Science.gov

Sample records for genome-wide mammalian consistency-based

  1. Genome-wide nucleotide-level mammalian ancestor reconstruction.

    PubMed

    Paten, Benedict; Herrero, Javier; Fitzgerald, Stephen; Beal, Kathryn; Flicek, Paul; Holmes, Ian; Birney, Ewan

    2008-11-01

    Recently attention has been turned to the problem of reconstructing complete ancestral sequences from large multiple alignments. Successful generation of these genome-wide reconstructions will facilitate a greater knowledge of the events that have driven evolution. We present a new evolutionary alignment modeler, called "Ortheus," for inferring the evolutionary history of a multiple alignment, in terms of both substitutions and, importantly, insertions and deletions. Based on a multiple sequence probabilistic transducer model of the type proposed by Holmes, Ortheus uses efficient stochastic graph-based dynamic programming methods. Unlike other methods, Ortheus does not rely on a single fixed alignment from which to work. Ortheus is also more scaleable than previous methods while being fast, stable, and open source. Large-scale simulations show that Ortheus performs close to optimally on a deep mammalian phylogeny. Simulations also indicate that significant proportions of errors due to insertions and deletions can be avoided by not assuming a fixed alignment. We additionally use a challenging hold-out cross-validation procedure to test the method; using the reconstructions to predict extant sequence bases, we demonstrate significant improvements over using closest extant neighbor sequences. Accompanying this paper, a new, public, and genome-wide set of Ortheus ancestor alignments provide an intriguing new resource for evolutionary studies in mammals. As a first piece of analysis, we attempt to recover "fossilized" ancestral pseudogenes. We confidently find 31 cases in which the ancestral sequence had a more complete sequence than any of the extant sequences.

  2. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide

    PubMed Central

    Nojima, Takayuki; Gomes, Tomás; Carmo-Fonseca, Maria; Proudfoot, Nicholas J

    2016-01-01

    The transcription cycle of RNA polymerase II (Pol II) correlates with changes to the phosphorylation state of its large subunit C-terminal domain (CTD). We recently developed Native Elongation Transcript sequencing using mammalian cells (mNET-seq), which generates single-nucleotide–resolution genome-wide profiles of nascent RNA and co-transcriptional RNA processing that are associated with different CTD phosphorylation states. Here we provide a detailed protocol for mNET-seq. First, Pol II elongation complexes are isolated with specific phospho-CTD antibodies from chromatin solubilized by micrococcal nuclease digestion. Next, RNA derived from within the Pol II complex is size fractionated and Illumina sequenced. using mNET-seq, we have previously shown that Pol II pauses at both ends of protein-coding genes but with different CTD phosphorylation patterns, and we have also detected phosphorylation at serine 5 (Ser5-P) CTD-specific splicing intermediates and Pol II accumulation over co-transcriptionally spliced exons. With moderate biochemical and bioinformatic skills, mNET-seq can be completed in ~6 d, not including sequencing and data analysis. PMID:26844429

  3. Genome-wide exploration of miRNA function in mammalian muscle cell differentiation.

    PubMed

    Polesskaya, Anna; Degerny, Cindy; Pinna, Guillaume; Maury, Yves; Kratassiouk, Gueorgui; Mouly, Vincent; Morozova, Nadya; Kropp, Jeremie; Frandsen, Niels; Harel-Bellan, Annick

    2013-01-01

    MiRNAs impact on the control of cell fate by regulating gene expression at the post-transcriptional level. Here, using mammalian muscle differentiation as a model and a phenotypic loss-of-function screen, we explored the function of miRNAs at the genome-wide level. We found that the depletion of a high number of miRNAs (63) impacted on differentiation of human muscle precursors, underscoring the importance of this post-transcriptional mechanism of gene regulation. Interestingly, a comparison with miRNA expression profiles revealed that most of the hit miRNAs did not show any significant variations of expression during differentiation. These constitutively expressed miRNAs might be required for basic and/or essential cell function, or else might be regulated at the post-transcriptional level. MiRNA inhibition yielded a variety of phenotypes, reflecting the widespread miRNA involvement in differentiation. Using a functional screen (the STarS--Suppressor Target Screen--approach, i. e. concomitant knockdown of miRNAs and of candidate target proteins), we discovered miRNA protein targets that are previously uncharacterized controllers of muscle-cell terminal differentiation. Our results provide a strategy for functional annotation of the human miRnome.

  4. PReMod: a database of genome-wide mammalian cis-regulatory module predictions.

    PubMed

    Ferretti, Vincent; Poitras, Christian; Bergeron, Dominique; Coulombe, Benoit; Robert, François; Blanchette, Mathieu

    2007-01-01

    We describe PReMod, a new database of genome-wide cis-regulatory module (CRM) predictions for both the human and the mouse genomes. The prediction algorithm, described previously in Blanchette et al. (2006) Genome Res., 16, 656-668, exploits the fact that many known CRMs are made of clusters of phylogenetically conserved and repeated transcription factors (TF) binding sites. Contrary to other existing databases, PReMod is not restricted to modules located proximal to genes, but in fact mostly contains distal predicted CRMs (pCRMs). Through its web interface, PReMod allows users to (i) identify pCRMs around a gene of interest; (ii) identify pCRMs that have binding sites for a given TF (or a set of TFs) or (iii) download the entire dataset for local analyses. Queries can also be refined by filtering for specific chromosomal regions, for specific regions relative to genes or for the presence of CpG islands. The output includes information about the binding sites predicted within the selected pCRMs, and a graphical display of their distribution within the pCRMs. It also provides a visual depiction of the chromosomal context of the selected pCRMs in terms of neighboring pCRMs and genes, all of which are linked to the UCSC Genome Browser and the NCBI. PReMod: http://genomequebec.mcgill.ca/PReMod.

  5. Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1.

    PubMed

    Opel, Michael; Lando, David; Bonilla, Carolina; Trewick, Sarah C; Boukaba, Abdelhalim; Walfridsson, Julian; Cauwood, James; Werler, Petra J H; Carr, Antony M; Kouzarides, Tony; Murzina, Natalia V; Allshire, Robin C; Ekwall, Karl; Laue, Ernest D

    2007-04-18

    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and

  6. Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells

    PubMed Central

    Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.

    2013-01-01

    A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767

  7. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    PubMed

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  8. Genome Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Sebastiani, Paola; Solovieff, Nadia

    The availability of high throughput technology for parallel genotyping has opened the field of genetics to genome-wide association studies (GWAS). These studies generate massive amount of genetic data that challenge investigators with issues related to data management, statistical analysis of large data sets, visualization, and annotation of results. We will review the common approach to analysis of GWAS data and then discuss options to learn more from these data.

  9. A genome-wide screen identifies a single Β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins

    SciTech Connect

    Xiao, Yanjing; Hughes, Austin L.; Ando, Junko; Matsuda, Yoichi; Cheng, Jan-Fang; Skinner-Noble, Donald; Zhang, Guolong

    2004-08-13

    Defensins comprise a large family of cationic antimicrobial peptides that are characterized by the presence of a conserved cysteine-rich defensin motif. Based on the spacing pattern of cysteines, these defensins are broadly divided into five groups, namely plant, invertebrate, {alpha}-, {beta}-, and {theta}-defensins, with the last three groups being mostly found in mammalian species. However, the evolutionary relationships among these five groups of defensins remain controversial.

  10. Genome-wide association mapping in plants.

    PubMed

    George, Andrew W; Cavanagh, Colin

    2015-06-01

    We present new association mapping methods which address the unique challenges of analyzing genome-wide data from multi-environment plant studies. Association studies on a genome-wide scale are being performed in plants. Unlike human studies, plant studies contain replicates whose data may be recorded across different environments. Plant studies also often employ elaborate experimental designs for controlling extraneous phenotypic variation. As a result, the genome-wide analysis of data from plant studies can be challenging. In this paper, we present QK-based association mapping for the analysis of data from plant association studies. In doing so, we have developed: (a) a general multivariate QK framework for association mapping in plant studies of arbitrary complexity; (b) a new weighted two-stage analysis approach for QK-based association mapping; (c) a heuristic procedure for determining when two-stage analysis is appropriate; and (d) a Monte Carlo sampling procedure for controlling the genome-wide type I error rate. We conduct a simulation study to evaluate the performance of our genome-wide mapping technique. We also analyze data from a multi-environment association study in wheat.

  11. Genome-wide association studies of cancer.

    PubMed

    Jorgenson, Eric; Witte, John S

    2007-08-01

    Genome-wide association studies provide a new and powerful approach to investigate the effect of inherited genetic variation on the risk of human disease. These studies rely on high throughput DNA microarray technology to genotype hundreds of thousands of genetic variants across the human genome. The first genome-wide association studies have identified previously unknown genetic risk factors that influence a range of diseases, including prostate cancer, breast cancer, myocardial infarction, age-related macular degeneration, diabetes, Crohn's disease and obesity. Many more studies are currently underway, including a number that will focus on other cancers (e.g., colorectal). Here we discuss the major issues involved in conducting genome-wide association studies and how these studies can be used to examine cancer phenotypes.

  12. Profiling genome-wide DNA methylation.

    PubMed

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  13. Genome-Wide Approaches to Schizophrenia

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Gejman, Pablo V.

    2010-01-01

    Schizophrenia (SZ) is a common and severe psychiatric disorder with both environmental and genetic risk factors, and a high heritability. After over 20 years of molecular genetics research, new molecular strategies, primarily genome-wide association studies (GWAS), have generated major tangible progress. This new data provides evidence for: 1) A number of chromosomal regions with common polymorphisms showing genome-wide association with SZ (the major histocompatibility complex, MHC, region at 6p22-p21; 18q21.2; and 2q32.1). The associated alleles present small odds ratios (the odds of a risk variant being present in cases versus controls) and suggest causative involvement of gene regulatory mechanisms in SZ. 2) Polygenic inheritance. 3) Involvement of rare (<1%) and large (>100kb) copy number variants (CNVs). 4) A genetic overlap of SZ with autism and with bipolar disorder (BP) challenging the classical clinical classifications. Most new SZ findings (chromosomal regions and genes) have generated new biological leads. These new findings, however, still need to be translated into a better understanding of the underlying biology and into causal mechanisms. Furthermore, a considerable amount of heritability still remains unexplained (missing heritability). Deep resequencing for rare variants and system biology approaches (e.g., integrating DNA sequence and functional data) are expected to further improve our understanding of the genetic architecture of SZ and its underlying biology. PMID:20433910

  14. Patterns of Genome-Wide VDR Locations

    PubMed Central

    Tuoresmäki, Pauli; Väisänen, Sami; Neme, Antonio

    2014-01-01

    The genome-wide analysis of the binding sites of the transcription factor vitamin D receptor (VDR) is essential for a global appreciation the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide analysis of lipopolysaccharide (LPS)-polarized THP-1 human monocytic leukemia cells via chromatin immunoprecipitation sequencing (ChIP-seq) resulted in 1,318 high-confidence VDR binding sites, of which 789 and 364 occurred uniquely with and without 1,25(OH)2D3 stimulation, while only 165 were common. We re-analyzed five public VDR ChIP-seq datasets with identical peak calling settings (MACS, version 2) and found, using a novel consensus summit identification strategy, in total 23,409 non-overlapping VDR binding sites, 75% of which are unique within the six analyzed cellular models. LPS-differentiated THP-1 cells have 22% more genomic VDR locations than undifferentiated cells and both cell types display more overlap in their VDR locations than the other investigated cell types. In general, the intersection of VDR binding profiles of ligand-stimulated cells is higher than those of unstimulated cells. De novo binding site searches and HOMER screening for binding motifs formed by direct repeats spaced by three nucleotides (DR3) suggest for all six VDR ChIP-seq datasets that these sequences are found preferentially at highly ligand responsive VDR loci. Importantly, all VDR ChIP-seq datasets display the same relationship between the VDR occupancy and the percentage of DR3-type sequences below the peak summits. The comparative analysis of six VDR ChIP-seq datasets demonstrated that the mechanistic basis for the action of the VDR is independent of the cell type. Only the minority of genome-wide VDR binding sites contains a DR3-type sequence. Moreover, the total number of identified VDR binding sites in each ligand-stimulated cell line inversely correlates with the percentage of peak summits with DR3 sites. PMID:24787735

  15. Genome-wide determination of drug localization

    PubMed Central

    Anders, Lars; Guenther, Matthew G.; Qi, Jun; Fan, Zi Peng; Marineau, Jason J.; Rahl, Peter B.; Lovén, Jakob; Sigova, Alla A.; Smith, William B.; Lee, Tong Ihn; Bradner, James E.; Young, Richard A.

    2014-01-01

    A vast number of small-molecule ligands, including therapeutic drugs under development and in clinical use, elicit their effects by binding specific proteins associated with the genome. An ability to map the direct interactions of a chemical entity with chromatin genome-wide could provide new and important insights into chemical perturbation of cellular function. Here we describe a method that couples ligand-affinity capture and massively parallel DNA sequencing (Chem-seq) to identify the sites bound by small chemical molecules throughout the human genome. We show how Chem-seq can be combined with ChIP-seq to gain unique insights into the interaction of drugs with their target proteins throughout the genome of tumor cells. These methods provide a powerful approach to enhance understanding of therapeutic action and characterize the specificity of chemical entities that interact with DNA or genome-associated proteins. PMID:24336317

  16. Genome-Wide Association Studies of Cancer

    PubMed Central

    Stadler, Zsofia K.; Thom, Peter; Robson, Mark E.; Weitzel, Jeffrey N.; Kauff, Noah D.; Hurley, Karen E.; Devlin, Vincent; Gold, Bert; Klein, Robert J.; Offit, Kenneth

    2010-01-01

    Knowledge of the inherited risk for cancer is an important component of preventive oncology. In addition to well-established syndromes of cancer predisposition, much remains to be discovered about the genetic variation underlying susceptibility to common malignancies. Increased knowledge about the human genome and advances in genotyping technology have made possible genome-wide association studies (GWAS) of human diseases. These studies have identified many important regions of genetic variation associated with an increased risk for human traits and diseases including cancer. Understanding the principles, major findings, and limitations of GWAS is becoming increasingly important for oncologists as dissemination of genomic risk tests directly to consumers is already occurring through commercial companies. GWAS have contributed to our understanding of the genetic basis of cancer and will shed light on biologic pathways and possible new strategies for targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers remains limited. PMID:20585100

  17. Replication in genome-wide association studies

    PubMed Central

    Kraft, Peter; Zeggini, Eleftheria; Ioannidis, John P. A.

    2009-01-01

    Summary Replication helps ensure that a genotype-phenotype association observed in a genome-wide association (GWA) study represents a credible association and is not a chance finding or an artifact due to uncontrolled biases. We discuss prerequisites for exact replication; issues of heterogeneity; advantages and disadvantages of different methods of data synthesis across multiple studies; frequentist vs. Bayesian inferences for replication; and challenges that arise from multi-team collaborations. While consistent replication can greatly improve the credibility of a genotype-phenotype association, it may not eliminate spurious associations due to biases shared by many studies. Conversely, lack of replication in well-powered follow-up studies usually invalidates the initially proposed association, although occasionally it may point to differences in linkage disequilibrium or effect modifiers across studies. PMID:20454541

  18. A Genome-Wide Perspective on Metabolism.

    PubMed

    Rauch, Alexander; Mandrup, Susanne

    2016-01-01

    Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.

  19. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  20. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  1. Genome-wide positioning of bivalent mononucleosomes.

    PubMed

    Sen, Subhojit; Block, Kirsten F; Pasini, Alice; Baylin, Stephen B; Easwaran, Hariharan

    2016-09-15

    Bivalent chromatin refers to overlapping regions containing activating histone H3 Lys4 trimethylation (H3K4me3) and inactivating H3K27me3 marks. Existence of such bivalent marks on the same nucleosome has only recently been suggested. Previous genome-wide efforts to characterize bivalent chromatin have focused primarily on individual marks to define overlapping zones of bivalency rather than mapping positions of truly bivalent mononucleosomes. Here, we developed an efficacious sequential ChIP technique for examining global positioning of individual bivalent nucleosomes. Using next generation sequencing approaches we show that although individual H3K4me3 and H3K27me3 marks overlap in broad zones, bivalent nucleosomes are focally enriched in the vicinity of the transcription start site (TSS). These seem to occupy the H2A.Z nucleosome positions previously described as salt-labile nucleosomes, and are correlated with low gene expression. Although the enrichment profiles of bivalent nucleosomes show a clear dependency on CpG island content, they demonstrate a stark anti-correlation with methylation status. We show that regional overlap of H3K4me3 and H3K27me3 chromatin tend to be upstream to the TSS, while bivalent nucleosomes with both marks are mainly promoter proximal near the TSS of CpG island-containing genes with poised/low expression. We discuss the implications of the focal enrichment of bivalent nucleosomes around the TSS on the poised chromatin state of promoters in stem cells.

  2. Genome Wide Methylome Alterations in Lung Cancer.

    PubMed

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  3. Genome Wide Methylome Alterations in Lung Cancer

    PubMed Central

    Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K.; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D.; Spivack, Simon D.

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)–non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  4. A Discovery Genome-Wide Association Study of Entrepreneurship

    ERIC Educational Resources Information Center

    Quaye, Lydia; Nicolaou, Nicos; Shane, Scott; Mangino, Massimo

    2012-01-01

    To identify specific genetic variants influencing the phenotype of entrepreneurship, we conducted a genome-wide association study (GWAS) with 3,933 Caucasian females from the TwinsUK Adult Twin Registry. Following stringent genotype quality control, GWAF (genome-wide association analyses for family data) software was used to assess the association…

  5. Genome-Wide Views of Chromatin Structure

    PubMed Central

    Rando, Oliver J.; Chang, Howard Y.

    2010-01-01

    Eukaryotic genomes are packaged into a nucleoprotein complex known as chromatin, which affects most processes that occur on DNA. Along with genetic and biochemical studies of resident chromatin proteins and their modifying enzymes, mapping of chromatin structure in vivo is one of the main pillars in our understanding of how chromatin relates to cellular processes. In this review, we discuss the use of genomic technologies to characterize chromatin structure in vivo, with a focus on data from budding yeast and humans. The picture emerging from these studies is the detailed chromatin structure of a typical gene, where the typical behavior gives insight into the mechanisms and deep rules that establish chromatin structure. Important deviation from the archetype is also observed, usually as a consequence of unique regulatory mechanisms at special genomic loci. Chromatin structure shows substantial conservation from yeast to humans, but mammalian chromatin has additional layers of complexity that likely relate to the requirements of multicellularity such as the need to establish faithful gene regulatory mechanisms for cell differentiation. PMID:19317649

  6. Adjusted P values for genome-wide scans.

    PubMed Central

    Lystig, Theodore C

    2003-01-01

    Genome-wide scans for quantitative trait loci (QTL) have traditionally been summarized with plots of logarithm of odds (LOD) scores. A valuable modification is to supplement such plots with an additional vertical axis displaying quantiles of adjusted P values and labeling local maxima of the LOD scores with location-specific adjusted P values. This provides a visible gradation of genome-wide significance for the LOD score curve, instead of the stark dichotomy that a single threshold yields. Adjusted P values give genome-wide significance of individual LOD scores and are obtained through a straightforward modification of the familiar algorithm for generating permutation-based thresholds. PMID:12930772

  7. A Genome-Wide Map of AAV-Mediated Human Gene Targeting

    PubMed Central

    Deyle, David R.; Hansen, R. Scott; Cornea, Anda M.; Li, Li B.; Burt, Amber A.; Alexander, Ian E.; Sandstrom, Richard S.; Stamatoyannopoulos, John A.; Wei, Chia-Lin; Russell, David W.

    2014-01-01

    To determine which genomic features promote homologous recombination, we created a genome-wide map of gene targeting sites. An adeno-associated virus vector was used to target identical loci introduced as transcriptionally active retroviral vector proviruses. A comparison of ~2,000 targeted and untargeted sites showed that targeting occurred throughout the human genome and was not influenced by the presence of nearby CpG islands, sequence repeats, or DNase I hypersensitive sites. Targeted sites were preferentially found within transcription units, especially when the target loci were transcribed in the opposite orientation to their surrounding chromosomal genes. The impact of DNA replication was determined by mapping replication forks, which revealed a preference for recombination at target loci transcribed towards an incoming fork. Our results constitute the first genome-wide screen of gene targeting in mammalian cells, and they demonstrate a strong recombinogenic effect of colliding polymerases. PMID:25282150

  8. Genome-wide analysis for protein-DNA interaction: ChIP-chip.

    PubMed

    Tong, Yunguang; Falk, Jeff

    2009-01-01

    Chromatin immunoprecipitation (ChIP) is a well-established procedure for protein-DNA interaction research. ChIP-chip, combining chromatin immunoprecipitation (ChIP) and microarray technology (Chip), enables scientists to survey genome-wide DNA binding sites for a given protein. The ChIP-chip technique has been used to identify transcription factor binding sites, explore epigenomic information and investigate factors in DNA replicate/repairs. Here we describe a protocol for ChIP-chip to study Pituitary Tumor Transforming Gene (PTTG1) in mammalian cells.

  9. Machine learning in genome-wide association studies.

    PubMed

    Szymczak, Silke; Biernacka, Joanna M; Cordell, Heather J; González-Recio, Oscar; König, Inke R; Zhang, Heping; Sun, Yan V

    2009-01-01

    Recently, genome-wide association studies have substantially expanded our knowledge about genetic variants that influence the susceptibility to complex diseases. Although standard statistical tests for each single-nucleotide polymorphism (SNP) separately are able to capture main genetic effects, different approaches are necessary to identify SNPs that influence disease risk jointly or in complex interactions. Experimental and simulated genome-wide SNP data provided by the Genetic Analysis Workshop 16 afforded an opportunity to analyze the applicability and benefit of several machine learning methods. Penalized regression, ensemble methods, and network analyses resulted in several new findings while known and simulated genetic risk variants were also identified. In conclusion, machine learning approaches are promising complements to standard single-and multi-SNP analysis methods for understanding the overall genetic architecture of complex human diseases. However, because they are not optimized for genome-wide SNP data, improved implementations and new variable selection procedures are required. (c) 2009 Wiley-Liss, Inc.

  10. A novel statistic for genome-wide interaction analysis.

    PubMed

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  11. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks

    PubMed Central

    Parnas, Oren; Jovanovic, Marko; Eisenhaure, Thomas M.; Herbst, Rebecca H.; Dixit, Atray; Ye, Chun Jimmie; Przybylski, Dariusz; Platt, Randall J.; Tirosh, Itay; Sanjana, Neville E.; Shalem, Ophir; Satija, Rahul; Raychowdhury, Raktima; Mertins, Philipp; Carr, Steven A.; Zhang, Feng; Hacohen, Nir; Regev, Aviv

    2015-01-01

    Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in the known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS, and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells, and provide a genetic approach for dissection of mammalian cell circuits. PMID:26189680

  12. Genome-wide association mapping of soybean aphid resistance traits

    USDA-ARS?s Scientific Manuscript database

    Soybean aphid is the most damaging insect pest of soybean in the Upper Midwest and is primarily controlled by insecticides. Soybean aphid resistance (i.e., Rag genes) has been documented in some soybean lines at chromosomes 6, 7, 13, and 16, but more sources of resistance are needed. Genome-wide ass...

  13. A super powerful method for genome wide association study

    USDA-ARS?s Scientific Manuscript database

    Genome-Wide Association Studies shed light on the identification of genes underlying human diseases and agriculturally important traits. This potential has been shadowed by false positive findings. The Mixed Linear Model (MLM) method is flexible enough to simultaneously incorporate population struct...

  14. Genome-wide characterization of maize miRNA genes

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in plant growth and development. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling ident...

  15. Genome-wide association studies in maize: praise and stargaze

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...

  16. Genome-wide association study identifies five new schizophrenia loci

    PubMed Central

    2012-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9). PMID:21926974

  17. Genome-wide patterns of selection in 230 ancient Eurasians.

    PubMed

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R; Llamas, Bastien; Dryomov, Stanislav; Pickrell, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vyacheslav; Guerra, Manuel A Rojo; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2015-12-24

    Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

  18. Genome-wide patterns of selection in 230 ancient Eurasians

    PubMed Central

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  19. Genome-wide association studies of obesity and metabolic syndrome.

    PubMed

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years.

  20. Genome wide copy number analysis of single cells

    PubMed Central

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  1. Genome-wide scans for loci under selection in humans.

    PubMed

    Ronald, James; Akey, Joshua M

    2005-06-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection.

  2. Genome-wide functional analysis in Candida albicans.

    PubMed

    Motaung, Thabiso E; Ells, Ruan; Pohl, Carolina H; Albertyn, Jacobus; Tsilo, Toi J

    2017-02-08

    Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.

  3. Genome-wide RNA Tomography in the zebrafish embryo.

    PubMed

    Junker, Jan Philipp; Noël, Emily S; Guryev, Victor; Peterson, Kevin A; Shah, Gopi; Huisken, Jan; McMahon, Andrew P; Berezikov, Eugene; Bakkers, Jeroen; van Oudenaarden, Alexander

    2014-10-23

    Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in embryos or tissues. Microscopy-based approaches, using in situ hybridization, for example, can provide spatial information about gene expression, but are limited to analyzing one or a few genes at a time. Here, we present a method where we combine traditional histological techniques with low-input RNA sequencing and mathematical image reconstruction to generate a high-resolution genome-wide 3D atlas of gene expression in the zebrafish embryo at three developmental stages. Importantly, our technique enables searching for genes that are expressed in specific spatial patterns without manual image annotation. We envision broad applicability of RNA tomography as an accurate and sensitive approach for spatially resolved transcriptomics in whole embryos and dissected organs.

  4. Analysis of Heritability Using Genome-Wide Data.

    PubMed

    Hall, Jacob B; Bush, William S

    2016-10-11

    Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley & Sons, Inc.

  5. Genome-Wide Significant Loci: How Important Are They?

    PubMed Central

    Björkegren, Johan L.M.; Kovacic, Jason C.; Dudley, Joel T.; Schadt, Eric E.

    2015-01-01

    Genome-wide association studies (GWAS) have been extensively used to study common complex diseases such as coronary artery disease (CAD), revealing 153 suggestive CAD loci, of which at least 46 have been validated as having genome-wide significance. However, these loci collectively explain <10% of the genetic variance in CAD. Thus, we must address the key question of what factors constitute the remaining 90% of CAD heritability. We review possible limitations of GWAS, and contextually consider some candidate CAD loci identified by this method. Looking ahead, we propose systems genetics as a complementary approach to unlocking the CAD heritability and etiology. Systems genetics builds network models of relevant molecular processes by combining genetic and genomic datasets to ultimately identify key “drivers” of disease. By leveraging systems-based genetic approaches, we can help reveal the full genetic basis of common complex disorders, enabling novel diagnostic and therapeutic opportunities. PMID:25720628

  6. Genome-Wide Association Studies and Liver Disease

    PubMed Central

    Speliotes, Elizabeth K.

    2016-01-01

    Sequencing of the human genome has opened up many opportunities to learn about our own genetic susceptibilities to disease. In this Foreword to this issue of Seminars in Liver Disease, I provide some required background to understanding genome-wide association analyses in general, including a list of terms (Table 1) often used in such studies. Five areas of particular significance are then reviewed in detail in the articles that follow. PMID:26676811

  7. Genome-wide association study of schizophrenia in Ashkenazi Jews.

    PubMed

    Goes, Fernando S; McGrath, John; Avramopoulos, Dimitrios; Wolyniec, Paula; Pirooznia, Mehdi; Ruczinski, Ingo; Nestadt, Gerald; Kenny, Eimear E; Vacic, Vladimir; Peters, Inga; Lencz, Todd; Darvasi, Ariel; Mulle, Jennifer G; Warren, Stephen T; Pulver, Ann E

    2015-12-01

    Schizophrenia is a common, clinically heterogeneous disorder associated with lifelong morbidity and early mortality. Several genetic variants associated with schizophrenia have been identified, but the majority of the heritability remains unknown. In this study, we report on a case-control sample of Ashkenazi Jews (AJ), a founder population that may provide additional insights into genetic etiology of schizophrenia. We performed a genome-wide association analysis (GWAS) of 592 cases and 505 controls of AJ ancestry ascertained in the US. Subsequently, we performed a meta-analysis with an Israeli AJ sample of 913 cases and 1640 controls, followed by a meta-analysis and polygenic risk scoring using summary results from Psychiatric GWAS Consortium 2 schizophrenia study. The U.S. AJ sample showed strong evidence of polygenic inheritance (pseudo-R(2) ∼9.7%) and a SNP-heritability estimate of 0.39 (P = 0.00046). We found no genome-wide significant associations in the U.S. sample or in the combined US/Israeli AJ meta-analysis of 1505 cases and 2145 controls. The strongest AJ specific associations (P-values in 10(-6) -10(-7) range) were in the 22q 11.2 deletion region and included the genes TBX1, GLN1, and COMT. Supportive evidence (meta P < 1 × 10(-4) ) was also found for several previously identified genome-wide significant findings, including the HLA region, CNTN4, IMMP2L, and GRIN2A. The meta-analysis of the U.S. sample with the PGC2 results provided initial genome-wide significant evidence for six new loci. Among the novel potential susceptibility genes is PEPD, a gene involved in proline metabolism, which is associated with a Mendelian disorder characterized by developmental delay and cognitive deficits. © 2015 Wiley Periodicals, Inc.

  8. Genome-Wide Profiling of Alternative Translation Initiation Sites.

    PubMed

    Gao, Xiangwei; Wan, Ji; Qian, Shu-Bing

    2016-01-01

    Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables identification of translation initiation sites on a genome-wide scale. By capturing initiating ribosomes using lactimidomycin, this approach permits qualitative and quantitative analysis of alternative translation initiation.

  9. Genome-wide association study of paliperidone efficacy

    PubMed Central

    Wineinger, Nathan E.; Fu, Dong-Jing; Libiger, Ondrej; Alphs, Larry; Savitz, Adam; Gopal, Srihari; Cohen, Nadine; Schork, Nicholas J.

    2017-01-01

    Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples. PMID:27846195

  10. Genome-wide epigenomic profiling for biomarker discovery.

    PubMed

    Dirks, René A M; Stunnenberg, Hendrik G; Marks, Hendrik

    2016-01-01

    A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.

  11. Significance of genome-wide association studies in molecular anthropology.

    PubMed

    Gupta, Vipin; Khadgawat, Rajesh; Sachdeva, Mohinder Pal

    2009-12-01

    The successful advent of a genome-wide approach in association studies raises the hopes of human geneticists for solving a genetic maze of complex traits especially the disorders. This approach, which is replete with the application of cutting-edge technology and supported by big science projects (like Human Genome Project; and even more importantly the International HapMap Project) and various important databases (SNP database, CNV database, etc.), has had unprecedented success in rapidly uncovering many of the genetic determinants of complex disorders. The magnitude of this approach in the genetics of classical anthropological variables like height, skin color, eye color, and other genome diversity projects has certainly expanded the horizons of molecular anthropology. Therefore, in this article we have proposed a genome-wide association approach in molecular anthropological studies by providing lessons from the exemplary study of the Wellcome Trust Case Control Consortium. We have also highlighted the importance and uniqueness of Indian population groups in facilitating the design and finding optimum solutions for other genome-wide association-related challenges.

  12. Voxelwise genome-wide association study (vGWAS).

    PubMed

    Stein, Jason L; Hua, Xue; Lee, Suh; Ho, April J; Leow, Alex D; Toga, Arthur W; Saykin, Andrew J; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J; Craig, David W; Gerber, Jill D; Allen, April N; Corneveaux, Jason J; Dechairo, Bryan M; Potkin, Steven G; Weiner, Michael W; Thompson, Paul

    2010-11-15

    The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.

  13. Genome-wide DNA polymorphism analyses using VariScan

    PubMed Central

    Hutter, Stephan; Vilella, Albert J; Rozas, Julio

    2006-01-01

    Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data. PMID:16968531

  14. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  15. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    PubMed Central

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10−5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  16. Genome-Wide Estimates of Heritability for Social Demographic Outcomes

    PubMed Central

    Domingue, Benjamin W.; Wedow, Robbee; Conley, Dalton; McQueen, Matt; Hoffmann, Thomas J.; Boardman, Jason D.

    2016-01-01

    An increasing number of studies that are widely used in the demographic research community have collected genome-wide data from their respondents. It is therefore important that demographers have a proper understanding of some of the methodological tools needed to analyze such data. Our paper details the underlying methodology behind one of the most common techniques for analyzing genome-wide data, Genome-Wide Complex Trait Analysis (GCTA). GCTA models provide heritability estimates for health, health behaviors, or indicators of attainment using data from unrelated persons.. Our goal is to describe this model, to highlight the utility of the model for biodemographic research, and to demonstrate the performance of this approach under modifications of the underlying assumptions. The first set of modifications involves changing the nature of the genetic data used to compute genetic similarities between individuals (the genetic relationship matrix). We then explore the sensitivity of the model to heteroscedastic errors. In general, GCTA estimates are robust to the modifications proposed here but we also highlight potential limitations of GCTA estimates. PMID:27050030

  17. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep.

    PubMed

    Mousel, Michelle R; Reynolds, James O; White, Stephen N

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10(-5)) were identified including markers in or near PIK3CB (P = 2.22x10(-6); additive model), KCNB1 (P = 2.93x10(-6); dominance model), ZC3H12C (P = 3.25x10(-6); genotypic model), JPH1 (P = 4.68x20(-6); genotypic model), and MYO3B (P = 5.74x10(-6); recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.

  18. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep

    PubMed Central

    Mousel, Michelle R.; Reynolds, James O.; White, Stephen N.

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection. PMID:26098909

  19. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    PubMed

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  20. Genome-Wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells

    PubMed Central

    Chiarle, Roberto; Zhang, Yu; Frock, Richard L.; Lewis, Susanna M.; Molinie, Benoit; Ho, Yu-Jui; Myers, Darienne R.; Choi, Vivian W.; Compagno, Mara; Malkin, Daniel J.; Neuberg, Donna; Monti, Stefano; Giallourakis, Cosmas C.; Gostissa, Monica; Alt, Frederick W.

    2011-01-01

    SUMMARY While chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for Activation Induced-cytidine Deaminase (AID)-dependent IgH class-switching. DSBs translocated very widely across the genome, but were preferentially targeted to transcribed chromosomal regions and also to numerous AID-dependent and AID-independent hotspots, with the latter being comprised mainly of cryptic genomic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short micro-homologies. We discuss implications of our findings for diverse fields including gene therapy and cancer genomics. PMID:21962511

  1. Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection

    PubMed Central

    Sharma, Garima; Sowpati, Divya Tej; Singh, Prakruti; Khan, Mehak Zahoor; Ganji, Rakesh; Upadhyay, Sandeep; Banerjee, Sharmistha; Nandicoori, Vinay Kumar; Khosla, Sanjeev

    2016-01-01

    A mammalian cell utilizes DNA methylation to modulate gene expression in response to environmental changes during development and differentiation. Aberrant DNA methylation changes as a correlate to diseased states like cancer, neurodegenerative conditions and cardiovascular diseases have been documented. Here we show genome-wide DNA methylation changes in macrophages infected with the pathogen M. tuberculosis. Majority of the affected genomic loci were hypermethylated in M. tuberculosis infected THP1 macrophages. Hotspots of differential DNA methylation were enriched in genes involved in immune response and chromatin reorganization. Importantly, DNA methylation changes were observed predominantly for cytosines present in non-CpG dinucleotide context. This observation was consistent with our previous finding that the mycobacterial DNA methyltransferase, Rv2966c, targets non-CpG dinucleotides in the host DNA during M. tuberculosis infection and reiterates the hypothesis that pathogenic bacteria use non-canonical epigenetic strategies during infection. PMID:27112593

  2. Improved Heritability Estimation from Genome-wide SNPs

    PubMed Central

    Speed, Doug; Hemani, Gibran; Johnson, Michael R.; Balding, David J.

    2012-01-01

    Estimation of narrow-sense heritability, h2, from genome-wide SNPs genotyped in unrelated individuals has recently attracted interest and offers several advantages over traditional pedigree-based methods. With the use of this approach, it has been estimated that over half the heritability of human height can be attributed to the ∼300,000 SNPs on a genome-wide genotyping array. In comparison, only 5%–10% can be explained by SNPs reaching genome-wide significance. We investigated via simulation the validity of several key assumptions underpinning the mixed-model analysis used in SNP-based h2 estimation. Although we found that the method is reasonably robust to violations of four key assumptions, it can be highly sensitive to uneven linkage disequilibrium (LD) between SNPs: contributions to h2 are overestimated from causal variants in regions of high LD and are underestimated in regions of low LD. The overall direction of the bias can be up or down depending on the genetic architecture of the trait, but it can be substantial in realistic scenarios. We propose a modified kinship matrix in which SNPs are weighted according to local LD. We show that this correction greatly reduces the bias and increases the precision of h2 estimates. We demonstrate the impact of our method on the first seven diseases studied by the Wellcome Trust Case Control Consortium. Our LD adjustment revises downward the h2 estimate for immune-related diseases, as expected because of high LD in the major-histocompatibility region, but increases it for some nonimmune diseases. To calculate our revised kinship matrix, we developed LDAK, software for computing LD-adjusted kinships. PMID:23217325

  3. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  4. Genome-Wide Approaches to Drosophila Heart Development

    PubMed Central

    Frasch, Manfred

    2016-01-01

    The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level. PMID:27294102

  5. Genome Wide Association Study of Sepsis in Extremely Premature Infants

    PubMed Central

    Srinivasan, Lakshmi; Page, Grier; Kirpalani, Haresh; Murray, Jeffrey C.; Das, Abhik; Higgins, Rosemary D.; Carlo, Waldemar A.; Bell, Edward F.; Goldberg, Ronald N.; Schibler, Kurt; Sood, Beena G.; Stevenson, David K.; Stoll, Barbara J.; Van Meurs, Krisa P.; Johnson, Karen J.; Levy, Joshua; McDonald, Scott A.; Zaterka-Baxter, Kristin M.; Kennedy, Kathleen A.; Sánchez, Pablo J.; Duara, Shahnaz; Walsh, Michele C.; Shankaran, Seetha; Wynn, James L.; Cotten, C. Michael

    2017-01-01

    Objective To identify genetic variants associated with sepsis (early and late-onset) using a genome wide association (GWA) analysis in a cohort of extremely premature infants. Study Design Previously generated GWA data from the Neonatal Research Network’s anonymized genomic database biorepository of extremely premature infants were used for this study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven meningitis. Genomic and whole genome amplified DNA was genotyped for 1.2 million single nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 million additional SNPs. P values and false discovery rates were calculated from multivariate logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical value was p<10−5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway analyses were also run on primary and secondary end points. Results Data from 757 extremely premature infants were included: 351 infants with sepsis and 406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10−8); two SNPs in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary analyses, SNPs for ELMO1, IRAK2 (Gram positive sepsis), RALA, IMMP2L (Gram negative sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis and Gram negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of cell division and Interleukin-1 associated receptor kinase 2 (p values<0.001 and FDR<20%). Conclusions No SNPs met genome-wide significance in this cohort of ELBW infants; however, areas of potential association and pathways meriting further study were identified. PMID:28283553

  6. Genome-Wide Association Study of Metabolic Syndrome in Koreans

    PubMed Central

    Jeong, Seok Won; Chung, Myungguen; Park, Soo-Jung; Cho, Seong Beom

    2014-01-01

    Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10-8), 8 SNPs with genome-wide suggestive p-values (5 × 10-8 ≤ p < 1 × 10-5), and 2 SNPs of more functional variants with borderline p-values (5 × 10-5 ≤ p < 1 × 10-4). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. PMID:25705157

  7. Voxelwise genome-wide association study (vGWAS)

    PubMed Central

    Stein, Jason L.; Hua, Xue; Lee, Suh; Ho, April J.; Leow, Alex D.; Toga, Arthur W.; Saykin, Andrew J.; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J.; Craig, David W.; Gerber, Jill D.; Allen, April N.; Corneveaux, Jason J.; DeChairo, Bryan M.; Potkin, Steven G.; Weiner, Michael W.; Thompson, Paul M.

    2010-01-01

    The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age±s.d.: 75.52±6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure. PMID:20171287

  8. Genome-Wide Association of Heroin Dependence in Han Chinese.

    PubMed

    Kalsi, Gursharan; Euesden, Jack; Coleman, Jonathan R I; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110-6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field.

  9. Genome-Wide Association of Heroin Dependence in Han Chinese

    PubMed Central

    Coleman, Jonathan R. I.; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J.; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A.; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110−6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field. PMID:27936112

  10. Genome-wide association study of parity in Bangladeshi women.

    PubMed

    Aschebrook-Kilfoy, Briseis; Argos, Maria; Pierce, Brandon L; Tong, Lin; Jasmine, Farzana; Roy, Shantanu; Parvez, Faruque; Ahmed, Alauddin; Islam, Tariqul; Kibriya, Muhammad G; Ahsan, Habibul

    2015-01-01

    Human fertility is a complex trait determined by gene-environment interactions in which genetic factors represent a significant component. To better understand inter-individual variability in fertility, we performed one of the first genome-wide association studies (GWAS) of common fertility phenotypes, lifetime number of pregnancies and number of children in a developing country population. The fertility phenotype data and DNA samples were obtained at baseline recruitment from individuals participating in a large prospective cohort study in Bangladesh. GWAS analyses of fertility phenotypes were conducted among 1,686 married women. One SNP on chromosome 4 was non-significantly associated with number of children at P <10(-7) and number of pregnancies at P <10(-6). This SNP is located in a region without a gene within 1 Mb. One SNP on chromosome 6 was non-significantly associated with extreme number of children at P <10(-6). The closest gene to this SNP is HDGFL1, a hepatoma-derived growth factor. When we excluded hormonal contraceptive users, a SNP on chromosome 5 was non-significantly associated at P <10(-5) for number of children and number of pregnancies. This SNP is located near C5orf64, an open reading frame, and ZSWIM6, a zinc ion binding gene. We also estimated the heritability of these phenotypes from our genotype data using GCTA (Genome-wide Complex Trait Analysis) for number of children (hg2 = 0.149, SE = 0.24, p-value = 0.265) and number of pregnancies (hg2 = 0.007, SE = 0.22, p-value = 0.487). Our genome-wide association study and heritability estimates of number of pregnancies and number of children in Bangladesh did not confer strong evidence of common variants for parity variation. However, our results suggest that future studies may want to consider the role of 3 notable SNPs in their analysis.

  11. Genome-wide association study of conduct disorder symptomatology

    PubMed Central

    Dick, DM; Aliev, F; Krueger, RF; Edwards, A; Agrawal, A; Lynskey, M; Lin, P; Schuckit, M; Hesselbrock, V; Nurnberger, J; Almasy, L; Porjesz, B; Edenberg, HJ; Bucholz, K; Kramer, J; Kuperman, S; Bierut, L

    2013-01-01

    Conduct disorder (CD) is one of the most prevalent childhood psychiatric conditions, and is associated with a number of serious concomitant and future problems. CD symptomatology is known to have a considerable genetic component, with heritability estimates in the range of 50%. Despite this, there is a relative paucity of studies aimed at identifying genes involved in the susceptibility to CD. In this study, we report results from a genome-wide association study of CD symptoms. CD symptoms were retrospectively reported by a psychiatric interview among a sample of cases and controls, in which cases met the criteria for alcohol dependence. Our primary phenotype was the natural log transformation of the number of CD symptoms that were endorsed, with data available for 3963 individuals who were genotyped on the Illumina Human 1M beadchip array. Secondary analyses are presented for case versus control status, in which caseness was established as endorsing three or more CD symptoms (N= 872 with CD and N= 3091 without CD). We find four markers that meet the criteria for genome-wide significance (P < 5 × 10−8) with the CD symptom count, two of which are located in the gene C1QTNF7 (C1q and tumor necrosis factor-related protein 7). There were six additional SNPs in the gene that yielded converging evidence of association. These data provide the first evidence of a specific gene that is associated with CD symptomatology. None of the top signals resided in traditional candidate genes, underscoring the importance of a genome-wide approach for identifying novel variants involved in this serious childhood disorder. PMID:20585324

  12. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  13. Genome-wide approaches to defining macrophage identity and function

    PubMed Central

    Fonseca, Gregory J; Seidman, Jason S; Glass, Christopher K

    2016-01-01

    Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression. PMID:28087927

  14. Genome-wide approaches to understanding behaviour in Drosophila melanogaster.

    PubMed

    Neville, Megan; Goodwin, Stephen F

    2012-09-01

    Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.

  15. Validating, augmenting and refining genome-wide association signals.

    PubMed

    Ioannidis, John P A; Thomas, Gilles; Daly, Mark J

    2009-05-01

    Studies using genome-wide platforms have yielded an unprecedented number of promising signals of association between genomic variants and human traits. This Review addresses the steps required to validate, augment and refine such signals to identify underlying causal variants for well-defined phenotypes. These steps include: large-scale exact replication across both similar and diverse populations; fine mapping and resequencing; determination of the most informative markers and multiple independent informative loci; incorporation of functional information; and improved phenotype mapping of the implicated genetic effects. Even in cases for which replication proves that an effect exists, confident localization of the causal variant often remains elusive.

  16. Genome-wide association studies and contribution to cardiovascular physiology

    PubMed Central

    Munroe, Patricia B.

    2015-01-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology. PMID:26106147

  17. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  18. [New insight of genome-wide association study (GWAS)].

    PubMed

    Hotta, Kikuko

    2013-02-01

    The number of obese patients is increasing in Japan, due to the westernization of lifestyle. Obesity, especially visceral fat obesity, is important for the development of metabolic syndrome. Genetic factors are important for the development of obesity as well as environmental factors. Importance of genetic factors of fat distribution is also reported. Recent genome-wide association studies (GWASs) have revealed the obesity and fat distribution-related polymorphisms. GWAS will highlight a better understanding of the underlying molecular mechanisms in the regulation of obesity and distribution of body fat.

  19. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  20. Genome-wide identification of hypoxia-induced enhancer regions

    PubMed Central

    Preston, Jessica L.; Randel, Melissa A.; Johnson, Eric A.

    2015-01-01

    Here we present a genome-wide method for de novo identification of enhancer regions. This approach enables massively parallel empirical investigation of DNA sequences that mediate transcriptional activation and provides a platform for discovery of regulatory modules capable of driving context-specific gene expression. The method links fragmented genomic DNA to the transcription of randomer molecule identifiers and measures the functional enhancer activity of the library by massively parallel sequencing. We transfected a Drosophila melanogaster library into S2 cells in normoxia and hypoxia, and assayed 4,599,881 genomic DNA fragments in parallel. The locations of the enhancer regions strongly correlate with genes up-regulated after hypoxia and previously described enhancers. Novel enhancer regions were identified and integrated with RNAseq data and transcription factor motifs to describe the hypoxic response on a genome-wide basis as a complex regulatory network involving multiple stress-response pathways. This work provides a novel method for high-throughput assay of enhancer activity and the genome-scale identification of 31 hypoxia-activated enhancers in Drosophila. PMID:26713262

  1. A genome-wide association study for malignant mesothelioma risk.

    PubMed

    Cadby, Gemma; Mukherjee, Sutapa; Musk, A W Bill; Reid, Alison; Garlepp, Mike; Dick, Ian; Robinson, Cleo; Hui, Jennie; Fiorito, Giovanni; Guarrera, Simonetta; Beilby, John; Melton, Phillip E; Moses, Eric K; Ugolini, Donatella; Mirabelli, Dario; Bonassi, Stefano; Magnani, Corrado; Dianzani, Irma; Matullo, Giuseppe; Robinson, Bruce; Creaney, Jenette; Palmer, Lyle J

    2013-10-01

    Malignant mesothelioma (MM) is a uniformly fatal tumour of mesothelial cells. MM is caused by exposure to asbestos however most individuals with documented asbestos exposure do not develop MM. Although MM appears to aggregate within families, the genetics of MM susceptibility is a relatively unexplored area. The aim of the current study was to identify genetic factors that contribute to MM risk. A genome-wide association analysis of 2,508,203 single nucleotide polymorphisms (SNPs) from 428 MM cases and 1269 controls from Western Australia was performed. Additional genotyping was performed on a sample of 778 asbestos-exposed Western Australian controls. Replication of the most strongly associated SNPs was undertaken in an independent case-control study of 392 asbestos-exposed cases and 367 asbestos-exposed controls from Italy. No SNPs achieved formal genome-wide statistical significance in the Western Australian study. However, suggestive results for MM risk were identified in the SDK1, CRTAM and RASGRF2 genes, and in the 2p12 chromosomal region. These findings were not replicated in the Italian study, although there was some evidence of replication in the region of SDK1. These suggestive associations will be further investigated in sequencing and functional studies. Copyright © 2013. Published by Elsevier Ireland Ltd.

  2. A Genome-Wide Association Study of Aging

    PubMed Central

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W.; Garcia, Melissa E.; Kaplan, Robert C.; Kumari, Meena; Lunetta, Kathryn L.; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J.; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J.; Biffar, Reiner; Buchman, Aron S.; Boerwinkle, Eric; Couper, David; De Jager, Philip L.; Evans, Denis A.; Harris, Tamara B.; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P.; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J.; Lohman, Kurt K.; Lutsey, Pamela L.; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M.; Reiman, Eric M.; Rotter, Jerome I.; Seshadri, Sudha; Shardell, Michelle D.; Smith, Albert V.; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M. Carola; Bandinelli, Stefania; Baumeister, Sebastian E.; Bennett, David A.; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M.; Newman, Anne B.; Tiemeier, Henning; Franceschini, Nora

    2011-01-01

    Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-analysis of genome-wide association studies from nine studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. PMID:21782286

  3. Genome-wide patterns of Arabidopsis gene expression in nature.

    PubMed

    Richards, Christina L; Rosas, Ulises; Banta, Joshua; Bhambhra, Naeha; Purugganan, Michael D

    2012-01-01

    Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg)) correlate to temperature and precipitation occurrence in the field. The largest PC(veg) axes included thermoregulatory genes while the second major PC(veg) was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  4. Genome-wide association interaction analysis for Alzheimer's disease

    PubMed Central

    Gusareva, Elena S.; Carrasquillo, Minerva M.; Bellenguez, Céline; Cuyvers, Elise; Colon, Samuel; Graff-Radford, Neill R.; Petersen, Ronald C.; Dickson, Dennis W.; Mahachie Johna, Jestinah M.; Bessonov, Kyrylo; Van Broeckhoven, Christine; Williams, Julie; Amouyel, Philippe; Sleegers, Kristel; Ertekin-Taner, Nilüfer; Lambert, Jean-Charles; Van Steen, Kristel

    2015-01-01

    We propose a minimal protocol for exhaustive genome-wide association interaction analysis that involves screening for epistasis over large-scale genomic data combining strengths of different methods and statistical tools. The different steps of this protocol are illustrated on a real-life data application for Alzheimer's disease (AD) (2259 patients and 6017 controls from France). Particularly, in the exhaustive genome-wide epistasis screening we identified AD-associated interacting SNPs-pair from chromosome 6q11.1 (rs6455128, the KHDRBS2 gene) and 13q12.11 (rs7989332, the CRYL1 gene) (p = 0.006, corrected for multiple testing). A replication analysis in the independent AD cohort from Germany (555 patients and 824 controls) confirmed the discovered epistasis signal (p = 0.036). This signal was also supported by a meta-analysis approach in 5 independent AD cohorts that was applied in the context of epistasis for the first time. Transcriptome analysis revealed negative correlation between expression levels of KHDRBS2 and CRYL1 in both the temporal cortex (β = −0.19, p = 0.0006) and cerebellum (β = −0.23, p < 0.0001) brain regions. This is the first time a replicable epistasis associated with AD was identified using a hypothesis free screening approach. PMID:24958192

  5. Measuring genome-wide nucleosome turnover using CATCH-IT.

    PubMed

    Teves, Sheila S; Deal, Roger B; Henikoff, Steven

    2012-01-01

    The dynamic interplay between DNA-binding proteins and nucleosomes underlies essential nuclear processes such as transcription, replication, and DNA repair. Manifestations of this interplay include the assembly, eviction, and replacement of nucleosomes. Hence, measurements of nucleosome turnover kinetics can lead to insights into the regulation of dynamic chromatin processes. In this chapter, we describe a genome-wide method for measuring nucleosome turnover that uses metabolic labeling followed by capture of newly synthesized histones, which we have termed Covalent Attachment of Tagged Histones to Capture and Identify Turnover (CATCH-IT). Although CATCH-IT can be used with any genome-wide mapping procedure, high-resolution profiling is attainable using paired-end sequencing of native chromatin. Our protocol also includes an efficient Solexa DNA sequencing library preparation protocol that can be used for single base-pair resolution mapping of both nucleosome and subnucleosomal particles. We not only describe the use of these protocols in the context of a Drosophila cell line but also provide the necessary changes for adaptation to other model systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Genome-wide analysis of differential RNA editing in epilepsy.

    PubMed

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M; Petretto, Enrico; Johnson, Michael R

    2017-03-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine-temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including "neuron projection" and "seizures." Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.

  7. Genome-wide mapping of DNA strand breaks.

    PubMed

    Leduc, Frédéric; Faucher, David; Bikond Nkoma, Geneviève; Grégoire, Marie-Chantal; Arguin, Mélina; Wellinger, Raymund J; Boissonneault, Guylain

    2011-02-25

    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  8. A genome-wide association study of aging.

    PubMed

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  9. Genome-wide scans for footprints of natural selection

    PubMed Central

    Oleksyk, Taras K.; Smith, Michael W.; O'Brien, Stephen J.

    2010-01-01

    Detecting recent selected ‘genomic footprints’ applies directly to the discovery of disease genes and in the imputation of the formative events that molded modern population genetic structure. The imprints of historic selection/adaptation episodes left in human and animal genomes allow one to interpret modern and ancestral gene origins and modifications. Current approaches to reveal selected regions applied in genome-wide selection scans (GWSSs) fall into eight principal categories: (I) phylogenetic footprinting, (II) detecting increased rates of functional mutations, (III) evaluating divergence versus polymorphism, (IV) detecting extended segments of linkage disequilibrium, (V) evaluating local reduction in genetic variation, (VI) detecting changes in the shape of the frequency distribution (spectrum) of genetic variation, (VII) assessing differentiating between populations (FST), and (VIII) detecting excess or decrease in admixture contribution from one population. Here, we review and compare these approaches using available human genome-wide datasets to provide independent verification (or not) of regions found by different methods and using different populations. The lessons learned from GWSSs will be applied to identify genome signatures of historic selective pressures on genes and gene regions in other species with emerging genome sequences. This would offer considerable potential for genome annotation in functional, developmental and evolutionary contexts. PMID:20008396

  10. Genome-Wide Mapping of DNA Methylation in Chicken

    PubMed Central

    Hu, Xiaoxiang; Li, Jinxiu; Du, Zhuo; Chen, Li; Yin, Guangliang; Duan, Jinjie; Zhang, Haichao; Zhao, Yaofeng; Wang, Jun; Li, Ning

    2011-01-01

    Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS) and the transcription termination site (TTS). Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds. PMID:21573164

  11. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    PubMed

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  12. Genome-wide analysis of differential RNA editing in epilepsy

    PubMed Central

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.

    2017-01-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018

  13. A Pooled Genome-Wide Association Study of Asperger Syndrome

    PubMed Central

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E.; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision. PMID:26176695

  14. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  15. Genome-wide association study of antisocial personality disorder

    PubMed Central

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  16. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    PubMed

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at <16 years. Genome-wide association studies for childhood pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10(-8)), PAK6 (P = 3.3 × 10(-7)), and near MATN1 (P = 2.8 × 10(-7)). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10(-7)), RAPGEF2 (P = 8.4 × 10(-7)), PHACTR1 (P = 6.1 × 10(-7)), near PRR27 (P = 4.3 × 10(-7)), and near MCPH1 (P = 2.7 × 10(-7)). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia

  17. Progress of genome wide association study in domestic animals.

    PubMed

    Zhang, Hui; Wang, Zhipeng; Wang, Shouzhi; Li, Hui

    2012-08-22

    Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL) responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS), which utilizes high-density single-nucleotide polymorphism (SNP), provides a new way to tackle this issue. Encouraging achievements in dissection of the genetic mechanisms of complex diseases in humans have resulted from the use of GWAS. At present, GWAS has been applied to the field of domestic animal breeding and genetics, and some advances have been made. Many genes or markers that affect economic traits of interest in domestic animals have been identified. In this review, advances in the use of GWAS in domestic animals are described.

  18. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  19. Implications of genome-wide association studies in cancer therapeutics

    PubMed Central

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-01-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable. PMID:23701381

  20. High-resolution genome-wide mapping of histone modifications.

    PubMed

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  1. Genome-Wide Association Studies of Drug-Resistance Determinants.

    PubMed

    Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L

    2017-03-01

    Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.

  2. Genome-wide measurement of RNA folding energies.

    PubMed

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  3. Genome-wide studies of telomere biology in budding yeast

    PubMed Central

    Harari, Yaniv; Kupiec, Martin

    2014-01-01

    Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  4. [Genome-wide associations for cigarette smoking behavior].

    PubMed

    Strauss, Ewa

    2013-01-01

    Diseases related to tobacco smoking are the second leading cause of death in the world. Despite increasing evidence of genetic determination, the susceptibility genes and loci underlying various aspects of smoking behavior are largely unknown. Genome-wide association studies (GWASs) provided a new conceptual framework in the search for variants underlying common traits/disorders. A massive scan of the genome and a "hypothesis-free" approach enable discovery of new aspects of genetics of complex traits. In this paper the results of GWASs and GWAS meta-analyzes of cigarette smoking behavior and nicotine dependence are reviewed with the particular attention to smoking cessation success and the replacement therapy. The results of these studies are discussed in the context of the results of the candidate gene association studies. Studies on the role of the genomic regions, identified in GWASs, in the development of smoking-related diseases are also discussed.

  5. The utility of genome-wide association studies in hepatology.

    PubMed

    Karlsen, Tom H; Melum, Espen; Franke, Andre

    2010-05-01

    Over the last 4 years, more than 450 genome-wide association studies (GWAS) have been successfully performed in a variety of human traits, of which approximately 2% relates to the field of hepatology. Whereas the many robust susceptibility gene findings have provided insight into fundamental physiological aspects of the phenotypes that have been studied, the widespread application has also revealed important limitations of the GWAS design. This review aims to systematically summarize both the strengths and the weaknesses of GWAS, as well as underscore important experiences made in model diseases outside the field of hepatology. By reviewing the GWAS performed in hepatology so far on this broader background, extensions and guidelines for the rational application of the study design in hepatology are proposed.

  6. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable. © 2013 The British Pharmacological Society.

  7. Bioinformatics challenges in genome-wide association studies (GWAS).

    PubMed

    De, Rishika; Bush, William S; Moore, Jason H

    2014-01-01

    Genome-wide association studies (GWAS) are a powerful tool for investigators to examine the human genome to detect genetic risk factors, reveal the genetic architecture of diseases and open up new opportunities for treatment and prevention. However, despite its successes, GWAS have not been able to identify genetic loci that are effective classifiers of disease, limiting their value for genetic testing. This chapter highlights the challenges that lie ahead for GWAS in better identifying disease risk predictors, and how we may address them. In this regard, we review basic concepts regarding GWAS, the technologies used for capturing genetic variation, the missing heritability problem, the need for efficient study design especially for replication efforts, reducing the bias introduced into a dataset, and how to utilize new resources available, such as electronic medical records. We also look to what lies ahead for the field, and the approaches that can be taken to realize the full potential of GWAS.

  8. Quality control for genome-wide association studies.

    PubMed

    Gondro, Cedric; Lee, Seung Hwan; Lee, Hak Kyo; Porto-Neto, Laercio R

    2013-01-01

    This chapter overviews the quality control (QC) issues for SNP-based genotyping methods used in genome-wide association studies. The main metrics for evaluating the quality of the genotypes are discussed followed by a worked out example of QC pipeline starting with raw data and finishing with a fully filtered dataset ready for downstream analysis. The emphasis is on automation of data storage, filtering, and manipulation to ensure data integrity throughput the process and on how to extract a global summary from these high dimensional datasets to allow better-informed downstream analytical decisions. All examples will be run using the R statistical programming language followed by a practical example using a fully automated QC pipeline for the Illumina platform.

  9. Ultrafast laser nanosurgery in microfluidics for genome-wide screenings

    PubMed Central

    Ben-Yakar, Adela; Bourgeois, Frederic

    2009-01-01

    Summary The use of ultrafast laser pulses in surgery has allowed for unprecedented precision with minimal collateral damage to surrounding tissues. For these reasons, ultrafast laser nanosurgery, as an injury model, has gained tremendous momentum in experimental biology ranging from in-vitro manipulations of subcellular structures to in-vivo studies in whole living organisms. For example, femtosecond laser nanosurgery on such model organism as the nematode Caenorhabditis elegans (C. elegans) has opened new opportunities for in-vivo nerve regeneration studies. Meanwhile, the development of novel microfluidic devices has brought the control in experimental environment to the level required for precise nanosurgery in various animal models. Merging microfluidics and laser nanosurgery has recently improved the specificities and increased the speed of laser surgeries enabling fast genome-wide screenings that can more readily decode the genetic map of various biological processes. PMID:19278850

  10. Genome-wide association studies in pharmacogenomics of antidepressants.

    PubMed

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  11. Genome-wide discovery of loci influencing chemotherapy cytotoxicity.

    PubMed

    Watters, James W; Kraja, Aldi; Meucci, Melissa A; Province, Michael A; McLeod, Howard L

    2004-08-10

    Little is known about the heritability of chemotherapy activity or the identity of genes that may enable the individualization of cancer chemotherapy. Although numerous genes are likely to influence chemotherapy response, current candidate gene-based pharmacogenetics approaches require a priori knowledge and the selection of a small number of candidate genes for hypothesis testing. In this study, an ex vivo familial genetics strategy using lymphoblastoid cells derived from Centre d'Etude du Polymorphisme Humain reference pedigrees was used to discover genetic determinants of chemotherapy cytotoxicity. Cytotoxicity to the mechanistically distinct chemotherapy agents 5-fluorouracil and docetaxel were shown to be heritable traits, with heritability values ranging from 0.26 to 0.65 for 5-fluorouracil and 0.21 to 0.70 for docetaxel, varying with dose. Genome-wide linkage analysis was also used to map a quantitative trait locus influencing the cellular effects of 5-fluorouracil to chromosome 9q13-q22 [logarithm of odds (LOD) = 3.44], and two quantitative trait loci influencing the cellular effects of docetaxel to chromosomes 5q11-21 (LOD = 2.21) and 9q13-q22 (LOD = 2.73). Finally, 5-fluorouracil and docetaxel were shown to cause apoptotic cell death involving caspase-3 cleavage in Centre d'Etude du Polymorphisme Humain lymphoblastoid cells. This study identifies genomic regions likely to harbor genes important for chemotherapy cytotoxicity using genome-wide linkage analysis in human pedigrees and provides a widely applicable strategy for pharmacogenomic discovery without the requirement for a priori candidate gene selection.

  12. Genome-wide linkage in Utah autism pedigrees

    PubMed Central

    Allen-Brady, K; Robison, R; Cannon, D; Varvil, T; Villalobos, M; Pingree, C; Leppert, MF; Miller, J; McMahon, WM; Coon, H

    2014-01-01

    Genetic studies of autism over the past decade suggest a complex landscape of multiple genes. In the face of this heterogeneity, studies that include large extended pedigrees may offer valuable insight, as the relatively few susceptibility genes within single large families may be more easily discerned. This genome-wide screen of 70 families includes 20 large extended pedigrees of 6–9 generations, 6 moderate-sized families of 4–5 generations, and 44 smaller families of 2–3 generations. The Center for Inherited Disease Research (CIDR) provided genotyping using the Illumina Linkage Panel 12, a 6K single nucleotide polymorphism (SNP) platform. Results from 192 subjects with an Autism Spectrum Disorder (ASD), and 461 of their relatives revealed genome-wide significance on chromosome 15q, with three possibly distinct peaks: 15q13.1-q14 (HLOD=4.09 at 29,459,872bp); 15q14-q21.1 (HLOD=3.59 at 36,837,208bp); and 15q21.1-q22.2 (HLOD=5.31 at 55,629,733bp). Two of these peaks replicate previous findings. There were additional suggestive results on chromosomes 2p25.3-p24.1 (HLOD=1.87), 7q31.31-q32.3 (HLOD=1.97), and 13q12.11-q12.3 (HLOD=1.93). Affected subjects in families supporting the linkage peaks found in this study did not reveal strong evidence for distinct phenotypic subgroups. PMID:19455147

  13. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  14. Genome-wide significant loci for addiction and anxiety

    PubMed Central

    Hodgson, K.; Almasy, L.; Knowles, E.E.M.; Kent, J.W.; Curran, J.E.; Dyer, T.D.; Göring, H.H.H.; Olvera, R.L.; Fox, P.T.; Pearlson, G.D.; Krystal, J.H.; Duggirala, R.; Blangero, J.; Glahn, D.C.

    2017-01-01

    Background Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Methods Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Results Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2–q21.2, LOD = 3.322) and a broad anxiety phenotype (12q24.32–q24.33, LOD = 2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg = 0.550–0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1–q33.2, LOD = 3.054) and drug dependence-anxiety (18p11.23–p11.22, LOD = 3.425). Conclusions This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics. PMID:27318301

  15. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  16. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  17. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  18. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  19. A genome-wide association study of attempted suicide

    PubMed Central

    Willour, Virginia L.; Seifuddin, Fayaz; Mahon, Pamela B.; Jancic, Dubravka; Pirooznia, Mehdi; Steele, Jo; Schweizer, Barbara; Goes, Fernando S.; Mondimore, Francis M.; MacKinnon, Dean F.; Perlis, Roy H.; Lee, Phil Hyoun; Huang, Jie; Kelsoe, John R.; Shilling, Paul D.; Rietschel, Marcella; Nöthen, Markus; Cichon, Sven; Gurling, Hugh; Purcell, Shaun; Smoller, Jordan W.; Craddock, Nicholas; DePaulo, J. Raymond; Schulze, Thomas G.; McMahon, Francis J.; Zandi, Peter P.; Potash, James B.

    2011-01-01

    The heritable component to attempted and completed suicide is partly related to psychiatric disorders and also partly independent of them. While attempted suicide linkage regions have been identified on 2p11–12 and 6q25–26, there are likely many more such loci, the discovery of which will require a much higher resolution approach, such as the genome-wide association study (GWAS). With this in mind, we conducted an attempted suicide GWAS that compared the single nucleotide polymorphism (SNP) genotypes of 1,201 bipolar (BP) subjects with a history of suicide attempts to the genotypes of 1,497 BP subjects without a history of suicide attempts. 2,507 SNPs with evidence for association at p<0.001 were identified. These associated SNPs were subsequently tested for association in a large and independent BP sample set. None of these SNPs were significantly associated in the replication sample after correcting for multiple testing, but the combined analysis of the two sample sets produced an association signal on 2p25 (rs300774) at the threshold of genome-wide significance (p= 5.07 × 10−8). The associated SNPs on 2p25 fall in a large linkage disequilibrium block containing the ACP1 gene, a gene whose expression is significantly elevated in BP subjects who have completed suicide. Furthermore, the ACP1 protein is a tyrosine phosphatase that influences Wnt signaling, a pathway regulated by lithium, making ACP1 a functional candidate for involvement in the phenotype. Larger GWAS sample sets will be required to confirm the signal on 2p25 and to identify additional genetic risk factors increasing susceptibility for attempted suicide. PMID:21423239

  20. A genome-wide methylation study on obesity

    PubMed Central

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances. PMID:23644594

  1. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Slof-Op t Landt, Margarita CT; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O’Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2013-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10−7) in SOX2OT and rs17030795 (P=5.84×10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10−6) between CUL3 and FAM124B and rs1886797 (P=8.05×10−6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P= 4×10−6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:21079607

  2. Genome-Wide Association Studies for Comb Traits in Chickens

    PubMed Central

    Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  3. A genome-wide association study of anorexia nervosa.

    PubMed

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  4. Systems-Level Analysis of Genome-Wide Association Data

    PubMed Central

    Farber, Charles R.

    2013-01-01

    Genome-wide association studies (GWAS) have emerged as the method of choice for identifying common variants affecting complex disease. In a GWAS, particular attention is placed, for obvious reasons, on single-nucleotide polymorphisms (SNPs) that exceed stringent genome-wide significance thresholds. However, it is expected that many SNPs with only nominal evidence of association (e.g., P < 0.05) truly influence disease. Efforts to extract additional biological information from entire GWAS datasets have primarily focused on pathway-enrichment analyses. However, these methods suffer from a number of limitations and typically fail to lead to testable hypotheses. To evaluate alternative approaches, we performed a systems-level analysis of GWAS data using weighted gene coexpression network analysis. A weighted gene coexpression network was generated for 1918 genes harboring SNPs that displayed nominal evidence of association (P ≤ 0.05) from a GWAS of bone mineral density (BMD) using microarray data on circulating monocytes isolated from individuals with extremely low or high BMD. Thirteen distinct gene modules were identified, each comprising coexpressed and highly interconnected GWAS genes. Through the characterization of module content and topology, we illustrate how network analysis can be used to discover disease-associated subnetworks and characterize novel interactions for genes with a known role in the regulation of BMD. In addition, we provide evidence that network metrics can be used as a prioritizing tool when selecting genes and SNPs for replication studies. Our results highlight the advantages of using systems-level strategies to add value to and inform GWAS. PMID:23316444

  5. Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    PubMed Central

    Irizarry, Rafael A.; Rongione, Michael; Webster, Maree J.; Kaufman, Walter E.; Murakami, Peter; Lessard, Andree; Yolken, Robert H.; Feinberg, Andrew P.; Potash, James B.; Consortium, GenRED

    2012-01-01

    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08. While we cannot draw firm conclusions about PRIMA1 DNAm in MDD, the involvement of neuronal development genes across the set showing differential methylation suggests a role for epigenetics in the illness. Further studies using limbic system brain regions might shed additional light on this role. PMID:22511943

  6. Genome-wide identification of molecular mimicry candidates in parasites.

    PubMed

    Ludin, Philipp; Nilsson, Daniel; Mäser, Pascal

    2011-03-08

    Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions.

  7. Genome-Wide Identification of Molecular Mimicry Candidates in Parasites

    PubMed Central

    Ludin, Philipp; Nilsson, Daniel; Mäser, Pascal

    2011-01-01

    Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions. PMID:21408160

  8. A Genome-Wide Association Study (GWAS) for Bronchopulmonary Dysplasia

    PubMed Central

    Wang, Hui; St. Julien, Krystal R.; Stevenson, David K.; Hoffmann, Thomas J.; Witte, John S.; Lazzeroni, Laura C.; Krasnow, Mark A.; Quaintance, Cecele C.; Oehlert, John W.; Jelliffe-Pawlowski, Laura L.; Gould, Jeffrey B.; Shaw, Gary M.

    2013-01-01

    OBJECTIVE: Twin studies suggest that heritability of moderate-severe bronchopulmonary dysplasia (BPD) is 53% to 79%, we conducted a genome-wide association study (GWAS) to identify genetic variants associated with the risk for BPD. METHODS: The discovery GWAS was completed on 1726 very low birth weight infants (gestational age = 250–296/7 weeks) who had a minimum of 3 days of intermittent positive pressure ventilation and were in the hospital at 36 weeks’ postmenstrual age. At 36 weeks’ postmenstrual age, moderate-severe BPD cases (n = 899) were defined as requiring continuous supplemental oxygen, whereas controls (n = 827) inhaled room air. An additional 795 comparable infants (371 cases, 424 controls) were a replication population. Genomic DNA from case and control newborn screening bloodspots was used for the GWAS. The replication study interrogated single-nucleotide polymorphisms (SNPs) identified in the discovery GWAS and those within the HumanExome beadchip. RESULTS: Genotyping using genomic DNA was successful. We did not identify SNPs associated with BPD at the genome-wide significance level (5 × 10−8) and no SNP identified in previous studies reached statistical significance (Bonferroni-corrected P value threshold .0018). Pathway analyses were not informative. CONCLUSIONS: We did not identify genomic loci or pathways that account for the previously described heritability for BPD. Potential explanations include causal mutations that are genetic variants and were not assayed or are mapped to many distributed loci, inadequate sample size, race ethnicity of our study population, or case-control differences investigated are not attributable to underlying common genetic variation. PMID:23897914

  9. Genome-wide association study of working memory brain activation.

    PubMed

    Blokland, Gabriëlla A M; Wallace, Angus K; Hansell, Narelle K; Thompson, Paul M; Hickie, Ian B; Montgomery, Grant W; Martin, Nicholas G; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J

    2017-05-01

    In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h(2)>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (p<4.5×10(-9)), or were replicated (p<0.0016), but several genes were identified that are worthy of further investigation. A search of 529,379 genomic markers resulted in discovery of 31 independent single nucleotide polymorphisms (SNPs) associated with BOLD signal change at a discovery level of p<1×10(-5). Two SNPs (rs7917410 and rs7672408) were associated at a significance level of p<1×10(-7). Only one, most strongly affecting BOLD signal change in the left supramarginal gyrus (R(2)=5.5%), had multiple SNPs associated at p<1×10(-5) in linkage disequilibrium with it, all located in and around the BANK1 gene. BANK1 encodes a B-cell-specific scaffold protein and has been shown to negatively regulate CD40-mediated AKT activation. AKT is part of the dopamine-signaling pathway, suggesting a mechanism for the involvement of BANK1 in the BOLD response to working memory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Genome-wide association study of atypical psychosis.

    PubMed

    Kanazawa, Tetsufumi; Ikeda, Masashi; Glatt, Stephen J; Tsutsumi, Atsushi; Kikuyama, Hiroki; Kawamura, Yoshiya; Nishida, Nao; Miyagawa, Taku; Hashimoto, Ryota; Takeda, Masatoshi; Sasaki, Tsukasa; Tokunaga, Katsushi; Koh, Jun; Iwata, Nakao; Yoneda, Hiroshi

    2013-10-01

    Atypical psychosis with a periodic course of exacerbation and features of major psychiatric disorders [schizophrenia (SZ) and bipolar disorder (BD)] has a long history in clinical psychiatry in Japan. Based upon the new criteria of atypical psychosis, a Genome-Wide Association Study (GWAS) was conducted to identify the risk gene or variants. The relationships between atypical psychosis, SZ and BD were then assessed using independent GWAS data. Forty-seven patients with solid criteria of atypical psychosis and 882 normal controls (NCs) were scanned using an Affymetrics 6.0 chip. GWAS SZ data (560 SZ cases and 548 NCs) and GWAS BD (107 cases with BD type 1 and 107 NCs) were compared using gene-based analysis. The most significant SNPs were detected around the CHN2/CPVL genes (rs245914, P = 1.6 × 10(-7)) , COL21A1 gene (rs12196860, P = 2.45 × 10(-7) ), and PYGL/TRIM9 genes (rs1959536, P = 7.73 × 10(-7) ), although none of the single-nucleotide polymorphisms exhibited genome-wide significance (P = 5 × 10(-8) ). One of the highest peaks was detected on the major histocompatibility complex region, where large SZ GWASs have previously disclosed an association. The gene-based analysis suggested significant enrichment between SZ and atypical psychosis (P = 0.01), but not BD. This study provides clues about the types of patient whose diagnosis lies between SZ and BD. Studies with larger samples are required to determine the causal variant.

  11. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  12. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element.

    PubMed

    Müller, Gerd A; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J; Stadler, Peter F; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element

    PubMed Central

    Müller, Gerd A.; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J.; Stadler, Peter F.; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. PMID:25106871

  14. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    PubMed

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  15. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    USDA-ARS?s Scientific Manuscript database

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  16. Modelling genome-wide topological associating domains in mouse embryonic stem cells.

    PubMed

    Zhan, Y; Giorgetti, L; Tiana, G

    2017-03-01

    Chromosome conformation capture (3C)-based techniques such as chromosome conformation capture carbon copy (5C) and Hi-C revealed that the folding of mammalian chromosomes is highly hierarchical. A fundamental structural unit in the hierarchy is represented by topologically associating domains (TADs), sub-megabase regions of the genome within which the chromatin fibre preferentially interacts. 3C-based methods provide the mean contact probabilities between chromosomal loci, averaged over a large number of cells, and do not give immediate access to the single-cell conformations of the chromatin fibre. However, coarse-grained polymer models based on 5C data can be used to extract the single-cell conformations of single TADs. Here, we extend this approach to analyse around 2500 TADs in murine embryonic stem cells based on high-resolution Hi-C data. This allowed to predict the cell-to-cell variability in single contacts within genome-wide TADs and correlations between them. Based on these results, we predict that TADs are more similar to ideal chains than to globules in terms of their physical size and three-dimensional shape distribution. Furthermore, we show that their physical size and the degree of structural anisotropy of single TADs are correlated with the level of transcriptional activity of the genes that it harbours. Finally, we show that a large number of multiplets of genomic loci co-localize more often than expected by random, and these loci are particularly enriched in promoters, enhancers and CTCF-bound sites. These results provide the first genome-wide structural reconstruction of TADs using polymeric models obeying the laws of thermodynamics and reveal important universal trends in the correlation between chromosome structure and transcription.

  17. Genome-wide Detection of DNase I Hypersensitive Sites in Single Cells and FFPE Samples

    PubMed Central

    Jin, Wenfei; Tang, Qingsong; Wan, Mimi; Cui, Kairong; Zhang, Yi; Ren, Gang; Ni, Bing; Sklar, Jeffrey; Przytycka, Teresa M.; Childs, Richard; Levens, David; Zhao, Keji

    2015-01-01

    DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells1–3. Conventional DNase-Seq for genome-wide DHSs profiling is limited by the requirement of millions of cells4,5. Here we report an ultrasensitive strategy, called Pico-Seq, for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and the enhancers associated with multiple active histone modifications display constitutive DHS while chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply Pico-Seq to pools of tumor cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded (FFPE) tissue slides from thyroid cancer patients, and detect thousands of tumor-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one single-nucleotide variant (chr18:52417839 G>C) in the tumor cells of a follicular thyroid carcinoma patient, which affects the binding of the tumor suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, Pico-Seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis for both basic and translational research and may provide critical information for personalized medicine. PMID:26605532

  18. Breast cancer prediction using genome wide single nucleotide polymorphism data

    PubMed Central

    2013-01-01

    Background This paper introduces and applies a genome wide predictive study to learn a model that predicts whether a new subject will develop breast cancer or not, based on her SNP profile. Results We first genotyped 696 female subjects (348 breast cancer cases and 348 apparently healthy controls), predominantly of Caucasian origin from Alberta, Canada using Affymetrix Human SNP 6.0 arrays. Then, we applied EIGENSTRAT population stratification correction method to remove 73 subjects not belonging to the Caucasian population. Then, we filtered any SNP that had any missing calls, whose genotype frequency was deviated from Hardy-Weinberg equilibrium, or whose minor allele frequency was less than 5%. Finally, we applied a combination of MeanDiff feature selection method and KNN learning method to this filtered dataset to produce a breast cancer prediction model. LOOCV accuracy of this classifier is 59.55%. Random permutation tests show that this result is significantly better than the baseline accuracy of 51.52%. Sensitivity analysis shows that the classifier is fairly robust to the number of MeanDiff-selected SNPs. External validation on the CGEMS breast cancer dataset, the only other publicly available breast cancer dataset, shows that this combination of MeanDiff and KNN leads to a LOOCV accuracy of 60.25%, which is significantly better than its baseline of 50.06%. We then considered a dozen different combinations of feature selection and learning method, but found that none of these combinations produces a better predictive model than our model. We also considered various biological feature selection methods like selecting SNPs reported in recent genome wide association studies to be associated with breast cancer, selecting SNPs in genes associated with KEGG cancer pathways, or selecting SNPs associated with breast cancer in the F-SNP database to produce predictive models, but again found that none of these models achieved accuracy better than baseline. Conclusions

  19. Genome-wide association study of circulating vitamin D levels.

    PubMed

    Ahn, Jiyoung; Yu, Kai; Stolzenberg-Solomon, Rachael; Simon, K Claire; McCullough, Marjorie L; Gallicchio, Lisa; Jacobs, Eric J; Ascherio, Alberto; Helzlsouer, Kathy; Jacobs, Kevin B; Li, Qizhai; Weinstein, Stephanie J; Purdue, Mark; Virtamo, Jarmo; Horst, Ronald; Wheeler, William; Chanock, Stephen; Hunter, David J; Hayes, Richard B; Kraft, Peter; Albanes, Demetrius

    2010-07-01

    The primary circulating form of vitamin D, 25-hydroxy-vitamin D [25(OH)D], is associated with multiple medical outcomes, including rickets, osteoporosis, multiple sclerosis and cancer. In a genome-wide association study (GWAS) of 4501 persons of European ancestry drawn from five cohorts, we identified single-nucleotide polymorphisms (SNPs) in the gene encoding group-specific component (vitamin D binding) protein, GC, on chromosome 4q12-13 that were associated with 25(OH)D concentrations: rs2282679 (P=2.0x10(-30)), in linkage disequilibrium (LD) with rs7041, a non-synonymous SNP (D432E; P=4.1x10(-22)) and rs1155563 (P=3.8x10(-25)). Suggestive signals for association with 25(OH)D were also observed for SNPs in or near three other genes involved in vitamin D synthesis or activation: rs3829251 on chromosome 11q13.4 in NADSYN1 [encoding nicotinamide adenine dinucleotide (NAD) synthetase; P=8.8x10(-7)], which was in high LD with rs1790349, located in DHCR7, the gene encoding 7-dehydrocholesterol reductase that synthesizes cholesterol from 7-dehydrocholesterol; rs6599638 in the region harboring the open-reading frame 88 (C10orf88) on chromosome 10q26.13 in the vicinity of ACADSB (acyl-Coenzyme A dehydrogenase), involved in cholesterol and vitamin D synthesis (P=3.3x10(-7)); and rs2060793 on chromosome 11p15.2 in CYP2R1 (cytochrome P450, family 2, subfamily R, polypeptide 1, encoding a key C-25 hydroxylase that converts vitamin D3 to an active vitamin D receptor ligand; P=1.4x10(-5)). We genotyped SNPs in these four regions in 2221 additional samples and confirmed strong genome-wide significant associations with 25(OH)D through meta-analysis with the GWAS data for GC (P=1.8x10(-49)), NADSYN1/DHCR7 (P=3.4x10(-9)) and CYP2R1 (P=2.9x10(-17)), but not C10orf88 (P=2.4x10(-5)).

  20. Genome-wide association study of circulating retinol levels.

    PubMed

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  1. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  2. A synergistic DNA logic predicts genome-wide chromatin accessibility

    PubMed Central

    Hashimoto, Tatsunori; Sherwood, Richard I.; Kang, Daniel D.; Rajagopal, Nisha; Barkal, Amira A.; Zeng, Haoyang; Emons, Bart J.M.; Srinivasan, Sharanya; Jaakkola, Tommi; Gifford, David K.

    2016-01-01

    Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types. PMID:27456004

  3. A genome-wide association study in multiple system atrophy

    PubMed Central

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  4. Genome-wide profiling of forum domains in Drosophila melanogaster.

    PubMed

    Tchurikov, Nickolai A; Kretova, Olga V; Sosin, Dmitri V; Zykov, Ivan A; Zhimulev, Igor F; Kravatsky, Yuri V

    2011-05-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50-200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.

  5. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  7. A genome-wide association study of global gene expression.

    PubMed

    Dixon, Anna L; Liang, Liming; Moffatt, Miriam F; Chen, Wei; Heath, Simon; Wong, Kenny C C; Taylor, Jenny; Burnett, Edward; Gut, Ivo; Farrall, Martin; Lathrop, G Mark; Abecasis, Gonçalo R; Cookson, William O C

    2007-10-01

    We have created a global map of the effects of polymorphism on gene expression in 400 children from families recruited through a proband with asthma. We genotyped 408,273 SNPs and identified expression quantitative trait loci from measurements of 54,675 transcripts representing 20,599 genes in Epstein-Barr virus-transformed lymphoblastoid cell lines. We found that 15,084 transcripts (28%) representing 6,660 genes had narrow-sense heritabilities (H2) > 0.3. We executed genome-wide association scans for these traits and found peak lod scores between 3.68 and 59.1. The most highly heritable traits were markedly enriched in Gene Ontology descriptors for response to unfolded protein (chaperonins and heat shock proteins), regulation of progression through the cell cycle, RNA processing, DNA repair, immune responses and apoptosis. SNPs that regulate expression of these genes are candidates in the study of degenerative diseases, malignancy, infection and inflammation. We have created a downloadable database to facilitate use of our findings in the mapping of complex disease loci.

  8. Reconstructing Roma History from Genome-Wide Data

    PubMed Central

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  9. Genome-wide nucleosome specificity and directionality of chromatin remodelers

    PubMed Central

    Yen, Kuangyu; Vinayachandran, Vinesh; Batta, Kiran; Koerber, R. Thomas; Pugh, B. Franklin

    2012-01-01

    How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high resolution ChIP-exo mapping to Isw2 to determine its sub-nucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes, and produced net directionality in moving nucleosomes either away or towards nucleosome-free regions at the 5′ and 3′ ends of genes. Isw2 possessed a sub-nucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays. PMID:22726434

  10. Genome-wide profiling of forum domains in Drosophila melanogaster

    PubMed Central

    Tchurikov, Nickolai A.; Kretova, Olga V.; Sosin, Dmitri V.; Zykov, Ivan A.; Zhimulev, Igor F.; Kravatsky, Yuri V.

    2011-01-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin. PMID:21247882

  11. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    PubMed Central

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on IR and on LCR, respectively. A statistical-physical relationship between IR and LCR was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  12. Genome-Wide Identification of KANADI1 Target Genes

    PubMed Central

    Ott, Felix; Weigel, Detlef; Bowman, John L.; Heisler, Marcus G.; Wenkel, Stephan

    2013-01-01

    Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown. PMID:24155946

  13. Fine mapping by composite genome-wide association analysis.

    PubMed

    Casellas, Joaquim; Cañas-Álvarez, Jhon Jacobo; Fina, Marta; Piedrafita, Jesús; Cecchinato, Alessio

    2017-06-06

    Genome-wide association (GWA) studies play a key role in current genetics research, unravelling genomic regions linked to phenotypic traits of interest in multiple species. Nevertheless, the extent of linkage disequilibrium (LD) may provide confounding results when significant genetic markers span along several contiguous cM. In this study, we have adapted the composite interval mapping approach to the GWA framework (composite GWA), in order to evaluate the impact of including competing (possibly linked) genetic markers when testing for the additive allelic effect inherent to a given genetic marker. We tested model performance on simulated data sets under different scenarios (i.e., qualitative trait loci effects, LD between genetic markers and width of the genomic region involved in the analysis). Our results showed that the genomic region had a small impact on the number of competing single nucleotide polymorphisms (SNPs) as well as on the precision of the composite GWA analysis. A similar conclusion was derived from the preferable range of LD between the tested SNP and competing SNPs, although moderate-to-high LD seemed to attenuate the loss of statistical power. The composite GWA improved specificity and reduced the number of significant genetic markers. The composite GWA model contributes a novel point of view for GWA analyses where testing circumscribed to the genomic region flanking each SNP (delimited by the nearest competing SNPs) and conditioning on linked markers increases the precision to locate causal mutations, but possibly at the expense of power.

  14. Genome-wide significant risk associations for mucinous ovarian carcinoma

    PubMed Central

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  15. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  16. Genome-wide approaches to studying yeast chromatin modifications.

    PubMed

    Schones, Dustin E; Cui, Kairong; Cuddapah, Suresh

    2011-01-01

    The genomes of eukaryotic organisms are packaged into nuclei by wrapping DNA around proteins in a structure known as chromatin. The most basic unit of chromatin, the nucleosome, consists of approximately 146 bp of DNA wrapped around an octamer of histone proteins. The placement of nucleosomes relative to a gene can influence the regulation of the transcription of this gene. Furthermore, the N-terminal tails of histone proteins are subjected to numerous post-translational modifications that are also known to influence gene regulation. In recent years, a number of genome-scale approaches to identify modifications to chromatin have been developed. Techniques combining chromatin immunoprecipitation (ChIP) with microarrays (ChIP-chip) and second-generation sequencing (ChIP-Seq) have led to great advances in our understanding of how chromatin modifications contribute to gene regulation. Many excellent protocols related to ChIP-chip have been published recently (Lieb, J. D. (2003) Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. Methods Mol. Biol. 224, 99-109.). For this reason, we will focus our attention here on the application of second-generation sequencing platforms to the study of chromatin modifications in yeast. As these genome-scale experiments require both wet-lab and bioinformatic components to reach their full potential, we will detail both the wet-lab protocols and bioinformatic steps necessary to fully conduct genome-scale studies of chromatin modifications.

  17. Genome-wide significant risk associations for mucinous ovarian carcinoma.

    PubMed

    Kelemen, Linda E; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; Lee, Janet M; Seo, Ji-Heui; Phelan, Catherine M; Beesley, Jonathan; Chen, Xiaoqing; Spindler, Tassja J; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-08-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at 2q31.1 (P = 7.5 × 10(-12)) and rs688187 at 19q13.2 (P = 6.8 × 10(-13)). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10(-4), false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.

  18. Genome-Wide Association Mapping for Phenotypic Plasticity in Rice.

    PubMed

    Kikuchi, Shinji; Bheemanahalli, Raju; Jagadish, Krishna S V; Kumagai, Etsushi; Masuya, Yusuke; Kuroda, Eiki; Raghavan, Chitra; Dingkuhn, Michael; Abe, Akira; Shimono, Hiroyuki

    2017-03-31

    Phenotypic plasticity of plants in response to environmental changes is important for adapting to changing climate. Less attention has been paid to exploring the advantages of phenotypic plasticity in resource-rich environments to enhance the productivity of agricultural crops. Here, we examined genetic variation in phenotypic plasticity in indica rice (Oryza sativa L.) across two diverse panels: (i) a Phenomics of Rice Adaptation and Yield (PRAY) population comprising 301 accessions and (ii) a Multi-parent-Advanced-Generation-Inter-Cross (MAGIC) indica population comprising 151 accessions. Altered planting density was used as a proxy for elevated atmospheric CO2 response. Low planting density significantly increased panicle weight per plant compared with normal density, and the magnitude of the increase ranged from 1.10 to 2.78 times among accessions for the PRAY population and from 1.05 to 2.45 times for the MAGIC population. Genome-wide-association studies revealed three Environmental Responsiveness (ER) candidate alleles (qER1-3) that were associated with relative response of panicle weight to low density. Two of these alleles were tested in 13 genotypes to clarify their biomass responses during vegetative growth under elevated CO2 in Japan. Our study provides evidence for polymorphisms that control rice phenotypic plasticity in environments that are rich in resources such as light and CO2 .

  19. Weighted SNP set analysis in genome-wide association study.

    PubMed

    Dai, Hui; Zhao, Yang; Qian, Cheng; Cai, Min; Zhang, Ruyang; Chu, Minjie; Dai, Juncheng; Hu, Zhibin; Shen, Hongbing; Chen, Feng

    2013-01-01

    Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk. Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis (wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population. Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than the linear kernel, IBS kernel and PCA.

  20. Genome-wide characterization of fission yeast DNA replication origins

    PubMed Central

    Heichinger, Christian; Penkett, Christopher J; Bähler, Jürg; Nurse, Paul

    2006-01-01

    Eukaryotic DNA replication is initiated from multiple origins of replication, but little is known about the global regulation of origins throughout the genome or in different types of cell cycles. Here, we identify 401 strong origins and 503 putative weaker origins spaced in total every 14 kb throughout the genome of the fission yeast Schizosaccharomyces pombe. The same origins are used during premeiotic and mitotic S-phases. We found that few origins fire late in mitotic S-phase and that activating the Rad3 dependent S-phase checkpoint by inhibiting DNA replication had little effect on which origins were fired. A genome-wide analysis of eukaryotic origin efficiencies showed that efficiency was variable, with large chromosomal domains enriched for efficient or inefficient origins. Average efficiency is twice as high during mitosis compared with meiosis, which can account for their different S-phase lengths. We conclude that there is a continuum of origin efficiency and that there is differential origin activity in the mitotic and meiotic cell cycles. PMID:17053780

  1. Genome-wide DNA methylation profile in mungbean

    PubMed Central

    Kang, Yang Jae; Bae, Ahra; Shim, Sangrea; Lee, Taeyoung; Lee, Jayern; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2017-01-01

    DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding. PMID:28084412

  2. Genome-wide association study of aggressive behaviour in chicken

    PubMed Central

    Li, Zhenhui; Zheng, Ming; Abdalla, Bahareldin Ali; Zhang, Zhe; Xu, Zhenqiang; Ye, Qiao; Xu, Haiping; Luo, Wei; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine. After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1, DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that SORCS2 might play an important role in chicken aggressive behaviour through the regulation of dopaminergic pathways and NGF. PMID:27485826

  3. Evolution of mate choice for genome-wide heterozygosity.

    PubMed

    Fromhage, Lutz; Kokko, Hanna; Reid, Jane M

    2009-03-01

    The extent to which indirect genetic benefits can drive the evolution of directional mating preferences for more ornamented mates, and the mechanisms that maintain such preferences without depleting genetic variance, remain key questions in evolutionary ecology. We used an individual-based genetic model to examine whether a directional preference for mates with higher genome-wide heterozygosity (H), and consequently greater ornamentation, could evolve and be maintained in the absence of direct fitness benefits of mate choice. We specifically considered finite populations of varying size and spatial genetic structure, in which parent-offspring resemblance in heterozygosity could provide an indirect benefit of mate choice. A directional preference for heterozygous mates evolved under broad conditions, even given a substantial direct cost of mate choice, low mutation rate, and stochastic variation in the link between individual heterozygosity and ornamentation. Furthermore, genetic variance was retained under directional sexual selection. Preference evolution was strongest in smaller populations, but weaker in populations with greater internal genetic structure in which restricted dispersal increased local inbreeding among offspring of neighboring females that all preferentially mated with the same male. These results suggest that directional preferences for heterozygous or outbred mates could evolve and be maintained in finite populations in the absence of direct fitness benefits, suggesting a novel resolution to the lek paradox.

  4. Identification of differential translation in genome wide studies.

    PubMed

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  5. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity

    PubMed Central

    Fernandez, Christian A.; Smith, Colton; Yang, Wenjian; Mullighan, Charles G.; Qu, Chunxu; Larsen, Eric; Bowman, W. Paul; Liu, Chengcheng; Ramsey, Laura B.; Chang, Tamara; Karol, Seth E.; Loh, Mignon L.; Raetz, Elizabeth A.; Winick, Naomi J.; Hunger, Stephen P.; Carroll, William L.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Devidas, Meenakshi

    2015-01-01

    Asparaginase is used to treat acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions can lead to suboptimal asparaginase exposure. Our objective was to use a genome-wide approach to identify loci associated with asparaginase hypersensitivity in children with ALL enrolled on St. Jude Children’s Research Hospital (SJCRH) protocols Total XIIIA (n = 154), Total XV (n = 498), and Total XVI (n = 271), or Children’s Oncology Group protocols POG 9906 (n = 222) and AALL0232 (n = 2163). Germline DNA was genotyped using the Affymetrix 500K, Affymetrix 6.0, or the Illumina Exome BeadChip array. In multivariate logistic regression, the intronic rs6021191 variant in nuclear factor of activated T cells 2 (NFATC2) had the strongest association with hypersensitivity (P = 4.1 × 10−8; odds ratio [OR] = 3.11). RNA-seq data available from 65 SJCRH ALL tumor samples and 52 Yoruba HapMap samples showed that samples carrying the rs6021191 variant had higher NFATC2 expression compared with noncarriers (P = 1.1 × 10−3 and 0.03, respectively). The top ranked nonsynonymous polymorphism was rs17885382 in HLA-DRB1 (P = 3.2 × 10−6; OR = 1.63), which is in near complete linkage disequilibrium with the HLA-DRB1*07:01 allele we previously observed in a candidate gene study. The strongest risk factors for asparaginase allergy are variants within genes regulating the immune response. PMID:25987655

  6. Natural selection on functional modules, a genome-wide analysis.

    PubMed

    Serra, François; Arbiza, Leonardo; Dopazo, Joaquín; Dopazo, Hernán

    2011-03-01

    Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA), a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  7. Genome wide association scan for chronic periodontitis implicates novel locus

    PubMed Central

    2014-01-01

    Background There is evidence for a genetic contribution to chronic periodontitis. In this study, we conducted a genome wide association study among 866 participants of the University of Pittsburgh Dental Registry and DNA Repository, whose periodontal diagnosis ranged from healthy (N = 767) to severe chronic periodontitis (N = 99). Methods Genotypingi of over half-million single nucleotide polymorphisms was determined. Analyses were done twice, first in the complete dataset of all ethnicities, and second including only samples defined as self-reported Whites. From the top 100 results, twenty single nucleotide polymorphisms had consistent results in both analyses (borderline p-values ranging from 1E-05 to 1E-6) and were selected to be tested in two independent datasets derived from 1,460 individuals from Porto Alegre, and 359 from Rio de Janeiro, Brazil. Meta-analyses of the Single nucleotide polymorphisms showing a trend for association in the independent dataset were performed. Results The rs1477403 marker located on 16q22.3 showed suggestive association in the discovery phase and in the Porto Alegre dataset (p = 0.05). The meta-analysis suggested the less common allele decreases the risk of chronic periodontitis. Conclusions Our data offer a clear hypothesis to be independently tested regarding the contribution of the 16q22.3 locus to chronic periodontitis. PMID:25008200

  8. Genome-wide Association Studies for Osteoporosis: A 2013 Update

    PubMed Central

    Liu, Yong-Jun; Zhang, Lei; Papasian, Christopher J.

    2014-01-01

    In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies. PMID:25006567

  9. Genome-Wide Association Studies of the Human Gut Microbiota

    PubMed Central

    Davenport, Emily R.; Cusanovich, Darren A.; Michelini, Katelyn; Barreiro, Luis B.; Ober, Carole; Gilad, Yoav

    2015-01-01

    The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10−7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut. PMID:26528553

  10. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    PubMed

    Wang, Huihua; Zhang, Li; Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  11. A genome-wide investigation of food addiction.

    PubMed

    Cornelis, Marilyn C; Flint, Alan; Field, Alison E; Kraft, Peter; Han, Jiali; Rimm, Eric B; van Dam, Rob M

    2016-06-01

    Evidence of parallels between drug addiction and eating behavior continues to accumulate. Genetic studies of addictive substances have yielded a number of susceptibility loci that point to common higher order genetic pathways underlying addiction. It was hypothesized that a genome-wide association study (GWAS) of food addiction would yield significant enrichment in genes and pathways linked to addiction. A GWAS of food addiction, determined by the modified Yale Food Addiction Scale (mYFAS), was conducted among 9,314 women of European ancestry, and results for enrichment of single-nucleotide polymorphisms (SNPs) (n = 44), genes (n = 238), and pathways (n = 11) implicated in drug addiction were examined. Two loci met GW-significance (P < 2.5 × 10(-8) ) mapping to 17q21.31 and 11q13.4 that harbor genes with no obvious roles in eating behavior. GW results were significantly enriched for gene members of the MAPK signaling pathway (P = 0.02). No candidate SNP or gene for drug addiction was significantly associated with food addiction after correction for multiple testing. In the first GWAS of mYFAS, suggestive loci worthy of further follow-up were identified, but limited support was provided for shared genetic underpinnings of food addiction and drug addiction. The latter might be due to limited study power and knowledge of the genetics of drug addiction. © 2016 The Obesity Society.

  12. Genome-wide association study and premature ovarian failure.

    PubMed

    Christin-Maitre, S; Tachdjian, G

    2010-05-01

    Premature ovarian failure (POF) is defined as an amenorrhea for more than 4months, associated with elevated gonadotropins, usually higher than 20mIU/ml, occurring in a woman before the age of 40. Some candidate genes have been identified in the past 15years, such as FOXL2, FSHR, BMP15, GDF9, Xfra premutation. However, POF etiology remains unknown in more than 90% of cases. The first strategy to identify candidate gene, apart from studying genes involved in ovarian failure in animal models, relies on the study of X chromosome deletions and X;autosome translocations in patients. The second strategy is based on linkage analysis, the third one on Comparative Genomic Hybridization (CGH) array. The latest strategy relies on Genome-Wide Association Studies (GWAS). This technique consists in screening single nucleotide polymorphisms (SNPs) in patients and controls. So far, three studies have been performed and have identified different loci potentially linked to POF, such as PTHB1 and ADAMTS19. However, replications in independent cohorts need to be performed. GWAS studies on large cohorts of women with POF should find new candidate genes in the near future. Copyright 2010. Published by Elsevier Masson SAS.

  13. A genome wide dosage suppressor network reveals genomic robustness

    PubMed Central

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  14. Biostatistical aspects of genome-wide association studies.

    PubMed

    Ziegler, Andreas; König, Inke R; Thompson, John R

    2008-02-01

    To search the entire human genome for association is a novel and promising approach to unravelling the genetic basis of complex genetic diseases. In these genome-wide association studies (GWAs), several hundreds of thousands of single nucleotide polymorphisms (SNPs) are analyzed at the same time, posing substantial biostatistical and computational challenges. In this paper, we discuss a number of biostatistical aspects of GWAs in detail. We specifically consider quality control issues and show that signal intensity plots are a sine qua condition non in today's GWAs. Approaches to detect and adjust for population stratification are briefly examined. We discuss different strategies aimed at tackling the problem of multiple testing, including adjustment of p -values, the false positive report probability and the false discovery rate. Another aspect of GWAs requiring special attention is the search for gene-gene and gene-environment interactions. We finally describe multistage approaches to GWAs. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Genome-Wide Analysis of Human MicroRNA Stability

    PubMed Central

    Li, Yang; Li, Zhixin; Zhou, Shixin; Wen, Jinhua; Geng, Bin; Yang, Jichun; Cui, Qinghua

    2013-01-01

    Increasing studies have shown that microRNA (miRNA) stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology. PMID:24187663

  16. Genome-wide methylation profiles in coronary artery ectasia.

    PubMed

    Lu, Tzu-Pin; Chuang, Nai-Chen; Cheng, Chin-Yu; Hsu, Cheng-An; Wang, Yi-Chih; Lin, Yen-Hong; Lee, Jen-Kuang; Wu, Cho-Kai; Hwang, Juey-Jen; Lin, Lian-Yu; Yeh, Shih-Fan Sherri; Chien, Kuo-Liang; Juang, Jyh-Ming Jimmy

    2017-04-01

    Coronary artery ectasia (CAE) is a disease characterized by abnormally dilated coronary arteries. The mechanism of CAE remains unclear, and its treatment is limited. Previous studies have shown that risk factors for CAE were related to changes in DNA methylation. However, no systematic investigation of methylation profiles has been performed. Therefore, we compared methylation profiles between 12 CAE patients and 12 propensity-matched individuals with normal coronary arteries using microarrays. Wilcoxon's rank sum tests revealed 89 genes with significantly different methylation levels (P<0.05 and Δβ > |0.1|). Functional characterization using the DAVID database and gene set enrichment analysis indicated that these genes were involved in immune and inflammatory responses. Of these genes 6 were validated in 29 CAE patients and 87 matched individuals with CAE, using pyro-sequencing. TLR6 and NOTCH4 showed significant differences in methylation between the two groups, and lower protein levels of toll-like receptor 6 (TLR6) were detected in CAE patients. In conclusion, this genome-wide analysis of methylation profiles in CAE patients showed that significant changes in both methylation and expression of TLR6 deserve further study to elucidate their roles in CAE. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Genome-Wide Specific Selection in Three Domestic Sheep Breeds

    PubMed Central

    Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Background Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. Results We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Conclusions Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding. PMID:26083354

  18. Genome-Wide Analysis of DNA Methylation in Human Amnion

    PubMed Central

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  19. A Genome-wide Association Study of Myasthenia Gravis

    PubMed Central

    Renton, Alan E.; Pliner, Hannah A.; Provenzano, Carlo; Evoli, Amelia; Ricciardi, Roberta; Nalls, Michael A.; Marangi, Giuseppe; Abramzon, Yevgeniya; Arepalli, Sampath; Chong, Sean; Hernandez, Dena G.; Johnson, Janel O.; Bartoccioni, Emanuela; Scuderi, Flavia; Maestri, Michelangelo; Raphael Gibbs, J.; Errichiello, Edoardo; Chiò, Adriano; Restagno, Gabriella; Sabatelli, Mario; Macek, Mark; Scholz, Sonja W.; Corse, Andrea; Chaudhry, Vinay; Benatar, Michael; Barohn, Richard J.; McVey, April; Pasnoor, Mamatha; Dimachkie, Mazen M.; Rowin, Julie; Kissel, John; Freimer, Miriam; Kaminski, Henry J.; Sanders, Donald B.; Lipscomb, Bernadette; Massey, Janice M.; Chopra, Manisha; Howard, James F.; Koopman, Wilma J.; Nicolle, Michael W.; Pascuzzi, Robert M.; Pestronk, Alan; Wulf, Charlie; Florence, Julaine; Blackmore, Derrick; Soloway, Aimee; Siddiqi, Zaeem; Muppidi, Srikanth; Wolfe, Gil; Richman, David; Mezei, Michelle M.; Jiwa, Theresa; Oger, Joel; Drachman, Daniel B.; Traynor, Bryan J.

    2016-01-01

    IMPORTANCE Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10−8 was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10−8; odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10−8; odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10−9; odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10−12; odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected

  20. A genome-wide association study of myasthenia gravis.

    PubMed

    Renton, Alan E; Pliner, Hannah A; Provenzano, Carlo; Evoli, Amelia; Ricciardi, Roberta; Nalls, Michael A; Marangi, Giuseppe; Abramzon, Yevgeniya; Arepalli, Sampath; Chong, Sean; Hernandez, Dena G; Johnson, Janel O; Bartoccioni, Emanuela; Scuderi, Flavia; Maestri, Michelangelo; Gibbs, J Raphael; Errichiello, Edoardo; Chiò, Adriano; Restagno, Gabriella; Sabatelli, Mario; Macek, Mark; Scholz, Sonja W; Corse, Andrea; Chaudhry, Vinay; Benatar, Michael; Barohn, Richard J; McVey, April; Pasnoor, Mamatha; Dimachkie, Mazen M; Rowin, Julie; Kissel, John; Freimer, Miriam; Kaminski, Henry J; Sanders, Donald B; Lipscomb, Bernadette; Massey, Janice M; Chopra, Manisha; Howard, James F; Koopman, Wilma J; Nicolle, Michael W; Pascuzzi, Robert M; Pestronk, Alan; Wulf, Charlie; Florence, Julaine; Blackmore, Derrick; Soloway, Aimee; Siddiqi, Zaeem; Muppidi, Srikanth; Wolfe, Gil; Richman, David; Mezei, Michelle M; Jiwa, Theresa; Oger, Joel; Drachman, Daniel B; Traynor, Bryan J

    2015-04-01

    Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody-positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. We calculated P values for association between 8,114,394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0×10(-8) was set for genome-wide significance after Bonferroni correction for multiple testing. In the overall case-control cohort, we identified association signals at CTLA4 (rs231770; P=3.98×10(-8); odds ratio, 1.37; 95% CI, 1.25-1.49), HLA-DQA1 (rs9271871; P=1.08×10(-8); odds ratio, 2.31; 95% CI, 2.02-2.60), and TNFRSF11A (rs4263037; P=1.60×10(-9); odds ratio, 1.41; 95% CI, 1.29-1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P=1.32×10(-12); odds ratio, 1.56; 95% CI, 1.44-1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P=7.02×10(-18); odds ratio, 4.27; 95

  1. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    PubMed

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. Copyright © 2015 Christopoulou et al.

  2. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  3. Genome-wide signatures of convergent evolution in echolocating mammals.

    PubMed

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J

    2013-10-10

    Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized.

  4. Genome-wide association study on differentiated thyroid cancer.

    PubMed

    Köhler, Aleksandra; Chen, Bowang; Gemignani, Federica; Elisei, Rossella; Romei, Cristina; Figlioli, Gisella; Cipollini, Monica; Cristaudo, Alfonso; Bambi, Franco; Hoffmann, Per; Herms, Stefan; Kalemba, Michal; Kula, Dorota; Harris, Shelley; Broderick, Peter; Houlston, Richard; Pastor, Susana; Marcos, Ricard; Velázquez, Antonia; Jarzab, Barbara; Hemminki, Kari; Landi, Stefano; Försti, Asta

    2013-10-01

    Genome-wide association studies (GWASs) of differentiated thyroid cancer (DTC) have identified associations with polymorphisms at 2q35 (DIRC3), 8p12 (NRG1), 9q22.33 (FOXE1), and 14q13.2 (NKX2-1). However, most of the inherited genetic risk factors of DTC remain to be discovered. Our objective was to identify additional common DTC susceptibility loci. We conducted a GWAS in a high-incidence Italian population of 690 cases and 497 controls and followed up the most significant polymorphisms in 2 additional Italian series and in 3 low-incidence populations totaling 2958 cases and 3727 controls. After excluding the most robust previously identified locus (9q22.33), the strongest association was shown by rs6759952, confirming the recently published association in DIRC3 (odds ratio [OR] = 1.21, P = 6.4 × 10(-10), GWAS and all replications combined). Additionally, in the combined analysis of the Italian series, suggestive associations were attained with rs10238549 and rs7800391 in IMMP2L (OR = 1.27, P = 4.1 × 10(-6); and OR = 1.25, P = 5.7 × 10(-6)), rs7617304 in RARRES1 (OR = 1.25, P = 4.6 × 10(-5)) and rs10781500 in SNAPC4/CARD9 (OR = 1.23, P = 3.5 × 10(-5)). Our findings provide additional insights into the genetic and biological basis of inherited genetic susceptibility to DTC. Additional studies are needed to determine the role of the identified polymorphisms in the development of DTC and their possible use in the clinical practice.

  5. Genome wide analysis of protein production load in Trichoderma reesei.

    PubMed

    Pakula, Tiina M; Nygren, Heli; Barth, Dorothee; Heinonen, Markus; Castillo, Sandra; Penttilä, Merja; Arvas, Mikko

    2016-01-01

    The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is a widely used industrial host organism for protein production. In industrial cultivations, it can produce over 100 g/l of extracellular protein, mostly constituting of cellulases and hemicellulases. In order to improve protein production of T. reesei the transcriptional regulation of cellulases and secretory pathway factors have been extensively studied. However, the metabolism of T. reesei under protein production conditions has not received much attention. To understand the physiology and metabolism of T. reesei under protein production conditions we carried out a well-controlled bioreactor experiment with extensive analysis. We used minimal media to make the data amenable for modelling and three strain pairs to cover different protein production levels. With RNA-sequencing transcriptomics we detected the concentration of the carbon source as the most important determinant of the transcriptome. As the major transcriptional response concomitant to protein production we detected the induction of selected genes that were putatively regulated by xyr1 and were related to protein transport, amino acid metabolism and transcriptional regulation. We found novel metabolic responses such as production of glycerol and a cellotriose-like compound. We then used this cultivation data for flux balance analysis of T. reesei metabolism and demonstrate for the first time the use of genome wide stoichiometric metabolic modelling for T. reesei. We show that our model can predict protein production rate and provides novel insight into the metabolism of protein production. We also provide this unprecedented cultivation and transcriptomics data set for future modelling efforts. The use of stoichiometric modelling can open a novel path for the improvement of protein production in T. reesei. Based on this we propose sulphur assimilation as a major limiting factor of protein production. As an organism with

  6. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    PubMed

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient. © 2015 Wiley Periodicals, Inc.

  7. Genome-wide signatures of convergent evolution in echolocating mammals

    PubMed Central

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

    2013-01-01

    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

  8. Assessing statistical significance in multivariable genome wide association analysis

    PubMed Central

    Buzdugan, Laura; Kalisch, Markus; Navarro, Arcadi; Schunk, Daniel; Fehr, Ernst; Bühlmann, Peter

    2016-01-01

    Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear model, and we show its use for extremely high-dimensional datasets. Our method yields P-values for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any additional information about the phenotype beyond that available by all the other SNPs. This rules out spurious correlations between phenotypes and SNPs that can arise from marginal methods because the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In addition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly contain informative signals about the phenotype. We demonstrate the value of our method by applying it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We show, in particular, that our method is also capable of finding significant SNPs that were not identified in the original WTCCC study, but were replicated in other independent studies. Availability and implementation: Reproducibility of our research is supported by the open-source Bioconductor package hierGWAS. Contact: peter.buehlmann@stat.math.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153677

  9. Genome-wide characteristics of de novo mutations in autism

    PubMed Central

    Yuen, Ryan K C; Merico, Daniele; Cao, Hongzhi; Pellecchia, Giovanna; Alipanahi, Babak; Thiruvahindrapuram, Bhooma; Tong, Xin; Sun, Yuhui; Cao, Dandan; Zhang, Tao; Wu, Xueli; Jin, Xin; Zhou, Ze; Liu, Xiaomin; Nalpathamkalam, Thomas; Walker, Susan; Howe, Jennifer L.; Wang, Zhuozhi; MacDonald, Jeffrey R.; Chan, Ada; D’Abate, Lia; Deneault, Eric; Siu, Michelle T.; Tammimies, Kristiina; Uddin, Mohammed; Zarrei, Mehdi; Wang, Mingbang; Li, Yingrui; Wang, Jun; Wang, Jian; Yang, Huanming; Bookman, Matt; Bingham, Jonathan; Gross, Samuel S.; Loy, Dion; Pletcher, Mathew; Marshall, Christian R.; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Weksberg, Rosanna; Fernandez, Bridget A; Roberts, Wendy; Szatmari, Peter; Glazer, David; Frey, Brendan J.; Ring, Robert H.; Xu, Xun; Scherer, Stephen W.

    2016-01-01

    De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10−10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10−13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10−24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10−9; OR=1.84), of which 15.6% (p=4.3×10−3) and 22.5% (p=7.0×10−5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD. PMID:27525107

  10. Genome-wide association study of sleep in Drosophila melanogaster

    PubMed Central

    2013-01-01

    Background Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. Results We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. Conclusions We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes. PMID:23617951

  11. Multicentric Genome-Wide Association Study for Primary Spontaneous Pneumothorax

    PubMed Central

    Abrantes, Patrícia; Francisco, Vânia; Teixeira, Gilberto; Monteiro, Marta; Neves, João; Norte, Ana; Robalo Cordeiro, Carlos; Moura e Sá, João; Reis, Ernestina; Santos, Patrícia; Oliveira, Manuela; Sousa, Susana; Fradinho, Marta; Malheiro, Filipa; Negrão, Luís

    2016-01-01

    Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08–2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29–2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis. PMID:27203581

  12. Genome-Wide Association Studies of Multiple Keratinocyte Cancers

    PubMed Central

    Verkouteren, Joris A. C.; Hofman, Albert; Uitterlinden, André G.; Kraft, Peter; Turman, Constance; Han, Jiali; Cho, Eunyoung; Murabito, Joanne M.; Levy, Daniel; Qureshi, Abrar A.; Nijsten, Tamar

    2017-01-01

    There is strong evidence for a role of environmental risk factors involved in susceptibility to develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in mKCs susceptibility has not been thoroughly investigated. We investigated whether single nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC (sKCs; controls) from Harvard cohorts (the Nurses' Health Study [NHS], NHS II, and the Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical associations (p-value≤ 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-value ≤5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In stage-2, none of these SNPs replicated and only two of them were associated with mKCs in the same direction in the combined meta-analysis. We tested the associations for 19 previously reported basal cell carcinoma-related SNPs (candidate gene association analysis), and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not replicated, we found that previously identified BCC variants may also be associated with mKC, which the most significant association (rs1805007) located at the MC1R gene. PMID:28081215

  13. Heritability and genome-wide linkage scan of subjective happiness.

    PubMed

    Bartels, Meike; Saviouk, Viatcheslav; de Moor, Marleen H M; Willemsen, Gonneke; van Beijsterveldt, Toos C E M; Hottenga, Jouke-Jan; de Geus, Eco J C; Boomsma, Dorret I

    2010-04-01

    Causes of individual differences in happiness, as assessed with the Subjective Happiness Scale, are investigated in a large of sample twins and siblings from the Netherlands Twin Register. Over 12,000 twins and siblings, average age 24.7 years (range 12 to 88), took part in the study. A genetic model with an age by sex design was fitted to the data with structural equation modeling in Mx. The heritability of happiness was estimated at 22% for males and 41% in females. No effect of age was observed. To identify the genomic regions contributing to this heritability, a genome-wide linkage study for happiness was conducted in sibling pairs. A subsample of 1157 offspring from 441 families was genotyped with an average of 371 micro-satellite markers per individual. Phenotype and genotype data were analyzed in MERLIN with multipoint variance component linkage analysis and age and sex as covariates. A linkage signal (logarithm of odds score 2.73, empirical p value 0.095) was obtained at the end of the long arm of chromosome 19 for marker D19S254 at 110 cM. A second suggestive linkage peak was found at the short arm of chromosome 1 (LOD of 2.37) at 153 cM, marker D1S534 (empirical p value of .209). These two regions of interest are not overlapping with the regions found for contrasting phenotypes (such as depression, which is negatively associated with happiness). Further linkage and future association studies are warranted.

  14. Genome-wide analysis of intraspecific transposon diversity in yeast

    PubMed Central

    2013-01-01

    Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity. PMID:23768249

  15. Genome-wide analysis highlights genetic dilution in Algerian sheep.

    PubMed

    Gaouar, S B S; Lafri, M; Djaout, A; El-Bouyahiaoui, R; Bouri, A; Bouchatal, A; Maftah, A; Ciani, E; Da Silva, A B

    2017-03-01

    Algeria represents a reservoir of genetic diversity with local sheep breeds adapted to a large range of environments and showing specific features necessary to deal with harsh conditions. This remarkable diversity results from the traditional management of dryland by pastoralists over centuries. Most of these breeds are poorly productive, and the economic pressure leads farmers to realize anarchic cross-breeding (that is, not carried out in the framework of selection plans) with the hope to increase animal's conformation. In this study, eight of the nine local Algerian sheep breeds (D'men, Hamra, Ouled-Djellal, Rembi, Sidaoun, Tazegzawt, Berber and Barbarine) were investigated for the first time by genome-wide single-nucleotide polymorphism genotyping. At an international scale, Algerian sheep occupied an original position shaped by relations with African and European (particularly Italian) breeds. The strong genetic proximity with Caribbean and Brazilian breeds confirmed that the genetic make-up of these American breeds was largely influenced by the Atlantic slave trade. At a national scale, an alarming genetic dilution of the Berber (a primitive breed) and the Rembi was observed, as a consequence of uncontrolled mating practices with Ouled-Djellal. A similar, though less pronounced, phenomenon was also detected for the Barbarine, another ancestral breed. Genetic originality appeared to be better preserved in Tazegzawt, Hamra, D'men and Sidaoun. These breeds should be given high priority in the establishment of conservation plans to halt their progressive loss. For Berber and Barbarine that also occur in the bordering neighbor countries, urgent concerted transnational actions are needed.

  16. Technical note: Computing strategies in genome-wide selection.

    PubMed

    Legarra, A; Misztal, I

    2008-01-01

    Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.

  17. Genome-Wide Association Study of Schizophrenia in Japanese Population

    PubMed Central

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  18. Multicentric Genome-Wide Association Study for Primary Spontaneous Pneumothorax.

    PubMed

    Sousa, Inês; Abrantes, Patrícia; Francisco, Vânia; Teixeira, Gilberto; Monteiro, Marta; Neves, João; Norte, Ana; Robalo Cordeiro, Carlos; Moura E Sá, João; Reis, Ernestina; Santos, Patrícia; Oliveira, Manuela; Sousa, Susana; Fradinho, Marta; Malheiro, Filipa; Negrão, Luís; Feijó, Salvato; Oliveira, Sofia A

    2016-01-01

    Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22-2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08-2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29-2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis.

  19. Genome-Wide Methylation Analyses in Glioblastoma Multiforme

    PubMed Central

    Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730

  20. A genome-wide DNA methylation study in azoospermia.

    PubMed

    Ferfouri, F; Boitrelle, F; Ghout, I; Albert, M; Molina Gomes, D; Wainer, R; Bailly, M; Selva, J; Vialard, F

    2013-11-01

    The objective of this study was to assess genome-wide DNA methylation in testicular tissue from azoospermic patients. A total of 94 azoospermic patients were recruited and classified into three groups: 29 patients presented obstructive azoospermia (OA), 26 displayed non-obstructive azoospermia (NOA) and successful retrieval of spermatozoa by testicular sperm extraction (TESE+) and 39 displayed NOA and failure to retrieve spermatozoa by TESE (TESE-). An Illumina Infinium Human Methylation27 BeadChip DNA methylation array was used to establish a testicular DNA methylation pattern for each type of azoospermic patient. The OA and NOA groups were compared in terms of the relative M-value (the log2 ratio between methylated and non-methylated probe intensities) for each CpG site. We observed significantly different DNA methylation profiles for the NOA and OA groups, with differences at over 9000 of the 27 578 CpG sites; 212 CpG sites had a relative M-value >3. The results highlighted 14 testis-specific genes. Patient clustering with respect to these 212 CpG sites corresponded closely to the clinical classification. The DNA methylation patterns showed that in the NOA group, 78 of the 212 CpG sites were hypomethylated and 134 were hypermethylated (relative to the OA group). On the basis of these DNA methylation profiles, azoospermic patients could be classified as OA or NOA by considering the 212 CpG sites with the greatest methylation differences. Furthermore, we identified genes that may provide insight into the mechanism of idiopathic NOA.

  1. Genome-wide linkage-disequilibrium profiles from single individuals.

    PubMed

    Lynch, Michael; Xu, Sen; Maruki, Takahiro; Jiang, Xiaoqian; Pfaffelhuber, Peter; Haubold, Bernhard

    2014-09-01

    Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories. Copyright © 2014 by the Genetics Society of America.

  2. Genome-wide SNP typing reveals signatures of population history.

    PubMed

    Hughes, Austin L; Welch, Robert; Puri, Vinita; Matthews, Casey; Haque, Kashif; Chanock, Stephen J; Yeager, Meredith

    2008-07-01

    Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.

  3. Genome-wide methylation analyses in glioblastoma multiforme.

    PubMed

    Lai, Rose K; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  4. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  5. Genome-Wide Architecture of Disease Resistance Genes in Lettuce

    PubMed Central

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K.; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W.

    2015-01-01

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. PMID:26449254

  6. Genome-wide analysis of condensin binding in Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II. PMID:24125077

  7. Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.

    PubMed

    Chen, Xiaochu; Xu, Lan

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

  8. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  9. Genome-Wide Analysis of Promoters: Clustering by Alignment and Analysis of Regular Patterns

    PubMed Central

    Pettinato, Lucia; Calistri, Elisa; Di Patti, Francesca; Livi, Roberto; Luccioli, Stefano

    2014-01-01

    In this paper we perform a genome-wide analysis of H. sapiens promoters. To this aim, we developed and combined two mathematical methods that allow us to (i) classify promoters into groups characterized by specific global structural features, and (ii) recover, in full generality, any regular sequence in the different classes of promoters. One of the main findings of this analysis is that H. sapiens promoters can be classified into three main groups. Two of them are distinguished by the prevalence of weak or strong nucleotides and are characterized by short compositionally biased sequences, while the most frequent regular sequences in the third group are strongly correlated with transposons. Taking advantage of the generality of these mathematical procedures, we have compared the promoter database of H. sapiens with those of other species. We have found that the above-mentioned features characterize also the evolutionary content appearing in mammalian promoters, at variance with ancestral species in the phylogenetic tree, that exhibit a definitely lower level of differentiation among promoters. PMID:24465517

  10. A Genome-Wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes

    PubMed Central

    Sidik, Saima M.; Huet, Diego; Ganesan, Suresh M.; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S.; Thiru, Prathapan; Saeij, Jeroen P.J.; Carruthers, Vern B.; Niles, Jacquin C.; Lourido, Sebastian

    2016-01-01

    SUMMARY Apicomplexan parasites are leading causes of human and livestock diseases—like malaria and toxoplasmosis—yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the human parasite Toxoplasma gondii during infection of fibroblasts. Our analysis defines ~200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes, and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. PMID:27594426

  11. Genome-wide linkage analysis replicates susceptibility locus for fasting plasma triglycerides: NHLBI Family Heart Study.

    PubMed

    Arnett, Donna K; Miller, Michael B; Coon, Hilary; Ellison, R Curtis; North, Kari E; Province, Michael; Leppert, Mark; Eckfeldt, John H

    2004-11-01

    Recent reports implicate chromosomal regions linked to inter-individual variation in plasma triglycerides. We conducted genome-wide scans to replicate these linkages and/or identify other loci influencing plasma triglycerides in the NHLBI Family Heart Study (FHS). Data were obtained for 501 three-generational families. Genotyping was done by the Utah Molecular Genetics Laboratory and NHLBI Mammalian Genotyping Service; markers from both were placed on one genetic map. Analysis was done using multipoint variance components linkage. Fasting plasma triglycerides were log-transformed and age-, sex-, and field center-adjusted; suggestive linkage evidence was found on chromosome 8 (LOD=2.80 at 89 cM, marker D8S1141). Further adjustment for waist girth, BMI, diabetes, hypertension, and lipid-lowering drugs suggested linkage regions on chromosomes 6 (LOD=2.29 at 79 cM, marker D6S295) and 15 (LOD=1.85 at 43 cM, marker D15S659). Since HDL is correlated with triglycerides and because it was linked to this region on chromosome 15 in FHS, we created a composite triglyceride-HDL phenotype. The combined phenotype LOD score was 3.0 at the same marker on chromosome 15. Chromosome 15 likely harbors a susceptibility locus with an influence on triglycerides and HDL. Regions on chromosomes 6 and 8 may also contain loci contributing to inter-individual variation in plasma triglycerides.

  12. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    PubMed

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-04

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  13. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila.

    PubMed

    Swarup, Sharan; Pradhan-Sundd, Tirthadipa; Verheyen, Esther M

    2015-04-15

    Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease. © 2015. Published by The Company of Biologists Ltd.

  14. Genome-wide quantitative assessment of variation in DNA methylation patterns

    PubMed Central

    Xie, Hehuang; Wang, Min; de Andrade, Alexandre; de F. Bonaldo, Maria; Galat, Vasil; Arndt, Kelly; Rajaram, Veena; Goldman, Stewart; Tomita, Tadanori; Soares, Marcelo B.

    2011-01-01

    Genomic DNA methylation contributes substantively to transcriptional regulations that underlie mammalian development and cellular differentiation. Much effort has been made to decipher the molecular mechanisms governing the establishment and maintenance of DNA methylation patterns. However, little is known about genome-wide variation of DNA methylation patterns. In this study, we introduced the concept of methylation entropy, a measure of the randomness of DNA methylation patterns in a cell population, and exploited it to assess the variability in DNA methylation patterns of Alu repeats and promoters. A few interesting observations were made: (i) within a cell population, methylation entropy varies among genomic loci; (ii) among cell populations, the methylation entropies of most genomic loci remain constant; (iii) compared to normal tissue controls, some tumors exhibit greater methylation entropies; (iv) Alu elements with high methylation entropy are associated with high GC content but depletion of CpG dinucleotides and (v) Alu elements in the intronic regions or far from CpG islands are associated with low methylation entropy. We further identified 12 putative allelic-specific methylated genomic loci, including four Alu elements and eight promoters. Lastly, using subcloned normal fibroblast cells, we demonstrated the highly variable methylation patterns are resulted from low fidelity of DNA methylation inheritance. PMID:21278160

  15. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability.

    PubMed

    Donahue, Sarah L; Lin, Qing; Cao, Shang; Ruley, H Earl

    2006-08-01

    Widespread losses of heterozygosity (LOH) in human cancer have been thought to result from chromosomal instability caused by mutations affecting DNA repair/genome maintenance. However, the origin of LOH in most tumors is unknown. The present study examined the ability of carcinogenic agents to induce LOH at 53 sites throughout the genome of normal diploid mouse ES cells. Brief exposures to nontoxic levels of methylnitrosourea, diepoxybutane, mitomycin C, hydroxyurea, doxorubicin, and UV light stimulated LOH at all loci at frequencies ranging from 1-8 x 10(-3) per cell (10-123 times higher than in untreated cells). This greatly exceeds the frequencies at which these agents have been reported to induce point mutations and is comparable to the rates of LOH observed in ES cells lacking the gene responsible for Bloom syndrome, an inherited DNA repair defect that results in greatly increased risk of cancer. These results suggest that LOH contributes significantly to the carcinogenicity of a variety of mutagens and raises the possibility that genome-wide LOH observed in some human cancers may reflect prior exposure to genotoxic agents rather than a state of chromosomal instability during the carcinogenic process. Finally, as a practical matter, chemically induced LOH is expected to enhance the recovery of homozygous recessive mutants from phenotype-based genetic screens in mammalian cells.

  16. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability

    PubMed Central

    Donahue, Sarah L.; Lin, Qing; Cao, Shang; Ruley, H. Earl

    2006-01-01

    Widespread losses of heterozygosity (LOH) in human cancer have been thought to result from chromosomal instability caused by mutations affecting DNA repair/genome maintenance. However, the origin of LOH in most tumors is unknown. The present study examined the ability of carcinogenic agents to induce LOH at 53 sites throughout the genome of normal diploid mouse ES cells. Brief exposures to nontoxic levels of methylnitrosourea, diepoxybutane, mitomycin C, hydroxyurea, doxorubicin, and UV light stimulated LOH at all loci at frequencies ranging from 1–8 × 10−3 per cell (10–123 times higher than in untreated cells). This greatly exceeds the frequencies at which these agents have been reported to induce point mutations and is comparable to the rates of LOH observed in ES cells lacking the gene responsible for Bloom syndrome, an inherited DNA repair defect that results in greatly increased risk of cancer. These results suggest that LOH contributes significantly to the carcinogenicity of a variety of mutagens and raises the possibility that genome-wide LOH observed in some human cancers may reflect prior exposure to genotoxic agents rather than a state of chromosomal instability during the carcinogenic process. Finally, as a practical matter, chemically induced LOH is expected to enhance the recovery of homozygous recessive mutants from phenotype-based genetic screens in mammalian cells. PMID:16868089

  17. Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi

    PubMed Central

    Neumüller, Ralph A.; Richter, Constance; Fischer, Anja; Novatchkova, Maria; Neumüller, Klaus G.; Knoblich, Juergen A.

    2011-01-01

    Summary The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well. PMID:21549331

  18. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.

  19. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine.

    PubMed

    Huang, Yun; Pastor, William A; Zepeda-Martínez, Jorge A; Rao, Anjana

    2012-10-01

    5-Hydroxymethylcytosine (5hmC) is a recently discovered base in the mammalian genome, produced upon oxidation of 5-methylcytosine (5mC) in a process catalyzed by TET proteins. The biological functions of 5hmC and further oxidation products of 5mC are under intense investigation, as they are likely intermediates in DNA demethylation pathways. Here we describe a novel protocol to profile 5hmC at a genome-wide scale. This approach is based on sodium bisulfite-mediated conversion of 5hmC to cytosine-5-methylenesulfonate (CMS); CMS-containing DNA fragments are then immunoprecipitated using a CMS-specific antiserum. The anti-CMS technique is highly specific with a low background, and is much less dependent on 5hmC density than anti-5hmC immunoprecipitation (IP). Moreover, it does not enrich for CA and CT repeats, as noted for 5hmC DNA IP using antibodies to 5hmC. The anti-CMS protocol takes 3 d to complete.

  20. A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish

    PubMed Central

    Geng, Xin; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Chao; Wang, Ruijia; Sha, Jin; Zeng, Peng; Zhi, Degui; Liu, Zhanjiang

    2016-01-01

    Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies. PMID:27558670

  1. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen

    PubMed Central

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Heath, Emma; Smedley, Damian P.; Estabel, Jeanne; Sunter, David; DiTommaso, Tia; White, Jacqueline K.; Ramirez-Solis, Ramiro; Smyth, Ian; Steel, Karen P.; Watt, Fiona M.

    2014-01-01

    Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. PMID:24721909

  2. Genome-wide maps of nuclear lamina interactions in single human cells

    PubMed Central

    Kind, Jop; Pagie, Ludo; de Vries, Sandra S.; Nahidiazar, Leila; Dey, Siddharth S.; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A.; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas

    2015-01-01

    Summary Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, consistency of NL contacts is inversely linked to gene activity in single cells, and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single cell chromatin organization. PMID:26365489

  3. A Genome-wide Pleiotropy Scan for Prostate Cancer Risk

    PubMed Central

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I.; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R.; Siddiq, Afshan; Papatheodorou, Stefania I.; Stanford, Janet L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J.; Diver, W. Ryan; Gapstur, Susan M.; Stevens, Victoria L.; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Gurrea, Aurelio Barricarte; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J. Michael; Hunter, DavidJ.; Koutros, Stella; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Wacholder, Sholom; Key, Timothy J.; Tsilidis, Konstantinos K

    2014-01-01

    Background No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). Objective To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. Design, setting, and participants SNPs implicated in any phenotype other than prostate cancer (p ≤ 10−7) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24 534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Outcome measurements and statistical analysis Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. Results and limitations A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p = 1.6 × 10-6), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95%CI 1.16–1.27; p = 3.22 × 10−18). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86–0.94; p = 2.5 × 10−6). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12,95% CI 1.06–1.19; p = 4.67 × 10−5); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. Conclusions We did

  4. Genome-wide association study of colorectal cancer in Hispanics

    PubMed Central

    Schmit, Stephanie L.; Schumacher, Fredrick R.; Edlund, Christopher K.; Conti, David V.; Ihenacho, Ugonna; Wan, Peggy; Van Den Berg, David; Casey, Graham; Fortini, Barbara K.; Lenz, Heinz-Josef; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Moreno-Macías, Hortensia; Huerta-Chagoya, Alicia; Ordóñez-Sánchez, María Luisa; Rodríguez-Guillén, Rosario; Cruz-Bautista, Ivette; Rodríguez-Torres, Maribel; Muñóz-Hernández, Linda Liliana; Arellano-Campos, Olimpia; Gómez, Donají; Alvirde, Ulices; González-Villalpando, Clicerio; González-Villalpando, María Elena; Le Marchand, Loic; Haiman, Christopher A.; Figueiredo, Jane C.

    2016-01-01

    Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10−8. Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10−6) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47–2.36); P = 2.5×10−7], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21–1.55); P = 4.0×10−7), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36–2.01); P = 4.1×10−7) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37–2.08); P=7.8×10−7]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10–5) and 11q12.2 (P = 6.8×10−5), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations. PMID:27207650

  5. Phenotype prediction based on genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes. Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA. Results We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data. We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case–control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case–control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii

  6. Nightshift work and genome-wide DNA methylation.

    PubMed

    Bhatti, Parveen; Zhang, Yuzheng; Song, Xiaoling; Makar, Karen W; Sather, Cassandra L; Kelsey, Karl T; Houseman, E Andres; Wang, Pei

    2015-02-01

    The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be

  7. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  8. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  9. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  10. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  11. Genome-wide screening and identification of antigens for rickettsial vaccine development

    USDA-ARS?s Scientific Manuscript database

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  12. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  13. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  14. More heritability probably captured by psoriasis genome-wide association study in Han Chinese.

    PubMed

    Jiang, Long; Liu, Lu; Cheng, Yuyan; Lin, Yan; Shen, Changbing; Zhu, Caihong; Yang, Sen; Yin, Xianyong; Zhang, Xuejun

    2015-11-15

    Missing heritability is a common problem in genome-wide association studies in complex diseases/traits. To quantify the unbiased heritability estimate, we applied the phenotype correlation-genotype correlation regression in psoriasis genome-wide association data in Han Chinese which comprises 1139 cases and 1132 controls. We estimated that 45.7% heritability of psoriasis in Han Chinese were captured by common variants (s.e.=12.5%), which reinforced that the majority of psoriasis heritability can be covered by common variants in genome-wide association data (68.2%). The results provided evidence that the heritability covered by psoriasis genome-wide genotyping data was probably underestimated in previous restricted maximum likelihood method. Our study highlights the broad role of common variants in the etiology of psoriasis and sheds light on the possibility to identify more common variants of small effect by increasing the sample size in psoriasis genome-wide association studies.

  15. No Genome-Wide Protein Sequence Convergence for Echolocation

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2015-01-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. PMID:25631925

  16. No genome-wide protein sequence convergence for echolocation.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation.

  17. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets.

    PubMed

    Zou, C; Fu, Y; Li, C; Liu, H; Li, G; Li, J; Zhang, H; Wu, Y; Li, C

    2016-08-01

    Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer.

  18. Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus Campylobacter

    PubMed Central

    Lefébure, Tristan; Stanhope, Michael J.

    2009-01-01

    An open question in bacterial genomics is the role that adaptive evolution of the core genome plays in diversification and adaptation of bacterial species, and how this might differ between groups of bacteria occupying different environmental circumstances. The genus Campylobacter encompasses several important human and animal enteric pathogens, with genome sequence data available for eight species. We estimate the Campylobacter core genome at 647 genes, with 92.5% of the nonrecombinant core genome loci under positive selection in at least one lineage and the same gene frequently under positive selection in multiple lineages. Tests are provided that reject recombination, saturation, and variation in codon usage bias as factors contributing to this high level of selection. We suggest this genome-wide adaptive evolution may result from a Red Queen macroevolutionary dynamic, in which species are involved in competition for resources within the mammalian and/or vertebrate gastrointestinal tract. Much reduced levels of positive selection evident in Streptococcus, as reported by the authors in an earlier work, may be a consequence of these taxa inhabiting less species-rich habitats, and more unique niches. Despite many common loci under positive selection in multiple Campylobacter lineages, we found no evidence for molecular adaptive convergence at the level of the same or adjacent codons, or even protein domains. Taken collectively, these results describe the diversification of a bacterial genus that involves pervasive natural selection pressure across virtually the entire genome, with this adaptation occurring in different ways in different lineages, despite the species tendency toward a common gastrointestinal habitat. PMID:19304960

  19. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms

    PubMed Central

    Chang, Tsung-Cheng; Pertea, Mihaela; Lee, Sungyul; Salzberg, Steven L.; Mendell, Joshua T.

    2015-01-01

    Precise regulation of microRNA (miRNA) expression is critical for diverse physiologic and pathophysiologic processes. Nevertheless, elucidation of the mechanisms through which miRNA expression is regulated has been greatly hindered by the incomplete annotation of primary miRNA (pri-miRNA) transcripts. While a subset of miRNAs are hosted in protein-coding genes, the majority of pri-miRNAs are transcribed as poorly characterized noncoding RNAs that are 10's to 100's of kilobases in length and low in abundance due to efficient processing by the endoribonuclease DROSHA, which initiates miRNA biogenesis. Accordingly, these transcripts are poorly represented in existing RNA-seq data sets and exhibit limited and inaccurate annotation in current transcriptome assemblies. To overcome these challenges, we developed an experimental and computational approach that allows genome-wide detection and mapping of pri-miRNA structures. Deep RNA-seq in cells expressing dominant-negative DROSHA resulted in much greater coverage of pri-miRNA transcripts compared with standard RNA-seq. A computational pipeline was developed that produces highly accurate pri-miRNA assemblies, as confirmed by extensive validation. This approach was applied to a panel of human and mouse cell lines, providing pri-miRNA transcript structures for 1291/1871 human and 888/1181 mouse miRNAs, including 594 human and 425 mouse miRNAs that fall outside protein-coding genes. These new assemblies uncovered unanticipated features and new potential regulatory mechanisms, including links between pri-miRNAs and distant protein-coding genes, alternative pri-miRNA splicing, and transcripts carrying subsets of miRNAs encoded by polycistronic clusters. These results dramatically expand our understanding of the organization of miRNA-encoding genes and provide a valuable resource for the study of mammalian miRNA regulation. PMID:26290535

  20. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards

    PubMed Central

    Rappaport, Noa; Hadar, Rotem; Plaschkes, Inbar; Iny Stein, Tsippi; Rosen, Naomi; Kohn, Asher; Twik, Michal; Safran, Marilyn

    2017-01-01

    Abstract A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL: http://www.genecards.org/ PMID:28605766

  1. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

  2. Genome-Wide Inference of Ancestral Recombination Graphs

    PubMed Central

    Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Siepel, Adam

    2014-01-01

    The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the “ancestral recombination graph” (ARG), a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of chromosomes conditional on an ARG of chromosomes, an operation we call “threading.” Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking, although we cannot rule out a contribution from recurrent selective sweeps. PMID:24831947

  3. Genome-wide differentiation of various melon horticultural groups for use in genome wide association study for fruit firmness and construction of a high resolution genetic map

    USDA-ARS?s Scientific Manuscript database

    We generated 13,789 single nucleotide plymorphism (SNP) markers from 97 melon accessions using genotyping by sequencing and anchored them to chromosomes to understand genome-wide fixation index between various melon morphotypes and linkage disequilibrium (LD) decay for inodorus and cantalupensis, th...

  4. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  5. Efficient multivariate linear mixed model algorithms for genome-wide association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2014-04-01

    Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.

  6. Genome-wide association mapping in plants exemplified for root growth in Arabidopsis thaliana.

    PubMed

    Slovak, Radka; Göschl, Christian; Seren, Ümit; Busch, Wolfgang

    2015-01-01

    Genome-wide association (GWA) mapping is a powerful technique to address the molecular basis of genotype to phenotype relationships and to map regulators of biological processes. This chapter presents a protocol for genome-wide association mapping in Arabidopsis thaliana using the user-friendly internet application GWAPP, and provides a specific protocol for acquiring root trait data suitable for GWA studies using the semi-automated, high-throughput phenotyping pipeline BRAT for early root growth.

  7. Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics

    PubMed Central

    Niu, Yao-Fang; Ye, Chengyin; He, Ji; Han, Fang; Guo, Long-Biao; Zheng, Hou-Feng; Chen, Guo-Bo

    2017-01-01

    In line with open-source genetics, we report a novel linear regression technique for genome-wide association studies (GWAS), called Open GWAS algoriTHm (OATH). When individual-level data are not available, OATH can not only completely reproduce reported results from an experimental model, but also recover underreported results from other alternative models with a different combination of nuisance parameters using naïve summary statistics (NSS). OATH can also reliably evaluate all reported results in-depth (e.g., p-value variance analysis), as demonstrated for 42 Arabidopsis phenotypes under three magnesium (Mg) conditions. In addition, OATH can be used for consortium-driven genome-wide association meta-analyses (GWAMA), and can greatly improve the flexibility of GWAMA. A prototype of OATH is available in the Genetic Analysis Repository (https://github.com/gc5k/GEAR). PMID:28122950

  8. Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP

    PubMed Central

    Mead, Simon; Uphill, James; Beck, John; Poulter, Mark; Campbell, Tracy; Lowe, Jessica; Adamson, Gary; Hummerich, Holger; Klopp, Norman; Rückert, Ina-Maria; Wichmann, H-Erich; Azazi, Dhoyazan; Plagnol, Vincent; Pako, Wandagi H.; Whitfield, Jerome; Alpers, Michael P.; Whittaker, John; Balding, David J.; Zerr, Inga; Kretzschmar, Hans; Collinge, John

    2012-01-01

    Prion diseases are fatal neurodegenerative diseases of humans and animals caused by the misfolding and aggregation of prion protein (PrP). Mammalian prion diseases are under strong genetic control but few risk factors are known aside from the PrP gene locus (PRNP). No genome-wide association study (GWAS) has been done aside from a small sample of variant Creutzfeldt–Jakob disease (CJD). We conducted GWAS of sporadic CJD (sCJD), variant CJD (vCJD), iatrogenic CJD, inherited prion disease, kuru and resistance to kuru despite attendance at mortuary feasts. After quality control, we analysed 2000 samples and 6015 control individuals (provided by the Wellcome Trust Case Control Consortium and KORA-gen) for 491032-511862 SNPs in the European study. Association studies were done in each geographical and aetiological group followed by several combined analyses. The PRNP locus was highly associated with risk in all geographical and aetiological groups. This association was driven by the known coding variation at rs1799990 (PRNP codon 129). No non-PRNP loci achieved genome-wide significance in the meta-analysis of all human prion disease. SNPs at the ZBTB38–RASA2 locus were associated with CJD in the UK (rs295301, P = 3.13 × 10−8; OR, 0.70) but these SNPs showed no replication evidence of association in German sCJD or in Papua New Guinea-based tests. A SNP in the CHN2 gene was associated with vCJD [P = 1.5 × 10−7; odds ratio (OR), 2.36], but not in UK sCJD (P = 0.049; OR, 1.24), in German sCJD or in PNG groups. In the overall meta-analysis of CJD, 14 SNPs were associated (P < 10−5; two at PRNP, three at ZBTB38–RASA2, nine at nine other independent non-PRNP loci), more than would be expected by chance. None of the loci recently identified as genome-wide significant in studies of other neurodegenerative diseases showed any clear evidence of association in prion diseases. Concerning common genetic variation, it is likely that the PRNP locus contains the only

  9. Genome-wide association study for the level of serum electrolytes in Italian Large White pigs.

    PubMed

    Bovo, S; Schiavo, G; Mazzoni, G; Dall'Olio, S; Galimberti, G; Calò, D G; Scotti, E; Bertolini, F; Buttazzoni, L; Samorè, A B; Fontanesi, L

    2016-10-01

    Calcium, magnesium and phosphorus are essential electrolytes involved in a large number of biological processes. Imbalance of these minerals in blood may indicate clinically relevant conditions and are important in inferring acute or chronic pathologies in humans and animals. In this work, we carried out a genome-wide association study (GWAS) for the level of these three electrolytes in the serum of 843 performance-tested Italian Large White pigs. All pigs were genotyped with the Illumina PorcineSNP60 BeadChip, and GWAS was carried out using genome-wide efficient mixed-model association. For the level of Ca(2+) , eight single nucleotide polymorphisms (SNPs) were significant, considering a false discovery rate (FDR) < 0.05, and another eight were above the moderate association threshold (Pnominal value  < 5.00E-05). These SNPs are distributed in four porcine chromosomes (SSC): SSC8, SSC11, SSC12 and SSC13. In particular, a few putative different signals of association detected on SSC13 and one on SSC12 were in genes or close to genes involved in calcium metabolism (P2RY1, RAP2B, SLC9A9, C3orf58, TSC22D2, PLCH1 and CACNB1). Only one SNP (on SSC7) and six SNPs (on SSC2 and SSC7) showed moderate association with the level of magnesium and phosphorus respectively. The association signals for these two latter minerals might identify genes not known thus far for playing a role in their biological functions and regulations. In conclusion, our GWAS contributed to increased knowledge on the role that calcium, magnesium and phosphorus may play in the genetically determined physiological mechanisms affecting the natural variability of mineral levels in mammalian blood.

  10. Genome-wide association study of chronic periodontitis in a general German population.

    PubMed

    Teumer, Alexander; Holtfreter, Birte; Völker, Uwe; Petersmann, Astrid; Nauck, Matthias; Biffar, Reiner; Völzke, Henry; Kroemer, Heyo K; Meisel, Peter; Homuth, Georg; Kocher, Thomas

    2013-11-01

    To identify loci associated with chronic periodontitis through a genome-wide association study (GWAS). A GWAS was performed in 4032 individuals of two independent cross-sectional studies of West Pomerania (SHIP n = 3365 and SHIP-TREND n = 667) with different periodontal case definitions. Samples were genotyped with the Affymetrix Genome-Wide Human SNP Array 6.0 or the Illumina Human Omni 2.5 array. Imputation of the HapMap as well as the 1000 Genome-based autosomal and X-chromosomal genotypes and short insertions and deletions (INDELs) was performed in both cohorts. Finally, more than 17 million SNPs and short INDELs were analysed. No genome-wide significant associations were found for any periodontitis case definition, regardless of whether individuals aged >60 years where excluded or not. Despite no single SNP association reached genome-wide significance, the proportion of variance explained by additive effects of all common SNPs was around 23% for mean proximal attachment loss. Excluding subjects aged >60 years increased the explained variance to 34%. No single SNPs were found to be genome-wide significantly associated with chronic periodontitis in this study. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    PubMed

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  12. High quality genome-wide genotyping from archived dried blood spots without DNA amplification.

    PubMed

    St Julien, Krystal R; Jelliffe-Pawlowski, Laura L; Shaw, Gary M; Stevenson, David K; O'Brodovich, Hugh M; Krasnow, Mark A

    2013-01-01

    Spots of blood are routinely collected from newborn babies onto filter paper called Guthrie cards and used to screen for metabolic and genetic disorders. The archived dried blood spots are an important and precious resource for genomic research. Whole genome amplification of dried blood spot DNA has been used to provide DNA for genome-wide SNP genotyping. Here we describe a 96 well format procedure to extract DNA from a portion of a dried blood spot that provides sufficient unamplified genomic DNA for genome-wide single nucleotide polymorphism (SNP) genotyping. We show that SNP genotyping of the unamplified DNA is more robust than genotyping amplified dried blood spot DNA, is comparable in cost, and can be done with thousands of samples. This procedure can be used for genome-wide association studies and other large-scale genomic analyses that require robust, high-accuracy genotyping of dried blood spot DNA.

  13. Sample size and power analysis for sparse signal recovery in genome-wide association studies

    PubMed Central

    Xie, Jichun; Cai, T. Tony; Li, Hongzhe

    2011-01-01

    Genome-wide association studies have successfully identified hundreds of novel genetic variants associated with many complex human diseases. However, there is a lack of rigorous work on evaluating the statistical power for identifying these variants. In this paper, we consider sparse signal identification in genome-wide association studies and present two analytical frameworks for detailed analysis of the statistical power for detecting and identifying the disease-associated variants. We present an explicit sample size formula for achieving a given false non-discovery rate while controlling the false discovery rate based on an optimal procedure. Sparse genetic variant recovery is also considered and a boundary condition is established in terms of sparsity and signal strength for almost exact recovery of both disease-associated variants and nondisease-associated variants. A data-adaptive procedure is proposed to achieve this bound. The analytical results are illustrated with a genome-wide association study of neuroblastoma. PMID:23049128

  14. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs

    PubMed Central

    Krapohl, E; Plomin, R

    2016-01-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES. PMID:25754083

  15. An Efficient Resampling Method for Assessing Genome-Wide Statistical Significance in Mapping Quantitative Trait Loci

    PubMed Central

    Zou, Fei; Fine, Jason P.; Hu, Jianhua; Lin, D. Y.

    2004-01-01

    Assessing genome-wide statistical significance is an important and difficult problem in multipoint linkage analysis. Due to multiple tests on the same genome, the usual pointwise significance level based on the chi-square approximation is inappropriate. Permutation is widely used to determine genome-wide significance. Theoretical approximations are available for simple experimental crosses. In this article, we propose a resampling procedure to assess the significance of genome-wide QTL mapping for experimental crosses. The proposed method is computationally much less intensive than the permutation procedure (in the order of 102 or higher) and is applicable to complex breeding designs and sophisticated genetic models that cannot be handled by the permutation and theoretical methods. The usefulness of the proposed method is demonstrated through simulation studies and an application to a Drosophila backcross. PMID:15611194

  16. Genome-wide efficient mixed-model analysis for association studies.

    PubMed

    Zhou, Xiang; Stephens, Matthew

    2012-06-17

    Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.

  17. Genome-wide DNA methylation analysis using massively parallel sequencing technologies.

    PubMed

    Suzuki, Masako; Greally, John M

    2013-01-01

    "Epigenetics" refers to a heritable change in transcriptional status without alteration in the primary nucleotide sequence. Epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal development, as well as in pathological conditions. DNA methylation is one of the best known and well-studied epigenetic modifications. Genome-wide DNA methylation profiling has become recognized as a biologically and clinically important epigenomic assay. In this review, we discuss the strengths and weaknesses of the protocols for genome-wide DNA methylation profiling using massively parallel sequencing (MPS) techniques. We will also describe recently discovered DNA modifications, and the protocols to detect these modifications.

  18. genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools.

    PubMed

    Lemieux Perreault, Louis-Philippe; Legault, Marc-André; Asselin, Géraldine; Dubé, Marie-Pierre

    2016-12-01

    Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies).

  19. Genome-wide approaches (GWA) in oral and craniofacial diseases research

    PubMed Central

    Kim, H; Gordon, S; Dionne, R

    2012-01-01

    Underlying molecular genetic mechanisms of diseases can be deciphered with unbiased strategies using recently developed technologies enabling genome-wide scale investigations. These technologies have been applied in scanning for genetic variations, gene expression profiles, and epigenetic changes for oral and craniofacial diseases. However, these approaches as applied to oral and craniofacial conditions are in the initial stages, and challenges remain to be overcome, including analysis of high throughput data and their interpretation. Here, we review methodology and studies using genome-wide approaches in oral and craniofacial diseases and suggest future directions. PMID:22913301

  20. Genome-Wide Association Mapping of Root Traits in the Context of Plant Hormone Research.

    PubMed

    Ristova, Daniela; Busch, Wolfgang

    2017-01-01

    Genome-wide association (GWA) mapping is a powerful method for the identification of alleles that underlie quantitative traits. It enables one to understand how genetic variation translates into phenotypic variation. In particular, plant hormone signaling pathways play a key role in shaping phenotypes. This chapter presents a protocol for genome-wide association mapping of root traits of Arabidopsis thaliana in the context of hormone research. We describe a specific protocol for acquiring primary and lateral root trait data that is appropriate for GWA studies using FIJI (ImageJ), and subsequent GWA mapping using a user-friendly Internet application.

  1. Control selection options for genome-wide association studies in cohorts.

    PubMed

    Wacholder, Sholom; Rotunno, Melissa

    2009-03-01

    Investigators planning studies within cohorts have many options for choosing an efficient sampling design for genome-wide association and other molecular epidemiology studies. Consideration of person-year and proportional hazards analyses of full cohorts may add further insight into ramifications of different designs. Empirical evidence from genome-wide association studies can supplement intuition and simulations in comparing properties of various case-control designs within cohorts. Additional theoretical and empirical work, justification of sampling choice in publications, and consideration of context and scientific aims can improve designs and, thereby, increase the scientific value and cost effectiveness of future studies.

  2. Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism.

    PubMed

    Romanelli, Valeria; Nevado, Julián; Fraga, Mario; Trujillo, Alex Martín; Mori, Maria Ángeles; Fernández, Luis; Pérez de Nanclares, Guiomar; Martínez-Glez, Víctor; Pita, Guillermo; Meneses, Heloisa; Gracia, Ricardo; García-Miñaur, Sixto; García de Miguel, Purificación; Lecumberri, Beatriz; Rodríguez, José Ignacio; González Neira, Anna; Monk, David; Lapunzina, Pablo

    2011-03-01

    Molecular studies in a patient with Beckwith-Wiedemann syndrome phenotype who developed two different tumours revealed an unexpected observation of almost complete loss of heterozygosity of all chromosomes. It is shown, by means of numerous molecular methods, that the absence of maternal contribution in somatic cells is due to high-degree (∼ 85%) genome-wide paternal uniparental disomy (UPD). The observations indicate that the genome-wide UPD results from diploidisation, and have important implications for genetic counselling and tumour surveillance for the growing number of UPD associated imprinting disorders.

  3. Genome-wide analysis of tandem repeats in plants and green algae

    Treesearch

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  4. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway

    USDA-ARS?s Scientific Manuscript database

    Low plasma B-vitamin levels and elevated homocysteine have been associated with cancer, cardiovascular disease, and neurodegenerative disorders. Common variants in FUT2 on chromosome 19q13 were associated with plasma vitamin B12 levels among women in a genome-wide association study (GWAS) in the Nur...

  5. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  6. Software engineering the mixed model for genome-wide association studies on large samples

    USDA-ARS?s Scientific Manuscript database

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  7. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple

    USDA-ARS?s Scientific Manuscript database

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide...

  8. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    USDA-ARS?s Scientific Manuscript database

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  9. Genome-wide association as a means to understanding the mammary gland

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing and related technologies have facilitated the creation of enormous public databases that catalogue genomic variation. These databases have facilitated a variety of approaches to discover new genes that regulate normal biology as well as disease. Genome wide association (...

  10. A genome-wide SNP panel for genetic diversity, mapping and breeding studies in rice

    USDA-ARS?s Scientific Manuscript database

    A genome-wide SNP resource was developed for rice using the GoldenGate assay and used to genotype 400 landrace accessions of O. sativa. SNPs were originally discovered using Perlegen re-sequencing technology in 20 diverse landraces of O. sativa as part of OryzaSNP project (http://irfgc.irri.org). An...

  11. A genome-wide regulatory framework identifies maize Pericarp Color1 (P1) controlled genes

    USDA-ARS?s Scientific Manuscript database

    P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues. Using genome-wide expression analyses (RNA-Seq) in pericarps and silks of plants with contrasting P1 alleles combin...

  12. Genome-wide linkage scan of quantitative traits representing symptom dimensions in multiplex schizophrenia families.

    PubMed

    Ryu, Seunghyong; Won, Hong-Hee; Oh, Sohee; Kim, Jong-Won; Park, Taesung; Cho, Eun-Young; Cho, Youngah; Park, Dong Yeon; Lee, Yu-Sang; Kwon, Jun Soo; Hong, Kyung Sue

    2013-12-30

    Symptom dimensions of schizophrenia are likely to be the intermediate phenotypes under the control of disease-susceptibility genes, or separate traits related to disease-modifier genes. This study aimed to identify chromosomal loci linked to symptom dimensions of schizophrenia through genome-wide quantitative trait locus (QTL) linkage analysis. The study subjects consisted of 56 families with 183 members including 123 affected individuals. Symptom evaluations were performed on lifetime basis. Through principal component factor analysis, eight quantitative phenotypes representing symptom dimensions were identified. Genotyping was done for 6008 SNP markers, and genome-wide QTL linkage analysis was performed. No symptom dimension showed a significant linkage attaining genome-wide empirical thresholds. We observed seven regions yielding linkage signals attaining genome-wide empirical thresholds for suggestive linkage (NPL Z score = 2.78-3.49); chromosome 15q26.1 for 'non-paranoid delusion factor', 2p24.3 and 7q31.1 for 'prodromal impairment factor', 1q32.1, 9p21.3, and 9q31.2 for 'negative symptom factor', and 10p13 for 'disorganization factor'. Among these loci, chromosome 2p24.3 and 1q32.1 overlap with susceptibility loci of schizophrenia identified in our previous linkage studies. This study suggests the existence of genetic loci related to various clinical features of schizophrenia. Further genetic analyses for these dimensional phenotypes are warranted. © 2013 Published by Elsevier Ireland Ltd.

  13. snpGeneSets: An R Package for Genome-Wide Study Annotation.

    PubMed

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-12-07

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/.

  14. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping has recently emerged as a valuable approach to refine genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil borne pathogen of pea and other legumes wor...

  15. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  16. Genome wide association analysis for seedling response traits to thermal stress in sorghum germplasm

    USDA-ARS?s Scientific Manuscript database

    The sorghum association panel exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified thirty single nucleotide polymorphisms (SNPs) that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act a...

  17. Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.

    PubMed

    Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E

    2016-11-18

    Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10(-8)). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10(-4). Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.

  18. A population structure and genome-wide association analysis on the USDA soybean germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Genotype-phenotype associations within the soybean (Glycine max) germplasm collection could provide valuable information on the frequency and distribution of alleles affecting economically important traits. Here we performed a genome-wide association study (GWAS) for seed protein and oil content in ...

  19. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    ERIC Educational Resources Information Center

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  20. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  1. Implementing Meta-analysis for genome-wide association studies of pork quality traits

    USDA-ARS?s Scientific Manuscript database

    Pork quality is a critical concern in the meat industry. Implementation of genome-wide association studies (GWA) allows identification of genomic regions that explain a substantial portion of the variation of relevant traits. It is also important to determine the consistency of results of GWA across...

  2. Meta-analysis of genome-wide association from genomic prediction models

    USDA-ARS?s Scientific Manuscript database

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  3. Methods for meta-analysis of genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. For increasing N, results from different GWA can be combined in a meta-analysis (MA-...

  4. Meta-analysis of genome wide association studies for pork quality traits

    USDA-ARS?s Scientific Manuscript database

    Given the importance of pork quality in the meat processing industry, genome-wide association studies were performed for eight meat quality traits and also, a meta-analysis (MA) of GWA was implemented combining independent results from pig populations. Data from three pig datasets (USMARC, Commercia...

  5. Mixed linear model approach adapted for genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Mixed linear model (MLM) methods have proven useful in controlling for population structure and relatedness within genome-wide association studies. However, MLM-based methods can be computationally challenging for large datasets. We report a compression approach, called ‘compressed MLM,’ that decrea...

  6. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    USDA-ARS?s Scientific Manuscript database

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  7. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    PubMed Central

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association approach. Method The authors administered 4 Internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2,329 twelve-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and 1 million imputed SNPs were included in a genome-wide association analysis of receptive language composite scores. Results No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p < 5 × 10–8). The strongest SNP association did not replicate in an additional sample of 2,639 twelve-year-olds. Conclusions These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for more than 3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants. PMID:24687471

  8. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  9. Genome-wide association of meat quality traits and tenderness in swine

    USDA-ARS?s Scientific Manuscript database

    Pork quality has a large impact on consumer preference and perception of eating quality. A genome-wide association was performed for pork quality traits [intramuscular fat (IMF)], slice shear force (SSF), color attributes, purge, cooking loss, and pH] from 531 to 1,237 records on barrows and gilts o...

  10. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  11. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  12. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    ERIC Educational Resources Information Center

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  13. A genome-wide association study platform built on iPlant cyber-infrastructure

    USDA-ARS?s Scientific Manuscript database

    We demonstrated a flexible Genome-Wide Association (GWA) Study (GWAS) platform built upon the iPlant Collaborative Cyber-infrastructure. The platform supports big data management, sharing, and large scale study of both genotype and phenotype data on clusters. End users can add their own analysis too...

  14. Implementing meta-analysis from genome-wide association studies for pork quality traits

    USDA-ARS?s Scientific Manuscript database

    Pork quality plays an important role in the meat processing industry, thus different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. Howe...

  15. Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data

    USDA-ARS?s Scientific Manuscript database

    Reproductive efficiency has a great impact on the economic success of pork production. Number born alive (NBA) and average piglet birth weight (ABW) contribute greatly to reproductive efficiency. To better understand the underlying genetics of birth traits, a genome wide association study (GWAS) w...

  16. Genome-wide association study of maize identifies genes affecting leaf architecture

    USDA-ARS?s Scientific Manuscript database

    U.S. maize yield has increased eightfold in the past 80 years with half of the improvement attributed to genetics. Changes in maize leaf angle and size provided a basis for more efficient light capture as plant densities increased. Through a genome wide association study (GWAS) of the maize nested a...

  17. The past, present and future of genome-wide re-annotation

    PubMed Central

    Ouzounis, Christos A; Karp, Peter D

    2002-01-01

    Annotation, the process by which structural or functional information is inferred for genes or proteins, is crucial for obtaining value from genome sequences. We define the process of annotating a previously annotated genome sequence as 're-annotation', and examine the strengths and weaknesses of current manual and automatic genome-wide re-annotation approaches. PMID:11864365

  18. Linkage Disequilibrium And Genome-Wide Association Studies In O. sativa

    USDA-ARS?s Scientific Manuscript database

    There is increasing evidence that genome-wide association studies provide a powerful approach to find the genetic basis of complex phenotypic variation in all kinds of species. For this purpose, we developed the first generation 44K Affymetrix SNP array in rice (see Tung et al. poster). We genotyped...

  19. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  20. Genome-wide association analysis for drought tolerance and associated traits in common bean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for drought tolerance and related traits in a Middle American diversity panel comprised of 96 common bean (Phaseolus vulgaris) genotypes. The panel grown under irrigated and rainfed conditions and single n...

  1. Genome-wide association study of agronomic traits in common bean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) using a global Andean diversity panel (ADP) of 237 genotypes of common bean, Phaseolus vulgaris was conducted to gain insight into the genetic architecture of several agronomic traits controlling phenology, biomass, yield components and seed yield. The panel wa...

  2. Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus

    USDA-ARS?s Scientific Manuscript database

    Background: Apart from single nucleotide polymorphism (SNP), copy number variation (CNV) is another important type of genetic variation, which may affect growth traits and play key roles for the production of beef cattle. To date, no genome-wide association study (GWAS) for CNV and body traits in be...

  3. CNV-based genome wide association study reveals additional variants contributing to meat quality in swine

    USDA-ARS?s Scientific Manuscript database

    Pork quality is important both to the meat processing industry and consumers’ purchasing attitudes. Copy number variation (CNV) is a burgeoning kind of variant that may influence meat quality. Herein, a genome-wide association study (GWAS) was performed between CNVs and meat quality traits in swine....

  4. Genome wide search for variation associated with micronutrient density of developing rice grains

    USDA-ARS?s Scientific Manuscript database

    "Omic" tools are rapidly being employed to delineate the biological framework controlling phenotypes of interest in crop species. An advanced understanding of the genetic basis for quantitative trait variation has been made possible through genome wide association studies (GWAS) that make use of gen...

  5. A Genome-Wide Scan for Breast Cancer Risk Haplotypes among African American Women

    PubMed Central

    Song, Chi; Chen, Gary K.; Millikan, Robert C.; Ambrosone, Christine B.; John, Esther M.; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J.; Ziegler, Regina G.; Nyante, Sarah; Bandera, Elisa V.; Ingles, Sue A.; Press, Michael F.; Deming, Sandra L.; Rodriguez-Gil, Jorge L.; Chanock, Stephen J.; Wan, Peggy; Sheng, Xin; Pooler, Loreall C.; Van Den Berg, David J.; Le Marchand, Loic; Kolonel, Laurence N.; Henderson, Brian E.; Haiman, Chris A.; Stram, Daniel O.

    2013-01-01

    Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density. PMID:23468962

  6. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians.

    PubMed

    Elbein, S C; Hoffman, M D; Teng, K; Leppert, M F; Hasstedt, S J

    1999-05-01

    Considerable evidence supports a major inherited component of type 2 diabetes. We initially conducted a genome-wide scan with 440 microsatellite markers at 10-cM intervals in 19 multigenerational families of Northern European ancestry with at least two diabetic siblings. Initial two-point analyses of these families directed marker typing of 23 additional families. Subsequently, all available marker data on the total of 42 families were analyzed using both parametric and nonparametric multipoint methods to test for linkage to type 2 diabetes. One locus on chromosome 1q21-1q23 met genome-wide criteria for significant linkage under a model of recessive inheritance with a common diabetes allele (logarithm of odds [LOD] = 4.295). Both pedigree-based nonparametric linkage (NPL) analysis and affected sib pair (MAPMAKER/SIBS) nonparametric methods also showed the highest genome-wide scores at this region, near markers CRP and APOA2, but failed to meet levels of genome-wide significance. The risk of type 2 diabetes to siblings of a diabetic person when compared with the population (lambdaS) was estimated from MAPMAKER/SIBS to be 2.8 in these 42 families. Simulation studies using study data confirmed a genome-wide significance level of P<0.05 (95% CI 0.005-0.0466). However, analysis of 20 similarly ascertained but smaller families failed to confirm this linkage. The LOD score with 50% heterogeneity for all 62 families considered together was only 2.25, with an estimated lambdaS of 1.87. Our data suggest a novel diabetes susceptibility locus near APOA2 on chromosome 1 in a region with many transcribed genes.

  7. Genome-wide distribution of genetic diversity and linkage disequilibrium in elite sugar beet germplasm

    PubMed Central

    2011-01-01

    Background Characterization of population structure and genetic diversity of germplasm is essential for the efficient organization and utilization of breeding material. The objectives of this study were to (i) explore the patterns of population structure in the pollen parent heterotic pool using different methods, (ii) investigate the genome-wide distribution of genetic diversity, and (iii) assess the extent and genome-wide distribution of linkage disequilibrium (LD) in elite sugar beet germplasm. Results A total of 264 and 238 inbred lines from the yield type and sugar type inbreds of the pollen parent heterotic gene pools, respectively, which had been genotyped with 328 SNP markers, were used in this study. Two distinct subgroups were detected based on different statistical methods within the elite sugar beet germplasm set, which was in accordance with its breeding history. MCLUST based on principal components, principal coordinates, or lapvectors had high correspondence with the germplasm type information as well as the assignment by STRUCTURE, which indicated that these methods might be alternatives to STRUCTURE for population structure analysis. Gene diversity and modified Roger's distance between the examined germplasm types varied considerably across the genome, which might be due to artificial selection. This observation indicates that population genetic approaches could be used to identify candidate genes for the traits under selection. Due to the fact that r2 >0.8 is required to detect marker-phenotype association explaining less than 1% of the phenotypic variance, our observation of a low proportion of SNP loci pairs showing such levels of LD suggests that the number of markers has to be dramatically increased for powerful genome-wide association mapping. Conclusions We provided a genome-wide distribution map of genetic diversity and linkage disequilibrium for the elite sugar beet germplasm, which is useful for the application of genome-wide association

  8. Identification of a Hashimoto thyroiditis susceptibility locus via a genome-wide comparison with Graves' disease.

    PubMed

    Oryoji, Daisuke; Ueda, Sho; Yamamoto, Ken; Yoshimura Noh, Jaeduk; Okamura, Ken; Noda, Mitsuhiko; Watanabe, Natsuko; Yoshihara, Ai; Ito, Koichi; Sasazuki, Takehiko

    2015-02-01

    Hashimoto thyroiditis (HT) and Graves' disease (GD) share some immunological features. Determining the genetic basis that distinguishes HT from GD is key for a better understanding of the differences between these two related diseases. The aim of this study was to identify a non-HLA susceptibility locus that is specific to either HT or GD. We performed a two-stage genome-wide comparison between HT and GD in Japan. During the discovery stage, we performed a logistic regression analysis adjusting for sex using 727 413 single nucleotide polymorphisms (SNPs) for 265 HT and 261 GD patients. During the replication stage, 35 SNPs were analyzed for 181 HT and 286 GD cases. A combined meta-analysis was performed using the results from these two stages. An SNP showing a genome-wide significant level was further analyzed using 1363 healthy controls to determine the specificity of susceptibility. A genome-wide direct comparison between HT and GD revealed an SNP at the VAV3 locus with genome-wide significant association signals (rs7537605: P(combined) = 3.90 × 10(-8); odds ratio(combined) = 1.77; 95% confidence interval = 1.44-2.17). An association analysis using healthy controls showed that rs7537605 is significantly associated with HT (P = 1.24 × 10(-5); odds ratio = 1.60; 95% confidence interval = 1.30-1.97) but not with GD (P = .50), suggesting that the variant specifically affects susceptibility to HT. A genome-wide direct comparison between HT and GD revealed an HT-specific variant within VAV3 in the Japanese. Considering physiological roles of VAV3, such as a guanine nucleotide exchange factor, our finding provides new insight into the molecular mechanism of HT.

  9. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    PubMed Central

    Zhang, Cathy R.; Adib-Samii, Poneh; Devan, William J.; Parsons, Owen E.; Lanfranconi, Silvia; Gregory, Sarah; Cloonan, Lisa; Falcone, Guido J.; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Barrick, Thomas R.; Moynihan, Barry; Lewis, Cathryn M.; Boncoraglio, Giorgio B.; Lemmens, Robin; Thijs, Vincent; Sudlow, Cathie; Wardlaw, Joanna; Rothwell, Peter M.; Meschia, James F.; Worrall, Bradford B.; Levi, Christopher; Bevan, Steve; Furie, Karen L.; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.; Rost, Natalia

    2016-01-01

    Objective: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. Methods: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. Results: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10−6) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10−8; rs941898 [EVL], p = 4.0 × 10−8; rs962888 [C1QL1], p = 1.1 × 10−8; rs9515201 [COL4A2], p = 6.9 × 10−9). Conclusions: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease. PMID:26674333

  10. A genome-wide approach to children's aggressive behavior: The EAGLE consortium.

    PubMed

    Pappa, Irene; St Pourcain, Beate; Benke, Kelly; Cavadino, Alana; Hakulinen, Christian; Nivard, Michel G; Nolte, Ilja M; Tiesler, Carla M T; Bakermans-Kranenburg, Marian J; Davies, Gareth E; Evans, David M; Geoffroy, Marie-Claude; Grallert, Harald; Groen-Blokhuis, Maria M; Hudziak, James J; Kemp, John P; Keltikangas-Järvinen, Liisa; McMahon, George; Mileva-Seitz, Viara R; Motazedi, Ehsan; Power, Christine; Raitakari, Olli T; Ring, Susan M; Rivadeneira, Fernando; Rodriguez, Alina; Scheet, Paul A; Seppälä, Ilkka; Snieder, Harold; Standl, Marie; Thiering, Elisabeth; Timpson, Nicholas J; Veenstra, René; Velders, Fleur P; Whitehouse, Andrew J O; Smith, George Davey; Heinrich, Joachim; Hypponen, Elina; Lehtimäki, Terho; Middeldorp, Christel M; Oldehinkel, Albertine J; Pennell, Craig E; Boomsma, Dorret I; Tiemeier, Henning

    2016-07-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc.

  11. A Genome-wide Quantitative Linkage Scan of Niacin Skin Flush Response in Families With Schizophrenia

    PubMed Central

    Lien, Yin-Ju; Huang, Sih-Syuan; Liu, Chih-Min; Hwu, Hai-Gwo; Faraone, Stephen V.; Tsuang, Ming T.; Chen, Wei J.

    2013-01-01

    Schizophrenia patients frequently display reduced niacin flush responses, and similar characteristics are also observed in their nonpsychotic relatives. This study aimed to identify loci influencing flush response to niacin in schizophrenia using genome-wide quantitative linkage scan. In a nationwide sample of families with at least 2 siblings affected with schizophrenia in each family, 115 families that had at least 2 affected siblings with information on the niacin skin test were subjected to quantitative trait loci linkage analysis, either involving affected individuals only or the whole family. Nonparametric linkage z (NPL-Z) scores were calculated for each of 386 microsatellite markers spaced at an average of 9-cM intervals. Niacin patches of 3 concentrations (0.001M, 0.01, and 0.1M) were applied to forearm skin, and the flush response was rated at 5, 10, and 15 minutes, respectively, with a 4-point scale. Determination of genome-wide empirical significance was implemented using 1000 simulated genome scans. One linkage peak attaining genome-wide significance was identified at chromosomal region 14q32.12 for 0.01M concentration at 5 minutes (NPL-Z scores = 3.39, genome-wide empirical P = .03) in affected individuals, and the corresponding linkage signal remained strong (NPL-Z scores = 2.87) for the analyses of the whole family. This locus is distinct from the chromosomal region identified in the previous genome-wide scan for the diagnosis of schizophrenia, and the signal was higher than the peak linkage signal in that study. These findings indicate that there might be modifier or susceptibility-modifier genes at 14q32.12 for schizophrenia-related attenuation of flush response to niacin. PMID:21653277

  12. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    PubMed Central

    Winham, Stacey J; Biernacka, Joanna M.

    2013-01-01

    Background Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift towards genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. Methods We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. Results Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychological and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. Conclusions Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry. PMID:23808649

  13. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  14. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing.

    PubMed

    Nicod, Jérôme; Davies, Robert W; Cai, Na; Hassett, Carl; Goodstadt, Leo; Cosgrove, Cormac; Yee, Benjamin K; Lionikaite, Vikte; McIntyre, Rebecca E; Remme, Carol Ann; Lodder, Elisabeth M; Gregory, Jennifer S; Hough, Tertius; Joynson, Russell; Phelps, Hayley; Nell, Barbara; Rowe, Clare; Wood, Joe; Walling, Alison; Bopp, Nasrin; Bhomra, Amarjit; Hernandez-Pliego, Polinka; Callebert, Jacques; Aspden, Richard M; Talbot, Nick P; Robbins, Peter A; Harrison, Mark; Fray, Martin; Launay, Jean-Marie; Pinto, Yigal M; Blizard, David A; Bezzina, Connie R; Adams, David J; Franken, Paul; Weaver, Tom; Wells, Sara; Brown, Steve D M; Potter, Paul K; Klenerman, Paul; Lionikas, Arimantas; Mott, Richard; Flint, Jonathan

    2016-08-01

    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.

  15. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway.

    PubMed

    Nybakken, Kent; Vokes, Steven A; Lin, Ting-Yi; McMahon, Andrew P; Perrimon, Norbert

    2005-12-01

    Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.

  16. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    PubMed Central

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  17. Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis.

    PubMed

    Tejedor, J Ramón; Papasaikas, Panagiotis; Valcárcel, Juan

    2015-01-08

    Alternative splicing of Fas/CD95 exon 6 generates either a membrane-bound receptor that promotes, or a soluble isoform that inhibits, apoptosis. Using an automatized genome-wide siRNA screening for alternative splicing regulators of endogenous transcripts in mammalian cells, we identified 200 genes whose knockdown modulates the ratio between Fas/CD95 isoforms. These include classical splicing regulators; core spliceosome components; and factors implicated in transcription and chromatin remodeling, RNA transport, intracellular signaling, and metabolic control. Coherent effects of genes involved in iron homeostasis and pharmacological modulation of iron levels revealed a link between intracellular iron and Fas/CD95 exon 6 inclusion. A splicing regulatory network linked iron levels with reduced activity of the Zinc-finger-containing splicing regulator SRSF7, and in vivo and in vitro assays revealed that iron inhibits SRSF7 RNA binding. Our results uncover numerous links between cellular pathways and RNA processing and a mechanism by which iron homeostasis can influence alternative splicing.

  18. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments

    PubMed Central

    Lachmann, Alexander; Xu, Huilei; Krishnan, Jayanth; Berger, Seth I.; Mazloom, Amin R.; Ma'ayan, Avi

    2010-01-01

    Motivation: Experiments such as ChIP-chip, ChIP-seq, ChIP-PET and DamID (the four methods referred herein as ChIP-X) are used to profile the binding of transcription factors to DNA at a genome-wide scale. Such experiments provide hundreds to thousands of potential binding sites for a given transcription factor in proximity to gene coding regions. Results: In order to integrate data from such studies and utilize it for further biological discovery, we collected interactions from such experiments to construct a mammalian ChIP-X database. The database contains 189 933 interactions, manually extracted from 87 publications, describing the binding of 92 transcription factors to 31 932 target genes. We used the database to analyze mRNA expression data where we perform gene-list enrichment analysis using the ChIP-X database as the prior biological knowledge gene-list library. The system is delivered as a web-based interactive application called ChIP Enrichment Analysis (ChEA). With ChEA, users can input lists of mammalian gene symbols for which the program computes over-representation of transcription factor targets from the ChIP-X database. The ChEA database allowed us to reconstruct an initial network of transcription factors connected based on shared overlapping targets and binding site proximity. To demonstrate the utility of ChEA we present three case studies. We show how by combining the Connectivity Map (CMAP) with ChEA, we can rank pairs of compounds to be used to target specific transcription factor activity in cancer cells. Availability: The ChEA software and ChIP-X database is freely available online at: http://amp.pharm.mssm.edu/lib/chea.jsp Contact: avi.maayan@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20709693

  19. Quality control and conduct of genome-wide association meta-analyses.

    PubMed

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Mägi, Reedik; Ferreira, Teresa; Fall, Tove; Graff, Mariaelisa; Justice, Anne E; Luan, Jian'an; Gustafsson, Stefan; Randall, Joshua C; Vedantam, Sailaja; Workalemahu, Tsegaselassie; Kilpeläinen, Tuomas O; Scherag, André; Esko, Tonu; Kutalik, Zoltán; Heid, Iris M; Loos, Ruth J F

    2014-05-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.

  20. A guide to genome-wide association analysis and post-analytic interrogation.

    PubMed

    Reed, Eric; Nunez, Sara; Kulp, David; Qian, Jing; Reilly, Muredach P; Foulkes, Andrea S

    2015-12-10

    This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open-source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as well as additional instructional resources, are publicly available through the Open Resources in Statistical Genomics project: http://www.stat-gen.org.

  1. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.

    PubMed

    Hancock, Dana B; Eijgelsheim, Mark; Wilk, Jemma B; Gharib, Sina A; Loehr, Laura R; Marciante, Kristin D; Franceschini, Nora; van Durme, Yannick M T A; Chen, Ting-Hsu; Barr, R Graham; Schabath, Matthew B; Couper, David J; Brusselle, Guy G; Psaty, Bruce M; van Duijn, Cornelia M; Rotter, Jerome I; Uitterlinden, André G; Hofman, Albert; Punjabi, Naresh M; Rivadeneira, Fernando; Morrison, Alanna C; Enright, Paul L; North, Kari E; Heckbert, Susan R; Lumley, Thomas; Stricker, Bruno H C; O'Connor, George T; London, Stephanie J

    2010-01-01

    Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV(1)) and its ratio to forced vital capacity (FEV(1)/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV(1)/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV(1) (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 x 10(-8)) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.

  2. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  3. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma

    PubMed Central

    Chahal, Harvind S.; Wu, Wenting; Ransohoff, Katherine J.; Yang, Lingyao; Hedlin, Haley; Desai, Manisha; Lin, Yuan; Dai, Hong-Ji; Qureshi, Abrar A.; Li, Wen-Qing; Kraft, Peter; Hinds, David A.; Tang, Jean Y.; Han, Jiali; Sarin, Kavita Y.

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10−8, logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC. PMID:27539887

  4. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    PubMed

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  5. Partitioning heritability by functional annotation using genome-wide association summary statistics

    PubMed Central

    Finucane, Hilary K.; Bulik-Sullivan, Brendan; Gusev, Alexander; Trynka, Gosia; Reshef, Yakir; Loh, Po-Ru; Anttila, Verneri; Xu, Han; Zang, Chongzhi; Farh, Kyle; Ripke, Stephan; Day, Felix R.; Consortium, ReproGen; Purcell, Shaun; Stahl, Eli; Lindstrom, Sara; Perry, John R. B.; Okada, Yukinori; Raychaudhuri, Soumya; Daly, Mark; Patterson, Nick; Neale, Benjamin M.; Price, Alkes L.

    2015-01-01

    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. PMID:26414678

  6. Quality control and conduct of genome-wide association meta-analyses

    PubMed Central

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Mägi, Reedik; Ferreira, Teresa; Fall, Tove; Graff, Mariaelisa; Justice, Anne E; Luan, Jian'an; Gustafsson, Stefan; Randall, Joshua C; Vedantam, Sailaja; Workalemahu, Tsegaselassie; Kilpeläinen, Tuomas O; Scherag, André; Esko, Tonu; Kutalik, Zoltán; Heid, Iris M; Loos, Ruth JF

    2014-01-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for [1] organizational aspects of GWAMAs, and for [2] QC at the study file level, the meta-level across studies, and the meta-analysis output level. Real–world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for use of a powerful and flexible software package called EasyQC. For consortia of comparable size to the GIANT consortium, the present protocol takes a minimum of about 10 months to complete. PMID:24762786

  7. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa

    PubMed Central

    Zhao, Keyan; Tung, Chih-Wei; Eizenga, Georgia C.; Wright, Mark H.; Ali, M. Liakat; Price, Adam H.; Norton, Gareth J.; Islam, M. Rafiqul; Reynolds, Andy; Mezey, Jason; McClung, Anna M.; Bustamante, Carlos D.; McCouch, Susan R.

    2011-01-01

    Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the world's population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on genotyping 44,100 SNP variants across 413 diverse accessions of O. sativa collected from 82 countries that were systematically phenotyped for 34 traits. Using cross-population-based mapping strategies, we identified dozens of common variants influencing numerous complex traits. Significant heterogeneity was observed in the genetic architecture associated with subpopulation structure and response to environment. This work establishes an open-source translational research platform for genome-wide association studies in rice that directly links molecular variation in genes and metabolic pathways with the germplasm resources needed to accelerate varietal development and crop improvement. PMID:21915109

  8. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa.

    PubMed

    Zhao, Keyan; Tung, Chih-Wei; Eizenga, Georgia C; Wright, Mark H; Ali, M Liakat; Price, Adam H; Norton, Gareth J; Islam, M Rafiqul; Reynolds, Andy; Mezey, Jason; McClung, Anna M; Bustamante, Carlos D; McCouch, Susan R

    2011-09-13

    Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the world's population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on genotyping 44,100 SNP variants across 413 diverse accessions of O. sativa collected from 82 countries that were systematically phenotyped for 34 traits. Using cross-population-based mapping strategies, we identified dozens of common variants influencing numerous complex traits. Significant heterogeneity was observed in the genetic architecture associated with subpopulation structure and response to environment. This work establishes an open-source translational research platform for genome-wide association studies in rice that directly links molecular variation in genes and metabolic pathways with the germplasm resources needed to accelerate varietal development and crop improvement.

  9. Identification of Transcribed Enhancers by Genome-Wide Chromatin Immunoprecipitation Sequencing.

    PubMed

    Blinka, Steven; Reimer, Michael H; Pulakanti, Kirthi; Pinello, Luca; Yuan, Guo-Cheng; Rao, Sridhar

    2017-01-01

    Recent work has shown that RNA polymerase II-mediated transcription at distal cis-regulatory elements serves as a mark of highly active enhancers. Production of noncoding RNAs at enhancers, termed eRNAs, correlates with higher expression of genes that the enhancer interacts with; hence, eRNAs provide a new tool to model gene activity in normal and disease tissues. Moreover, this unique class of noncoding RNA has diverse roles in transcriptional regulation. Transcribed enhancers can be identified by a common signature of epigenetic marks by overlaying a series of genome-wide chromatin immunoprecipitation and RNA sequencing datasets. A computational approach to filter non-enhancer elements and other classes of noncoding RNAs is essential to not cloud downstream analysis. Here we present a protocol that combines wet and dry bench methods to accurately identify transcribed enhancers genome-wide as well as an experimental procedure to validate these datasets.

  10. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  11. Genome-wide association analyses of quantitative traits: the GAW16 experience.

    PubMed

    Ghosh, Saurabh

    2009-01-01

    The group that formed on the theme of genome-wide association analyses of quantitative traits (Group 2) in the Genetic Analysis Workshop 16 comprised eight sets of investigators. Three data sets were available: one on autoantibodies related to rheumatoid arthritis provided by the North American Rheumatoid Arthritis Consortium; the second on anthropometric, lipid, and biochemical measures provided by the Framingham Heart Study (FHS); and the third a simulated data set modeled after FHS. The different investigators in the group addressed a large set of statistical challenges and applied a wide spectrum of association methods in analyzing quantitative traits at the genome-wide level. While some previously reported genes were validated, some novel chromosomal regions provided significant evidence of association in multiple contributions in the group. In this report, we discuss the different strategies explored by the different investigators with the common goal of improving the power to detect association.

  12. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    PubMed Central

    Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828

  13. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    PubMed

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-12-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.

  14. Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.

    PubMed

    Yang, Jian; Bakshi, Andrew; Zhu, Zhihong; Hemani, Gibran; Vinkhuyzen, Anna A E; Nolte, Ilja M; van Vliet-Ostaptchouk, Jana V; Snieder, Harold; Esko, Tonu; Milani, Lili; Mägi, Reedik; Metspalu, Andres; Hamsten, Anders; Magnusson, Patrik K E; Pedersen, Nancy L; Ingelsson, Erik; Visscher, Peter M

    2015-12-20

    Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human height and body mass index (BMI), using individual-level (n = ∼44 000) and summary-level (n = ∼133 000) data from genome-wide association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist-hip ratio (rg = ∼0.7) and between populations for BMI (rg = ∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial genetic heterogeneity for body size is consistent with empirical findings across traits and species.

  15. Genetics of Post-Traumatic Stress Disorder: Review and Recommendations for Genome-Wide Association Studies

    PubMed Central

    Cornelis, Marilyn C.; Nugent, Nicole R.; Amstadter, Ananda B.

    2011-01-01

    Post-traumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder that constitutes a major health care burden. Despite evidence supporting a genetic predisposition to PTSD, the precise genetic loci remain unclear. Herein we review the current state and limitations of genetic research on PTSD. Although recent years have seen an exponential increase in the number of studies examining the influence of candidate genes on PTSD diagnosis and symptomatology, most studies have been characterized by relatively low rates of PTSD, with apparent inconsistencies in gene associations linked to marked differences in methodology. We further discuss how current advances in the genetics field can be applied to studies of PTSD, emphasizing the need to adapt a genome-wide approach that facilitates discovery rather than hypothesis testing. Genome-wide association studies offer the best opportunity to identify novel “true” risk variants for the disorder that in turn has the potential to inform our understanding of PTSD etiology. PMID:20549395

  16. Genome-wide inference of natural selection on human transcription factor binding sites.

    PubMed

    Arbiza, Leonardo; Gronau, Ilan; Aksoy, Bulent A; Hubisz, Melissa J; Gulko, Brad; Keinan, Alon; Siepel, Adam

    2013-07-01

    For decades, it has been hypothesized that gene regulation has had a central role in human evolution, yet much remains unknown about the genome-wide impact of regulatory mutations. Here we use whole-genome sequences and genome-wide chromatin immunoprecipitation and sequencing data to demonstrate that natural selection has profoundly influenced human transcription factor binding sites since the divergence of humans from chimpanzees 4-6 million years ago. Our analysis uses a new probabilistic method, called INSIGHT, for measuring the influence of selection on collections of short, interspersed noncoding elements. We find that, on average, transcription factor binding sites have experienced somewhat weaker selection than protein-coding genes. However, the binding sites of several transcription factors show clear evidence of adaptation. Several measures of selection are strongly correlated with predicted binding affinity. Overall, regulatory elements seem to contribute substantially to both adaptive substitutions and deleterious polymorphisms with key implications for human evolution and disease.

  17. Meta-Analysis of Genome-Wide Linkage Scans of Attention Deficit Hyperactivity Disorder

    PubMed Central

    Zhou, Kaixin; Dempfle, Astrid; Arcos-Burgos, Mauricio; Bakker, Steven C.; Banaschewski, Tobias; Biederman, Joseph; Buitelaar, Jan; Castellanos, F.Xavier; Doyle, Alysa; Ebstein, Richard P.; Ekholm, Jenny; Forabosco, Paola; Franke, Barbara; Freitag, Christine; Friedel, Susann; Gill, Michael; Hebebrand, Johannes; Hinney, Anke; Jacob, Christian; Lesch, Klaus Peter; Loo, Sandra K.; Lopera, Francisco; McCracken, James T.; McGough, James J.; Meyer, Jobst; Mick, Eric; Miranda, Ana; Muenke, Maximilian; Mulas, Fernando; Nelson, Stanley F.; Nguyen, T.Trang; Oades, Robert D.; Ogdie, Matthew N.; Palacio, Juan David; Pineda, David; Reif, Andreas; Renner, Tobias J.; Roeyers, Herbert; Romanos, Marcel; Rothenberger, Aribert; Schäfer, Helmut; Sergeant, Joseph; Sinke, Richard J.; Smalley, Susan L.; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; van der Meulen, Emma; Walitza, Susanne; Warnke, Andreas; Lewis, Cathryn M; Faraone, Stephen V.; Asherson, Philip

    2010-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, there has been limited replications between the various independent datasets. The current study gathered the results from all seven of the ADHD linkage scans and performed a Genome Scan Meta Analysis (GSMA) to identify the genomic region with most consistent linkage evidence across the studies. Genome-wide significant linkage (PSR=0.00034, POR=0.04) was identified on chromosome 16 between 64 and 83 Mb. In addition there are nine other genomic regions from the GSMA showing nominal or suggestive evidence of linkage. All these linkage results may be informative and focus the search for novel ADHD susceptibility genes. PMID:18988193

  18. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    PubMed Central

    Kamvar, Zhian N.; Brooks, Jonah C.; Grünwald, Niklaus J.

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  19. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.

  20. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo

    PubMed Central

    Jin, Ying; Birlea, Stanca A; Fain, Pamela R; Ferrara, Tracey M; Ben, Songtao; Riccardi, Sheri L; Cole, Joanne B; Gowan, Katherine; Holland, Paulene J; Bennett, Dorothy C; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Hartmann, Anke; Eichner, Saskia; Schuler, Gerold; van Geel, Nanja; Lambert, Jo; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Taïeb, Alain; Jouary, Thomas; Ezzedine, Khaled; Wallace, Margaret R; McCormack, Wayne T; Picardo, Mauro; Leone, Giovanni; Overbeck, Andreas; Silverberg, Nanette B; Spritz, Richard A

    2012-01-01

    In previous linkage and genome-wide association studies we identified 17 susceptibility loci for generalized vitiligo. By a second genome-wide association study, meta-analysis, and independent replication study, we have now identified 13 additional vitiligo-associated loci, including OCA2-HERC2, a region of 16q24.3 containing MC1R, a region of chromosome 11q21 near TYR, several immunoregulatory loci including IFIH1, CD80, CLNK, BACH2, SLA, CASP7, CD44, IKZF4, SH2B3, and a region of 22q13.2 where the causal gene remains uncertain. Functional pathway analysis shows that most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and genetic relationships among vitiligo, malignant melanoma, and normal variation of eye, skin, and hair color. PMID:22561518

  1. PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies.

    PubMed

    Siersbaek, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2010-08-04

    Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding profiles for PPARgamma and C/EBPalpha. Interestingly, these analyses show that PPARgamma and C/EBPalpha binding sites are associated with most genes that are induced during adipogenesis suggesting direct activation of many more adipocyte genes than previously anticipated. Furthermore, an extensive overlap between the C/EBPalpha and PPARgamma cistromes indicate a hitherto unrecognized direct crosstalk between these transcription factors. As more genome-wide data emerge in the future, this crosstalk will likely be found to include several other adipogenic transcription factors. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  3. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  4. Genome-wide Association Study Identifies Two Susceptibility Loci for Osteosarcoma

    PubMed Central

    Savage, Sharon A.; Mirabello, Lisa; Wang, Zhaoming; Gastier-Foster, Julie M.; Gorlick, Richard; Khanna, Chand; Flanagan, Adrienne M.; Tirabosco, Roberto; Andrulis, Irene L.; Wunder, Jay S.; Gokgoz, Nalan; Patiño-Garcia, Ana; Sierrasesúmaga, Luis; Lecanda, Fernando; Kurucu, Nilgün; Ilhan, Inci Ergurhan; Sari, Neriman; Serra, Massimo; Hattinger, Claudia; Picci, Piero; Spector, Logan; Barkauskas, Donald A.; Marina, Neyssa; de Toledo, Silvia Regina Caminada; Petrilli, Antonio S.; Amary, Maria Fernanda; Halai, Dina; Thomas, David M.; Douglass, Chester; Meltzer, Paul S.; Jacobs, Kevin; Chung, Charles C.; Berndt, Sonja I.; Purdue, Mark P.; Caporaso, Neil E.; Tucker, Margaret; Rothman, Nathaniel; Landi, Maria Teresa; Silverman, Debra T.; Kraft, Peter; Hunter, David J.; Malats, Nuria; Kogevinas, Manolis; Wacholder, Sholom; Troisi, Rebecca; Helman, Lee; Fraumeni, Joseph F.; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.

    2013-01-01

    Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. In order to better understand the genetic etiology of osteosarcoma, we performed a multi-stage genome-wide association study (GWAS) consisting of 941 cases and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: rs1906953 at 6p21.3, in the glutamate receptor metabotropic 4 [GRM4] gene (P = 8.1 ×10-9), and rs7591996 and rs10208273 in a gene desert on 2p25.2 (P = 1.0 ×10-8 and 2.9 ×10-7). These two susceptibility loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma. PMID:23727862

  5. Genome-wide approaches for identifying genetic risk factors for osteoporosis

    PubMed Central

    2013-01-01

    Osteoporosis, the most common type of bone disease worldwide, is clinically characterized by low bone mineral density (BMD) and increased susceptibility to fracture. Multiple genetic and environmental factors and gene-environment interactions have been implicated in its pathogenesis. Osteoporosis has strong genetic determination, with the heritability of BMD estimated to be as high as 60%. More than 80 genes or genetic variants have been implicated in risk of osteoporosis by hypothesis-free genome-wide studies. However, these genes or genetic variants can only explain a small portion of BMD variation, suggesting that many other genes or genetic variants underlying osteoporosis risk await discovery. Here, we review recent progress in genome-wide studies of osteoporosis and discuss their implications for medicine and the major challenges in the field. PMID:23731620

  6. Genome-wide association study for semen quality traits in German Warmblood stallions.

    PubMed

    Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-08-01

    We performed a genome-wide association study for semen quality traits in 139 German Warmblood stallions. Stallions were genotyped using the Illumina equine SNP50 Beadchip. Traits analysed were de-regressed estimated breeding values (EBVs) for gel-free volume, sperm concentration, total number of sperm, progressive motility and the total number of progressively motile sperm. The GWAS revealed 29 SNPs on 12 different chromosomes as genome-wide significantly associated with semen quality traits. For ten genomic regions we could retrieve candidate genes influencing stallion fertility. Among the candidate genes, we could find the genes encoding cysteine-rich secretory proteins (CRISP1, CRISP2 and CRISP3). This was the first GWAS in horses performed for semen quality traits.

  7. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

  8. Evaluation of genome-wide genotyping concordance between tumor tissues and peripheral blood.

    PubMed

    Shao, Wei; Ge, Yuqiu; Ma, Gaoxiang; Du, Mulong; Chu, Haiyan; Qiang, Fulin; Zhang, Zhengdong; Wang, Meilin

    2017-03-01

    Tumor tissues were potential resources in cancer susceptibility studies. To assess the genotyping concordance between tumor tissues and peripheral blood, we conducted this study in a large sample size and genome-wide scale. Genome-wide genotypes of human colon adenocarcinoma (COAD) retrieved from The Cancer Genome Atlas (TCGA) was analyzed. A total of 387 pairs of matched fresh frozen tumor tissues and peripheral blood samples passed the quality control processes. High concordant rate (94.85% with no-calls and 97.89% without no-calls) was found between tumor tissues and peripheral blood. The discordant rate raised with the increase of heterozygote rate, and the tendency was statistically significant. The total missing rate was 3.10%. We also verified 14 susceptibility SNPs and the average genotyping concordant rate was 97.42%. These findings suggest that majority of SNPs could be accurately genotyped using DNA isolated from tumor tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions

    PubMed Central

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile JW; de Moor, Marleen HM; Madden, Pamela AF; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-01-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10−06, KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID:23211697

  10. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions.

    PubMed

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile J W; de Moor, Marleen H M; Madden, Pamela A F; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-08-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10(-06), KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene.

  11. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies

    PubMed Central

    Xu, P; Wu, X; Wang, B; Luo, J; Liu, Y; Ehlers, J D; Close, T J; Roberts, P A; Lu, Z; Wang, S; Li, G

    2012-01-01

    Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the ‘standard vegetable' type (subgroup SV) and the ‘non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r2) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0–2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈5 cM) five times longer than the shortest (≈1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform. PMID:22378357

  12. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies.

    PubMed

    Xu, P; Wu, X; Wang, B; Luo, J; Liu, Y; Ehlers, J D; Close, T J; Roberts, P A; Lu, Z; Wang, S; Li, G

    2012-07-01

    Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.

  13. Sniffing out significant "Pee values": genome wide association study of asparagus anosmia.

    PubMed

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter; Mucci, Lorelei A

    2016-12-13

     To determine the inherited factors associated with the ability to smell asparagus metabolites in urine.  Genome wide association study.  Nurses' Health Study and Health Professionals Follow-up Study cohorts.  6909 men and women of European-American descent with available genetic data from genome wide association studies.  Participants were characterized as asparagus smellers if they strongly agreed with the prompt "after eating asparagus, you notice a strong characteristic odor in your urine," and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10(-8) were considered as genome wide significant.  58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553.  A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Case-only genome-wide interaction study of disease risk, prognosis and treatment.

    PubMed

    Pierce, Brandon L; Ahsan, Habibul

    2010-01-01

    Case-control genome-wide association (GWA) studies have facilitated the identification of susceptibility loci for many complex diseases; however, these studies are often not adequately powered to detect gene-environment (G x E) and gene-gene (G x G) interactions. Case-only studies are more efficient than case-control studies for detecting interactions and require no data on control subjects. In this article, we discuss the concept and utility of the case-only genome-wide interaction (COGWI) study, in which common genetic variants, measured genome-wide, are screened for association with environmental exposures or genetic variants of interest. An observed G-E (or G-G) association, as measured by the case-only odds ratio (OR), suggests interaction, but only if the interacting factors are unassociated in the population from which the cases were drawn. The case-only OR is equivalent to the interaction risk ratio. In addition to risk-related interactions, we discuss how the COGWI design can be used to efficiently detect G x G, G x E and pharmacogenetic interactions related to disease outcomes in the context of observational clinical studies or randomized clinical trials. Such studies can be conducted using only data on individuals experiencing an outcome of interest or individuals not experiencing the outcome of interest. Sharing data among GWA and COGWI studies of disease risk and outcome can further enhance efficiency. Sample size requirements for COGWI studies, as compared to case-control GWA studies, are provided. In the current era of genome-wide analyses, the COGWI design is an efficient and straightforward method for detecting G x G, G x E and pharmacogenetic interactions related to disease risk, prognosis and treatment response.

  15. Genome-wide (over)view on the actions of vitamin D

    PubMed Central

    Carlberg, Carsten

    2014-01-01

    For a global understanding of the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the analysis of the genome-wide locations of its high affinity receptor, the transcription factor vitamin D receptor (VDR), is essential. Chromatin immunoprecipitation sequencing (ChIP-seq) in GM10855 and GM10861 lymphoblastoid cells, undifferentiated and lipopolysaccharide-differentiated THP-1 monocytes, LS180 colorectal cancer cells and LX2 hepatic stellate cells revealed between 1000 and 13,000 VDR-specific genomic binding sites. The harmonized analysis of these ChIP-seq datasets indicates that the mechanistic basis for the action of the VDR is independent of the cell type. Formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq) data highlight accessible chromatin regions, which are under control of 1,25(OH)2D3. In addition, public data, such as from the ENCODE project, allow to relate the genome-wide actions of VDR and 1,25(OH)2D3 to those of other proteins within the nucleus. For example, locations of the insulator protein CTCF suggest a segregation of the human genome into chromatin domains, of which more than 1000 contain at least one VDR binding site. The integration of all these genome-wide data facilitates the identification of the most important VDR binding sites and associated primary 1,25(OH)2D3 target genes. Expression changes of these key genes can serve as biomarkers for the actions of vitamin D3 and its metabolites in different tissues and cell types of human individuals. Analysis of primary tissues obtained from vitamin D3 intervention studies using such markers indicated a large inter-individual variation for the efficiency of vitamin D3 supplementation. In conclusion, a genome-wide (over)view on the genomic locations of VDR provides a broader basis for addressing vitamin D's role in health and disease. PMID:24808867

  16. Genome wide expression profiling of angiogenic signaling and the Heisenberg uncertainty principle.

    PubMed

    Huber, Peter E; Hauser, Kai; Abdollahi, Amir

    2004-11-01

    Genome wide DNA expression profiling coupled with antibody array experiments using endostatin to probe the angiogenic signaling network in human endothelial cells were performed. The results reveal constraints on the measuring process that are of a similar kind as those implied by the uncertainty principle of quantum mechanics as described by Werner Heisenberg. We describe this analogy and argue for its heuristic utility in the conceptualization of angiogenesis as an important step in tumor formation.

  17. Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes

    PubMed Central

    Webb, Bradley T; Guo, An-Yuan; Maher, Brion S; Zhao, Zhongming; van den Oord, Edwin J; Kendler, Kenneth S; Riley, Brien P; Gillespie, Nathan A; Prescott, Carol A; Middeldorp, Christel M; Willemsen, Gonneke; de Geus, Eco JC; Hottenga, Jouke-Jan; Boomsma, Dorret I; Slagboom, Eline P; Wray, Naomi R; Montgomery, Grant W; Martin, Nicholas G; Wright, Margie J; Heath, Andrew C; Madden, Pamela A; Gelernter, Joel; Knowles, James A; Hamilton, Steven P; Weissman, Myrna M; Fyer, Abby J; Huezo-Diaz, Patricia; McGuffin, Peter; Farmer, Anne; Craig, Ian W; Lewis, Cathryn; Sham, Pak; Crowe, Raymond R; Flint, Jonathan; Hettema, John M

    2012-01-01

    Genetic factors underlying trait neuroticism, reflecting a tendency towards negative affective states, may overlap genetic susceptibility for anxiety disorders and help explain the extensive comorbidity amongst internalizing disorders. Genome-wide linkage (GWL) data from several studies of neuroticism and anxiety disorders have been published, providing an opportunity to test such hypotheses and identify genomic regions that harbor genes common to these phenotypes. In all, 11 independent GWL studies of either neuroticism (n=8) or anxiety disorders (n=3) were collected, which comprised of 5341 families with 15 529 individuals. The rank-based genome scan meta-analysis (GSMA) approach was used to analyze each trait separately and combined, and global correlations between results were examined. False discovery rate (FDR) analysis was performed to test for enrichment of significant effects. Using 10 cM intervals, bins nominally significant for both GSMA statistics, PSR and POR, were found on chromosomes 9, 11, 12, and 14 for neuroticism and on chromosomes 1, 5, 15, and 16 for anxiety disorders. Genome-wide, the results for the two phenotypes were significantly correlated, and a combined analysis identified additional nominally significant bins. Although none reached genome-wide significance, an excess of significant PSRP-values were observed, with 12 bins falling under a FDR threshold of 0.50. As demonstrated by our identification of multiple, consistent signals across the genome, meta-analytically combining existing GWL data is a valuable approach to narrowing down regions relevant for anxiety-related phenotypes. This may prove useful for prioritizing emerging genome-wide association data for anxiety disorders. PMID:22473089

  18. Common genetic variation and survival after colorectal cancer diagnosis: a genome-wide analysis

    PubMed Central

    Phipps, Amanda I.; Passarelli, Michael N.; Chan, Andrew T.; Harrison, Tabitha A.; Jeon, Jihyoun; Hutter, Carolyn M.; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cheadle, Jeremy P.; Curtis, Keith R.; Duggan, David; Fisher, David; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Hayes, Richard B.; Hoffmeister, Michael; Hsu, Li; Jacobs, Eric J.; Jansen, Lina; Kaplan, Richard; Kap, Elisabeth J.; Maughan, Timothy S.; Potter, John D.; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; West, Hannah; White, Emily; Peters, Ulrike; Newcomb, Polly A.

    2016-01-01

    Genome-wide association studies have identified several germline single nucleotide polymorphisms (SNPs) significantly associated with colorectal cancer (CRC) incidence. Common germline genetic variation may also be related to CRC survival. We used a discovery-based approach to identify SNPs related to survival outcomes after CRC diagnosis. Genome-wide genotyping arrays were conducted for 3494 individuals with invasive CRC enrolled in six prospective cohort studies (median study-specific follow-up = 4.2–8.1 years). In pooled analyses, we used Cox regression to assess SNP-specific associations with CRC-specific and overall survival, with additional analyses stratified by stage at diagnosis. Top findings were followed-up in independent studies. A P value threshold of P < 5×10−8 in analyses combining discovery and follow-up studies was required for genome-wide significance. Among individuals with distant-metastatic CRC, several SNPs at 6p12.1, nearest the ELOVL5 gene, were statistically significantly associated with poorer survival, with the strongest associations noted for rs209489 [hazard ratio (HR) = 1.8, P = 7.6×10−10 and HR = 1.8, P = 3.7×10−9 for CRC-specific and overall survival, respectively). No SNPs were statistically significantly associated with survival among all cases combined or in cases without distant-metastases. SNPs in 6p12.1/ELOVL5 were associated with survival outcomes in individuals with distant-metastatic CRC, and merit further follow-up for functional significance. Findings from this genome-wide association study highlight the potential importance of genetic variation in CRC prognosis and provide clues to genomic regions of potential interest. PMID:26586795

  19. Genome-wide Association and Functional Studies Identify a Role for IGFBP3 in Hip Osteoarthritis

    PubMed Central

    Evans, Daniel S.; Cailotto, Frederic; Parimi, Neeta; Valdes, Ana M.; Castaño-Betancourt, Martha C.; Liu, Youfang; Kaplan, Robert C.; Bidlingmaier, Martin; Vasan, Ramachandran S.; Teumer, Alexander; Tranah, Gregory J.; Nevitt, Michael C.; Cummings, Steven R.; Orwoll, Eric S.; Barrett-Connor, Elizabeth; Renner, Jordan B.; Jordan, Joanne M.; Doherty, Michael; Doherty, Sally A.; Uitterlinden, Andre G.; van Meurs, Joyce B.J.; Spector, Tim D.; Lories, Rik J.; Lane, Nancy E.

    2015-01-01

    Objectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and controls defined radiographically and by total hip replacement were selected from the Osteoporotic Fractures in Men (MrOS) Study and the Study of Osteoporotic Fractures (SOF) (654 cases and 4697 controls, combined). Replication of genome-wide significant SNP associations (P-value ≤ 5x10−8) was examined in five studies (3243 cases and 6891 controls, combined). Functional studies were performed using in vitro models of chondrogenesis and osteogenesis. Results The A allele of rs788748, located 65 kb upstream of the IGFBP3 gene, was associated with lower HOA odds at the genome-wide significance level in the discovery stage (OR = 0.71, P-value = 2x10−8). The association replicated in five studies (OR = 0.92, P-value = 0.020), but the joint analysis of discovery and replication results was not genome-wide significant (P-value = 1x10−6). In separate study populations, the rs788748 A allele was also associated with lower circulating IGFBP3 protein levels (P-value = 4x10−13), suggesting that this SNP or a variant in linkage disequilibrium (LD) could be an IGFBP3 regulatory variant. Results from functional studies were consistent with association results. Chondrocyte hypertrophy, a deleterious event in OA pathogenesis, was largely prevented upon IGFBP3 knockdown in chondrocytes. Furthermore, IGFBP3 overexpression induced cartilage catabolism and osteogenic differentiation. Conclusions Results from GWAS and functional studies provided suggestive links between IGFBP3 and HOA. PMID:24928840

  20. A genome-wide association study of body mass index across early life and childhood.

    PubMed

    Warrington, Nicole M; Howe, Laura D; Paternoster, Lavinia; Kaakinen, Marika; Herrala, Sauli; Huikari, Ville; Wu, Yan Yan; Kemp, John P; Timpson, Nicholas J; St Pourcain, Beate; Davey Smith, George; Tilling, Kate; Jarvelin, Marjo-Riitta; Pennell, Craig E; Evans, David M; Lawlor, Debbie A; Briollais, Laurent; Palmer, Lyle J

    2015-04-01

    Several studies have investigated the effect of known adult body mass index (BMI) associated single nucleotide polymorphisms (SNPs) on BMI in childhood. There has been no genome-wide association study (GWAS) of BMI trajectories over childhood. We conducted a GWAS meta-analysis of BMI trajectories from 1 to 17 years of age in 9377 children (77,967 measurements) from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Western Australian Pregnancy Cohort (Raine) Study. Genome-wide significant loci were examined in a further 3918 individuals (48,530 measurements) from Northern Finland. Linear mixed effects models with smoothing splines were used in each cohort for longitudinal modelling of BMI. A novel SNP, downstream from the FAM120AOS gene on chromosome 9, was detected in the meta-analysis of ALSPAC and Raine. This association was driven by a difference in BMI at 8 years (T allele of rs944990 increased BMI; PSNP = 1.52 × 10(-8)), with a modest association with change in BMI over time (PWald(Change) = 0.006). Three known adult BMI-associated loci (FTO, MC4R and ADCY3) and one childhood obesity locus (OLFM4) reached genome-wide significance (PWald < 1.13 × 10(-8)) with BMI at 8 years and/or change over time. This GWAS of BMI trajectories over childhood identified a novel locus that warrants further investigation. We also observed genome-wide significance with previously established obesity loci, making the novel observation that these loci affected both the level and the rate of change in BMI. We have demonstrated that the use of repeated measures data can increase power to allow detection of genetic loci with smaller sample sizes. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  1. Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure

    PubMed Central

    Berbenetz, Nicolas M.; Nislow, Corey; Brown, Grant W.

    2010-01-01

    Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function. PMID:20824081

  2. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    PubMed

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h(2)SNP]), partitioned heritability, and genetic correlations (rg) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h(2)SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  3. Genome-wide association analysis of blood biomarkers in chronic obstructive pulmonary disease.

    PubMed

    Kim, Deog Kyeom; Cho, Michael H; Hersh, Craig P; Lomas, David A; Miller, Bruce E; Kong, Xiangyang; Bakke, Per; Gulsvik, Amund; Agustí, Alvar; Wouters, Emiel; Celli, Bartolome; Coxson, Harvey; Vestbo, Jørgen; MacNee, William; Yates, Julie C; Rennard, Stephen; Litonjua, Augusto; Qiu, Weiliang; Beaty, Terri H; Crapo, James D; Riley, John H; Tal-Singer, Ruth; Silverman, Edwin K

    2012-12-15

    A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10(-8)), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009-0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001-0.049), although these COPD associations were not replicated in two additional cohorts. Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).

  4. Identification of genetic causes of congenital neurodevelopmental disorders using genome wide molecular technologies

    PubMed Central

    Eglė, Preikšaitienė; Laima, Ambrozaitytė; Živilė, Maldžienė; Aušra, Morkūnienė,; Loreta, Cimbalistienė; Tautvydas, Rančelis; Algirdas, Utkus; Vaidutis, Kučinskas

    2016-01-01

    Background. Intellectual disability affects about 1–2% of the general population worldwide, and this is the leading socio-economic problem of health care. The evaluation of the genetic causes of intellectual disability is challenging because these conditions are genetically heterogeneous with many different genetic alterations resulting in clinically indistinguishable phenotypes. Genome wide molecular technologies are effective in a research setting for establishing the new genetic basis of a disease. We describe the first Lithuanian experience in genome-wide CNV detection and whole exome sequencing, presenting the results obtained in the research project UNIGENE. Materials and methods. The patients with developmental delay/intellectual disability have been investigated (n = 66). Diagnostic screening was performed using array-CGH technology. FISH and real time-PCR were used for the confirmation of gene-dose imbalances and investigation of parental samples. Whole exome sequencing using the next generation high throughput NGS technique was used to sequence the samples of 12 selected families. Results. 14 out of 66 patients had pathogenic copy number variants, and one patient had novel likely pathogenic aberration (microdeletion at 4p15.2). Twelve families have been processed for whole exome sequencing. Two identified sequence variants could be classified as pathogenic (in MECP2, CREBBP genes). The other families had several candidate intellectual disability gene variants that are of unclear clinical significance and must be further investigated for possible effect on the molecular pathways of intellectual disability. Conclusions. The genetic heterogeneity of intellectual disability requires genome wide approaches, including detection of chromosomal aberrations by chromosomal microarrays and whole exome sequencing capable of uncovering single gene mutations. This study demonstrates the benefits and challenges that accompany the use of genome wide molecular

  5. Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease

    PubMed Central

    Zou, F.; Carrasquillo, M. M.; Pankratz, V. S.; Belbin, O.; Morgan, K.; Allen, M.; Wilcox, S. L.; Ma, L.; Walker, L. P.; Kouri, N.; Burgess, J. D.; Younkin, L. H.; Younkin, Samuel G.; Younkin, C. S.; Bisceglio, G. D.; Crook, J. E.; Dickson, D. W.; Petersen, R. C.; Graff-Radford, N.; Younkin, Steven G.; Ertekin-Taner, N.

    2010-01-01

    Background: Late-onset Alzheimer disease (LOAD) is a common disorder with a substantial genetic component. We postulate that many disease susceptibility variants act by altering gene expression levels. Methods: We measured messenger RNA (mRNA) expression levels of 12 LOAD candidate genes in the cerebella of 200 subjects with LOAD. Using the genotypes from our LOAD genome-wide association study for the cis-single nucleotide polymorphisms (SNPs) (n = 619) of these 12 LOAD candidate genes, we tested for associations with expression levels as endophenotypes. The strongest expression cis-SNP was tested for AD association in 7 independent case-control series (2,280 AD and 2,396 controls). Results: We identified 3 SNPs that associated significantly with IDE (insulin degrading enzyme) expression levels. A single copy of the minor allele for each significant SNP was associated with ∼twofold higher IDE expression levels. The most significant SNP, rs7910977, is 4.2 kb beyond the 3′ end of IDE. The association observed with this SNP was significant even at the genome-wide level (p = 2.7 × 10−8). Furthermore, the minor allele of rs7910977 associated significantly (p = 0.0046) with reduced LOAD risk (OR = 0.81 with a 95% CI of 0.70-0.94), as expected biologically from its association with elevated IDE expression. Conclusions: These results provide strong evidence that IDE is a late-onset Alzheimer disease (LOAD) gene with variants that modify risk of LOAD by influencing IDE expression. They also suggest that the use of expression levels as endophenotypes in genome-wide association studies may provide a powerful approach for the identification of disease susceptibility alleles. GLOSSARY AD = Alzheimer disease; CI = confidence interval; GWAS = genome-wide association study; LOAD = late-onset Alzheimer disease; mRNA = messenger RNA; OR = odds ratio; SNP = single nucleotide polymorphism. PMID:20142614

  6. Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics.

    PubMed

    Agrawal, Arpana; Edenberg, Howard J; Gelernter, Joel

    2016-09-01

    Meta-analyses of genome-wide association study data have begun to lead to promising new discoveries for behavioral and psychiatrically relevant phenotypes (e.g., schizophrenia, educational attainment). We outline how this methodology can similarly lead to novel discoveries in genomic studies of substance use disorders, and discuss challenges that will need to be overcome to accomplish this goal. We illustrate our approach with the work of the newly established Substance Use Disorders workgroup of the Psychiatric Genomics Consortium.

  7. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    PubMed Central

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  8. Genome-wide gene-environment interaction analysis for asbestos exposure in lung cancer susceptibility.

    PubMed

    Wei, Sheng; Wang, Li-E; McHugh, Michelle K; Han, Younghun; Xiong, Momiao; Amos, Christopher I; Spitz, Margaret R; Wei, Qingyi Wei

    2012-08-01

    Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene-environment interactions. To determine gene-asbestos interactions in lung cancer risk, we conducted genome-wide gene-environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10(-6), which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10(-5)). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene-asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.

  9. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription

    PubMed Central

    Tavenet, Arounie; Suleau, Audrey; Dubreuil, Géraldine; Ferrari, Roberto; Ducrot, Cécile; Michaut, Magali; Aude, Jean-Christophe; Dieci, Giorgio; Lefebvre, Olivier; Conesa, Christine; Acker, Joël

    2009-01-01

    Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells. PMID:19706510

  10. Sniffing out significant “Pee values”: genome wide association study of asparagus anosmia

    PubMed Central

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter

    2016-01-01

    Objective To determine the inherited factors associated with the ability to smell asparagus metabolites in urine. Design Genome wide association study. Setting Nurses’ Health Study and Health Professionals Follow-up Study cohorts. Participants 6909 men and women of European-American descent with available genetic data from genome wide association studies. Main outcome measure Participants were characterized as asparagus smellers if they strongly agreed with the prompt “after eating asparagus, you notice a strong characteristic odor in your urine,” and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10-8 were considered as genome wide significant. Results 58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553. Conclusion A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. PMID:27965198

  11. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    PubMed Central

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  12. Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    PubMed Central

    Nalls, Michael A.; Martinez, Maria; Schulte, Claudia; Holmans, Peter; Gasser, Thomas; Hardy, John; Singleton, Andrew B.; Wood, Nicholas W.; Brice, Alexis; Heutink, Peter; Williams, Nigel; Morris, Huw R.

    2012-01-01

    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity. We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort. There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis. PMID:22427796

  13. GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling.

    PubMed

    Verhulst, Brad; Maes, Hermine H; Neale, Michael C

    2017-05-01

    Improving the accuracy of phenotyping through the use of advanced psychometric tools will increase the power to find significant associations with genetic variants and expand the range of possible hypotheses that can be tested on a genome-wide scale. Multivariate methods, such as structural equation modeling (SEM), are valuable in the phenotypic analysis of psychiatric and substance use phenotypes, but these methods have not been integrated into standard genome-wide association analyses because fitting a SEM at each single nucleotide polymorphism (SNP) along the genome was hitherto considered to be too computationally demanding. By developing a method that can efficiently fit SEMs, it is possible to expand the set of models that can be tested. This is particularly necessary in psychiatric and behavioral genetics, where the statistical methods are often handicapped by phenotypes with large components of stochastic variance. Due to the enormous amount of data that genome-wide scans produce, the statistical methods used to analyze the data are relatively elementary and do not directly correspond with the rich theoretical development, and lack the potential to test more complex hypotheses about the measurement of, and interaction between, comorbid traits. In this paper, we present a method to test the association of a SNP with multiple phenotypes or a latent construct on a genome-wide basis using a diagonally weighted least squares (DWLS) estimator for four common SEMs: a one-factor model, a one-factor residuals model, a two-factor model, and a latent growth model. We demonstrate that the DWLS parameters and p-values strongly correspond with the more traditional full information maximum likelihood parameters and p-values. We also present the timing of simulations and power analyses and a comparison with and existing multivariate GWAS software package.

  14. A genome-wide association study of sporadic ALS in a homogenous Irish population.

    PubMed

    Cronin, Simon; Berger, Stephen; Ding, Jinhui; Schymick, Jennifer C; Washecka, Nicole; Hernandez, Dena G; Greenway, Matthew J; Bradley, Daniel G; Traynor, Bryan J; Hardiman, Orla

    2008-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive limb or bulbar weakness. Efforts to elucidate the disease-associated loci have to date produced conflicting results. One strategy to improve power in genome-wide studies is to genotype a genetically homogenous population. Such a population exhibits extended linkage disequilibrium (LD) and lower allelic heterogeneity to facilitate disease gene mapping. We sought to identify associated variants for ALS in the Irish, a stable population of relatively homogenous genetic background, and to replicate these findings in larger genetically out-bred populations. We conducted a genome-wide association study in 432 Irish individuals using Illumina HumanHap 550K single nucleotide polymorphism chips. We demonstrated extended LD and increased homogeneity in the Irish sample when compared to an out-bred population of mixed European ancestry. The Irish scan identified 35 loci associated with P-values below 0.0001. For replication, we identified seven chromosomal regions commonly associated in a joint analysis of genome-wide data on 958 ALS cases and 932 controls from Ireland and the previously published datasets from the US and The Netherlands. When pooled, the strongest association was a variant in the gene encoding DPP6, a component of type A neuronal transmembrane potassium channels. Further confirmation of the candidate loci is warranted in additional genome-wide datasets. We have made our individual genotyping data publicly available, contributing to a powerful world-wide resource to refine our understanding of the genetics of sporadic ALS.

  15. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research.

    PubMed

    Li, Guangdi; De Clercq, Erik

    2016-09-01

    The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.

  16. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma.

    PubMed

    Yucesoy, Berran; Kaufman, Kenneth M; Lummus, Zana L; Weirauch, Matthew T; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B; Bernstein, David I

    2015-07-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10(-14)). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10(-9) and rs2514805, p = 1.22 × 10(-8), respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10(-6)). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies.

  17. Genome-wide association study for wool production traits in a Chinese Merino sheep population.

    PubMed

    Wang, Zhipeng; Zhang, Hui; Yang, Hua; Wang, Shouzhi; Rong, Enguang; Pei, Wenyu; Li, Hui; Wang, Ning

    2014-01-01

    Genome-wide association studies (GWAS) provide a powerful approach for identifying quantitative trait loci without prior knowledge of location or function. To identify loci associated with wool production traits, we performed a genome-wide association study on a total of 765 Chinese Merino sheep (JunKen type) genotyped with 50 K single nucleotide polymorphisms (SNPs). In the present study, five wool production traits were examined: fiber diameter, fiber diameter coefficient of variation, fineness dispersion, staple length and crimp. We detected 28 genome-wide significant SNPs for fiber diameter, fiber diameter coefficient of variation, fineness dispersion, and crimp trait in the Chinese Merino sheep. About 43% of the significant SNP markers were located within known or predicted genes, including YWHAZ, KRTCAP3, TSPEAR, PIK3R4, KIF16B, PTPN3, GPRC5A, DDX47, TCF9, TPTE2, EPHA5 and NBEA genes. Our results not only confirm the results of previous reports, but also provide a suite of novel SNP markers and candidate genes associated with wool traits. Our findings will be useful for exploring the genetic control of wool traits in sheep.

  18. Genome-wide association study in essential tremor identifies three new loci.

    PubMed

    Müller, Stefanie H; Girard, Simon L; Hopfner, Franziska; Merner, Nancy D; Bourassa, Cynthia V; Lorenz, Delia; Clark, Lorraine N; Tittmann, Lukas; Soto-Ortolaza, Alexandra I; Klebe, Stephan; Hallett, Mark; Schneider, Susanne A; Hodgkinson, Colin A; Lieb, Wolfgang; Wszolek, Zbigniew K; Pendziwiat, Manuela; Lorenzo-Betancor, Oswaldo; Poewe, Werner; Ortega-Cubero, Sara; Seppi, Klaus; Rajput, Alex; Hussl, Anna; Rajput, Ali H; Berg, Daniela; Dion, Patrick A; Wurster, Isabel; Shulman, Joshua M; Srulijes, Karin; Haubenberger, Dietrich; Pastor, Pau; Vilariño-Güell, Carles; Postuma, Ronald B; Bernard, Geneviève; Ladwig, Karl-Heinz; Dupré, Nicolas; Jankovic, Joseph; Strauch, Konstantin; Panisset, Michel; Winkelmann, Juliane; Testa, Claudia M; Reischl, Eva; Zeuner, Kirsten E; Ross, Owen A; Arzberger, Thomas; Chouinard, Sylvain; Deuschl, Günther; Louis, Elan D; Kuhlenbäumer, Gregor; Rouleau, Guy A

    2016-12-01

    We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor.

  19. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective.

    PubMed

    Valor, Luis M

    2015-02-01

    Transcriptional dysregulation in Huntington's disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.

  20. Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui

    2017-02-06

    Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.

  1. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms.

  2. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    PubMed

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  3. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.

  4. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data.

  5. The impact of recent alcohol use on genome wide DNA methylation signatures.

    PubMed

    Philibert, Robert A; Plume, Jeffrey M; Gibbons, Frederick X; Brody, Gene H; Beach, Steven R H

    2012-01-01

    Chronic alcohol intake is associated with a wide variety of adverse health outcomes including depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in this process, we examined the relationship of recent alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months immediately prior to phlebotomy was associated with, severity-dependent changes in the degree of genome wide methylation that preferentially hypermethylate the central portion of CpG islands with methylation at cg05600126, a probe in ABR, and the 5' untranslated region of BLCAP attaining genome wide significance in two point and sliding window analyses of probe methylation data, respectively. We conclude that recent alcohol use is associated with widespread changes in DNA methylation in women and that further study to confirm these findings and determine their relationship to somatic function are in order.

  6. Hematopoietic Transcriptional Mechanisms: From Locus-Specific to Genome-Wide Vantage Points

    PubMed Central

    DeVilbiss, Andrew W.; Sanalkumar, Rajendran; Johnson, Kirby D.; Keles, Sunduz; Bresnick, Emery H.

    2014-01-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin remains poorly understood. Transformative technological advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain, notably ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while utilizing powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review will focus on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. PMID:24816274

  7. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers.

    PubMed

    Tamada, Yoshinori; Imoto, Seiya; Araki, Hiromitsu; Nagasaki, Masao; Print, Cristin; Charnock-Jones, D Stephen; Miyano, Satoru

    2011-01-01

    We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian network structures, existing algorithms cannot be applied to more than a few thousand genes. Our algorithm overcomes this limitation by repeatedly estimating subnetworks in parallel for genes selected by neighbor node sampling. Through numerical simulation, we confirmed that our algorithm outperformed a heuristic algorithm in a shorter time. We applied our algorithm to microarray data from human umbilical vein endothelial cells (HUVECs) treated with siRNAs, to construct a human genome-wide gene network, which we compared to a small gene network estimated for the genes extracted using a traditional bioinformatics method. The results showed that our genome-wide gene network contains many features of the small network, as well as others that could not be captured during the small network estimation. The results also revealed master-regulator genes that are not in the small network but that control many of the genes in the small network. These analyses were impossible to realize without our proposed algorithm.

  8. Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata.

    PubMed

    Mattila, Tiina M; Tyrmi, Jaakko; Pyhäjärvi, Tanja; Savolainen, Outi

    2017-10-01

    The high climatic variability in the past hundred thousand years has affected the demographic and adaptive processes in many species, especially in boreal and temperate regions undergoing glacial cycles. This has also influenced the patterns of genome-wide nucleotide variation, but the details of these effects are largely unknown. Here we study the patterns of genome-wide variation to infer colonization history and patterns of selection of the perennial herb species Arabidopsis lyrata, in locally adapted populations from different parts of its distribution range (Germany, UK, Norway, Sweden, and USA) representing different environmental conditions. Using site frequency spectra based demographic modeling, we found strong reduction in the effective population size of the species in general within the past 100,000 years, with more pronounced effects in the colonizing populations. We further found that the northwestern European A. lyrata populations (UK and Scandinavian) are more closely related to each other than with the Central European populations, and coalescent based population split modeling suggests that western European and Scandinavian populations became isolated relatively recently after the glacial retreat. We also highlighted loci showing evidence for local selection associated with the Scandinavian colonization. The results presented here give new insights into postglacial Scandinavian colonization history and its genome-wide effects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A multi-scenario genome-wide medical population genetics simulation framework.

    PubMed

    Mugo, Jacquiline W; Geza, Ephifania; Defo, Joel; Elsheikh, Samar S M; Mazandu, Gaston K; Mulder, Nicola J; Chimusa, Emile R

    2017-10-01

    Recent technological advances in high-throughput sequencing and genotyping have facilitated an improved understanding of genomic structure and disease-associated genetic factors. In this context, simulation models can play a critical role in revealing various evolutionary and demographic effects on genomic variation, enabling researchers to assess existing and design novel analytical approaches. Although various simulation frameworks have been suggested, they do not account for natural selection in admixture processes. Most are tailored to a single chromosome or a genomic region, very few capture large-scale genomic data, and most are not accessible for genomic communities. Here we develop a multi-scenario genome-wide medical population genetics simulation framework called 'FractalSIM'. FractalSIM has the capability to accurately mimic and generate genome-wide data under various genetic models on genetic diversity, genomic variation affecting diseases and DNA sequence patterns of admixed and/or homogeneous populations. Moreover, the framework accounts for natural selection in both homogeneous and admixture processes. The outputs of FractalSIM have been assessed using popular tools, and the results demonstrated its capability to accurately mimic real scenarios. They can be used to evaluate the performance of a range of genomic tools from ancestry inference to genome-wide association studies. The FractalSIM package is available at http://www.cbio.uct.ac.za/FractalSIM. emile.chimusa@uct.ac.za. Supplementary data are available at Bioinformatics online.

  10. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    PubMed Central

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  11. Cell-Type-Specific Genome-wide Expression Profiling after Laser Capture Microdissection of Living Tissue

    SciTech Connect

    Marchetti, F; Manohar, C F

    2005-02-09

    The purpose of this technical feasibility study was to develop and evaluate robust microgenomic tools for investigations of genome-wide expression of very small numbers of cells isolated from whole tissue sections. Tissues contain large numbers of cell-types that play varied roles in organ function and responses to endogenous and exogenous toxicants whether bacterial, viral, chemical or radiation. Expression studies of whole tissue biopsy are severely limited because heterogeneous cell-types result in an averaging of molecular signals masking subtle but important changes in gene expression in any one cell type(s) or group of cells. Accurate gene expression analysis requires the study of specific cell types in their tissue environment but without contamination from surrounding cells. Laser capture microdissection (LCM) is a new technology to isolate morphologically distinct cells from tissue sections. Alternative methods are available for isolating single cells but not yet for their reliable genome-wide expression analyses. The tasks of this feasibility project were to: (1) Develop efficient protocols for laser capture microdissection of cells from tissues identified by antibody label, or morphological stain. (2) Develop reproducible gene-transcript analyses techniques for single cell-types and determine the numbers of cells needed for reliable genome-wide analyses. (3) Validate the technology for epithelial and endothelial cells isolated from the gastrointestinal tract of mice.

  12. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set

    PubMed Central

    Kanai, Masahiro; Tanaka, Toshihiro; Okada, Yukinori

    2016-01-01

    To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in the current literature commonly set a genome-wide significance threshold at the level of P=5.0 × 10−8, the adequacy of this value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR), Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance thresholds were Psig=3.24 × 10−8 (AFR), 9.26 × 10−8 (EUR), 1.83 × 10−7 (AMR), 1.61 × 10−7 (EAS) and 9.46 × 10−8 (SAS). We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR), which yielded Psig=3.25 × 10−8 (ALL) and 4.20 × 10−8 (ΔAFR). Our results indicate that the current threshold (P=5.0 × 10−8) is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when conducting a meta-analysis, regardless of the presence of African samples. PMID:27305981

  13. Quality control and quality assurance in genotypic data for genome-wide association studies

    PubMed Central

    Laurie, Cathy C.; Doheny, Kimberly F.; Mirel, Daniel B.; Pugh, Elizabeth W.; Bierut, Laura J.; Bhangale, Tushar; Boehm, Frederick; Caporaso, Neil E.; Cornelis, Marilyn C.; Edenberg, Howard J.; Gabriel, Stacy B.; Harris, Emily L.; Hu, Frank B.; Jacobs, Kevin; Kraft, Peter; Landi, Maria Teresa; Lumley, Thomas; Manolio, Teri A.; McHugh, Caitlin; Painter, Ian; Paschall, Justin; Rice, John P.; Rice, Kenneth M.; Zheng, Xiuwen; Weir, Bruce S.

    2011-01-01

    Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA for genotypic data in genome-wide association studies. This system includes some new approaches that (1) combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal components analysis (PCA) to SNP selection. The methods are illustrated with examples from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest several recommendations for QC/QA in the design and execution of genome-wide association studies. PMID:20718045

  14. Anxiety genetics – findings from cross-species genome-wide approaches

    PubMed Central

    2013-01-01

    Anxiety disorders are complex diseases, which often occur in combination with major depression, alcohol use disorder, or general medical conditions. Anxiety disorders were the most common mental disorders within the EU states in 2010 with 14% prevalence. Anxiety disorders are triggered by environmental factors in genetically susceptible individuals, and therefore genetic research offers a great route to unravel molecular basis of these diseases. As anxiety is an evolutionarily conserved response, mouse models can be used to carry out genome-wide searches for specific genes in a setting that controls for the environmental factors. In this review, we discuss translational approaches that aim to bridge results from unbiased genome-wide screens using mouse models to anxiety disorders in humans. Several methods, such as quantitative trait locus mapping, gene expression profiling, and proteomics, have been used in various mouse models of anxiety to identify genes that regulate anxiety or play a role in maintaining pathological anxiety. We first discuss briefly the evolutionary background of anxiety, which justifies cross-species approaches. We then describe how several genes have been identified through genome-wide methods in mouse models and subsequently investigated in human anxiety disorder samples as candidate genes. These studies have led to the identification of completely novel biological pathways that regulate anxiety in mice and humans, and that can be further investigated as targets for therapy. PMID:23659354

  15. Genome-wide analysis of long-term evolutionary domestication in Drosophila melanogaster

    PubMed Central

    Phillips, Mark A.; Long, Anthony D.; Greenspan, Zachary S.; Greer, Lee F.; Burke, Molly K.; Villeponteau, Bryant; Matsagas, Kennedy C.; Rizza, Cristina L.; Mueller, Laurence D.; Rose, Michael R.

    2016-01-01

    Experimental evolutionary genomics now allows biologists to test fundamental theories concerning the genetic basis of adaptation. We have conducted one of the longest laboratory evolution experiments with any sexually-reproducing metazoan, Drosophila melanogaster. We used next-generation resequencing data from this experiment to examine genome-wide patterns of genetic variation over an evolutionary time-scale that approaches 1,000 generations. We also compared measures of variation within and differentiation between our populations to simulations based on a variety of evolutionary scenarios. Our analysis yielded no clear evidence of hard selective sweeps, whereby natural selection acts to increase the frequency of a newly-arising mutation in a population until it becomes fixed. We do find evidence for selection acting on standing genetic variation, as independent replicate populations exhibit similar population-genetic dynamics, without obvious fixation of candidate alleles under selection. A hidden-Markov model test for selection also found widespread evidence for selection. We found more genetic variation genome-wide, and less differentiation between replicate populations genome-wide, than arose in any of our simulated evolutionary scenarios. PMID:28004838

  16. Novel Loci Associated with Usual Sleep Duration: The CHARGE Consortium Genome-Wide Association Study

    PubMed Central

    Gottlieb, Daniel J.; Hek, Karin; Chen, Ting-hsu; Watson, Nathaniel F.; Eiriksdottir, Gudny; Byrne, Enda M.; Cornelis, Marilyn; Warby, Simon C.; Bandinelli, Stefania; Cherkas, Lynn; Evans, Daniel S.; Grabe, Hans J.; Lahti, Jari; Li, Man; Lehtimäki, Terho; Lumley, Thomas; Marciante, Kristin D.; Pérusse, Louis; Psaty, Bruce M.; Robbins, John; Tranah, Gregory J.; Vink, Jacqueline M.; Wilk, Jemma B.; Stafford, Jeanette M.; Bellis, Claire; Biffar, Reiner; Bouchard, Claude; Cade, Brian; Curhan, Gary C.; Eriksson, Johan G.; Ewert, Ralf; Ferrucci, Luigi; Fülöp, Tibor; Gehrman, Philip R.; Goodloe, Robert; Harris, Tamara B.; Heath, Andrew C.; Hernandez, Dena; Hofman, Albert; Hottenga, Jouke-Jan; Hunter, David J.; Jensen, Majken K.; Johnson, Andrew D.; Kähönen, Mika; Kao, Linda; Kraft, Peter; Larkin, Emma K.; Lauderdale, Diane S.; Luik, Annemarie I.; Medici, Marco; Montgomery, Grant W.; Palotie, Aarno; Patel, Sanjay R.; Pistis, Giorgio; Porcu, Eleonora; Quaye, Lydia; Raitakari, Olli; Redline, Susan; Rimm, Eric B.; Rotter, Jerome I.; Smith, Albert V.; Spector, Tim D.; Teumer, Alexander; Uitterlinden, André G.; Vohl, Marie-Claude; Widen, Elisabeth; Willemsen, Gonneke; Young, Terry; Zhang, Xiaoling; Liu, Yongmei; Blangero, John; Boomsma, Dorret I.; Gudnason, Vilmundur; Hu, Frank; Mangino, Massimo; Martin, Nicholas G.; O’Connor, George T.; Stone, Katie L.; Tanaka, Toshiko; Viikari, Jorma; Gharib, Sina A.; Punjabi, Naresh M.; Räikkönen, Katri; Völzke, Henry; Mignot, Emmanuel; Tiemeier, Henning

    2015-01-01

    Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study of usual sleep duration was conducted using 18 population-based cohorts totaling 47,180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35–80 kb upstream from the thyroid-specific transcription factor PAX8 (lowest p=1.1 ×10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest p=9.3 × 10−4). The strongest combined association was at rs1823125 (p=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 minutes longer per night. The alleles associated with longer sleep duration were associated in previous genome-wide association studies with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease. PMID:25469926

  17. Genome-wide association study in essential tremor identifies three new loci

    PubMed Central

    Müller, Stefanie H.; Girard, Simon L.; Hopfner, Franziska; Merner, Nancy D.; Bourassa, Cynthia V.; Lorenz, Delia; Clark, Lorraine N.; Tittmann, Lukas; Soto-Ortolaza, Alexandra I.; Klebe, Stephan; Hallett, Mark; Schneider, Susanne A.; Hodgkinson, Colin A.; Lieb, Wolfgang; Wszolek, Zbigniew K.; Pendziwiat, Manuela; Lorenzo-Betancor, Oswaldo; Poewe, Werner; Ortega-Cubero, Sara; Seppi, Klaus; Rajput, Alex; Hussl, Anna; Rajput, Ali H.; Berg, Daniela; Dion, Patrick A.; Wurster, Isabel; Shulman, Joshua M.; Srulijes, Karin; Haubenberger, Dietrich; Pastor, Pau; Vilariño-Güell, Carles; Postuma, Ronald B.; Bernard, Geneviève; Ladwig, Karl-Heinz; Dupré, Nicolas; Jankovic, Joseph; Strauch, Konstantin; Panisset, Michel; Winkelmann, Juliane; Testa, Claudia M.; Reischl, Eva; Zeuner, Kirsten E.; Ross, Owen A.; Arzberger, Thomas; Chouinard, Sylvain; Deuschl, Günther; Louis, Elan D.; Kuhlenbäumer, Gregor

    2016-01-01

    We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor. PMID:27797806

  18. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo.

    PubMed

    Ritchey, Laura E; Su, Zhao; Tang, Yin; Tack, David C; Assmann, Sarah M; Bevilacqua, Philip C

    2017-08-21

    RNA serves many functions in biology such as splicing, temperature sensing, and innate immunity. These functions are often determined by the structure of RNA. There is thus a pressing need to understand RNA structure and how it changes during diverse biological processes both in vivo and genome-wide. Here, we present Structure-seq2, which provides nucleotide-resolution RNA structural information in vivo and genome-wide. This optimized version of our original Structure-seq method increases sensitivity by at least 4-fold and improves data quality by minimizing formation of a deleterious by-product, reducing ligation bias, and improving read coverage. We also present a variation of Structure-seq2 in which a biotinylated nucleotide is incorporated during reverse transcription, which greatly facilitates the protocol by eliminating two PAGE purification steps. We benchmark Structure-seq2 on both mRNA and rRNA structure in rice (Oryza sativa). We demonstrate that Structure-seq2 can lead to new biological insights. Our Structure-seq2 datasets uncover hidden breaks in chloroplast rRNA and identify a previously unreported N1-methyladenosine (m1A) in a nuclear-encoded Oryza sativa rRNA. Overall, Structure-seq2 is a rapid, sensitive, and unbiased method to probe RNA in vivo and genome-wide that facilitates new insights into RNA biology. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Genome-wide association analysis of age-at-onset in Alzheimer’s disease

    PubMed Central

    Kamboh, M. Ilyas; Barmada, M. Michael; Demirci, F. Yesim; Minster, Ryan L.; Carrasquillo, Minerva M.; Pankratz, V. Shane; Younkin, Steven G.; Saykin, Andrew J.; Sweet, Robert A.; Feingold, Eleanor; DeKosky, Steven T.; Lopez, Oscar L.

    2011-01-01

    The risk of Alzheimer’s disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta analysis on 3 samples comprising a total of 2,222 AD cases. A total of ~2.5 million directly genotyped or imputed SNPs were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the APOE region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples. PMID:22005931

  20. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10(-10), maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  1. Unraveling the Genetic Etiology of Adult Antisocial Behavior: A Genome-Wide Association Study

    PubMed Central

    Tielbeek, Jorim J.; Medland, Sarah E.; Benyamin, Beben; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Wray, Naomi R.; Verweij, Karin J. H.

    2012-01-01

    Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS) on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10−5) was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies. PMID:23077488

  2. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma.

    PubMed

    Amos, Christopher I; Wang, Li-E; Lee, Jeffrey E; Gershenwald, Jeffrey E; Chen, Wei V; Fang, Shenying; Kosoy, Roman; Zhang, Mingfeng; Qureshi, Abrar A; Vattathil, Selina; Schacherer, Christopher W; Gardner, Julie M; Wang, Yuling; Bishop, D Tim; Barrett, Jennifer H; MacGregor, Stuart; Hayward, Nicholas K; Martin, Nicholas G; Duffy, David L; Mann, Graham J; Cust, Anne; Hopper, John; Brown, Kevin M; Grimm, Elizabeth A; Xu, Yaji; Han, Younghun; Jing, Kaiyan; McHugh, Caitlin; Laurie, Cathy C; Doheny, Kim F; Pugh, Elizabeth W; Seldin, Michael F; Han, Jiali; Wei, Qingyi

    2011-12-15

    We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10(-10)). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma.

  3. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  4. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  5. Genome-wide evidence for speciation with gene flow in Heliconius butterflies.

    PubMed

    Martin, Simon H; Dasmahapatra, Kanchon K; Nadeau, Nicola J; Salazar, Camilo; Walters, James R; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D

    2013-11-01

    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.

  6. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions

    PubMed Central

    Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2015-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information. PMID:25919136

  7. Genome Wide Allele Frequency Fingerprints (GWAFFs) of Populations via Genotyping by Sequencing

    PubMed Central

    Byrne, Stephen; Czaban, Adrian; Studer, Bruno; Panitz, Frank; Bendixen, Christian; Asp, Torben

    2013-01-01

    Genotyping-by-Sequencing (GBS) is an excellent tool for characterising genetic variation between plant genomes. To date, its use has been reported only for genotyping of single individuals. However, there are many applications where resolving allele frequencies within populations on a genome-wide scale would be very powerful, examples include the breeding of outbreeding species, varietal protection in outbreeding species, monitoring changes in population allele frequencies. This motivated us to test the potential to use GBS to evaluate allele frequencies within populations. Perennial ryegrass is an outbreeding species, and breeding programs are based upon selection on populations. We tested two restriction enzymes for their efficiency in complexity reduction of the perennial ryegrass genome. The resulting profiles have been termed Genome Wide Allele Frequency Fingerprints (GWAFFs), and we have shown how these fingerprints can be used to distinguish between plant populations. Even at current costs and throughput, using sequencing to directly evaluate populations on a genome-wide scale is viable. GWAFFs should find many applications, from varietal development in outbreeding species right through to playing a role in protecting plant breeders’ rights. PMID:23469194

  8. A genome-wide association study of sleep habits and insomnia.

    PubMed

    Byrne, Enda M; Gehrman, Philip R; Medland, Sarah E; Nyholt, Dale R; Heath, Andrew C; Madden, Pamela A F; Hickie, Ian B; Van Duijn, Cornelia M; Henders, Anjali K; Montgomery, Grant W; Martin, Nicholas G; Wray, Naomi R

    2013-07-01

    Several aspects of sleep behavior such as timing, duration and quality have been demonstrated to be heritable. To identify common variants that influence sleep traits in the population, we conducted a genome-wide association study of six sleep phenotypes assessed by questionnaire in a sample of 2,323 individuals from the Australian Twin Registry. Genotyping was performed on the Illumina 317, 370, and 610K arrays and the SNPs in common between platforms were used to impute non-genotyped SNPs. We tested for association with more than 2,000,000 common polymorphisms across the genome. While no SNPs reached the genome-wide significance threshold, we identified a number of associations in plausible candidate genes. Most notably, a group of SNPs in the third intron of the CACNA1C gene ranked as most significant in the analysis of sleep latency (P = 1.3 × 10⁻⁶). We attempted to replicate this association in an independent sample from the Chronogen Consortium (n = 2,034), but found no evidence of association (P = 0.73). We have identified several other suggestive associations that await replication in an independent sample. We did not replicate the results from previous genome-wide analyses of self-reported sleep phenotypes after correction for multiple testing.

  9. A twin study of breastfeeding with a preliminary genome wide association scan

    PubMed Central

    Colodro-Conde, L.; Zhu, G.; Power, R. A.; Henders, A.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Medland, S. E.; Ordoñana, J.R.; Martin, N.G.

    2015-01-01

    Breastfeeding has been an important survival trait during human history, though it has long been recognised that individuals differ in their exact breastfeeding behaviour. Here our aims were, first, to explore to what extent genetic and environmental influences contributed to the individual differences in breastfeeding behaviour; second, to detect possible genetic variants related to breastfeeding; and lastly, to test if the genetic variants associated with breastfeeding have been previously found to be related with breast size. Data were collected from a large community-based cohort of Australian twins, with 3,364 women for the twin modelling analyses and 1,521 of them included in the genome wide association study. Monozygotic twin correlations (rMZ = .52, 95% CI .46 – .57) were larger than dizygotic twin correlations (rDZ = .35, 95% CI .25 – .43) and the best-fitting model was the one composed by additive genetics and unique environmental factors, explaining 53% and 47% of the variance in breastfeeding behaviour, respectively. No breastfeeding-related genetic variants reached genome-wide significance. The polygenic risk score analyses showed no significant results, suggesting breast size does not influence breastfeeding. This study confers a replication of a previous one exploring the sources of variance of breastfeeding and, to our knowledge, is the first one to conduct a Genome-Wide Association Study on breastfeeding and look at the overlap with variants for breast size. PMID:25475840

  10. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation.

    PubMed

    Hoffmann, Thomas J; Ehret, Georg B; Nandakumar, Priyanka; Ranatunga, Dilrini; Schaefer, Catherine; Kwok, Pui-Yan; Iribarren, Carlos; Chakravarti, Aravinda; Risch, Neil

    2017-01-01

    Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure measurements for a genome-wide association study on long-term average systolic, diastolic, and pulse pressure. We identified 39 new loci among 75 genome-wide significant loci (P ≤ 5 × 10(-8)), with most replicating in the combined International Consortium for Blood Pressure (ICBP; n = 69,396) and UK Biobank (UKB; n = 152,081) studies. Combining GERA with ICBP yielded 36 additional new loci, with most replicating in UKB. Combining all three studies (n = 321,262) yielded 241 additional genome-wide significant loci, although no replication sample was available for these. All associated loci explained 2.9%, 2.5%, and 3.1% of variation in systolic, diastolic, and pulse pressure, respectively, in GERA non-Hispanic whites. Using multiple blood pressure measurements in GERA doubled the variance explained. A normalized risk score was associated with time to onset of hypertension (hazards ratio = 1.18, P = 8.2 × 10(-45)). Expression quantitative trait locus analysis of blood pressure loci showed enrichment in aorta and tibial artery.

  11. Genome-Wide Pathway Association Studies of Multiple Correlated Quantitative Phenotypes Using Principle Component Analyses

    PubMed Central

    Zhang, Feng; Guo, Xiong; Wu, Shixun; Han, Jing; Liu, Yongjun; Shen, Hui; Deng, Hong-Wen

    2012-01-01

    Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS) approach using principle component analysis(PCA). In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD) at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases. PMID:23285279

  12. Five endometrial cancer risk loci identified through genome-wide association analysis.

    PubMed

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  13. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    PubMed

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  14. NSD1 mutations generate a genome-wide DNA methylation signature.

    PubMed

    Choufani, S; Cytrynbaum, C; Chung, B H Y; Turinsky, A L; Grafodatskaya, D; Chen, Y A; Cohen, A S A; Dupuis, L; Butcher, D T; Siu, M T; Luk, H M; Lo, I F M; Lam, S T S; Caluseriu, O; Stavropoulos, D J; Reardon, W; Mendoza-Londono, R; Brudno, M; Gibson, W T; Chitayat, D; Weksberg, R

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  15. Genome-wide association study of personality traits in bipolar patients

    PubMed Central

    Alliey-Rodriguez, Ney; Zhang, Dandan; Badner, Judith A.; Lahey, Benjamin B.; Zhang, Xiaotong; Dinwiddie, Stephen; Romanos, Benjamin; Plenys, Natalie; Liu, Chunyu; Gershon, Elliot S.

    2011-01-01

    Objective Genome-wide association study was carried out on personality traits among bipolar patients as possible endophenotypes for gene discovery in bipolar disorder. Methods The subscales of Cloninger’s Temperament and Character Inventory (TCI) and the Zuckerman–Kuhlman Personality Questionnaire (ZKPQ) were used as quantitative phenotypes. The genotyping platform was the Affymetrix 6.0 SNP array. The sample consisted of 944 individuals for TCI and 1007 for ZKPQ, all of European ancestry, diagnosed with bipolar disorder by Diagnostic and Statistical Manual of Mental Disorders-IV criteria. Results Genome-wide significant association was found for two subscales of the TCI, rs10479334 with the ‘Social Acceptance versus Social Intolerance’ subscale (Bonferroni P = 0.014) in an intergenic region, and rs9419788 with the ‘Spiritual Acceptance versus Rational Materialism’ subscale (Bonferroni P = 0.036) in PLCE1 gene. Although genome-wide significance was not reached for ZKPQ scales, lowest P values pinpointed to genes, RXRG for Sensation Seeking, GRM7 and ITK for Neuroticism Anxiety, and SPTLC3 gene for Aggression Hostility. Conclusion After correction for the 25 subscales in TCI and four scales plus two subscales in ZKPQ, phenotype-wide significance was not reached. PMID:21368711

  16. Meta-analysis of genome-wide association studies of attention deficit/hyperactivity disorder

    PubMed Central

    Neale, Benjamin M; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schäfer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J.L.; Langely, Kate; O’Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective Although twin and family studies have shown Attention Deficit/Hyperactivity Disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association scans (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. Method We used data from four projects: a) the Children’s Hospital of Philadelphia (CHOP), b) phase I of the International Multicenter ADHD Genetics project (IMAGE), c) phase II of IMAGE (IMAGE II), and d) the Pfizer funded study from the University of California, Los Angeles, Washington University and the Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases and 2,455 controls. For each study, we imputed HapMap SNPs, computed association test statistics and transformed them to Z-scores, and then combined weighted Z-scores in a meta-analysis. Results No genome-wide significant associations were found, although an analysis of candidate genes suggests they may be involved in the disorder. Conclusions Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g. rare ones, account for much of the disorder’s heritability. PMID:20732625

  17. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder.

    PubMed

    Neale, Benjamin M; Medland, Sarah E; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V; Nguyen, Thuy Trang; Schäfer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J L; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-09-01

    Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. We used data from four projects: a) the Children's Hospital of Philadelphia (CHOP); b) phase I of the International Multicenter ADHD Genetics project (IMAGE); c) phase II of IMAGE (IMAGE II); and d) the Pfizer-funded study from the University of California, Los Angeles, Washington University, and Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases, and 2,455 controls. For each study, we imputed HapMap single nucleotide polymorphisms, computed association test statistics and transformed them to z-scores, and then combined weighted z-scores in a meta-analysis. No genome-wide significant associations were found, although an analysis of candidate genes suggests that they may be involved in the disorder. Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g., rare ones, account for much of the disorder's heritability. 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension

    PubMed Central

    Lu, Xiangfeng; Wang, Laiyuan; Lin, Xu; Huang, Jianfeng; Charles Gu, C.; He, Meian; Shen, Hongbing; He, Jiang; Zhu, Jingwen; Li, Huaixing; Hixson, James E.; Wu, Tangchun; Dai, Juncheng; Lu, Ling; Shen, Chong; Chen, Shufeng; He, Lin; Mo, Zengnan; Hao, Yongchen; Mo, Xingbo; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Fan, Zhongjie; Li, Ying; Zhao, Liancheng; Li, Hongfan; Lu, Fanghong; Yao, Cailiang; Yu, Lin; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Deng, Ying; Hu, Dongsheng; Zhang, Weidong; Ji, Xu; Guo, Dongshuang; Guo, Zhirong; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Zhou, Xiaoyang; Yan, Weili; Sun, Ningling; Gao, Pingjin; Gu, Dongfeng

    2015-01-01

    Hypertension is a common disorder and the leading risk factor for cardiovascular disease and premature deaths worldwide. Genome-wide association studies (GWASs) in the European population have identified multiple chromosomal regions associated with blood pressure, and the identified loci altogether explain only a small fraction of the variance for blood pressure. The differences in environmental exposures and genetic background between Chinese and European populations might suggest potential different pathways of blood pressure regulation. To identify novel genetic variants affecting blood pressure variation, we conducted a meta-analysis of GWASs of blood pressure and hypertension in 11 816 subjects followed by replication studies including 69 146 additional individuals. We identified genome-wide significant (P < 5.0 × 10−8) associations with blood pressure, which included variants at three new loci (CACNA1D, CYP21A2, and MED13L) and a newly discovered variant near SLC4A7. We also replicated 14 previously reported loci, 8 (CASZ1, MOV10, FGF5, CYP17A1, SOX6, ATP2B1, ALDH2, and JAG1) at genome-wide significance, and 6 (FIGN, ULK4, GUCY1A3, HFE, TBX3-TBX5, and TBX3) at a suggestive level of P = 1.81 × 10−3 to 5.16 × 10−8. These findings provide new mechanistic insights into the regulation of blood pressure and potential targets for treatments. PMID:25249183

  19. Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction

    PubMed Central

    Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui

    2017-01-01

    Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods. PMID:28165495

  20. Genome-wide signatures of male-mediated migration shaping the Indian gene pool.

    PubMed

    ArunKumar, GaneshPrasad; Tatarinova, Tatiana V; Duty, Jeff; Rollo, Debra; Syama, Adhikarla; Arun, Varatharajan Santhakumari; Kavitha, Valampuri John; Triska, Petr; Greenspan, Bennett; Wells, R Spencer; Pitchappan, Ramasamy

    2015-09-01

    Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.

  1. A genome-wide linkage and association scan reveals novel loci for autism.

    PubMed

    Weiss, Lauren A; Arking, Dan E; Daly, Mark J; Chakravarti, Aravinda

    2009-10-08

    Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success. Genome-wide association studies using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits. Consequently, we initiated a linkage and association mapping study using half a million genome-wide single nucleotide polymorphisms (SNPs) in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed an SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 x 10(-7)). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening whereas the discovery of a single novel association demonstrates the action of common variants.

  2. A Genome-Wide Association Study of Sleep Habits and Insomnia

    PubMed Central

    Byrne, Enda M; Gehrman, Philip R; Medland, Sarah E; Nyholt, Dale R; Heath, Andrew C; Madden, Pamela AF; Hickie, Ian B; Van Duijn, Cornelia M; Henders, Anjali K; Montgomery, Grant W; Martin, Nicholas G; Wray, Naomi R

    2014-01-01

    Several aspects of sleep behaviour such as timing, duration and quality have been demonstrated to be heritable. To identify common variants that influence sleep traits in the population, we conducted a genome-wide association study of 6 sleep phenotypes assessed by questionnaire in a sample of 2,323 individuals from the Australian Twin Registry. Genotyping was performed on the Illumina 317K, 370K and 610K arrays and the common Single Nucleotide Polymorphisms between platforms were used to impute non-genotyped SNPs. We tested for association with more than 2,000,000 common polymorphisms across the genome. While no SNPs reached the genome-wide significance threshold, we identified a number of associations in plausible candidate genes. Most notably, a group of SNPs in the 3rd intron of the CACNA1C gene ranked as most significant in the analysis of sleep latency (p = 1.3 × 10−6). We attempted to replicate this association in an independent sample from the Chronogen Consortium (n = 2,034), but found no evidence of association (p = 0.73). We have identified several other associations that await replication in an independent sample. Our study had good power to detect common single nucleotide polymorphisms that explain more than 2% of the phenotypic variance in self-report sleep phenotypes at a genome-wide significant level. No such variants were detected. PMID:23728906

  3. Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder.

    PubMed

    Belmonte Mahon, Pamela; Pirooznia, Mehdi; Goes, Fernando S; Seifuddin, Fayaz; Steele, Jo; Lee, Phil Hyoun; Huang, Jie; Hamshere, Marian L; Depaulo, J Raymond; Kelsoe, John R; Rietschel, Marcella; Nöthen, Markus; Cichon, Sven; Gurling, Hugh; Purcell, Shaun; Smoller, Jordan W; Craddock, Nick; Schulze, Thomas G; McMahon, Francis J; Potash, James B; Zandi, Peter P

    2011-04-01

    Genome-wide association studies (GWAS) have identified several susceptibility loci for bipolar disorder (BP), most notably ANK3. However, most of the inherited risk for BP remains unexplained. One reason for the limited success may be the genetic heterogeneity of BP. Clinical sub-phenotypes of BP may identify more etiologically homogeneous subsets of patients, which can be studied with increased power to detect genetic variation. Here, we report on a mega-analysis of two widely studied sub-phenotypes of BP, age at onset and psychotic symptoms, which are familial and clinically significant. We combined data from three GWAS: NIMH Bipolar Disorder Genetic Association Information Network (GAIN-BP), NIMH Bipolar Disorder Genome Study (BiGS), and a German sample. The combined sample consisted of 2,836 BP cases with information on sub-phenotypes and 2,744 controls. Imputation was performed, resulting in 2.3 million SNPs available for analysis. No SNP reached genome-wide significance for either sub-phenotype. In addition, no SNP reached genome-wide significance in a meta-analysis with an independent replication sample. We had 80% power to detect associations with a common SNP at an OR of 1.6 for psychotic symptoms and a mean difference of 1.8 years in age at onset. Age at onset and psychotic symptoms in BP may be influenced by many genes of smaller effect sizes or other variants not measured well by SNP arrays, such as rare alleles.

  4. On the analysis of a repeated measure design in genome-wide association analysis.

    PubMed

    Lee, Young; Park, Suyeon; Moon, Sanghoon; Lee, Juyoung; Elston, Robert C; Lee, Woojoo; Won, Sungho

    2014-11-28

    Longitudinal data enables detecting the effect of aging/time, and as a repeated measures design is statistically more efficient compared to cross-sectional data if the correlations between repeated measurements are not large. In particular, when genotyping cost is more expensive than phenotyping cost, the collection of longitudinal data can be an efficient strategy for genetic association analysis. However, in spite of these advantages, genome-wide association studies (GWAS) with longitudinal data have rarely been analyzed taking this into account. In this report, we calculate the required sample size to achieve 80% power at the genome-wide significance level for both longitudinal and cross-sectional data, and compare their statistical efficiency. Furthermore, we analyzed the GWAS of eight phenotypes with three observations on each individual in the Korean Association Resource (KARE). A linear mixed model allowing for the correlations between observations for each individual was applied to analyze the longitudinal data, and linear regression was used to analyze the first observation on each individual as cross-sectional data. We found 12 novel genome-wide significant disease susceptibility loci that were then confirmed in the Health Examination cohort, as well as some significant interactions between age/sex and SNPs.

  5. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits

    PubMed Central

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R2 = 0.57) and ET (R2 = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  6. Replicability and robustness of genome-wide-association studies for behavioral traits.

    PubMed

    Rietveld, Cornelius A; Conley, Dalton; Eriksson, Nicholas; Esko, Tõnu; Medland, Sarah E; Vinkhuyzen, Anna A E; Yang, Jian; Boardman, Jason D; Chabris, Christopher F; Dawes, Christopher T; Domingue, Benjamin W; Hinds, David A; Johannesson, Magnus; Kiefer, Amy K; Laibson, David; Magnusson, Patrik K E; Mountain, Joanna L; Oskarsson, Sven; Rostapshova, Olga; Teumer, Alexander; Tung, Joyce Y; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-11-01

    A recent genome-wide-association study of educational attainment identified three single-nucleotide polymorphisms (SNPs) whose associations, despite their small effect sizes (each R (2) ≈ 0.02%), reached genome-wide significance (p < 5 × 10(-8)) in a large discovery sample and were replicated in an independent sample (p < .05). The study also reported associations between educational attainment and indices of SNPs called "polygenic scores." In three studies, we evaluated the robustness of these findings. Study 1 showed that the associations with all three SNPs were replicated in another large (N = 34,428) independent sample. We also found that the scores remained predictive (R (2) ≈ 2%) in regressions with stringent controls for stratification (Study 2) and in new within-family analyses (Study 3). Our results show that large and therefore well-powered genome-wide-association studies can identify replicable genetic associations with behavioral traits. The small effect sizes of individual SNPs are likely to be a major contributing factor explaining the striking contrast between our results and the disappointing replication record of most candidate-gene studies.

  7. Genome-wide pathway association studies of multiple correlated quantitative phenotypes using principle component analyses.

    PubMed

    Zhang, Feng; Guo, Xiong; Wu, Shixun; Han, Jing; Liu, Yongjun; Shen, Hui; Deng, Hong-Wen

    2012-01-01

    Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS) approach using principle component analysis(PCA). In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD) at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases.

  8. Genome-Wide Linkage Disequilibrium in Nine-Spined Stickleback Populations

    PubMed Central

    Yang, Ji; Shikano, Takahito; Li, Meng-Hua; Merilä, Juha

    2014-01-01

    Variation in the extent and magnitude of genome-wide linkage disequilibrium (LD) among populations residing in different habitats has seldom been studied in wild vertebrates. We used a total of 109 microsatellite markers to quantify the level and patterns of genome-wide LD in 13 Fennoscandian nine-spined stickleback (Pungitius pungitius) populations from four (viz. marine, lake, pond, and river) different habitat types. In general, high magnitude (D’ > 0.5) of LD was found both in freshwater and marine populations, and the magnitude of LD was significantly greater in inland freshwater than in marine populations. Interestingly, three coastal freshwater populations located in close geographic proximity to the marine populations exhibited similar LD patterns and genetic diversity as their marine neighbors. The greater levels of LD in inland freshwater compared with marine and costal freshwater populations can be explained in terms of their contrasting demographic histories: founder events, long-term isolation, small effective sizes, and population bottlenecks are factors likely to have contributed to the high levels of LD in the inland freshwater populations. In general, these findings shed new light on the patterns and extent of variation in genome-wide LD, as well as the ecological and evolutionary factors driving them. PMID:25122668

  9. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma†

    PubMed Central

    Amos, Christopher I.; Wang, Li-E; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Chen, Wei V.; Fang, Shenying; Kosoy, Roman; Zhang, Mingfeng; Qureshi, Abrar A.; Vattathil, Selina; Schacherer, Christopher W.; Gardner, Julie M.; Wang, Yuling; Tim Bishop, D.; Barrett, Jennifer H.; MacGregor, Stuart; Hayward, Nicholas K.; Martin, Nicholas G.; Duffy, David L.; Mann, Graham J.; Cust, Anne; Hopper, John; Brown, Kevin M.; Grimm, Elizabeth A.; Xu, Yaji; Han, Younghun; Jing, Kaiyan; McHugh, Caitlin; Laurie, Cathy C.; Doheny, Kim F.; Pugh, Elizabeth W.; Seldin, Michael F.; Han, Jiali; Wei, Qingyi

    2011-01-01

    We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10−10). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma. PMID:21926416

  10. Host cell factors in HIV replication: meta-analysis of genome-wide studies.

    PubMed

    Bushman, Frederic D; Malani, Nirav; Fernandes, Jason; D'Orso, Iván; Cagney, Gerard; Diamond, Tracy L; Zhou, Honglin; Hazuda, Daria J; Espeseth, Amy S; König, Renate; Bandyopadhyay, Sourav; Ideker, Trey; Goff, Stephen P; Krogan, Nevan J; Frankel, Alan D; Young, John A T; Chanda, Sumit K

    2009-05-01

    We have analyzed host cell genes linked to HIV replication that were identified in nine genome-wide studies, including three independent siRNA screens. Overlaps among the siRNA screens were very modest (<7% for any pairwise combination), and similarly, only modest overlaps were seen in pairwise comparisons with other types of genome-wide studies. Combining all genes from the genome-wide studies together with genes reported in the literature to affect HIV yields 2,410 protein-coding genes, or fully 9.5% of all human genes (though of course some of these are false positive calls). Here we report an "encyclopedia" of all overlaps between studies (available at http://www.hostpathogen.org), which yielded a more extensively corroborated set of host factors assisting HIV replication. We used these genes to calculate refined networks that specify cellular subsystems recruited by HIV to assist in replication, and present additional analysis specifying host cell genes that are attractive as potential therapeutic targets.

  11. Genome-wide Association Analysis Identifies 14 New Risk Loci for Schizophrenia

    PubMed Central

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik KE; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Børglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, MilicaPejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steve; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F

    2013-01-01

    Schizophrenia is a heritable disorder with substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases, 6,243 controls) followed by meta-analysis with prior schizophrenia GWAS (8,832 cases, 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls, and 581 trios). In total, 22 regions met genome-wide significance (14 novel and one previously implicated in bipolar disorder). The results strongly implicate calcium signaling in the etiology of schizophrenia, and include genome-wide significant results for CACNA1C and CACNB2 whose protein products interact. We estimate that ∼8,300 independent and predominantly common SNPs contribute to risk for schizophrenia and that these collectively account for most of its heritability. Common genetic variation plays an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this devastating disorder. PMID:23974872

  12. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set.

    PubMed

    Kanai, Masahiro; Tanaka, Toshihiro; Okada, Yukinori

    2016-10-01

    To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in the current literature commonly set a genome-wide significance threshold at the level of P=5.0 × 10(-8), the adequacy of this value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR), Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance thresholds were Psig=3.24 × 10(-8) (AFR), 9.26 × 10(-8) (EUR), 1.83 × 10(-7) (AMR), 1.61 × 10(-7) (EAS) and 9.46 × 10(-8) (SAS). We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR), which yielded Psig=3.25 × 10(-8) (ALL) and 4.20 × 10(-8) (ΔAFR). Our results indicate that the current threshold (P=5.0 × 10(-8)) is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when conducting a meta-analysis, regardless of the presence of African samples.

  13. Genome-wide maps of polyadenylation reveal dynamic mRNA 3'-end formation in mammalian cell lineages.

    PubMed

    Wang, Li; Dowell, Robin D; Yi, Rui

    2013-03-01

    Post-transcriptional regulation, often mediated by miRNAs and RNA-binding proteins at the 3' untranslated regions (UTRs) of mRNAs, is implicated in important roles in the output of transcriptome. To decipher this layer of gene regulation, it is essential to measure global mRNA expression quantitatively in a 3'-UTR-specific manner. Here we establish an experimental and bioinformatics pipeline that simultaneously determines 3'-end formation by leveraging local nucleotide composition and quantitatively measures mRNA expression by sequencing polyadenylated transcripts. When applied to purified mouse embryonic skin stem cells and their daughter lineages, we identify 18,060 3' UTRs representing 12,739 distinct mRNAs that are abundantly expressed in the skin. We determine that ∼78% of UTRs are formed by using canonical A[A/U]UAAA polyadenylation signals, whereas ∼22% of UTRs use alternative signals. By comparing to relative and absolute mRNA abundance determined by qPCR, our RNA-seq approach can precisely measure mRNA fold-change and accurately determine the expression of mRNAs over four orders of magnitude. Surprisingly, only 829 out of 12,739 genes show differential 3'-end usage between embryonic skin stem cells and their immediate daughter cells, whereas the numbers increase to 933 genes when comparing embryonic skin stem cells with the more remotely related hair follicle cells. This suggests an evolving diversity instead of switch-like dynamics in 3'-end formation during development. Finally, core components of the miRNA pathway including Dicer, Dgcr8, Xpo5, and Argonautes show dynamic 3'-UTR formation patterns, indicating a self-regulatory mechanism. Together, our quantitative analysis reveals a dynamic picture of mRNA 3'-end formation in tissue stem cell lineages in vivo.

  14. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  15. [Research of aluminum to the cognitive ability and genome-wide methylation in rats].

    PubMed

    Yuan, Yuzhou; Yang, Xiaojuan; Ren, Pei; Kang, Pan; Li, Zhaoyang; Niu, Qiao

    2015-05-01

    To investigate the effects of aluminum exposure on cognition ability and genome-wide methylation in rats. Seventy-two healthy SD male rats were randomly assigned by weight into two parts and nine groups (eight rats/group). Exposure part included control group and low, medium and high dose aluminum maltolate group (0.27, 0.54 and 1.08 mg/kg alumium maltolate). Intervention part included control group, 1.08 mg/kg aluminum maltolate group, 1.08 mg/kg aluminum maltolate and low,medium and high dose folic acid group (0.7, 1.5 and. 3.4 mg/kg folic acid). Aluminum maltolate were subjected to peritoneal injection (0.2 ml/d) and folic acid were subjected to intragastric administration in 1 ml/100 g for 60 days. The learning and memory abilities were examined by using Morris water maze test and genome-wide methylation was determined via ELISA assay. It was revealed by Morris water maze test that target quadrant residence time and through the original position were markedly shortened as a result of medium and high dose aluminum exposure when compared with control group (both P < 0.05). The target quadrant residence time and through the original position were extended as a result of folic acid intervention when compared with 1.08 mg/kg aluminum maltolate exposure group. Both of them had statistical difference between 1.08 mg/kg aluminum maltolate and (1.5 mg/kg and 3.4 mg/kg) folic acid intervention group and 1.08 mg/kg aluminum maltolate exposure group (both P < 0.05). Considerable decrease in genome-wide methylation rate was associated with elevated dosage of aluminum maltolate (0.54 mg/kg and 1.08 mg/kg) as compared with control group (both P < 0.05). The genome-wide methylation rate was gradually increase as a result of high-dose folic acid intervention when compared with high-dose aluminum maltolate exposure group (both P < 0.05). Both of them had no statistical difference when compared with control group (both P > 0.05). Aluminum may induce learning and memory abilities

  16. A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism

    PubMed Central

    Loukola, Anu; Buchwald, Jadwiga; Gupta, Richa; Palviainen, Teemu; Hällfors, Jenni; Tikkanen, Emmi; Korhonen, Tellervo; Ollikainen, Miina; Sarin, Antti-Pekka; Ripatti, Samuli; Lehtimäki, Terho; Raitakari, Olli; Salomaa, Veikko; Rose, Richard J.; Tyndale, Rachel F.; Kaprio, Jaakko

    2015-01-01

    Individuals with fast nicotine metabolism typically smoke more and thus have a greater risk for smoking-induced diseases. Further, the efficacy of smoking cessation pharmacotherapy is dependent on the rate of nicotine metabolism. Our objective was to use nicotine metabolite ratio (NMR), an established biomarker of nicotine metabolism rate, in a genome-wide association study (GWAS) to identify novel genetic variants influencing nicotine metabolism. A heritability estimate of 0.81 (95% CI 0.70–0.88) was obtained for NMR using monozygotic and dizygotic twins of the FinnTwin cohort. We performed a GWAS in cotinine-verified current smokers of three Finnish cohorts (FinnTwin, Young Finns Study, FINRISK2007), followed by a meta-analysis of 1518 subjects, and annotated the genome-wide significant SNPs with methylation quantitative loci (meQTL) analyses. We detected association on 19q13 with 719 SNPs exceeding genome-wide significance within a 4.2 Mb region. The strongest evidence for association emerged for CYP2A6 (min p = 5.77E-86, in intron 4), the main metabolic enzyme for nicotine. Other interesting genes with genome-wide significant signals included CYP2B6, CYP2A7, EGLN2, and NUMBL. Conditional analyses revealed three independent signals on 19q13, all located within or in the immediate vicinity of CYP2A6. A genetic risk score constructed using the independent signals showed association with smoking quantity (p = 0.0019) in two independent Finnish samples. Our meQTL results showed that methylation values of 16 CpG sites within the region are affected by genotypes of the genome-wide significant SNPs, and according to causal inference test, for some of the SNPs the effect on NMR is mediated through methylation. To our knowledge, this is the first GWAS on NMR. Our results enclose three independent novel signals on 19q13.2. The detected CYP2A6 variants explain a strikingly large fraction of variance (up to 31%) in NMR in these study samples. Further, we provide evidence

  17. A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism.

    PubMed

    Loukola, Anu; Buchwald, Jadwiga; Gupta, Richa; Palviainen, Teemu; Hällfors, Jenni; Tikkanen, Emmi; Korhonen, Tellervo; Ollikainen, Miina; Sarin, Antti-Pekka; Ripatti, Samuli; Lehtimäki, Terho; Raitakari, Olli; Salomaa, Veikko; Rose, Richard J; Tyndale, Rachel F; Kaprio, Jaakko

    2015-01-01

    Individuals with fast nicotine metabolism typically smoke more and thus have a greater risk for smoking-induced diseases. Further, the efficacy of smoking cessation pharmacotherapy is dependent on the rate of nicotine metabolism. Our objective was to use nicotine metabolite ratio (NMR), an established biomarker of nicotine metabolism rate, in a genome-wide association study (GWAS) to identify novel genetic variants influencing nicotine metabolism. A heritability estimate of 0.81 (95% CI 0.70-0.88) was obtained for NMR using monozygotic and dizygotic twins of the FinnTwin cohort. We performed a GWAS in cotinine-verified current smokers of three Finnish cohorts (FinnTwin, Young Finns Study, FINRISK2007), followed by a meta-analysis of 1518 subjects, and annotated the genome-wide significant SNPs with methylation quantitative loci (meQTL) analyses. We detected association on 19q13 with 719 SNPs exceeding genome-wide significance within a 4.2 Mb region. The strongest evidence for association emerged for CYP2A6 (min p = 5.77E-86, in intron 4), the main metabolic enzyme for nicotine. Other interesting genes with genome-wide significant signals included CYP2B6, CYP2A7, EGLN2, and NUMBL. Conditional analyses revealed three independent signals on 19q13, all located within or in the immediate vicinity of CYP2A6. A genetic risk score constructed using the independent signals showed association with smoking quantity (p = 0.0019) in two independent Finnish samples. Our meQTL results showed that methylation values of 16 CpG sites within the region are affected by genotypes of the genome-wide significant SNPs, and according to causal inference test, for some of the SNPs the effect on NMR is mediated through methylation. To our knowledge, this is the first GWAS on NMR. Our results enclose three independent novel signals on 19q13.2. The detected CYP2A6 variants explain a strikingly large fraction of variance (up to 31%) in NMR in these study samples. Further, we provide evidence

  18. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments.

    PubMed

    Wu, Feinan; Olson, Brennan G; Yao, Jie

    2016-01-27

    The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq.

  19. Genome-wide siRNA screen of genes regulating the LPS-induced NF-κB and TNF-α responses in mouse macrophages

    PubMed Central

    Li, Ning; Katz, Samuel; Dutta, Bhaskar; Benet, Zachary L.; Sun, Jing; Fraser, Iain D.C.

    2017-01-01

    The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the mouse macrophage TNF-α and NF-κB responses to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory signaling and cytokine expression in mouse macrophages. PMID:28248925

  20. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    PubMed

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  1. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    PubMed Central

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  2. Principles guiding embryo selection following genome-wide haplotyping of preimplantation embryos.

    PubMed

    Dimitriadou, Eftychia; Melotte, Cindy; Debrock, Sophie; Esteki, Masoud Zamani; Dierickx, Kris; Voet, Thierry; Devriendt, Koen; de Ravel, Thomy; Legius, Eric; Peeraer, Karen; Meuleman, Christel; Vermeesch, Joris Robert

    2017-03-01

    How to select and prioritize embryos during PGD following genome-wide haplotyping? In addition to genetic disease-specific information, the embryo selected for transfer is based on ranking criteria including the existence of mitotic and/or meiotic aneuploidies, but not carriership of mutations causing recessive disorders. Embryo selection for monogenic diseases has been mainly performed using targeted disease-specific assays. Recently, these targeted approaches are being complemented by generic genome-wide genetic analysis methods such as karyomapping or haplarithmisis, which are based on genomic haplotype reconstruction of cell(s) biopsied from embryos. This provides not only information about the inheritance of Mendelian disease alleles but also about numerical and structural chromosome anomalies and haplotypes genome-wide. Reflections on how to use this information in the diagnostic laboratory are lacking. We present the results of the first 101 PGD cycles (373 embryos) using haplarithmisis, performed in the Centre for Human Genetics, UZ Leuven. The questions raised were addressed by a multidisciplinary team of clinical geneticist, fertility specialists and ethicists. Sixty-three couples enrolled in the genome-wide haplotyping-based PGD program. Families presented with either inherited genetic variants causing known disorders and/or chromosomal rearrangements that could lead to unbalanced translocations in the offspring. Embryos were selected based on the absence or presence of the disease allele, a trisomy or other chromosomal abnormality leading to known developmental disorders. In addition, morphologically normal Day 5 embryos were prioritized for transfer based on the presence of other chromosomal imbalances and/or carrier information. Some of the choices made and principles put forward are specific for cleavage-stage-based genetic testing. The proposed guidelines are subject to continuous update based on the accumulating knowledge from the implementation of

  3. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries.

    PubMed

    Baurley, James W; Edlund, Christopher K; Pardamean, Carissa I; Conti, David V; Krasnow, Ruth; Javitz, Harold S; Hops, Hyman; Swan, Gary E; Benowitz, Neal L; Bergen, Andrew W

    2016-09-01

    Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3'-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan-continental population biomarkers for nicotine metabolism. This

  4. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries

    PubMed Central

    Baurley, James W.; Edlund, Christopher K.; Pardamean, Carissa I.; Conti, David V.; Krasnow, Ruth; Javitz, Harold S.; Hops, Hyman; Swan, Gary E.; Benowitz, Neal L.

    2016-01-01

    Introduction: Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3′-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Methods: Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. Results: African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). Conclusions: This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan

  5. Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica.

    PubMed

    DeLisi, Lynn E; Mesen, Andrea; Rodriguez, Carlos; Bertheau, Arturo; LaPrade, Beatrice; Llach, Michelle; Riondet, Silvina; Razi, Kamran; Relja, Margaret; Byerley, William; Sherrington, Robin

    2002-07-08

    Genetic isolates have been useful cohorts in which to search for genes underlying disorders of unknown pathology. One such cohort is thought to exist in the Central Valley of Costa Rica surrounding the city of San Jose. Previous investigators identified a rare dominant gene for hereditary deafness in this population, and a suggestive linkage of severe bipolar psychosis has been reported in another study. Ninety-nine families with at least one pair of siblings affected with schizophrenia or a schizophrenia-spectrum diagnosis had clinical evaluations and DNA collected for genotyping. The Marshfield Medical Research Foundation (NHLBI) Mammalian Genotyping Service performed all genotyping using 404 short-tandem repeat polymorphic markers (STRPs) spaced on average 10 cM apart. Data were analyzed using the nonparametric program, GeneHunterPlus. The population structure was investigated using the STRUCT program. No region was found with genome-wide significance for linkage. Using a phenotype of schizophrenia plus schizoaffective disorder, the highest maximum likelihood score (MLS) observed was 1.78 (P < 0.004) at 176.6 cM from pter on chromosome 5q, an area previously implicated by some other groups. In addition, five regions on chromosomes 1p, 2p, 2q, 14p, and 8p had MLSs above 1.0. All other regions produced scores below 1.0. Population genetic analysis reveals no evidence for population substructure, for admixture with other populations, such as Amerindians, or for inbreeding in the parental generation. The latter casts some doubt on this population being an isolate, although there was evidence of inbreeding among the offspring.

  6. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells

    PubMed Central

    Akhade, Vijay Suresh; Arun, Gayatri; Donakonda, Sainitin; Satyanarayana Rao, Manchanahalli R

    2014-01-01

    Mrhl RNA is a nuclear lncRNA encoded in the mouse genome and negatively regulates Wnt signaling in spermatogonial cells through p68/Ddx5 RNA helicase. Mrhl RNA is present in the chromatin fraction of mouse spermatogonial Gc1-Spg cells and genome wide chromatin occupancy of mrhl RNA by ChOP (Chromatin oligo affinity precipitation) technique identified 1370 statistically significant genomic loci. Among these, genes at 37 genomic loci also showed altered expression pattern upon mrhl RNA down regulation which are referred to as GRPAM (Genes Regulated by Physical Association of Mrhl RNA). p68 interacted with mrhl RNA in chromatin at these GRPAM loci. p68 silencing drastically reduced mrhl RNA occupancy at 27 GRPAM loci and also perturbed the expression of GRPAM suggesting a role for p68 mediated mrhl RNA occupancy in regulating GRPAM expression. Wnt3a ligand treatment of Gc1-Spg cells down regulated mrhl RNA expression and also perturbed expression of these 27 GRPAM genes that included genes regulating Wnt signaling pathway and spermatogenesis, one of them being Sox8, a developmentally important transcription factor. We also identified interacting proteins of mrhl RNA associated chromatin fraction which included Pc4, a chromatin organizer protein and hnRNP A/B and hnRNP A2/B1 which have been shown to be associated with lincRNA-Cox2 function in gene regulation. Our findings in the Gc1-Spg cell line also correlate with the results from analysis of mouse testicular tissue which further highlights the in vivo physiological significance of mrhl RNA in the context of gene regulation during mammalian spermatogenesis. PMID:25584904

  7. Genome-Wide Identification of Chromatin Transitional Regions Reveals Diverse Mechanisms Defining the Boundary of Facultative Heterochromatin

    PubMed Central

    Li, Guangyao; Zhou, Lei

    2013-01-01

    Due to the self-propagating nature of the heterochromatic modification H3K27me3, chromatin barrier activities are required to demarcate the boundary and prevent it from encroaching into euchromatic regions. Studies in Drosophila and vertebrate systems have revealed several important chromatin barrier elements and their respective binding factors. However, epigenomic data indicate that the binding of these factors are not exclusive to chromatin boundaries. To gain a comprehensive understanding of facultative heterochromatin boundaries, we developed a two-tiered method to identify the Chromatin Transitional Region (CTR), i.e. the nucleosomal region that shows the greatest transition rate of the H3K27me3 modification as revealed by ChIP-Seq. This approach was applied to identify CTRs in Drosophila S2 cells and human HeLa cells. Although many insulator proteins have been characterized in Drosophila, less than half of the CTRs in S2 cells are associated with known insulator proteins, indicating unknown mechanisms remain to be characterized. Our analysis also revealed that the peak binding of insulator proteins are usually 1–2 nucleosomes away from the CTR. Comparison of CTR-associated insulator protein binding sites vs. those in heterochromatic region revealed that boundary-associated binding sites are distinctively flanked by nucleosome destabilizing sequences, which correlates with significant decreased nucleosome density and increased binding intensities of co-factors. Interestingly, several subgroups of boundaries have enhanced H3.3 incorporation but reduced nucleosome turnover rate. Our genome-wide study reveals that diverse mechanisms are employed to define the boundaries of facultative heterochromatin. In both Drosophila and mammalian systems, only a small fraction of insulator protein binding sites co-localize with H3K27me3 boundaries. However, boundary-associated insulator binding sites are distinctively flanked by nucleosome destabilizing sequences, which

  8. Identification of Drosophila Zfh2 as a mediator of hypercapnic immune regulation by a genome-wide RNAi screen

    PubMed Central

    Kwon, Yong-Jae; Hu, Jennifer A.; Krupinski, Thomas; Casalino-Matsuda, S. Marina; Sporn, Peter H. S.; Sznajder, Jacob I.; Beitel, Greg J.

    2015-01-01

    Hypercapnia, elevated partial pressure of carbon dioxide (PCO2) in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse and Drosophila cells, and increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediator(s) of hypercapnic immune suppression are undefined. Here, we report a genome-wide RNAi screen in Drosophila S2* cells stimulated with bacterial peptidoglycan (PGN). The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide (AMPs) Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, Zfh2 (mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNAi improves survival of flies exposed to elevated CO2 and infected with S. aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other AMPs and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Together, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression. PMID:26643480

  9. Genome-wide association analysis identifies multiple loci related to resting heart rate

    PubMed Central

    Eijgelsheim, Mark; Newton-Cheh, Christopher; Sotoodehnia, Nona; de Bakker, Paul I.W.; Müller, Martina; Morrison, Alanna C.; Smith, Albert V.; Isaacs, Aaron; Sanna, Serena; Dörr, Marcus; Navarro, Pau; Fuchsberger, Christian; Nolte, Ilja M.; de Geus, Eco J.C.; Estrada, Karol; Hwang, Shih-Jen; Bis, Joshua C.; Rückert, Ina-Maria; Alonso, Alvaro; Launer, Lenore J.; Hottenga, Jouke Jan; Rivadeneira, Fernando; Noseworthy, Peter A.; Rice, Kenneth M.; Perz, Siegfried; Arking, Dan E.; Spector, Tim D.; Kors, Jan A.; Aulchenko, Yurii S.; Tarasov, Kirill V.; Homuth, Georg; Wild, Sarah H.; Marroni, Fabio; Gieger, Christian; Licht, Carmilla M.; Prineas, Ronald J.; Hofman, Albert; Rotter, Jerome I.; Hicks, Andrew A.; Ernst, Florian; Najjar, Samer S.; Wright, Alan F.; Peters, Annette; Fox, Ervin R.; Oostra, Ben A.; Kroemer, Heyo K.; Couper, David; Völzke, Henry; Campbell, Harry; Meitinger, Thomas; Uda, Manuela; Witteman, Jacqueline C.M.; Psaty, Bruce M.; Wichmann, H-Erich; Harris, Tamara B.; Kääb, Stefan; Siscovick, David S.; Jamshidi, Yalda; Uitterlinden, André G.; Folsom, Aaron R.; Larson, Martin G.; Wilson, James F.; Penninx, Brenda W.; Snieder, Harold; Pramstaller, Peter P.; van Duijn, Cornelia M.; Lakatta, Edward G.; Felix, Stephan B.; Gudnason, Vilmundur; Pfeufer, Arne; Heckbert, Susan R.; Stricker, Bruno H.Ch.; Boerwinkle, Eric; O'Donnell, Christopher J.

    2010-01-01

    Higher resting heart rate is associated with increased cardiovascular disease and mortality risk. Though heritable factors play a substantial role in population variation, little is known about specific genetic determinants. This knowledge can impact clinical care by identifying novel factors that influence pathologic heart rate states, modulate heart rate through cardiac structure and function or by improving our understanding of the physiology of heart rate regulation. To identify common genetic variants associated with heart rate, we performed a meta-analysis of 15 genome-wide association studies (GWAS), including 38 991 subjects of European ancestry, estimating the association between age-, sex- and body mass-adjusted RR interval (inverse heart rate) and ∼2.5 million markers. Results with P < 5 × 10−8 were considered genome-wide significant. We constructed regression models with multiple markers to assess whether results at less stringent thresholds were likely to be truly associated with RR interval. We identified six novel associations with resting heart rate at six loci: 6q22 near GJA1; 14q12 near MYH7; 12p12 near SOX5, c12orf67, BCAT1, LRMP and CASC1; 6q22 near SLC35F1, PLN and c6orf204; 7q22 near SLC12A9 and UfSp1; and 11q12 near FADS1. Associations at 6q22 400 kb away from GJA1, at 14q12 MYH6 and at 1q32 near CD34 identified in previously published GWAS were confirmed. In aggregate, these variants explain ∼0.7% of RR interval variance. A multivariant regression model including 20 variants with P < 10−5 increased the explained variance to 1.6%, suggesting that some loci falling short of genome-wide significance are likely truly associated. Future research is warranted to elucidate underlying mechanisms that may impact clinical care. PMID:20639392

  10. Genome-wide association study in German patients with attention deficit/hyperactivity disorder.

    PubMed

    Hinney, Anke; Scherag, André; Jarick, Ivonne; Albayrak, Özgür; Pütter, Carolin; Pechlivanis, Sonali; Dauvermann, Maria R; Beck, Sebastian; Weber, Heike; Scherag, Susann; Nguyen, Trang T; Volckmar, Anna-Lena; Knoll, Nadja; Faraone, Stephen V; Neale, Benjamin M; Franke, Barbara; Cichon, Sven; Hoffmann, Per; Nöthen, Markus M; Schreiber, Stefan; Jöckel, Karl-Heinz; Wichmann, H-Erich; Freitag, Christine; Lempp, Thomas; Meyer, Jobst; Gilsbach, Susanne; Herpertz-Dahlmann, Beate; Sinzig, Judith; Lehmkuhl, Gerd; Renner, Tobias J; Warnke, Andreas; Romanos, Marcel; Lesch, Klaus-Peter; Reif, Andreas; Schimmelmann, Benno G; Hebebrand, Johannes

    2011-12-01

    The heritability of attention deficit hyperactivity disorder (ADHD) is approximately 0.8. Despite several larger scale attempts, genome-wide association studies (GWAS) have not led to the identification of significant results. We performed a GWAS based on 495 German young patients with ADHD (according to DSM-IV criteria; Human660W-Quadv1; Illumina, San Diego, CA) and on 1,300 population-based adult controls (HumanHap550v3; Illumina). Some genes neighboring the single nucleotide polymorphisms (SNPs) with the lowest P-values (best P-value: 8.38 × 10(-7)) have potential relevance for ADHD (e.g., glutamate receptor, metabotropic 5 gene, GRM5). After quality control, the 30 independent SNPs with the lowest P-values (P-values ≤ 7.57 × 10(-5) ) were chosen for confirmation. Genotyping of these SNPs in up to 320 independent German families comprising at least one child with ADHD revealed directionally consistent effect-size point estimates for 19 (10 not consistent) of the SNPs. In silico analyses of the 30 SNPs in the largest meta-analysis so far (2,064 trios, 896 cases, and 2,455 controls) revealed directionally consistent effect-size point estimates for 16 SNPs (11 not consistent). None of the combined analyses revealed a genome-wide significant result. SNPs in previously described autosomal candidate genes did not show significantly lower P-values compared to SNPs within random sets of genes of the same size. We did not find genome-wide significant results in a GWAS of German children with ADHD compared to controls. The second best SNP is located in an intron of GRM5, a gene located within a recently described region with an infrequent copy number variation in patients with ADHD.

  11. A genome-wide association study of osteochondritis dissecans in the Thoroughbred.

    PubMed

    Corbin, Laura J; Blott, Sarah C; Swinburne, June E; Sibbons, Charlene; Fox-Clipsham, Laura Y; Helwegen, Maud; Parkin, Tim D H; Newton, J Richard; Bramlage, Lawrence R; McIlwraith, C Wayne; Bishop, Stephen C; Woolliams, John A; Vaudin, Mark

    2012-04-01

    Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other livestock species, companion animal species, and humans. The principal aim of this study was to identify quantitative trait loci (QTL) associated with osteochondritis dissecans (OCD) in the Thoroughbred using a genome-wide association study. A secondary objective was to test the effect of previously identified QTL in the current population. Over 300 horses, classified as cases or controls according to clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip. An animal model was first implemented in order to adjust each horse's phenotypic status for average relatedness among horses and other potentially confounding factors which were present in the data. The genome-wide association test was then conducted on the residuals from the animal model. A single SNP on chromosome 3 was found to be associated with OCD at a genome-wide level of significance, as determined by permutation. According to the current sequence annotation, the SNP is located in an intergenic region of the genome. The effects of 24 SNPs, representing QTL previously identified in a sample of Hanoverian Warmblood horses, were tested directly in the animal model. When fitted alongside the significant SNP on ECA3, two of these SNPs were found to be associated with OCD. Confirmation of the putative QTL identified on ECA3 requires validation in an independent sample. The results of this study suggest that a significant challenge faced by equine researchers is the generation of sufficiently large data sets to effectively study complex diseases such as osteochondrosis.

  12. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  13. Genome Wide Association for Addiction: Replicated Results and Comparisons of Two Analytic Approaches

    PubMed Central

    Drgon, Tomas; Zhang, Ping-Wu; Johnson, Catherine; Walther, Donna; Hess, Judith; Nino, Michelle; Uhl, George R.

    2010-01-01

    Background Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes. “Nontemplate” genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that, taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than expected by chance. Methodology/Principal Findings We report pooled “nontemplate” genome-wide association studies of two independent samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays. We assess convergence between results from these two samples using two related methods that seek clustering of nominally-positive results and assess significance levels with Monte Carlo and permutation approaches. Both “converge then cluster” and “cluster then converge” analyses document convergence between the results obtained from these two independent datasets in ways that are virtually never found by chance. The genes identified in this fashion are also identified by individually-genotyped dbGAP data that compare allele frequencies in cocaine dependent vs control individuals. Conclusions/Significance These overlapping results identify small chromosomal regions that are also identified by genome wide data from studies of other relevant samples to extents much greater than chance. These chromosomal regions contain more genes related to “cell adhesion” processes than expected by chance. They also contain a number of genes that encode potential targets for anti-addiction pharmacotherapeutics. “Nontemplate” GWA approaches that seek chromosomal regions in which nominally-positive associations are found in multiple independent samples are

  14. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population

    PubMed Central

    2013-01-01

    Background Genome-wide association study (GWAS) is a powerful tool for revealing the genetic basis of quantitative traits. However, studies using GWAS for conformation traits of cattle is comparatively less. This study aims to use GWAS to find the candidates genes for body conformation traits. Results The Illumina BovineSNP50 BeadChip was used to identify single nucleotide polymorphisms (SNPs) that are associated with body conformation traits. A least absolute shrinkage and selection operator (LASSO) was applied to detect multiple SNPs simultaneously for 29 body conformation traits with 1,314 Chinese Holstein cattle and 52,166 SNPs. Totally, 59 genome-wide significant SNPs associated with 26 conformation traits were detected by genome-wide association analysis; five SNPs were within previously reported QTL regions (Animal Quantitative Trait Loci (QTL) database) and 11 were very close to the reported SNPs. Twenty-two SNPs were located within annotated gene regions, while the remainder were 0.6–826 kb away from known genes. Some of the genes had clear biological functions related to conformation traits. By combining information about the previously reported QTL regions and the biological functions of the genes, we identified DARC, GAS1, MTPN, HTR2A, ZNF521, PDIA6, and TMEM130 as the most promising candidate genes for capacity and body depth, chest width, foot angle, angularity, rear leg side view, teat length, and animal size traits, respectively. We also found four SNPs that affected four pairs of traits, and the genetic correlation between each pair of traits ranged from 0.35 to 0.86, suggesting that these SNPs may have a pleiotropic effect on each pair of traits. Conclusions A total of 59 significant SNPs associated with 26 conformation traits were identified in the Chinese Holstein population. Six promising candidate genes were suggested, and four SNPs showed genetic correlation for four pairs of traits. PMID:24341352

  15. A Genome-wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease

    PubMed Central

    Wild, Philipp S; Zeller, Tanja; Schillert, Arne; Szymczak, Silke; Sinning, Christoph R; Deiseroth, Arne; Schnabel, Renate B; Lubos, Edith; Keller, Till; Eleftheriadis, Medea S; Bickel, Christoph; Rupprecht, Hans J; Wilde, Sandra; Rossmann, Heidi; Diemert, Patrick; Cupples, L Adrienne; Perret, Claire; Erdmann, Jeanette; Stark, Klaus; Kleber, Marcus E; Epstein, Stephen E; Voight, Benjamin F; Kuulasmaa, Kari; Li, Mingyao; Schäfer, Arne S; Klopp, Norman; Braund, Peter S; Sager, Hendrik B; Demissie, Serkalem; Proust, Carole; König, Inke R; Wichmann, Heinz-Erich; Reinhard, Wibke; Hoffmann, Michael M; Virtamo, Jarmo; Burnett, Mary Susan; Siscovick, David; Wiklund, Per Gunnar; Qu, Liming; El Mokthari, Nour Eddine; Thompson, John R; Peters, Annette; Smith, Albert V; Yon, Emmanuelle; Baumert, Jens; Hengstenberg, Christian; März, Winfried; Amouyel, Philippe; Devaney, Joseph; Schwartz, Stephen M; Saarela, Olli; Mehta, Nehal N; Rubin, Diana; Silander, Kaisa; Hall, Alistair S; Ferrieres, Jean; Harris, Tamara B; Melander, Olle; Kee, Frank; Hakonarson, Hakon; Schrezenmeir, Juergen; Gudnason, Vilmundur; Elosua, Roberto; Arveiler, Dominique; Evans, Alun; Rader, Daniel J; Illig, Thomas; Schreiber, Stefan; Bis, Joshua C; Altshuler, David; Kavousi, Maryam; Witteman, Jaqueline CM; Uitterlinden, Andre G; Hofman, Albert; Folsom, Aaron R; Barbalic, Maja; Boerwinkle, Eric; Kathiresan, Sekar; Reilly, Muredach P; O'Donnell, Christopher J; Samani, Nilesh J; Schunkert, Heribert; Cambien, Francois; Lackner, Karl J; Tiret, Laurence; Salomaa, Veikko; Munzel, Thomas; Ziegler, Andreas; Blankenberg, Stefan