Benjamin R.; Okedi, Loyce; Echodu, Richard; Warren, Wesley C.; Montague, Michael J.; Aksoy, Serap; Caccone, Adalgisa

    2016-01-01

    The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r2max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r2max/2 at 708 bp, an order of magnitude slower than in Drosophila. Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis. PMID:27172181

  3. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    PubMed

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development.

  4. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    PubMed

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier.inra.fr/CBGP/software/baypass/.

  5. Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel

    PubMed Central

    Courtois, Brigitte; Audebert, Alain; Dardou, Audrey; Roques, Sandrine; Ghneim- Herrera, Thaura; Droc, Gaëtan; Frouin, Julien; Rouan, Lauriane; Gozé, Eric; Kilian, Andrzej; Ahmadi, Nourollah; Dingkuhn, Michael

    2013-01-01

    Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r2>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates. PMID:24223758

  6. The genome-wide structure of two economically important indigenous Sicilian cattle breeds.

    PubMed

    Mastrangelo, S; Saura, M; Tolone, M; Salces-Ortiz, J; Di Gerlando, R; Bertolini, F; Fontanesi, L; Sardina, M T; Serrano, M; Portolano, B

    2014-11-01

    Genomic technologies, such as high-throughput genotyping based on SNP arrays, provided background information concerning genome structure in domestic animals. The aim of this work was to investigate the genetic structure, the genome-wide estimates of inbreeding, coancestry, effective population size (Ne), and the patterns of linkage disequilibrium (LD) in 2 economically important Sicilian local cattle breeds, Cinisara (CIN) and Modicana (MOD), using the Illumina Bovine SNP50K v2 BeadChip. To understand the genetic relationship and to place both Sicilian breeds in a global context, genotypes from 134 other domesticated bovid breeds were used. Principal component analysis showed that the Sicilian cattle breeds were closer to individuals of Bos taurus taurus from Eurasia and formed nonoverlapping clusters with other breeds. Between the Sicilian cattle breeds, MOD was the most differentiated, whereas the animals belonging to the CIN breed showed a lower value of assignment, the presence of substructure, and genetic links with the MOD breed. The average molecular inbreeding and coancestry coefficients were moderately high, and the current estimates of Ne were low in both breeds. These values indicated a low genetic variability. Considering levels of LD between adjacent markers, the average r(2) in the MOD breed was comparable to those reported for others cattle breeds, whereas CIN showed a lower value. Therefore, these results support the need of more dense SNP arrays for a high-power association mapping and genomic selection efficiency, particularly for the CIN cattle breed. Controlling molecular inbreeding and coancestry would restrict inbreeding depression, the probability of losing beneficial rare alleles, and therefore the risk of extinction. The results generated from this study have important implications for the development of conservation and/or selection breeding programs in these 2 local cattle breeds.

  7. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley.

    PubMed

    Lorenz, Aaron J; Hamblin, Martha T; Jannink, Jean-Luc

    2010-11-22

    Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.

  8. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    PubMed Central

    Viñuela, Ana; Snoek, L. Basten; Riksen, Joost A.G.; Kammenga, Jan E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory loci (eQTL) in a population of developing and aging C. elegans recombinant inbred worms. We found almost 900 genes with an eQTL, of which almost half were found to have a genotype-by-age effect (gxaeQTL). The total number of eQTL decreased with age, whereas the variation in expression increased. In developing worms, the number of genes with increased expression variation (1282) was similar to the ones with decreased expression variation (1328). In aging worms, the number of genes with increased variation (1772) was nearly five times higher than the number of genes with a decreased expression variation (373). The number of cis-acting eQTL in juveniles decreased by almost 50% in old worms, whereas the number of trans-acting loci decreased by ∼27%, indicating that cis-regulation becomes relatively less frequent than trans-regulation in aging worms. Of the 373 genes with decreased expression level variation in aging worms, ∼39% had an eQTL compared with ∼14% in developing worms. gxaeQTL were found for ∼21% of these genes in aging worms compared with only ∼6% in developing worms. We highlight three examples of linkages: in young worms (pgp-6), in old worms (daf-16), and throughout life (lips-16). Our findings demonstrate that eQTL patterns are strongly affected by age, and suggest that gene network integrity declines with age. PMID:20488933

  9. Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study.

    PubMed

    Engelman, Corinne D; Meyers, Kristin J; Ziegler, Julie T; Taylor, Kent D; Palmer, Nicholette D; Haffner, Steven M; Fingerlin, Tasha E; Wagenknecht, Lynne E; Rotter, Jerome I; Bowden, Donald W; Langefeld, Carl D; Norris, Jill M

    2010-10-01

    Vitamin D deficiency is associated with many adverse health outcomes. There are several well established environmental predictors of vitamin D concentrations, yet studies of the genetic determinants of vitamin D concentrations are in their infancy. Our objective was to conduct a pilot genome-wide association (GWA) study of 25-hydroxyvitamin D (25[OH]D) and 1,25-dihydroxyvitamin D (1,25[OH](2)D) concentrations in a subset of 229 Hispanic subjects, followed by replication genotyping of 50 single nucleotide polymorphisms (SNPs) in the entire sample of 1190 Hispanics from San Antonio, Texas and San Luis Valley, Colorado. Of the 309,200 SNPs that met all quality control criteria, three SNPs in high linkage disequilibrium (LD) with each other were significantly associated with 1,25[OH](2)D (rs6680429, rs9970802, and rs10889028) at a Bonferroni corrected P-value threshold of 1.62 × 10(-7), however none met the threshold for 25[OH]D. Of the 50 SNPs selected for replication genotyping, five for 25[OH]D (rs2806508, rs10141935, rs4778359, rs1507023, and rs9937918) and eight for 1,25[OH](2)D (rs6680429, rs1348864, rs4559029, rs12667374, rs7781309, rs10505337, rs2486443, and rs2154175) were replicated in the entire sample of Hispanics (P<0.01). In conclusion, we identified several SNPs that were associated with vitamin D metabolite concentrations in Hispanics. These candidate polymorphisms merit further investigation in independent populations and other ethnicities.

  10. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea

    PubMed Central

    Upadhyaya, Hari D.; Bajaj, Deepak; Narnoliya, Laxmi; Das, Shouvik; Kumar, Vinod; Gowda, C. L. L.; Sharma, Shivali; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    Identification of potential genes/alleles governing complex seed-protein content (SPC) is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150–200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10–20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 × ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (>four fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with a high level of contrasting SPC (21–22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most

  11. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates

    PubMed Central

    Gautier, Mathieu

    2015-01-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  12. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves.

    PubMed

    Pilot, M; Greco, C; vonHoldt, B M; Jędrzejewska, B; Randi, E; Jędrzejewski, W; Sidorovich, V E; Ostrander, E A; Wayne, R K

    2014-04-01

    Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability.

  13. Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene

    PubMed Central

    Himes, Blanca E.; Hunninghake, Gary M.; Baurley, James W.; Rafaels, Nicholas M.; Sleiman, Patrick; Strachan, David P.; Wilk, Jemma B.; Willis-Owen, Saffron A.G.; Klanderman, Barbara; Lasky-Su, Jessica; Lazarus, Ross; Murphy, Amy J.; Soto-Quiros, Manuel E.; Avila, Lydiana; Beaty, Terri; Mathias, Rasika A.; Ruczinski, Ingo; Barnes, Kathleen C.; Celedón, Juan C.; Cookson, William O.C.; Gauderman, W. James; Gilliland, Frank D.; Hakonarson, Hakon; Lange, Christoph; Moffatt, Miriam F.; O'Connor, George T.; Raby, Benjamin A.; Silverman, Edwin K.; Weiss, Scott T.

    2009-01-01

    Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 × 10−07 for rs1588265 and 9.7 × 10−07 for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 × 10−04 for rs1588265 and 9.2 × 10−04 for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications. PMID:19426955

  14. An across-breed genome wide association analysis of susceptibility to paratuberculosis in dairy cattle.

    PubMed

    Sallam, Ahmed M; Zare, Yalda; Alpay, Fazli; Shook, George E; Collins, Michael T; Alsheikh, Samir; Sharaby, Mahmoud; Kirkpatrick, Brian W

    2017-02-01

    Paratuberculosis is a chronic disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). It occurs worldwide and causes a significant loss in the animal production industry. There is no cure for MAP infection and vaccination is problematic. Identification of genetics of susceptibility could be a useful adjunct for programs that focus on management, testing and culling of diseased animals. A case-control, genome-wide association study (GWAS) was conducted using Holstein and Jersey cattle in a combined analysis in order to identify markers and chromosomal regions associated with susceptibility to MAP infection across-breed. A mixed-model method (GRAMMAR-GC) implemented in the GenABEL R package and a Bayes C analysis implemented in GenSel software were used as alternative approaches to conduct GWAS analysis focused on single SNPs and chromosomal segments, respectively. After conducting quality control, 22 406 SNPs from 2157 individuals were available for the GRAMMAR-GC (Bayes C) analysis and 45 640 SNPs from 2199 individuals were available for the Bayes C analysis. One SNP located on BTA27 (8·6 Mb) was identified as moderately associated (P < 5 × 10-5, FDR = 0·44) in the GRAMMAR-GC analysis of the combined breed data. Nine 1 Mb windows located on BTA 2, 3 (3 windows), 6, 8, 25, 27 and 29 each explained ≥1% of the total proportion of genetic variance in the Bayes C analysis. In an analysis ignoring differences in linkage phase, two moderately significantly associated SNPs were identified; ARS-BFGL-NGS-19381 on BTA23 (32 Mb) and Hapmap40994-BTA-46361 on BTA19 (61 Mb). New common genomic regions and candidate genes have been identified from the across-breed analysis that might be involved in the immune response and susceptibility to MAP infection.

  15. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.

    PubMed

    Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M

    2017-04-01

    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is

  16. Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub Saharan Africans

    PubMed Central

    Adeyemo, Adebowale A.; Tekola-Ayele, Fasil; Doumatey, Ayo P.; Bentley, Amy R.; Chen, Guanjie; Huang, Hanxia; Zhou, Jie; Shriner, Daniel; Fasanmade, Olufemi; Okafor, Godfrey; Eghan, Benjamin; Agyenim-Boateng, Kofi; Adeleye, Jokotade; Balogun, Williams; Elkahloun, Abdel; Chandrasekharappa, Settara; Owusu, Samuel; Amoah, Albert; Acheampong, Joseph; Johnson, Thomas; Oli, Johnnie; Adebamowo, Clement; Collins, Francis; Dunston, Georgia; Rotimi, Charles N.

    2015-01-01

    Genome wide association studies (GWAS) for type 2 diabetes (T2D) undertaken in European and Asian ancestry populations have yielded dozens of robustly associated loci. However, the genomics of T2D remains largely understudied in sub-Saharan Africa (SSA), where rates of T2D are increasing dramatically and where the environmental background is quite different than in these previous studies. Here, we evaluate 106 reported T2D GWAS loci in continental Africans. We tested each of these SNPs, and SNPs in linkage disequilibrium (LD) with these index SNPs, for an association with T2D in order to assess transferability and to fine map the loci leveraging the generally reduced LD of African genomes. The study included 1775 unrelated Africans (1035 T2D cases, 740 controls; mean age 54 years; 59% female) enrolled in Nigeria, Ghana, and Kenya as part of the Africa America Diabetes Mellitus (AADM) study. All samples were genotyped on the Affymetrix Axiom PanAFR SNP array. Forty-one of the tested loci showed transferability to this African sample (p < 0.05, same direction of effect), 11 at the exact reported SNP and 30 others at SNPs in LD with the reported SNP (after adjustment for the number of tested SNPs). TCF7L2 SNP rs7903146 was the most significant locus in this study (p = 1.61 × 10−8). Most of the loci that showed transferability were successfully fine-mapped, i.e., localized to smaller haplotypes than in the original reports. The findings indicate that the genetic architecture of T2D in SSA is characterized by several risk loci shared with non-African ancestral populations and that data from African populations may facilitate fine mapping of risk loci. The study provides an important resource for meta-analysis of African ancestry populations and transferability of novel loci. PMID:26635871

  17. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18.

    PubMed

    Müller, M-P; Rothammer, S; Seichter, D; Russ, I; Hinrichs, D; Tetens, J; Thaller, G; Medugorac, I

    2017-03-01

    Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method

  18. Population-Specific Patterns of Linkage Disequilibrium and SNP Variation in Spring and Winter Polyploid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and po...

  19. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses.

  20. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry

    PubMed Central

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  1. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

    PubMed

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-08-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.

  2. Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever.

    PubMed

    Andersen, Kristian G; Shylakhter, Ilya; Tabrizi, Shervin; Grossman, Sharon R; Happi, Christian T; Sabeti, Pardis C

    2012-03-19

    Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit.

  3. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study

    PubMed Central

    Goto, Kaku; Annan, Dorcas A.; Morita, Tomoko; Li, Wenwen; Muroyama, Ryosuke; Matsubara, Yasuo; Ito, Sayaka; Nakagawa, Ryo; Tanoue, Yasushi; Jinushi, Masahisa; Kato, Naoya

    2016-01-01

    Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression. A screen of the FDA-approved drug library identified the anti-cancer agent vorinostat as the strongest hit, suggesting histone deacetylase inhibitors (HDACis) as potent candidates. Indeed, the HDACi-induced expression of MICA specific to HCC cells enhanced natural killer (NK) cell-mediated cytotoxicity in co-culture, which was further reinforced by treatment with an inhibitor of MICA sheddase. Similarly augmented anti-tumor activity of NK cells via NK group 2D was observed in vivo. Metabolomics analysis revealed HDACi-mediated alterations in energy supply and stresses for MICA induction and HCC inhibition, providing a mechanism for the chemoimmunotherapeutic actions. These data are indicative of promising strategies for selective HCC innate immunotherapy. PMID:27910927

  4. Are there subtle, genome-wide epigenetic alterations in normal offspring conceived from Assisted Reproductive Technologies?

    PubMed Central

    Batcheller, April; Cardozo, Eden; Maguire, Marcy; DeCherney, Alan H.; Segars, James

    2012-01-01

    Objective To review recent data regarding subtle, but widespread epigenetic alterations in phenotypically normal offspring conceived of ART compared to offspring conceived in vivo. Design A PubMed computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Studies in animals indicate that in vitro culture may be associated with widespread alterations in imprinted genes, compared to in vivo-conceived offspring. Recently, studies in humans have likewise demonstrated widespread changes in DNA methylation, including genes linked to adipocyte development, insulin signaling, and obesity in offspring conceived by ART, compared to in vivo-conceived children. Changes in multiple imprinted genes following ART were also noted in additional studies, which suggested that the diagnosis of infertility may explain the differences between in vivo-conceived and ART offspring. Conclusion(s) These data suggest that ART is associated with widespread epigenetic modifications in phenotypically normal children, and that these modifications may increase risk of adverse cardiometabolic outcomes. Further research is needed to elucidate the possible relationship between ART, genome-wide alterations in imprinted genes, and their potential relevance to subtle cardiometabolic consequences reported in ART offspring. PMID:22035969

  5. Genome-wide association study for performance traits in chickens using genotype by sequencing approach

    PubMed Central

    Pértille, Fábio; Moreira, Gabriel Costa Monteiro; Zanella, Ricardo; Nunes, José de Ribamar da Silva; Boschiero, Clarissa; Rovadoscki, Gregori Alberto; Mourão, Gerson Barreto; Ledur, Mônica Corrêa; Coutinho, Luiz Lehmann

    2017-01-01

    Performance traits are economically important and are targets for selection in breeding programs, especially in the poultry industry. To identify regions on the chicken genome associated with performance traits, different genomic approaches have been applied in the last years. The aim of this study was the application of CornellGBS approach (134,528 SNPs generated from a PstI restriction enzyme) on Genome-Wide Association Studies (GWAS) in an outbred F2 chicken population. We have validated 91.7% of these 134,528 SNPs after imputation of missed genotypes. Out of those, 20 SNPs were associated with feed conversion, one was associated with body weight at 35 days of age (P < 7.86E-07) and 93 were suggestively associated with a variety of performance traits (P < 1.57E-05). The majority of these SNPs (86.2%) overlapped with previously mapped QTL for the same performance traits and some of the SNPs also showed novel potential QTL regions. The results obtained in this study suggests future searches for candidate genes and QTL refinements as well as potential use of the SNPs described here in breeding programs. PMID:28181508

  6. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    DOE PAGES

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  7. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    PubMed

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  8. Genome-Wide Transcript Profiling Reveals Novel Breast Cancer-Associated Intronic Sense RNAs

    PubMed Central

    Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A. Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer. PMID:25798919

  9. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides.

    PubMed

    Fahrenkrog, Annette M; Neves, Leandro G; Resende, Márcio F R; Vazquez, Ana I; de Los Campos, Gustavo; Dervinis, Christopher; Sykes, Robert; Davis, Mark; Davenport, Ruth; Barbazuk, William B; Kirst, Matias

    2017-01-01

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. These polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.

  10. Genome-wide gene-environment interactions on quantitative traits using family data.

    PubMed

    Sitlani, Colleen M; Dupuis, Josée; Rice, Kenneth M; Sun, Fangui; Pitsillides, Achilleas N; Cupples, L Adrienne; Psaty, Bruce M

    2016-07-01

    Gene-environment interactions may provide a mechanism for targeting interventions to those individuals who would gain the most benefit from them. Searching for interactions agnostically on a genome-wide scale requires large sample sizes, often achieved through collaboration among multiple studies in a consortium. Family studies can contribute to consortia, but to do so they must account for correlation within families by using specialized analytic methods. In this paper, we investigate the performance of methods that account for within-family correlation, in the context of gene-environment interactions with binary exposures and quantitative outcomes. We simulate both cross-sectional and longitudinal measurements, and analyze the simulated data taking family structure into account, via generalized estimating equations (GEE) and linear mixed-effects models. With sufficient exposure prevalence and correct model specification, all methods perform well. However, when models are misspecified, mixed modeling approaches have seriously inflated type I error rates. GEE methods with robust variance estimates are less sensitive to model misspecification; however, when exposures are infrequent, GEE methods require modifications to preserve type I error rate. We illustrate the practical use of these methods by evaluating gene-drug interactions on fasting glucose levels in data from the Framingham Heart Study, a cohort that includes related individuals.

  11. Genome-wide synteny through highly sensitive sequence alignment: Satsuma

    PubMed Central

    Grabherr, Manfred G.; Russell, Pamela; Meyer, Miriah; Mauceli, Evan; Alföldi, Jessica; Di Palma, Federica; Lindblad-Toh, Kerstin

    2010-01-01

    Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes). Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous ‘battleship’-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine. Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org PMID:20208069

  12. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  13. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus

    PubMed Central

    Körber, Niklas; Bus, Anja; Li, Jinquan; Parkin, Isobel A. P.; Wittkop, Benjamin; Snowdon, Rod J.; Stich, Benjamin

    2016-01-01

    In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations. PMID:27066036

  14. Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association Studies in Schizophrenia

    PubMed Central

    Jia, Peilin; Wang, Lily; Fanous, Ayman H.; Pato, Carlos N.; Edwards, Todd L.; Zhao, Zhongming

    2012-01-01

    With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had P meta<1×10−4, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available. PMID:22792057

  15. Efficient multivariate linear mixed model algorithms for genome-wide association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2014-04-01

    Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.

  16. Genome-wide association mapping in plants exemplified for root growth in Arabidopsis thaliana.

    PubMed

    Slovak, Radka; Göschl, Christian; Seren, Ümit; Busch, Wolfgang

    2015-01-01

    Genome-wide association (GWA) mapping is a powerful technique to address the molecular basis of genotype to phenotype relationships and to map regulators of biological processes. This chapter presents a protocol for genome-wide association mapping in Arabidopsis thaliana using the user-friendly internet application GWAPP, and provides a specific protocol for acquiring root trait data suitable for GWA studies using the semi-automated, high-throughput phenotyping pipeline BRAT for early root growth.

  17. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate.

    PubMed

    Misiewicz, Zuzanna; Hiekkalinna, Tero; Paunio, Tiina; Varilo, Teppo; Terwilliger, Joseph D; Partonen, Timo; Hovatta, Iiris

    2016-12-20

    Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture.

  18. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate

    PubMed Central

    Misiewicz, Zuzanna; Hiekkalinna, Tero; Paunio, Tiina; Varilo, Teppo; Terwilliger, Joseph D.; Partonen, Timo; Hovatta, Iiris

    2016-01-01

    Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture. PMID:27996024

  19. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    PubMed

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  20. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis).

    PubMed

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process.

  1. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    PubMed Central

    Rafnar, Thorunn; Vermeulen, Sita H.; Sulem, Patrick; Thorleifsson, Gudmar; Aben, Katja K.; Witjes, J. Alfred; Grotenhuis, Anne J.; Verhaegh, Gerald W.; Hulsbergen-van de Kaa, Christina A.; Besenbacher, Soren; Gudbjartsson, Daniel; Stacey, Simon N.; Gudmundsson, Julius; Johannsdottir, Hrefna; Bjarnason, Hjordis; Zanon, Carlo; Helgadottir, Hafdis; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Jonsson, Eirikur; Geirsson, Gudmundur; Nikulasson, Sigfus; Petursdottir, Vigdis; Bishop, D. Timothy; Chung-Sak, Sei; Choudhury, Ananya; Elliott, Faye; Barrett, Jennifer H.; Knowles, Margaret A.; de Verdier, Petra J.; Ryk, Charlotta; Lindblom, Annika; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Vineis, Paolo; Polidoro, Silvia; Guarrera, Simonetta; Sacerdote, Carlotta; Panadero, Angeles; Sanz-Velez, José I.; Sanchez, Manuel; Valdivia, Gabriel; Garcia-Prats, Maria D.; Hengstler, Jan G.; Selinski, Silvia; Gerullis, Holger; Ovsiannikov, Daniel; Khezri, Abdolaziz; Aminsharifi, Alireza; Malekzadeh, Mahyar; van den Berg, Leonard H.; Ophoff, Roel A.; Veldink, Jan H.; Zeegers, Maurice P.; Kellen, Eliane; Fostinelli, Jacopo; Andreoli, Daniele; Arici, Cecilia; Porru, Stefano; Buntinx, Frank; Ghaderi, Abbas; Golka, Klaus; Mayordomo, José I.; Matullo, Giuseppe; Kumar, Rajiv; Steineck, Gunnar; Kiltie, Anne E.; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; Kiemeney, Lambertus A.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10−11. SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the ‘urogenous contact hypothesis’ that urine production and voiding frequency modify the risk of UBC. PMID:21750109

  2. Random forest fishing: a novel approach to identifying organic group of risk factors in genome-wide association studies

    PubMed Central

    Yang, Wei; Charles Gu, C

    2014-01-01

    Genome-wide association studies (GWAS) has brought methodological challenges in handling massive high-dimensional data and also real opportunities for studying the joint effect of many risk factors acting in concert as an organic group. The random forest (RF) methodology is recognized by many for its potential in examining interaction effects in large data sets. However, RF is not designed to directly handle GWAS data, which typically have hundreds of thousands of single-nucleotide polymorphisms as predictor variables. We propose and evaluate a novel extension of RF, called random forest fishing (RFF), for GWAS analysis. RFF repeatedly updates a relatively small set of predictors obtained by RF tests to find globally important groups predictive of the disease phenotype, using a novel search algorithm based on genetic programming and simulated annealing. A key improvement of RFF results from the use of guidance incorporating empirical test results of genome-wide pairwise interactions. Evaluated using simulated and real GWAS data sets, RFF is shown to be effective in identifying important predictors, particularly when both marginal effects and interactions exist, and is applicable to very large GWAS data sets. PMID:23695277

  3. Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

    PubMed Central

    Cordell, Heather J.; Töpf, Ana; Mamasoula, Chrysovalanto; Postma, Alex V.; Bentham, Jamie; Zelenika, Diana; Heath, Simon; Blue, Gillian; Cosgrove, Catherine; Granados Riveron, Javier; Darlay, Rebecca; Soemedi, Rachel; Wilson, Ian J.; Ayers, Kristin L.; Rahman, Thahira J.; Hall, Darroch; Mulder, Barbara J.M.; Zwinderman, Aelko H.; van Engelen, Klaartje; Brook, J. David; Setchfield, Kerry; Bu'Lock, Frances A.; Thornborough, Chris; O'Sullivan, John; Stuart, A. Graham; Parsons, Jonathan; Bhattacharya, Shoumo; Winlaw, David; Mital, Seema; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Moorman, Antoon F.M.; Rauch, Anita; Lathrop, G. Mark; Keavney, Bernard D.; Goodship, Judith A.

    2013-01-01

    We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TOF. PMID:23297363

  4. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens.

    PubMed

    Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

    2012-07-01

    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2) ≥ 0.3) in both traditional and village chickens at pairwise marker distances of ~10 Kb; while haplotype block analysis indicates a median block size of 11-12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55-38.89 Mb) and rose comb (Gga 7:18.41-22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25-67.28 Mb, Gga 1:67.28-67.32 Mb) totalling ~75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions.

  5. Detecting low frequent loss-of-function alleles in genome wide association studies with red hair color as example.

    PubMed

    Liu, Fan; Struchalin, Maksim V; Duijn, Kate van; Hofman, Albert; Uitterlinden, André G; Duijn, Cornelia van; Aulchenko, Yurii S; Kayser, Manfred

    2011-01-01

    Multiple loss-of-function (LOF) alleles at the same gene may influence a phenotype not only in the homozygote state when alleles are considered individually, but also in the compound heterozygote (CH) state. Such LOF alleles typically have low frequencies and moderate to large effects. Detecting such variants is of interest to the genetics community, and relevant statistical methods for detecting and quantifying their effects are sorely needed. We present a collapsed double heterozygosity (CDH) test to detect the presence of multiple LOF alleles at a gene. When causal SNPs are available, which may be the case in next generation genome sequencing studies, this CDH test has overwhelmingly higher power than single SNP analysis. When causal SNPs are not directly available such as in current GWA settings, we show the CDH test has higher power than standard single SNP analysis if tagging SNPs are in linkage disequilibrium with the underlying causal SNPs to at least a moderate degree (r²>0.1). The test is implemented for genome-wide analysis in the publically available software package GenABEL which is based on a sliding window approach. We provide the proof of principle by conducting a genome-wide CDH analysis of red hair color, a trait known to be influenced by multiple loss-of-function alleles, in a total of 7,732 Dutch individuals with hair color ascertained. The association signals at the MC1R gene locus from CDH were uniformly more significant than traditional GWA analyses (the most significant P for CDH = 3.11×10⁻¹⁴² vs. P for rs258322 = 1.33×10⁻⁶⁶). The CDH test will contribute towards finding rare LOF variants in GWAS and sequencing studies.

  6. Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs.

    PubMed

    Rheindt, Frank E; Fujita, Matthew K; Wilton, Peter R; Edwards, Scott V

    2014-03-01

    Genetic introgression is pervasive in nature and may lead to large-scale phenotypic assimilation and/or admixture of populations, but there is limited knowledge on whether large phenotypic changes are typically accompanied by high levels of introgression throughout the genome. Using bioacoustic, biometric, and spectrophotometric data from a flycatcher (Tyrannidae) system in the Neotropical genus Zimmerius, we document a mosaic pattern of phenotypic admixture in which a population of Zimmerius viridiflavus in northern Peru (henceforth "mosaic") is vocally and biometrically similar to conspecifics to the south but shares plumage characteristics with a different species (Zimmerius chrysops) to the north. To clarify the origins of the mosaic population, we used the RAD-seq approach to generate a data set of 37,361 genome-wide single nucleotide polymorphisms (SNPs). A range of population-genetic diagnostics shows that the genome of the mosaic population is largely indistinguishable from southern Z. viridiflavus and distinct from northern Z. chrysops, and the application of parsimony and species tree methods to the genome-wide SNP data set confirms the close affinity of the mosaic population with southern Z. viridiflavus. Even so, using a subset of 2710 SNPs found across all sampled lineages in configurations appropriate for a recently proposed statistical ("ABBA/BABA") test that distinguishes gene flow from incomplete lineage sorting, we detected low levels of gene flow from northern Z. chrysops into the mosaic population. Mapping the candidate loci for introgression from Z. chrysops into the mosaic population to the zebra finch genome reveals close linkage with genes significantly enriched in functions involving cell projection and plasma membranes. Introgression of key alleles may have led to phenotypic assimilation in the plumage of mosaic birds, suggesting that selection may have been a key factor facilitating introgression.

  7. Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples

    PubMed Central

    Rietschel, Marcella; Mattheisen, Manuel; Breuer, René; Schulze, Thomas G.; Nöthen, Markus M.; Levinson, Douglas; Shi, Jianxin; Gejman, Pablo V.; Cichon, Sven; Ophoff, Roel A.

    2012-01-01

    Recent studies suggest that variation in complex disorders (e.g., schizophrenia) is explained by a large number of genetic variants with small effect size (Odds Ratio∼1.05–1.1). The statistical power to detect these genetic variants in Genome Wide Association (GWA) studies with large numbers of cases and controls (∼15,000) is still low. As it will be difficult to further increase sample size, we decided to explore an alternative method for analyzing GWA data in a study of schizophrenia, dramatically reducing the number of statistical tests. The underlying hypothesis was that at least some of the genetic variants related to a common outcome are collocated in segments of chromosomes at a wider scale than single genes. Our approach was therefore to study the association between relatively large segments of DNA and disease status. An association test was performed for each SNP and the number of nominally significant tests in a segment was counted. We then performed a permutation-based binomial test to determine whether this region contained significantly more nominally significant SNPs than expected under the null hypothesis of no association, taking linkage into account. Genome Wide Association data of three independent schizophrenia case/control cohorts with European ancestry (Dutch, German, and US) using segments of DNA with variable length (2 to 32 Mbp) was analyzed. Using this approach we identified a region at chromosome 5q23.3-q31.3 (128–160 Mbp) that was significantly enriched with nominally associated SNPs in three independent case-control samples. We conclude that considering relatively wide segments of chromosomes may reveal reliable relationships between the genome and schizophrenia, suggesting novel methodological possibilities as well as raising theoretical questions. PMID:22723893

  8. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    PubMed Central

    Cho, Michael H.; Castaldi, Peter J.; Wan, Emily S.; Siedlinski, Mateusz; Hersh, Craig P.; Demeo, Dawn L.; Himes, Blanca E.; Sylvia, Jody S.; Klanderman, Barbara J.; Ziniti, John P.; Lange, Christoph; Litonjua, Augusto A.; Sparrow, David; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Murray, Tanda; Hetmanski, Jacqueline B.; Pillai, Sreekumar G.; Kong, Xiangyang; Anderson, Wayne H.; Tal-Singer, Ruth; Lomas, David A.; Coxson, Harvey O.; Edwards, Lisa D.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter M.A.; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D.; Beaty, Terri H.; Silverman, Edwin K.

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior. PMID:22080838

  9. Genome-wide mining, characterization, and development of microsatellite markers in Marsupenaeus japonicus by genome survey sequencing

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Luan, Sheng; Kong, Jie; Hu, Longyang; Mao, Yong; Zhong, Shengping

    2017-01-01

    The kuruma prawn, Marsupenaeus japonicus, is one of the most cultivated and consumed species of shrimp. However, very few molecular genetic/genomic resources are publically available for it. Thus, the characterization and distribution of simple sequence repeats (SSRs) remains ambiguous and the use of SSR markers in genomic studies and marker-assisted selection is limited. The goal of this study is to characterize and develop genome-wide SSR markers in M. japonicus by genome survey sequencing for application in comparative genomics and breeding. A total of 326 945 perfect SSRs were identified, among which dinucleotide repeats were the most frequent class (44.08%), followed by mononucleotides (29.67%), trinucleotides (18.96%), tetranucleotides (5.66%), hexanucleotides (1.07%), and pentanucleotides (0.56%). In total, 151 541 SSR loci primers were successfully designed. A subset of 30 SSR primer pairs were synthesized and tested in 42 individuals from a wild population, of which 27 loci (90.0%) were successfully amplified with specific products and 24 (80.0%) were polymorphic. For the amplified polymorphic loci, the alleles ranged from 5 to 17 (with an average of 9.63), and the average PIC value was 0.796. A total of 58 256 SSR-containing sequences had significant Gene Ontology annotation; these are good functional molecular marker candidates for association studies and comparative genomic analysis. The newly identified SSRs significantly contribute to the M. japonicus genomic resources and will facilitate a number of genetic and genomic studies, including high density linkage mapping, genome-wide association analysis, marker-aided selection, comparative genomics analysis, population genetics, and evolution.

  10. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  11. "Replicated" genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs.

    PubMed

    Drgon, Tomas; Johnson, Catherine A; Nino, Michelle; Drgonova, Jana; Walther, Donna M; Uhl, George R

    2011-03-01

    Declaring "replication" from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication may be unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity, and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally significant association in each of several independent samples. This approach provides one "nontemplate" approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 million (1M) SNP Affymetrix and Illumina GWA results for dependence on illegal substances. This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally significant SNPs from samples of the same racial/ethnic background identify the same chromosomal regions. There is more modest confidence in: (a) identification of individual chromosomal regions and genes and (b) overlap between results from samples of different racial/ethnic backgrounds. The strong overlap identified among the samples with similar racial/ethnic backgrounds, together with prior work that identified overlapping results in samples of different racial/ethnic backgrounds, support contributions to individual differences in vulnerability to addictions that come from both relatively older allelic variants that are common in many current human populations and newer allelic variants that are common in fewer current human populations.

  12. Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2

    PubMed Central

    Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.

    2015-01-01

    Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset < 60 years old. Methods The Discovery stage of our GWAS included 4,505 cases and 21,968 controls of European, South-Asian and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10−6 and performed in silico association analyses in an independent sample of up to 1,003 cases and 7,745 controls. Results One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560

  13. Penalized Multimarker vs. Single-Marker Regression Methods for Genome-Wide Association Studies of Quantitative Traits

    PubMed Central

    Yi, Hui; Breheny, Patrick; Imam, Netsanet; Liu, Yongmei; Hoeschele, Ina

    2015-01-01

    The data from genome-wide association studies (GWAS) in humans are still predominantly analyzed using single-marker association methods. As an alternative to single-marker analysis (SMA), all or subsets of markers can be tested simultaneously. This approach requires a form of penalized regression (PR) as the number of SNPs is much larger than the sample size. Here we review PR methods in the context of GWAS, extend them to perform penalty parameter and SNP selection by false discovery rate (FDR) control, and assess their performance in comparison with SMA. PR methods were compared with SMA, using realistically simulated GWAS data with a continuous phenotype and real data. Based on these comparisons our analytic FDR criterion may currently be the best approach to SNP selection using PR for GWAS. We found that PR with FDR control provides substantially more power than SMA with genome-wide type-I error control but somewhat less power than SMA with Benjamini–Hochberg FDR control (SMA-BH). PR with FDR-based penalty parameter selection controlled the FDR somewhat conservatively while SMA-BH may not achieve FDR control in all situations. Differences among PR methods seem quite small when the focus is on SNP selection with FDR control. Incorporating linkage disequilibrium into the penalization by adapting penalties developed for covariates measured on graphs can improve power but also generate more false positives or wider regions for follow-up. We recommend the elastic net with a mixing weight for the Lasso penalty near 0.5 as the best method. PMID:25354699

  14. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.

    PubMed

    Yi, Hui; Breheny, Patrick; Imam, Netsanet; Liu, Yongmei; Hoeschele, Ina

    2015-01-01

    The data from genome-wide association studies (GWAS) in humans are still predominantly analyzed using single-marker association methods. As an alternative to single-marker analysis (SMA), all or subsets of markers can be tested simultaneously. This approach requires a form of penalized regression (PR) as the number of SNPs is much larger than the sample size. Here we review PR methods in the context of GWAS, extend them to perform penalty parameter and SNP selection by false discovery rate (FDR) control, and assess their performance in comparison with SMA. PR methods were compared with SMA, using realistically simulated GWAS data with a continuous phenotype and real data. Based on these comparisons our analytic FDR criterion may currently be the best approach to SNP selection using PR for GWAS. We found that PR with FDR control provides substantially more power than SMA with genome-wide type-I error control but somewhat less power than SMA with Benjamini-Hochberg FDR control (SMA-BH). PR with FDR-based penalty parameter selection controlled the FDR somewhat conservatively while SMA-BH may not achieve FDR control in all situations. Differences among PR methods seem quite small when the focus is on SNP selection with FDR control. Incorporating linkage disequilibrium into the penalization by adapting penalties developed for covariates measured on graphs can improve power but also generate more false positives or wider regions for follow-up. We recommend the elastic net with a mixing weight for the Lasso penalty near 0.5 as the best method.

  15. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  16. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    PubMed Central

    Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

    2012-01-01

    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r2⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions. PMID:22395157

  17. Genome-wide association study of autistic-like traits in a general population study of young adults.

    PubMed

    Jones, Rachel Maree; Cadby, Gemma; Melton, Phillip E; Abraham, Lawrence J; Whitehouse, Andrew J; Moses, Eric K

    2013-01-01

    Lay abstract: It has been proposed that autistic-like traits in the general population lie on a continuum, with clinical Autism Spectrum Disorder (ASD), representing the extreme end of this distribution. The current study undertook a genome-wide association (GWA) scan of 965 young Western Australian adults to identify novel risk variants associated with autistic-like traits. No associations reached genome-wide significance; however, a review of nominally associated single nucleotide polymorphisms (SNPs) indicated two positional candidate loci that have been previously implicated in autistic-like trait etiology. Scientific abstract: Research has proposed that autistic-like traits in the general population lie on a continuum, with clinical ASD representing the extreme end of this distribution. Inherent in this proposal is that biological mechanisms associated with clinical ASD may also underpin variation in autistic-like traits within the general population. A GWA study using 2,462,046 SNPs was undertaken for ASD in 965 individuals from the Western Australian Pregnancy Cohort (Raine) Study. No SNP associations reached genome-wide significance (p < 5.0 × 10(-8)). However, investigations into nominal observed SNP associations (p < 1.0 × 10(-5)) add support to two positional candidate genes previously implicated in ASD etiology, PRKCB1, and CBLN1. The rs198198 SNP (p = 9.587 × 10(-6)), is located within an intron of the protein kinase C, beta 1 (PRKCB1) gene on chromosome 16p11. The PRKCB1 gene has been previously reported in linkage and association studies for ASD, and its mRNA expression has been shown to be significantly down regulated in ASD cases compared with controls. The rs16946931 SNP (p = 1.78 × 10(-6)) is located in a region flanking the Cerebellin 1 (CBLN1) gene on chromosome 16q12.1. The CBLN1 gene is involved with synaptogenesis and is part of a gene family previously implicated in ASD. This GWA study is only the second

  18. Genome-Wide Association Study Identifies Major Loci for Carcass Weight on BTA14 in Hanwoo (Korean Cattle)

    PubMed Central

    Lim, Dajeong; Gondro, Cedric; Cho, Young Min; Dang, Chang Gwon; Sharma, Aditi; Jang, Gul Won; Lee, Kyung Tai; Yoon, Duhak; Lee, Hak Kyo; Yeon, Seong Heum; Yang, Boh Suk; Kang, Hee Seol; Hong, Seong Koo

    2013-01-01

    This genome-wide association study (GWAS) was conducted to identify major loci that are significantly associated with carcass weight, and their effects, in order to provide increased understanding of the genetic architecture of carcass weight in Hanwoo. This genome-wide association study identified one major chromosome region ranging from 23 Mb to 25 Mb on chromosome 14 as being associated with carcass weight in Hanwoo. Significant Bonferroni-corrected genome-wide associations (P<1.52×10−6) were detected for 6 Single Nucleotide Polymorphic (SNP) loci for carcass weight on chromosome 14. The most significant SNP was BTB-01280026 (P = 4.02×10−11), located in the 25 Mb region on Bos taurus autosome 14 (BTA14). The other 5 significant SNPs were Hapmap27934-BTC-065223 (P = 4.04×10−11) in 25.2 Mb, BTB-01143580 (P = 6.35×10−11) in 24.3 Mb, Hapmap30932-BTC-011225 (P = 5.92×10−10) in 24.8 Mb, Hapmap27112-BTC-063342 (P = 5.18×10−9) in 25.4 Mb, and Hapmap24414-BTC-073009 (P = 7.38×10−8) in 25.4 Mb, all on BTA 14. One SNP (BTB-01143580; P = 6.35×10−11) lies independently from the other 5 SNPs. The 5 SNPs that lie together showed a large Linkage disequilibrium (LD) block (block size of 553 kb) with LD coefficients ranging from 0.53 to 0.89 within the block. The most significant SNPs accounted for 6.73% to 10.55% of additive genetic variance, which is quite a large proportion of the total additive genetic variance. The most significant SNP (BTB-01280026; P = 4.02×10−11) had 16.96 kg of allele substitution effect, and the second most significant SNP (Hapmap27934-BTC-065223; P = 4.04×10−11) had 18.06 kg of effect on carcass weight, which correspond to 44% and 47%, respectively, of the phenotypic standard deviation for carcass weight in Hanwoo cattle. Our results demonstrated that carcass weight was affected by a major Quantitative Trait Locus (QTL) with a large effect and by many SNPs with small effects that are

  19. Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci

    PubMed Central

    Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  20. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    PubMed

    Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive

  1. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data

    PubMed Central

    2013-01-01

    Background Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity. Methods We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA. Results A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration. Conclusions We propose a detection method for complex disease causal SNP combinations

  2. Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics

    PubMed Central

    Niu, Yao-Fang; Ye, Chengyin; He, Ji; Han, Fang; Guo, Long-Biao; Zheng, Hou-Feng; Chen, Guo-Bo

    2017-01-01

    In line with open-source genetics, we report a novel linear regression technique for genome-wide association studies (GWAS), called Open GWAS algoriTHm (OATH). When individual-level data are not available, OATH can not only completely reproduce reported results from an experimental model, but also recover underreported results from other alternative models with a different combination of nuisance parameters using naïve summary statistics (NSS). OATH can also reliably evaluate all reported results in-depth (e.g., p-value variance analysis), as demonstrated for 42 Arabidopsis phenotypes under three magnesium (Mg) conditions. In addition, OATH can be used for consortium-driven genome-wide association meta-analyses (GWAMA), and can greatly improve the flexibility of GWAMA. A prototype of OATH is available in the Genetic Analysis Repository (https://github.com/gc5k/GEAR). PMID:28122950

  3. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus.

    PubMed

    Yuan, Jing; Tao, Wenjing; Cheng, Yunying; Huang, Baofeng; Wang, Deshou

    2014-08-01

    The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.

  4. Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses.

    PubMed

    Rhodin, K; Divaris, K; North, K E; Barros, S P; Moss, K; Beck, J D; Offenbacher, S

    2014-09-01

    Recent genome-wide association studies (GWAS) of chronic periodontitis (CP) offer rich data sources for the investigation of candidate genes, functional elements, and pathways. We used GWAS data of CP (n = 4,504) and periodontal pathogen colonization (n = 1,020) from a cohort of adult Americans of European descent participating in the Atherosclerosis Risk in Communities study and employed a MAGENTA approach (i.e., meta-analysis gene set enrichment of variant associations) to obtain gene-centric and gene set association results corrected for gene size, number of single-nucleotide polymorphisms, and local linkage disequilibrium characteristics based on the human genome build 18 (National Center for Biotechnology Information build 36). We used the Gene Ontology, Ingenuity, KEGG, Panther, Reactome, and Biocarta databases for gene set enrichment analyses. Six genes showed evidence of statistically significant association: 4 with severe CP (NIN, p = 1.6 × 10(-7); ABHD12B, p = 3.6 × 10(-7); WHAMM, p = 1.7 × 10(-6); AP3B2, p = 2.2 × 10(-6)) and 2 with high periodontal pathogen colonization (red complex-KCNK1, p = 3.4 × 10(-7); Porphyromonas gingivalis-DAB2IP, p = 1.0 × 10(-6)). Top-ranked genes for moderate CP were HGD (p = 1.4 × 10(-5)), ZNF675 (p = 1.5 × 10(-5)), TNFRSF10C (p = 2.0 × 10(-5)), and EMR1 (p = 2.0 × 10(-5)). Loci containing NIN, EMR1, KCNK1, and DAB2IP had showed suggestive evidence of association in the earlier single-nucleotide polymorphism-based analyses, whereas WHAMM and AP2B2 emerged as novel candidates. The top gene sets included severe CP ("endoplasmic reticulum membrane," "cytochrome P450," "microsome," and "oxidation reduction") and moderate CP ("regulation of gene expression," "zinc ion binding," "BMP signaling pathway," and "ruffle"). Gene-centric analyses offer a promising avenue for efficient interrogation of large-scale GWAS data. These results highlight genes in previously identified loci and new candidate genes and pathways

  5. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle.

    PubMed

    Do, D N; Bissonnette, N; Lacasse, P; Miglior, F; Sargolzaei, M; Zhao, X; Ibeagha-Awemu, E M

    2017-03-01

    Lactation persistency (LP), defined as the rate of declining milk yield after milk peak, is an economically important trait for dairy cattle. Improving LP is considered a good alternative method for increasing overall milk production because it does not cause the negative energy balance and other health issues that cows experience during peak milk production. However, little is known about the biology of LP. A genome-wide association study (GWAS) and pathway enrichment were used to explore the genetic mechanisms underlying LP. The GWAS was performed using a univariate regression mixed linear model on LP data of 3,796 cows and 44,100 single nucleotide polymorphisms (SNP). Eight and 47 SNP were significantly and suggestively associated with LP, respectively. The 2 most important quantitative trait loci regions for LP were (1) a region from 106 to 108 Mb on Bos taurus autosome (BTA) 5, where the most significant SNP (ARS-BFGL-NGS-2399) was located and also formed a linkage disequilibrium block with 3 other SNP; and (2) a region from 29.3 to 31.3 Mb on BTA 20, which contained 3 significant SNP. Based on physical positions, MAN1C1, MAP3K5, HCN1, TSPAN9, MRPS30, TEX14, and CCL28 are potential candidate genes for LP because the significant SNP were located in their intronic regions. Enrichment analyses of a list of 536 genes in 0.5-Mb flanking regions of significant and suggestive SNP indicates that synthesis of milk components, regulation of cell apoptosis processes and insulin, and prolactin signaling pathways are important for LP. Upstream regulators relevant for LP positional candidate genes were prolactin (PRL), peroxisome proliferator-activated receptor gamma (PPARG), and Erb-B2 receptor tyrosine kinase 2 (ERBB2). Several networks related to cellular development, proliferation and death were significantly enriched for LP positional candidate genes. In conclusion, this study detected several SNP, genes, and interesting regions for fine mapping and validation of

  6. Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome).

    PubMed

    Roberts, Aedan; Nancarrow, Derek; Clendenning, Mark; Buchanan, Daniel D; Jenkins, Mark A; Duggan, David; Taverna, Darin; McKeone, Diane; Walters, Rhiannon; Walsh, Michael D; Young, Bruce W; Jass, Jeremy R; Rosty, Christophe; Gattas, Michael; Pelzer, Elise; Hopper, John L; Goldblatt, Jack; George, Jill; Suthers, Graeme K; Phillips, Kerry; Parry, Susan; Woodall, Sonja; Arnold, Julie; Tucker, Kathy; Muir, Amanda; Drini, Musa; Macrae, Finlay; Newcomb, Polly; Potter, John D; Pavluk, Erika; Lindblom, Annika; Young, Joanne P

    2011-06-01

    Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.

  7. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development

    PubMed Central

    2009-01-01

    Background Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal. Results From an in silico genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the huC neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (otud7b, uchl3 and bap1) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (otud4, usp5, usp15 and usp25) play a critical role in dorsoventral patterning through the BMP pathway. Conclusion We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system. PMID:20040115

  8. Genome-wide analysis of SAUR gene family in Solanaceae species.

    PubMed

    Wu, Jian; Liu, Songyu; He, Yanjun; Guan, Xiaoyan; Zhu, Xiangfei; Cheng, Lin; Wang, Jie; Lu, Gang

    2012-11-01

    The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.

  9. Genome-wide identification and analysis of the SGR gene family in Cucumis melo L.

    PubMed

    Bade, R G; Bao, M L; Jin, W Y; Ma, Y; Niu, Y D; Hasi, A

    2016-10-17

    Chlorophyll (CHL) is present in many plant organs, and its metabolism is strongly regulated throughout plant development. Understanding the fate of CHL in senescent leaves or during fruit ripening is a complex process. The stay-green (SGR) protein has been shown to affect CHL degradation. In this study, we used the conserved sequences of STAY-GREEN domain protein (NP_567673) in Arabidopsis thaliana as a probe to search SGR family genes in the genome-wide melon protein database. Four candidate SGR family genes were identified in melon (Cucumis melo L. Hetao). The phylogenetic evolution, gene structure, and conserved motifs were subsequently analyzed. In order to verify the function of CmSGR genes in CHL degradation, CmSGR1 and CmSGR2 were transiently overexpressed and silenced using different plasmids in melon. Overexpression of CmSGR1 or CmSGR2 induced leaf yellowing or fruit ripening, while silencing of CmSGR1 or CmSGR2 via RNA interference delayed CHL breakdown during fruit ripening or leaf senescence compared with the wild type. Next, the expression profile was analyzed, and we found that CmSGR genes were expressed ubiquitously. Moreover, CmSGR1 and CmSGR2 were upregulated, and promoted fruit ripening. CmSGR3 and CmSGR4 were more highly expressed in leaves, cotyledon, and stem compared with CmSGR1 or CmSGR2. Thus, we conclude that CmSGR genes are crucial for fruit ripening and leaf senescence. CmSGR protein structure and function were further clarified to provide a theoretical foundation and valuable information for improved performance of melon.

  10. Genome-wide protein localization prediction strategies for gram negative bacteria

    SciTech Connect

    Romine, Margaret F.

    2011-06-15

    Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms.

  11. Genome-wide detection of natural selection in African Americans pre- and post-admixture.

    PubMed

    Jin, Wenfei; Xu, Shuhua; Wang, Haifeng; Yu, Yongguo; Shen, Yiping; Wu, Bailin; Jin, Li

    2012-03-01

    It is particularly meaningful to investigate natural selection in African Americans (AfA) due to the high mortality their African ancestry has experienced in history. In this study, we examined 491,526 autosomal single nucleotide polymorphisms (SNPs) genotyped in 5210 individuals and conducted a genome-wide search for selection signals in 1890 AfA. Several genomic regions showing an excess of African or European ancestry, which were considered the footprints of selection since population admixture, were detected based on a commonly used approach. However, we also developed a new strategy to detect natural selection both pre- and post-admixture by reconstructing an ancestral African population (AAF) from inferred African components of ancestry in AfA and comparing it with indigenous African populations (IAF). Interestingly, many selection-candidate genes identified by the new approach were associated with AfA-specific high-risk diseases such as prostate cancer and hypertension, suggesting an important role these disease-related genes might have played in adapting to a new environment. CD36 and HBB, whose mutations confer a degree of protection against malaria, were also located in the highly differentiated regions between AAF and IAF. Further analysis showed that the frequencies of alleles protecting against malaria in AAF were lower than those in IAF, which is consistent with the relaxed selection pressure of malaria in the New World. There is no overlap between the top candidate genes detected by the two approaches, indicating the different environmental pressures AfA experienced pre- and post-population admixture. We suggest that the new approach is reasonably powerful and can also be applied to other admixed populations such as Latinos and Uyghurs.

  12. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus.

    PubMed

    Yu, Youjian; Liang, Ying; Lv, Meiling; Wu, Jian; Lu, Gang; Cao, Jiashu

    2014-01-01

    Polygalacturonase (PG, EC3.2.1.15), one of the hydrolytic enzymes associated with the modification of pectin network in plant cell wall, has an important role in various cell-separation processes that are essential for plant development. PGs are encoded by a large gene family in plants. However, information on this gene family in plant development remains limited. In the present study, 53 and 62 putative members of the PG gene family in cucumber and watermelon genomes, respectively, were identified by genome-wide search to explore the composition, structure, and evolution of the PG family in Cucurbitaceae crops. The results showed that tandem duplication could be an important factor that contributes to the expansion of the PG genes in the two crops. The phylogenetic and evolutionary analyses suggested that PGs could be classified into seven clades, and that the exon/intron structures and intron phases were conserved within but divergent between clades. At least 24 ancestral PGs were detected in the common ancestor of Arabidopsis and Cucumis sativus. Expression profile analysis by quantitative real-time polymerase chain reaction demonstrated that most CsPGs exhibit specific or high expression pattern in one of the organs/tissues. The 16 CsPGs associated with fruit development could be divided into three subsets based on their specific expression patterns and the cis-elements of fruit-specific, endosperm/seed-specific, and ethylene-responsive exhibited in their promoter regions. Our comparative analysis provided some basic information on the PG gene family, which would be valuable for further functional analysis of the PG genes during plant development.

  13. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease.

  14. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    PubMed

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  15. Genome-wide in silico screening for microRNA genetic variability in livestock species.

    PubMed

    Jevsinek Skok, D; Godnic, I; Zorc, M; Horvat, S; Dovc, P; Kovac, M; Kunej, T

    2013-12-01

    MicroRNAs are a class of non-coding RNAs that post-transcriptionally regulate target gene expression. Previous studies have shown that microRNA gene variability can interfere with its function, resulting in phenotypic variation. Polymorphisms within microRNA genes present a source of novel biomarkers for phenotypic traits in animal breeding. However, little is known about microRNA genetic variability in livestock species, which is also due to incomplete data in genomic resource databases. Therefore, the aim of this study was to perform a genome-wide in silico screening of genomic sources and determine the genetic variability of microRNA genes in livestock species using mirna sniper 3.0 (http://www.integratomics-time.com/miRNA-SNiPer/), a new version of our previously developed tool. By examining Ensembl and miRBase genome builds, it was possible to design a tool-based generated search of 16 genomes including four livestock species: pig, horse, cattle and chicken. The analysis revealed 65 polymorphisms located within mature microRNA regions in these four species, including 28% within the seed region in cattle and chicken. Polymorphic microRNA genes in cattle and chicken were further examined for mapping to quantitative trait loci regions associated with production and health traits. The developed bioinformatics tool enables the analysis of polymorphic microRNA genes and prioritization of potential regulatory polymorphisms and therefore contributes to the development of microRNA-based biomarkers in livestock species. The assembled catalog and the developed tool can serve the animal science community to efficiently select microRNA SNPs for further quantitative and molecular genetic evaluations of their phenotypic effects and causal associations with livestock production traits.

  16. Genome-wide variant analysis of simplex autism families with an integrative clinical-bioinformatics pipeline

    PubMed Central

    Jiménez-Barrón, Laura T.; O'Rawe, Jason A.; Wu, Yiyang; Yoon, Margaret; Fang, Han; Iossifov, Ivan; Lyon, Gholson J.

    2015-01-01

    Autism spectrum disorders (ASDs) are a group of developmental disabilities that affect social interaction and communication and are characterized by repetitive behaviors. There is now a large body of evidence that suggests a complex role of genetics in ASDs, in which many different loci are involved. Although many current population-scale genomic studies have been demonstrably fruitful, these studies generally focus on analyzing a limited part of the genome or use a limited set of bioinformatics tools. These limitations preclude the analysis of genome-wide perturbations that may contribute to the development and severity of ASD-related phenotypes. To overcome these limitations, we have developed and utilized an integrative clinical and bioinformatics pipeline for generating a more complete and reliable set of genomic variants for downstream analyses. Our study focuses on the analysis of three simplex autism families consisting of one affected child, unaffected parents, and one unaffected sibling. All members were clinically evaluated and widely phenotyped. Genotyping arrays and whole-genome sequencing were performed on each member, and the resulting sequencing data were analyzed using a variety of available bioinformatics tools. We searched for rare variants of putative functional impact that were found to be segregating according to de novo, autosomal recessive, X-linked, mitochondrial, and compound heterozygote transmission models. The resulting candidate variants included three small heterozygous copy-number variations (CNVs), a rare heterozygous de novo nonsense mutation in MYBBP1A located within exon 1, and a novel de novo missense variant in LAMB3. Our work demonstrates how more comprehensive analyses that include rich clinical data and whole-genome sequencing data can generate reliable results for use in downstream investigations. PMID:27148569

  17. Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    PubMed Central

    Shioya, Kouki; Michaux, Charlotte; Kuenne, Carsten; Hain, Torsten; Verneuil, Nicolas; Budin-Verneuil, Aurélie; Hartsch, Thomas; Hartke, Axel; Giard, Jean-Christophe

    2011-01-01

    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5′ and 3′ RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen. PMID:21912655

  18. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583.

    PubMed

    Shioya, Kouki; Michaux, Charlotte; Kuenne, Carsten; Hain, Torsten; Verneuil, Nicolas; Budin-Verneuil, Aurélie; Hartsch, Thomas; Hartke, Axel; Giard, Jean-Christophe

    2011-01-01

    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.

  19. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to

  20. Residual linkage: why do linkage peaks not disappear after an association study?

    PubMed

    Gordon, Scott; Visscher, Peter M

    2007-03-01

    Family-based candidate gene and genome-wide association studies are a logical progression from linkage studies for the identification of gene and polymorphisms underlying complex traits. An efficient way to analyse phenotypic and genotypic data is to model linkage and association simultaneously. An important result from such an analysis is whether any evidence for linkage remains after fitting polymorphisms at candidate genes (residual linkage), because this may indicate locus and allelic heterogeneity in the population and will influence subsequent molecular strategies. Here we report that substantial residual linkage is to be expected, even under genetic homogeneity and when the underlying causal polymorphisms are genotyped and fitted in the model. We simulated a powerful design to detect linkage to quantitative trait loci, with 5, 10 or 20 causal SNPs spread throughout the genome. These SNPs were responsible for all genetic variation, and hence for both linkage and association. Residual linkage at the largest linkage peak from a genome-wide scan was substantial, with mean LOD scores of 0.4, 0.7, and 1.4 for the case of 5, 10 and 20 underlying causal SNPs, respectively. For less powerful designs, the proportion of the original LOD scores that remains after association will be even larger. All cases of 'significant' residual linkage are false positives. The reason for the apparent paradox of detecting residual linkage after fitting causal polymorphisms is that the linkage signals at the largest peaks in a genome-scan are severely inflated, even if all peaks correspond to true linkage. Our findings are general and apply to linkage mapping of any phenotype and to any pedigree structure.

  1. Genome-wide efficient mixed-model analysis for association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2012-06-17

    Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.

  2. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs

    PubMed Central

    Krapohl, E; Plomin, R

    2016-01-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES. PMID:25754083

  3. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    PubMed

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  4. High quality genome-wide genotyping from archived dried blood spots without DNA amplification.

    PubMed

    St Julien, Krystal R; Jelliffe-Pawlowski, Laura L; Shaw, Gary M; Stevenson, David K; O'Brodovich, Hugh M; Krasnow, Mark A

    2013-01-01

    Spots of blood are routinely collected from newborn babies onto filter paper called Guthrie cards and used to screen for metabolic and genetic disorders. The archived dried blood spots are an important and precious resource for genomic research. Whole genome amplification of dried blood spot DNA has been used to provide DNA for genome-wide SNP genotyping. Here we describe a 96 well format procedure to extract DNA from a portion of a dried blood spot that provides sufficient unamplified genomic DNA for genome-wide single nucleotide polymorphism (SNP) genotyping. We show that SNP genotyping of the unamplified DNA is more robust than genotyping amplified dried blood spot DNA, is comparable in cost, and can be done with thousands of samples. This procedure can be used for genome-wide association studies and other large-scale genomic analyses that require robust, high-accuracy genotyping of dried blood spot DNA.

  5. A functional genome-wide genetic screening identifies new pathways controlling the G1/S transcriptional wave.

    PubMed

    Gaspa, Laura; González-Medina, Alberto; Hidalgo, Elena; Ayté, José

    2016-01-01

    The Schizosaccharomyces pombe MBF complex activates the transcription of genes required for DNA synthesis and S phase. The MBF complex contains several proteins, including the core components Cdc10, Res1 and Res2, the co-repressor proteins Yox1 and Nrm1 and the co-activator Rep2. It has recently been shown how MBF is regulated when either the DNA damage or the DNA synthesis checkpoints are activated. However, how MBF is regulated in a normal unperturbed cell cycle is still not well understood. We have set up a genome-wide genomic screen searching for global regulators of MBF. We have crossed our knock-out collection library with a reporter strain that allows the measurement of MBF activity in live cells by flow cytometry. We confirm previously known regulators of MBF and show that COP9/signalosome and tRNA methyltransferases also regulate MBF activity.

  6. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    PubMed Central

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik

    2014-01-01

    Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607

  7. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.

    PubMed

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    2013-05-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

  8. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources.

    PubMed

    Ramos, Erin M; Hoffman, Douglas; Junkins, Heather A; Maglott, Donna; Phan, Lon; Sherry, Stephen T; Feolo, Mike; Hindorff, Lucia A

    2014-01-01

    Rapidly accumulating data from genome-wide association studies (GWASs) and other large-scale studies are most useful when synthesized with existing databases. To address this opportunity, we developed the Phenotype-Genotype Integrator (PheGenI), a user-friendly web interface that integrates various National Center for Biotechnology Information (NCBI) genomic databases with association data from the National Human Genome Research Institute GWAS Catalog and supports downloads of search results. Here, we describe the rationale for and development of this resource. Integrating over 66,000 association records with extensive single nucleotide polymorphism (SNP), gene, and expression quantitative trait loci data already available from the NCBI, PheGenI enables deeper investigation and interrogation of SNPs associated with a wide range of traits, facilitating the examination of the relationships between genetic variation and human diseases.

  9. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    PubMed Central

    Reddy, Umesh K.; Nimmakayala, Padma; Abburi, Venkata Lakshmi; Reddy, C. V. C. M.; Saminathan, Thangasamy; Percy, Richard G.; Yu, John Z.; Frelichowski, James; Udall, Joshua A.; Page, Justin T.; Zhang, Dong; Shehzad, Tariq; Paterson, Andrew H.

    2017-01-01

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima’s D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication. PMID:28128280

  10. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11

    ERIC Educational Resources Information Center

    Nijmeijer, Judith S.; Arias-Vásquez, Alejandro; Rommelse, Nanda N.; Altink, Marieke E.; Buschgens, Cathelijne J.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Ruud B.; Sergeant, Joseph A.; Buitelaar, Jan K.; Hoekstra, Pieter J.; Hartman, Catharina A.

    2014-01-01

    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ) using a genome-wide linkage approach, followed by locus-wide association analysis. A genome-wide significant locus for the CSBQ subscale…

  11. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  12. Control selection options for genome-wide association studies in cohorts.

    PubMed

    Wacholder, Sholom; Rotunno, Melissa

    2009-03-01

    Investigators planning studies within cohorts have many options for choosing an efficient sampling design for genome-wide association and other molecular epidemiology studies. Consideration of person-year and proportional hazards analyses of full cohorts may add further insight into ramifications of different designs. Empirical evidence from genome-wide association studies can supplement intuition and simulations in comparing properties of various case-control designs within cohorts. Additional theoretical and empirical work, justification of sampling choice in publications, and consideration of context and scientific aims can improve designs and, thereby, increase the scientific value and cost effectiveness of future studies.

  13. Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism.

    PubMed

    Romanelli, Valeria; Nevado, Julián; Fraga, Mario; Trujillo, Alex Martín; Mori, Maria Ángeles; Fernández, Luis; Pérez de Nanclares, Guiomar; Martínez-Glez, Víctor; Pita, Guillermo; Meneses, Heloisa; Gracia, Ricardo; García-Miñaur, Sixto; García de Miguel, Purificación; Lecumberri, Beatriz; Rodríguez, José Ignacio; González Neira, Anna; Monk, David; Lapunzina, Pablo

    2011-03-01

    Molecular studies in a patient with Beckwith-Wiedemann syndrome phenotype who developed two different tumours revealed an unexpected observation of almost complete loss of heterozygosity of all chromosomes. It is shown, by means of numerous molecular methods, that the absence of maternal contribution in somatic cells is due to high-degree (∼ 85%) genome-wide paternal uniparental disomy (UPD). The observations indicate that the genome-wide UPD results from diploidisation, and have important implications for genetic counselling and tumour surveillance for the growing number of UPD associated imprinting disorders.

  14. Genome-wide approaches (GWA) in oral and craniofacial diseases research

    PubMed Central

    Kim, H; Gordon, S; Dionne, R

    2012-01-01

    Underlying molecular genetic mechanisms of diseases can be deciphered with unbiased strategies using recently developed technologies enabling genome-wide scale investigations. These technologies have been applied in scanning for genetic variations, gene expression profiles, and epigenetic changes for oral and craniofacial diseases. However, these approaches as applied to oral and craniofacial conditions are in the initial stages, and challenges remain to be overcome, including analysis of high throughput data and their interpretation. Here, we review methodology and studies using genome-wide approaches in oral and craniofacial diseases and suggest future directions. PMID:22913301

  15. genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools.

    PubMed

    Lemieux Perreault, Louis-Philippe; Legault, Marc-André; Asselin, Géraldine; Dubé, Marie-Pierre

    2016-12-01

    Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies).

  16. Genome-Wide Association Mapping of Root Traits in the Context of Plant Hormone Research.

    PubMed

    Ristova, Daniela; Busch, Wolfgang

    2017-01-01

    Genome-wide association (GWA) mapping is a powerful method for the identification of alleles that underlie quantitative traits. It enables one to understand how genetic variation translates into phenotypic variation. In particular, plant hormone signaling pathways play a key role in shaping phenotypes. This chapter presents a protocol for genome-wide association mapping of root traits of Arabidopsis thaliana in the context of hormone research. We describe a specific protocol for acquiring primary and lateral root trait data that is appropriate for GWA studies using FIJI (ImageJ), and subsequent GWA mapping using a user-friendly Internet application.

  17. Genome-wide DNA methylation analysis using massively parallel sequencing technologies.

    PubMed

    Suzuki, Masako; Greally, John M

    2013-01-01

    "Epigenetics" refers to a heritable change in transcriptional status without alteration in the primary nucleotide sequence. Epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal development, as well as in pathological conditions. DNA methylation is one of the best known and well-studied epigenetic modifications. Genome-wide DNA methylation profiling has become recognized as a biologically and clinically important epigenomic assay. In this review, we discuss the strengths and weaknesses of the protocols for genome-wide DNA methylation profiling using massively parallel sequencing (MPS) techniques. We will also describe recently discovered DNA modifications, and the protocols to detect these modifications.

  18. The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search

    PubMed Central

    Bauters, Lander; Naalden, Diana; Gheysen, Godelieve

    2017-01-01

    Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species. PMID:28054982

  19. The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search.

    PubMed

    Bauters, Lander; Naalden, Diana; Gheysen, Godelieve

    2017-01-04

    Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.

  20. Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains.

    PubMed

    Kekre, Anay; Bhushan, Ashish; Kumar, Prasun; Kalia, Vipin Chandra

    2015-09-01

    Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy